(58)【調査した分野】(Int.Cl.,DB名)
カルボン酸部分に加えて少なくとも1つのOH官能基を有するカルボン酸のアルカリ金属塩を得る工程と、カルボン酸のアルカリ金属塩を電気化学的に脱カルボキシル化してアルキルラジカルを得、当該アルキルラジカルは反応してラジカル結合生成物であるジオールを形成する電気化学的脱カルボキシル化工程と、得られたジオールを脱水化してジエンを形成する脱水化工程とから成るジエンの電気化学的製造方法であって、カルボン酸のアルカリ金属塩が、カルボン酸部分に加えて少なくとも1つのOH官能基をカルボン酸部分に対してα位の位置に有することを特徴とするラジカル結合生成物の電気化学的製造方法。
カルボン酸のアルカリ金属塩が、MOH又はMOR(ただし、Mはアルカリ金属を示し、OHは水酸化物アニオンを示し、ORはアルコキシドアニオンを示す)の式で示される塩基を使用した鹸化反応を経て形成される請求項1に記載の方法。
【発明の概要】
【発明が解決しようとする課題】
【0007】
生化学的に生成された原料などの非石油源から、もっと経済的に持続可能なプロセス、例えば、高価な触媒、高温、高圧に頼らないプロセスを使用して、非常に重要なゴム材料のためのジエンモノマーを製造する製法を見つけ出すことは利点となるであろう。開示される本発明の目的は、バイオマスを原料としてジエンモノマーを合成し、次いで電気化学的にジオールに変換し、更に脱水工程によってジエンに変換することである。そのようなプロセスは、唯一の触媒高温プロセスを必要とする方法を使用して、ジエンモノマーの非石油源を利用可能にする。
【課題を解決するための手段】
【0008】
本発明の実施態様は、例えば、官能基に含まれる少なくとも二つの酸素を有する炭化水素などの炭化水素を合成するための方法に関する。これらの方法は、電気化学的脱カルボキシル化プロセスを使用して安価な生物発生前駆体からそのような炭化水素を製造する方法である。脱カルボキシル化プロセスは、カルボン酸のアルカリ塩を二つ以上の酸素を含む置換基を有する炭化水素化合物に変換する。
【0009】
一つの例において、脱カルボキシル化プロセスは、脱水されてジエンを形成することができるジオールを製造するのに使用される。このプロセスの1つの利点は、前駆体として使用されるカルボン酸を選択することによってジエンの最終構造を調整できることである。天然および合成のいずれもの供給源(バイオマスを含む)から入手可能な数多くの種類のカルボン酸があり、ジエンの構造および官能基を個々の特性および機能に合うように設えることが出来る。製造されたジエンは種々の異なる応用分野に使用できる。例えば、ジエンは合成ゴム製造のための出発原料として使用される。ジエン中の構造および官能基を制御できることは、ゴムを所望に設計でき、設えることができる。複数の酸素を含む官能基を有する特別の有機分子に対して低温製造ルートを提供することに加えて、本実施態様は、特別の有機分子を種々の原料から(再生可能な生物発生原料を含む)製造する合成方法を提供する。それ故、本実施態様は、現在使用されている石油系原料の代わりに再生可能な原料(バイオマス)からジエンを製造するように機能する。
【0010】
ジオールの製造方法は、本発明の複数の官能基を有する炭化水素または他の有機分子の製造プロセスを明示するための一つの例として使用される。ジオールのジエンへの変換は、炭素鎖の末端部分に二重結合が配置されているジエンを製造し、ジエンとしては、これに限定されない実施態様として1,3−ブタジエン、1,4−ペンタジエン、イソプレン及び1,5−ヘキサジエンが挙げられる。そのようなモノマーは、アクリロニトリル−ブタジエン−スチレン(ABS)などを含む種々のポリマー製品の製造に使用できる(ABSは、全世界で100万トン/年製造される最も使用される熱可塑体(体積辺り)であり、本実施態様は、再生可能な非石油系源からABSのための出発原料を製造する方法を提供する)。
【0011】
ある実施例において、本発明のプロセスは4つの工程を含む。これらの工程は、1)バイオマスからカルボン酸を製造するための発酵工程、2)カルボン酸の鹸化によりアルカリ金属カルボン酸塩を形成する工程、3)アルカリカルボン酸塩の脱カルボキシル化によりジオールを形成する工程、および4)ジオールを脱水して所望のジエンモノマーを形成する工程である。
【0012】
カルボン酸を製造するためのバイオマスの発酵は、よく知られ研究されている、生物により生産された種々の生成物に関する出発原料を製造するために使用されるプロセスである。発酵は、所望のカルボン酸の製造のために選択される特定のバクテリアを使用して、バイオマスのスラリーで行われる。発酵に使用されるバイオマススラリーの組成は、バクテリアにより要求される原料および条件に依存する。ほとんどのカルボン酸に関して、工業的に使用される種々のバクテリアがあり、種々のバイオマス材料からカルボン酸を製造できる。例えば、乳酸はグルコース、糖蜜、コーン又は乳清の発酵を介して製造される。発酵プロセスで使用されるバクテリアにより、純粋な酸が直接得られるぐらいに得られるカルボン酸流のpHを十分低することも出来、また、カルボン酸の塩が得られるpH範囲を有することもできる。例えば、乳酸は、乳酸カルシウムとして最も一般的に製造される。これは溶解性が低いために発酵槽から容易に分離できるという理由であり、米国特許出願公開第2012/0142945号公報に示されている(この出願は参照により本発明に引用する)。乳酸カルシウムは、次いで酸性化されて乳酸として得られる。本実施態様では、カルボン酸は酸の形態であり、最終的に合成される化合物の所望の機能を付与するために、更なる官能基が存在する。
【0013】
年間当り数100000(メートル法)トンの乳酸が、商業的にショ糖、グルコース又はラクトース等の炭水化物の発酵を介して製造される。ショ糖から変換されるかデンプンから直接得られるグルコースは、発酵プロセス中、2モルの乳酸に変換される。乳製品の副生物であるラクトースの発酵は、水の存在下、4モルの乳酸を製造する。これらは、バイオマスから乳酸を製造する十分に確立した方法で、現在石油系炭化水素を使用して製造されるブタジエンを製造するための再生可能で経済的な前駆体となる。
【0014】
カルボン酸の鹸化としては、カルボン酸とアルカリ金属塩基(MOH)を高温で反応させることが広く受け入れられているこれに限定されないアルカリ金属塩基は、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等である。全体的な中和反応は以下の通りである。
RCO
2H+MOH→RCO
2M+H
2O
“R”は有機部分を表し、Mは例えばナトリウム、リチウム等のアルカリ金属である。
【0015】
ある実施態様において、この鹸化反応は、溶液から沈殿するアルカリカルボン酸塩を形成する反応となるように、アルコキシドを有する溶媒中で行われる。そのような実施態様において、アルカリカルボン酸塩は容易に分離でき、続く脱カルボキシル化工程で必要な陽極液を調製する。
【0016】
アルカリカルボン酸塩は電気化学的脱カルボキシル化してラジカルカップリング生成物を形成する。出発物質のカルボキシル塩は少なくとも1つの更なる官能基が存在するため、最終的なカップリング生成物は2つの官能基が存在し例えばジオールを形成する。このプロセスは、Ceramatec,Inc.社(ソルトレークシティー、ユタ州)から入手できるセラミック膜を使用した2室電気化学的セルを使用して行われる。Ceramatec社はこの膜をNaSelect(登録商標)として販売している。この陽極液室中の電解は、以下の改変コルベ電解反応として知られている全体的な反応スキームに従う。
2RCO
2M→R−R+CO
2+2e
−+2M
+
“R”は有機部分を表し、Mは例えばナトリウム、リチウム等のアルカリ金属である。
【0017】
他の実施態様において、陽極液室(アノード室)中の電解は、“非コルベ反応電解”のルートから生成物が導かれる。非コルベ反応電解で得られる生成物の一つとしてアルデヒドが挙げられる。
2RCO
2M→2RCOH+2CO
2+2e
−+2M
+
【0018】
この方法は、カルボキシルアニオン上の更なる官能基の場所および種類によって促進させることが出来る。得られたアルデヒドは次いで反応してヒドロキシル−ケトンを形成し、次いで、例えば求核付加反応が塩基媒体中で生じる。包括的なこの反応経路を以下に示す。
【0019】
【化1】
【0020】
ある実施態様において、非コルベ反応電解から直接得られる化合物は、アセトインを製造するプロセスのような上述の実施態様のように経済的に実施可能である(アセトインは食品添加剤として使用される)。他の実施態様において、ヒドロキシルケトンは更なるプロセスによりジオールに還元させられる。
【0021】
一旦、ジオールが得られると(コルベ又は非コルベ法を介して)、ジオールは次いで脱水反応に処せられ、それにより水とジエンが製造する。脱水反応は多くの方法によって行え、例えば、酸および触媒の存在下でで行われる。
【0022】
従来のコルベプロセスは、カルボン酸基のα位に電子供与基がある場合、ラジカル−ラジカル結合反応を許されなかった。しかしながら、本発明の技術により、セルに通じる電位をより制御し、それにジオールを得ることが出来る。明らかに、従来のコルベ反応において、セルに通じる電位が余りにも高すぎて、この部位に電子供与基を有する化合物のラジカル−ラジカルカップリングが行えなかった。それ故、本実施態様は顕著な利点を有する。
【発明の効果】
【0023】
本発明は、ジオール類または他類似の化学物質が形成される電気化学的脱カルボキシル化プロセスを提供する。
【発明を実施するための形態】
【0025】
本発明の以下の記載を通じて使用される幾つかの語およびその意味を以下に示す。ここで使用される“生物由来の”又は“生物生成された”は、生物由来の再生可能資源から誘導される固体または流体のいずれかの物質として参照される。“炭化水素”は、炭素と水素とから成る飽和または不飽和化合物でうを意味する。“ジエン”は、共役または非共役の2つの二重結合を有する炭化水素を意味する。“ジオール”は2つのアルコール基(水酸基)を有する化合物である。“カルボン酸”は一般式RCO
2Hで示される化合物であり、“R”は飽和または不飽和炭化水素鎖を示す。ここで使用される“脱カルボキシル化”とは,化合物、具体的にカルボン酸またはアニオンからCO
2を除去するプロセスを意味する。ここで使用される“ゴム”とは、外からの応力によって生じる変形が応力を除去することにより元の形状に戻る材料のことである。ここで使用される“対称”とは、少なくとも1つの鏡面対称元素を有する化学構造であり、“非対称”とは、鏡面を有さない化学構造であることを意味する。“置換基”および“官能基”は、同じ意味で用いられ、炭化水素の炭素鎖上の水素原子が置換された原子または原子基を意味する。
【0026】
本発明の実施態様は、一般的に、電気化学的脱カルボキシル化プロセス(EDP)を使用し、低コストで生物生産性の前駆体から、少なくとも2つの酸素を含む官能基を有する有機化合物を合成するために使用される方法に関する。本発明の実用性を示す実施例において、酸素を含む有機化合物はジエンを製造するために使用される。
【0027】
図1を参照すると、バイオマスがいかにしてジオール、ジエン及び/又は他の有用な有機分子に変換されるかを示すフローチャートが示されている。より具体的には、
図1は、バイオマス1がジオール14又はジエン15に変換される方法を示す。この方法において、バイオマス1の試料を得る。
図1は、バイオマスがカルボン酸8に変換される種々の異なるプロセスを示す。この変換における最も直接的な方法は発酵反応4を介する方法である。
【0028】
他の実施態様において、バイオマス1は炭水化物2に変換され(分離される)、加水分解反応5によりカルボン酸8を得る。一方、加水分解反応5を使用する代りに、炭水化物2は変換反応7を行うことによりカルボン酸8を形成する。
【0029】
他の実施態様において、バイオマス1は、リグニン、トールオイル及び/又は樹脂3に変換される(分離される)。この材料3は、次いで変換反応9を行うことによりカルボン酸8が得られる。他の実施態様において、バイオマス1がカルボン酸8に変換できる脂質6に変換され(分離され)、必要であれば、変換反応9を行うことによりカルボン酸8が得られる。
【0030】
カルボン酸8の生成に引き続き、これらの材料はカルボン酸のアルカリ塩10に変換される。これらのアルカリ塩10は、電気化学的脱カルボキシル化プロセスのための好ましい前駆体である。このプロセスはアルカリ塩10をジオール14に変化する。同時に、この脱カルボキシル化反応は二酸化炭素11、アルカリ水酸化物12及び水酸化アルカリ又はアルカリメチラート13を形成する。ジオール14が得られると、ジエン15に変換されてもよい。
【0031】
図1に示す実施態様に従い、酸素の官能基化された有機化合物の最終構造は、カルボン酸により、すなわち使用されるバイオマスによる。当業者ならば、最終構造から導かれるバイオマス及びカルボン酸の原料が数多くあり、それ故、
図1により与えられるフロー図に従って製造できる数多くの有機化合物があることはあきらかであろう。
【0032】
ここに記載されているように、本実施態様において製造されるジエンは、ゴム材料の製造のためのモノマーとして使用できるジエンである。バイオマスから得ることが出来る数多くの種類のカルボン酸塩物質は、所望とする物性を有するゴム材料を得るためにテイラーメイドでモノマーを調製できる。モノマーをテイラーメイド出来るような変化の例としては、これに限定されないが、炭素数、炭素鎖の枝分かれ度合い、他の官能基を含む可能性などが挙げられる。特注モノマーのための低温法を供給するに加えて、本発明は、石油系原料に頼る代りに再生可能原料からそのようなモノマーを製造する手法も供給する。
【0033】
図2を参照すると、
図1の脱カルボキシル化反応に使用される電気化学的セル110の概略が示される。セル110は、2つの分離された室、すなわち陽極液室16及び陰極液室17から成る。2室16及び17は、アルカリ金属イオン選択膜18を収納するスカフホールド(支持体、足場)112によって分離される。膜は、例えば、Ceramatec Inc.(ソルトレークシティー、ユタ州)から入手できるNaSelect(登録商標)膜である。
【0034】
陽極液室16は陽極液リザーバー22と流体流通関係にある。陽極液リザーバーは、所定量の陽極液116を収納する。陽極液116は陽極液リザーバー22から陽極液室16にポンプで供給されてもよい。陽極液室16はアノード19を収納する。それ故、陽極液溶液116が陽極液室16にポンプで供給された際、陽極液116はアノード19に接触する(その結果アノード反応が起こる)。
図2に示すように、陽極液116はカルボン酸のアルカリ金属塩130の溶液から成る。当業者には知られているように、このアルカリ塩RCO
2M130は、使用される個々の溶媒146によって構成イオン(RCO
2−及びM
+)に分かれていてもよい。
【0035】
陰極液室17は、陰極液リザーバー21と流体流通関係にある。陰極液リザーバー21は所定量の陰極液117を収納する。陰極液117は陰極液リザーバー21から陰極液室17にポンプで供給されてもよい。陰極液室17はカソード20を収納する。それ故、陰極液溶液117が陰極液室17にポンプで供給された際、陰極液116はカソード20に接触する(その結果カソード反応が起こる)。
図2に示すように、陰極液117は、アルカリ金属水酸化物140(MOH)又はアルカリ金属アルコキシド150(MOR)の溶液から成る。当業者には知られているように、使用される個々の溶媒145によって、アルカリ金属水酸化物140は、構成イオン(OH
−及びM
+)に、アルカリ金属アルコキシド150はM
+及びOR
−に分かれていてもよい。陽極液116及び陰極液117は、それぞれ溶媒145及び146から成るが、個々の実施形態により同じであっても異なっていてもよい。
【0036】
電源26がセル110に電位を印加すると、アルカリイオン(M
+)は膜18を横切って移動し、カソード20において還元により水素23を形成し、セル110から放出される。アノード19において、酸化反応がラジカルを生成し、ラジカルはラジカル結合生成物24と二酸化炭素25を生成する。
【0037】
電気化学的反応の最中、アノード19の界面における酸化は、ラジカルとCO
2とを形成するカルボキシル官能基の脱カルボキシル化を引き起こす。本発明のある実施態様に従えば、次いで第2のラジカルと直接反応して少なくとも2つの酸素を含む官能基を有する対称有機分子を形成する。これに限定されない例として、ラジカルは結合してジオールを生成する。本発明の他の実施態様に従えば、二電子酸化がアノード19の界面で生じる。これは、次いで求核付加反応が起こり、少なくとも2つの酸素を含む官能基を有する非対称化合物を形成する。ある実施態様において、この非対称化合物は容易にジオールに変換される。別の実施態様において、陽極液は複数の種類のカルボン酸塩を含み、ラジカルの酸化でヘテロ結合生成物を形成する。ヘテロ結合は酸素を含む官能基を有する非対称化合物を導き、ホモ結合は対称化合物を導く。
【0038】
セル110の他の側において、陰極液117の還元が生じ、電荷バランスを維持するため、+イオン(M
+)はアノード19からカソード20に移送されなくてはならず、陽極液116及び陰極液117が分離されている場合は、+イオンが両室の間を移送する通り道がなくてはならない。ある実施態様において、イオン伝導性膜18が、選択的にアルカリイオン(M
+)を透過する。アルカリイオン(M
+)としてはこれに限定されないが、ナトリウム、リチウム及びカリウムが挙げられ、陽極液116から陰極液117に、電場の印加の影響下で移動する。ある実施態様において、NaSelect(登録商標)膜18が選択的にナトリウムイオンを陽極液116及び陰極液117の間で移送する。
【0039】
ある実施態様において、イオン伝導性膜18は10〜5000μmの厚さを有し、好ましくは膜18は100〜1000μmの厚さを有し、更に好ましくは膜18は200〜700μmの厚さを有する。ある実施態様において、膜18は平板形状を有するディスクの形態である。このディスクは、直径が0.25〜25cmである。ある実施態様において、このディスクは、直径が1.27〜12.7cmである。他の実施態様において、このディスクは、直径が2.54〜7.62cmである。1つ以上のディスクがあってもよく、1つ又は複数のディスクがスカッフホールド(支持体、足場)112中に組み込まれていてもよい。他の実施態様において、膜18は平均直径0.25〜25cmの円筒形状を有する。他の実施態様において、円筒形状の平均直径が1.27〜12.7cmである。他の実施態様において、円筒形状の平均直径が2.54〜7.62cmである。
【0040】
電気化学的セル110は、
図2に示すように平板膜および電極を使用した平行板形状であってもよい。他の実施態様において、電気化学的セルはチューブ状電極および膜を使用したチューブ形状であってもよい。当業者には明らかなように、上述のセルの形状は、特定のカルボン酸塩を脱カルボキシル化するために要求されることにより選択されるものと結びついて利点も欠点も有している。更に、当業者にとって、本発明によるプロセスは種々のセル形態に適用できることは明らかである。
【0041】
電源26によってアノード19及びカソード20間に電位差を印加させた時に、陽極液室16中で酸化反応が生じるのであれば、アノード19はいかなる好適な材料から成っていてもよい。これに限定されないアノード材料の例としては、白金、チタン、ニッケル、コバルト、鉄、ステンレススチール、二酸化鉛、金属アロイ、これらの組合せおよび他の公知または新規のアノード材料が挙げられる。ある実施態様において、アノード19は、KOVAR(登録商標)またはINVAR(登録商標)などの鉄−ニッケルアロイから成る。他の実施態様において、アノード19は、ホウ素がドープされたダイアモンド、ガラス状カーボン、合成カーボン等のカーボン系電極から成る。更に、ある実施態様において、アノードは、これに限定されないが、チタン基材上の二酸化レニウム及び四酸化チタン等の寸法安定性アノード(DSA)が挙げられる。
【0042】
カソード20は、水またはメタノールを還元して水酸化物またはメトキシドイオンと水素ガスとを製造できるのであれば、いかなる好適なカソード材料から形成されてもよい。カソードはアノード19に使用される材料から成っていてもよい。その逆に、カソード20はアノード19に使用される材料と異なる材料から成っていてもよい。これに限定されない好適なカソード材料の例として、ニッケル、ステンレススチール、グラファイト、及び他の公知または新規の好適なカソード材料が挙げられる。
【0043】
他の実施態様において、電極は薄膜などの平滑な形状を有する。他の実施態様において、アノード19及びカソード20は、例えばこれに限定されないが、発泡体、砂粒または他の多孔質形態などの高表面積形状を有する。ある実施態様において、アノード19及びカソード20は、例えばこれに限定されないが、同じ形状形態を有し、一方、別の実施態様において、電極は異なる形状形態を有する。
【0044】
図2に示される実施態様は、2つの異なった室から成る分割されたセルである。他の実施態様において、セルが単室セルで、電解質がイオン選択性膜18無しのこの室に供給されるように構築されてもよい。
【0045】
本実施態様に従ってジオールを形成するために、カルボン酸のアルカリ塩130が1つ以上のアルコール(OH)官能基を有する。
【0046】
陽極液溶液116は極性有機溶媒146から成っていてもよい。これに限定されない実施態様において、好適な極性有機溶媒の例として、メタノール、エタノール、イソプロパノール、n−プロパノール、アセトン、アセトニトリル、ジオキサン、ブタノール、DMSO、CS
2、ジエチルカーボネート、エチレンカーボネート、グリセロールが挙げられる。ある実施態様において、溶媒は、カルボン酸とエタノールから形成されるエチルエステル、又は、更に好ましくは酸化されるべきアニオンとエタノールとに炭素数が類似のカルボン酸である。最も好ましくは、溶媒は、酸化されるべきアニオンとエタノールのカルボン酸から形成されるエステルである。この種の溶媒の例としては乳酸エチルが挙げられる。
【0047】
他の実施態様において、陽極液溶液116は
イオン液体(IL)から成る。これに限定されない例として、4置換基を有するホスホニウム系カチオンを有するILである。ある実施態様において、ホスホニウムカチオンの4置換基は、それぞれ独立にアルキル基、シクロアルキル基、アルケニル基およびアリル基から選ばれる。他の実施態様において、置換基の一部/全部が類似の基である。更なる実施態様において、置換基の一部/全部が同じである。ある実施態様において、
イオン液体のアニオンが、カルボン酸塩イオンであり、より好ましくは、カルボン酸塩イオンが電解中に酸化されるカルボン酸塩アニオンと類似のものであり、最も好ましくは、カルボン酸塩イオンが電解中に酸化されるアニオンと同一である。
【0048】
例えば、NaSICON型およびLiSICON型膜などのアルカリイオン伝導性膜は高温耐性を有し、それ故、陽極液溶液116は陰極液溶液117の温度または膜18の機能に実質的に影響を及ぼすことなく高温に過熱できる。これは、溶融塩または酸が、陽極液116内のカルボン酸塩を溶解するために使用できることを意味する。それ故、ある実施態様において、
陽極液116は酸化されるべきカルボン酸塩アニオンの溶融塩である。
【0049】
陽極液溶液116は、溶媒に可溶で、陽極液溶液において高い電解質伝導性を付与するような支持電解質を任意に含ませてもよい。これに限定されない支持電解質の例としては、アルカリ金属水酸化物、アルカリ金属塩、テトラフルオロホウ酸塩、テトラメチルアンモニウムヘキサフルオロリン酸塩、テトラブチルアンモニウムテトラフルオロホウ酸塩、テトラメチルアンモニウム過塩素酸塩、テトラエチルアンモニウム過塩素酸塩などが挙げられる。当業者には明らかであるが、他の可溶イオン化合物も使用できる。
【0050】
陰極液21は、陽極液溶液146と同じまたは異なる溶媒145から成る。イオン伝導性膜18がそれぞれの室を互いに分離しているために出来ることである。それ故、陽極液溶媒146及び陰極液溶媒145は、それぞれの室で起こる反応および/または個々の反応で必要とされる化学物質の溶解性で個別に選択される(所望であれば、溶媒145と溶媒146として混合溶媒が使用されてもよい)。これは、例えば、高いイオン伝導性を有する等の陽極液116と異なる性質を有する安価な陰極液117を設計できることを可能にする。
【0051】
本発明のある実施態様において、陰極液117は水および非飽和アルカリ水酸化物140から成る。水酸化物濃度は0.1〜50重量%、好ましくは5〜25重量%、更に好ましくは7〜15重量%である。他の実施態様において、陰極液117がアルカリメチラート150から成るように構築される。陰極液117の温度は陽極液116の温度と同じであっても異なっていてもよい。
【0052】
カソード20に電位が印加されると、還元反応が生じる。陰極液溶液117が水性溶液の時、水は水素ガス23及び水酸化物イオンに還元される。形成された水酸化物は次いでアルカリイオンと結合し、イオン伝導性膜18を介して輸送され、電解が行われるにつれて、陰極液117のアルカリ水酸化物濃度を上昇させる。陰極液生成物流は、カルボン酸を中和してカルボン酸のアルカリ金属塩10を生成するために使用される塩基から成ることが好ましい(
図1に示す)。それ故、酸中和工程によって消費される塩基は、陰極液室17において製造され、回収され、後の中和反応または他の化学プロセスにおいて再使用されてもよい。
【0053】
電位差がアノード19に印加されると、酸化反応が生じる。ある実施態様において、カルボン酸またはカルボン酸のアニオンの酸化が脱カルボキシル化を導き、二酸化炭素およびアルキルラジカルを生成する。ラジカルは、次いで他のラジカルと結合しアルキル−アルキル結合生成物を形成し、引き続き改変されたコルベ電解プロセスが行われるか、またはラジカルは、電極界面に存在する他の化学種と反応し、引き続き非コルベ反応電解が行われる。他の実施態様において、カルボキシル基のα位に電子供与性基がある場合、脱カルボキシル化は、二電子酸化からCO
2及びカルボカチオンの形成を導く。それが形成されると、引き続き、カルボカチオンはカップリング反応の代りに求核反応に参加する。これらの電位メカニズムをここに詳細に説明する。
【0054】
ある実施態様において、電解セル110は連続式で運転される。連続式作動において、セル110は最初に陽極液溶液116及び陰極液溶液117で満たされ、次いで、作動中に追加溶液がセル110に供給され、生成物、副生物および/またはこれらの希釈液が、セルの作動を中止することなくセル110から取り除かれる。他の実施態様において、電解セル110はバッチ式で運転される。バッチ式において、セル110は最初に陽極液溶液116及び陰極液溶液117で満たされ、次いで、所望の生成物濃度が達成させられるまでセル110を作動させ、次いで、セル110を空にし、生成物を回収する。セル110は、次いで、バッチプロセスを再試行するために溶液で満たされる。また、どちらの方法においても、溶液の供給は予め作られた溶液を使用してもよく、またはその場で溶液を形成する成分を使用してもよい。連続式もバッチ式も両方とも、陽極液116が、所定レベルのアルカリイオン濃度を維持するために溶液に添加されることが出来る。
【0055】
上述のように、陽極液溶液116は、溶媒146及びカルボン酸130のアルカリ金属塩から成る。カルボン酸の選択は所望の生成物に依存し、その種のいかなるカルボン酸から選択されてもよい。これに限定されない例として、脂肪酸、アルキルカルボン酸、アミノ酸、アリルカルボン酸、ジ及びトリ−カルボン酸などが挙げられる。カルボン酸はカルボキシル基に加えて複数の置換基が存在してもよい。これらの追加の官能基は、カルボン酸のいかなる炭素部位に存在してもよく、ある実施態様において、カルボン酸塩の炭素のα−部位に配置される。電子供与および電子吸引の両方の置換基がカルボン酸に存在してもよい。これに限定されない実施態様として、電子供与性の置換基がヒドロキシル基、アミン、アミド、エーテル基などである。これに限定されない実施態様として、電子吸引性の置換基がハロゲン、ニトリル、ニトロ、ニトリド(窒化)基である。カルボン酸塩のα位に存在する官能基は、脱カルボキシル化が一電子または二電子酸化メカニズムかどうかによる。ある実施態様において、α位に存在する置換基が無いこと又は置換基が電子吸引性であることの理由から、一電子酸化はラジカル−ラジカルカップリング反応にふさわしい。他の実施態様において、電子供与性基がカルボン酸塩のα位に存在するするので二電子酸化がふさわしい。
【0056】
図1に関連し上記で説明したように、カルボン酸(RCO
2H)は酸の中和反応を経て対応するアルカリ塩(RCO
2M)に変換される。ある実施態様において、カルボン酸のR基は、C
2〜C
22炭化水素鎖と酸素を含有する官能基に置換された少なくとも1つの水素とを有する炭化水素である。この官能基としては、これに限定されないが、ヒドロキシル、フェニル、エステル、ケトン等が存在できる。ある実施態様において、カルボン酸は、ハロゲン化基、ニトリル、アミン、アミド、スルフィド等の酸素を含有しない他の置換基を有していてもよい。例えば、ゴム物質のためのモノマーの製造において、置換基の追加は、ジエンが重合した後に更なる物性を付与したり、ゴム材料を改変して使用できる。ある実施態様において、カルボン酸が加の置換基がすでに存在しているバイオマスから得られる。他の実施態様において、カルボン酸から誘導されるバイオマスは、先ず追加の官能基を含むように改変される。
【0057】
陽極液溶液116として使用される好適な電解質にカルボン酸のアルカリ塩が添加される。カルボン酸のアルカリ塩の伝導度が低く高い溶液抵抗を生じる場合、陽極液溶液116は、任意に支持電解質を含ませてもよい。陽極液溶液は、連続式またはバッチ式で電気化学的セル110に供給される。
【0058】
カソード20及びアノード19における個々の反応を以下に示す。具体的に、アノード19における脱カルボキシル化は以下のように起きる。
RCO
2Na→R・+CO
2+Na
++e
−
ラジカル(R
−)が形成されると、電極界面において他の化学種と反応し、もし、同じカルボン酸塩アニオンの他のラジカルと反応すれば、ホモカップリング生成物となる。
R・+R・→R−R
結合生成物は、少なくとも2つの酸素を含む官能基を有する対称化合物である。この生成物は、それ自身、例えば溶媒などとして興味のある化学物質であり、また、興味のある化学物質に変換することも出来る。例えば、官能基は二重結合に変換され、ジエンはゴム材料の製造のためのモノマーとして使用できる。もし、ラジカルが異なるカルボン酸塩アニオンと結合した場合、ヘテロカップリング生成物が形成され、非対称化合物が得られる。
【0059】
他の実施態様において、炭素鎖のα位に存在する電子供与基を有するカルボン酸塩アニオンの脱カルボキシル化を含む。この場合、脱カルボキシル化中に形成されるラジカルは異なる反応に従い、転移反応を介して進むか、または更なる電子を失って進むかの何れかで以下の反応式の通りである。
RCH
2C(Y)H・ → RCH
2CH=Y + H・
RCH
2C(Y)H・ → RCH
2RYH
+ + e
−
RCH
2RYH
+ + OH
− → RCH=RHY + H
2O
これらの反応で、Yはカルボキシル基のα位における電子供与基を示す。これらの反応で形成される化合物は、それら自身に興味が持たれるだけでなく、更なる工程に伴う興味深い化合物に変換できる。その反応経路は限定されないが、上述の反応生成物は、例えばジオールに変換され、次いでジエンに変換される。これらの更なる化学工程を以下に示すが、これには限定されない。
【0061】
ラジカル−ラジカルカップリングを促進させる一つの方法は、高い電流密度において脱カルボキシル化を行うことである。これを達成するには、高い電流密度と低い電位で、高い伝導性の陰極液をセルのカソード室内にもちいる。これに限定されないそのような陰極液の例として、アルカリ水酸化物水溶液および非水メタノール/アルカリメトキシド溶液が挙げられる。これらの溶液は、カソードにおいて還元され、水素ガスとアルカリ金属水酸化物の形成を導く。
【0062】
カルボン酸それ自身に代えてアルキルカルボン酸のアルカリ金属塩を使用するこの実施態様の有利な点は、1)RCO
2MはRCO
2Hに比べてより極性を有し、脱カルボキシル化がより低い電位で起こりやすい、2)アルカリ金属塩の電解質伝導性が酸溶液よりも高い、3)陽極液および陰極液溶液は完全に異なることができ、何れかの/両方の電極において好適な反応を起こすことが出来る。
【0063】
以下のこれに限定されない実施例は、本発明の要旨を超えない範囲の種々の実施態様を示すために与えられるものである。
【実施例】
【0064】
幾つかの実施例により、低温低圧で電気化学的脱カルボキシル化プロセスを使用して、安価なカルボン酸を機能化された炭化水素に変換する実行可能な技術を示す。実施例は、Ceramatec,Inc.,(ソルトレークシティー、ユタ州)社で製造されるNaSelect(登録商標)NaSICON膜を搭載した電解セルを使用した、水酸基を有するカルボン酸のナトリウム塩の脱カルボキシル化を示す。脱カルボキシル化により、溶媒または食品添加物として利用できる酸素を含む少なくとも2つの官能基を有する化合物を製造し、更なる工程において、ゴム材料の製造のためのジエンモノマーに変換できる。
【0065】
ここに示す実施例は、
図2に示すスキームに従って実験的に調製された。これらの実施例で使用されたセルは、電極および膜の間の距離を最小にしながら、陽極液および陰極液の両方をセルにポンプで供給することができるミクロフローセルである。実施例で使用した膜は、セルの中心のスカフホールド(足場)に収納された2.54cm径で厚さ約1mmのNaSICONディスクから成る。スカフホールド及び膜は物理的にアノード室とカソード室とを分離するので、陽極液および陰極液のための別々のリザーバー及び温度制御ホットプレートが有る。これは、それぞれの電極反応を化学的および条件的に最良にする。複数の−ヘッドの寄生ポンプが、電解セルに両方の電解質をポンプで供給するの使用され、電解質の温度によって、セル、ポンプ及びリザーバーの間の配管は絶縁(断熱)された。
【0066】
カルボン酸のナトリウム塩を含む陽極液は、極性有機溶媒中に少なくとも10%の塩を溶解することにより調製した。これは、二つの方法を使用して行われた。第1の方法は、カルボン酸およびNaOHの添加により、極性有機溶媒中に直接ナトリウム塩を製造する方法である。酸の脱プロトン化の完了を確実にするため、セルは、過剰のNaOHを示すpH(8−12)で作動させた。第2の方法は、従来の鹸化反応に従って別の溶液にナトリウム塩を調製し、次いで極性有機溶媒中に調製した塩を溶解させることから成る方法である。この方法のため、カルボン酸の中和の結果、ナトリウム塩が形成される間、通常の鹸化プロセスが使用される。陰極液はナトリウム塩を含むいかなる溶液から作られてもよく、その例として、ここでは水酸化ナトリウム水溶液を使用した。低い溶液抵抗を得るため、電解質の温度を50℃まで上昇させ、溶解性と伝導性の両方を改善した。
【0067】
リザーバーが所望の温度に達したら、電源(BP Precision 1786B)を接続し、10〜100mA/cm
2の電流密度を印加した。電解中、電圧および電流は、LabVIEWにより制御されたData Acquisition Unit(Agilent 3490A)を使用して監視された。印加電流密度によりアノード(平滑白金)において酸化反応を生じ、カソード(ニッケル)において還元反応が生じる。なお、それぞれの電極の面積はは11cm
2であった。電源が電子をアノードからカソードに移送するため、電荷バランスは正電荷イオンの拡散によってセルの全域にわたって維持されなければならない。Naイオンの高い選択性を有するNaSICON膜により、それこそがこの電荷バランスを供給することが出来る唯一の化学種であり、それ故、ナトリウム塩の高い濃度が要求された。
【0068】
コルベ電解のための従来の溶媒として、メタノールが実施例で使用される溶媒の一つとして使用された。穏やかに加熱を行った後、メタノール中の乳酸ナトリウムの溶解性が20%であった。乳酸エチルを溶媒として使用した第2の実施例を本発明の実施態様の一つとして実施した。乳酸エチル中の乳酸ナトリウムの溶解性は20%のすぐ下であった。
【0069】
ガスクロマトグラフィー(GC)を用いて、以下の実施例で得られた生成物の特性付けを行った。高い極性を有するポリエチレングリコール(PEG)カラム(HP INNOWax、30m、0.25mm、0.25μm)を使用し、125℃で5分間温度を維持し、次いで10℃/分で250℃まで昇温し、この温度を5分間維持した。ナトリウム塩を含む反応溶液であり、GC装置の構成要素と異なるという問題があるため、試料からナトリウム塩を除去するという後反応工程を実施した。
【0070】
反応溶液の塩から生成物を分離するために使われた方法の1つが蒸留である。得られた生成物の高い沸点(148−135℃)により、メタノールが反応溶液から蒸留されると、沈殿除去される“塩のスラリー”が生じた。この発生は、反応溶液とグリセロール(沸点290℃)の混合物を使用している蒸留を達成することにより回避できる。これは、生成物を蒸留するのに必要な温度で蒸留を遂行しながら、グリセロールは、塩が沈殿してしまうのを防ぎ、生成物の蒸留を避けつつ蒸留媒体として機能する。
【0071】
第2の後反応処理は、硫酸酸を用いた酸性化を経て反応溶液からナトリウム塩を除去するために使用された。H
2SO
4の添加で、存在するカルボン酸塩イオンは酸性化され、NaイオンはNa
2SO
4として溶液から沈殿した。溶液からNa
2SO
4を濾別したのち、GC分析装置に直接注入された。2つの後反応処理の1つを使用しながら生成物を定量するために、1−ブタノールを内部標準として検量線を作成した。
【0072】
実施例1:
本発明の電気化学的脱カルボキシル化プロセスが使用して、水酸基を有するカルボン酸のナトリウム塩をジオールに変換した。製造されたジオールは溶媒として使用することも出来、また、更にジエンに変換することも出来る。この脱カルボキシル化のための陽極液はメタノール中ナトリウム3−ヒドロキシプロピオネート10重量%から成り、これは、酸をメタノール中に溶かし、過剰のNaOHペレットを添加して調製した。10重量%水酸化ナトリウム水溶液が陰極液として使用された。
【0073】
陽極液および陰極液は、セルの対応するアノード室およびカソード室を通じて循環され、バッチ式で電解が行われた。十分な電荷を通じてナトリウム塩の理論的変換率80%に到達するまでセルを作動させた。電解中、電解質の温度は50℃に維持され、18.5mA/cm
2の電流密度が使用された。
【0074】
アノード室およびカソード室での電解中に生じる反応を以下に示す。
C(OH)H
2CH
2CO
2Na→C(OH)H
2CH
2・+CO
2+Na
++e
−
H
2O + e
− → H
2 + OH
−
2C(OH)H
2CH
2・ → C(OH)H
2CH
2CH
2C(OH)H
2
【0075】
アノード室内で脱カルボキシル化によりCO
2が生じ、水酸化カルシウム溶液を通じて泡立ち、炭酸カルシウムを形成し、TGAを使用して分析した。
図3は電解の過渡電位および電流密度を示すグラフを含む。電位はちょうど8Vの下からスタートし、5時間の間に31Vに増加し、脱カルボキシル化が生じた。18mA/cm
2の電流密度を印加しながら、電位を7Vから32Vに5時間かけて増加させた。この実施例における反応条件はラジカル−ラジカルカップリングを促進し、以下の式に従って1,4−ブタンジオールを製造した。
2C(OH)H
2CH
2・ → C(OH)H
2CH
2CH
2C(OH)H
2
【0076】
電解反応が完了の後、1−ブタノールを1重量%と添加し、硫酸(30%)を使用して陽極液をpH=3まで酸性化させた。硫酸ナトリウムの沈殿を陽極液溶液から濾別し、ろ液をGCを使用して分析した。
図4に示す溶出時間11.57分(又は11.55分に始まる)の1,4−ブタンジオールピークを積分し、1−ブタノールを内部標準として使用した検量線に基づいた収率は80%であった。
【0077】
ナトリウム3−ヒドロキシプロピオネートの電解から得られた1,4−ブタンジオールは、溶媒として利用でき、また、脱水反応により1,3−ブタジエンを形成できる。1,3−ブタジエンは、ゴム材料の異なる種類の製造において使用される重要なモノマーである。
【0078】
実施例2:
本発明の他の実施例として、水酸基を有する異なるカルボン酸が複数の酸素を含む官能基を有する化合物に変換された。製造された化合物は食品添加物として使用でき、又ジオールに変換でき、さらに必要であればジエンに変換できる。この脱カルボキシル化の陽極液は、乳酸ナトリウムの10重量%メタノール溶液から成り、これは乳酸をメタノールに溶解し、次いで過剰のNaOHペレットを添加して調製した。陰極液としては、10重量%水酸化ナトリウム水溶液を使用した。
【0079】
電解は、対応するセルのアノード室およびカソード室に循環されながら、バッチ式で行われた。電解は、十分な電荷が流れ、ナトリウム塩の理論変換率が80%まで行われた。電解中、電解質の温度は50℃に維持され、電流密度は9mA/cm
2であった。
【0080】
陽極液室およびカソード室で電解中に起こる反応は以下の通りである。
CH
3C(OH)HCO
2Na → CH
3C(OH)H・+CO
2+Na
++e
−
H
2O + e
− → H
2 + OH
−
【0081】
アノード室内で脱カルボキシル化によりCO
2が生じ、水酸化カルシウム溶液を通じて泡立ち、炭酸カルシウムを形成し、TGAを使用して分析した。
図5は、この電解の過渡電位および電流密度を示すグラフを含む。電位はちょうど8Vの下からスタートし、5時間の間に31Vに増加し、脱カルボキシル化が生じた。9.5mA/cm
2の電流密度を印加しながら、電位を8Vから7Vに6時間かけて減少させた。その条件および乳酸塩アニオン中のヒドロキシル基のα位は二電子酸化を促進し、以下のこれに限定されない反応式に従ってアセトアルデヒドを製造した。
H
3C(OH)H・→CH
3C(OH)H
++e
−+OH
−→CH
2C(OH)H
【0082】
溶液中の過剰のNaOHの存在および溶液温度が50℃であることから、電解が完了した後、更にアセトアルデヒドに変換する以下の求核付加反応(これに限らない反応として)を示す。
2CH
3CHO + NaOH → CH
3COC(OH)HCH
3 + NaOH
【0083】
上記の反応の進行につれて、透明な陽極液溶液が明るい〜暗い黄色になり、これはアセトインの形成を示すものである。溶液は、次いで硫酸を使用して酸性化され、同体積のグリセロールが添加された。グリセロール系溶液は、次いで蒸留され、グリセロール中の残留塩をそのままにしながら、対応する沸点で異なる留分を回収した。
図6に示す蒸留液のGC分析では、アセトインが3.8分に80%の収率で溶出し、2,3−ブタンジオールの異性体が6.5分および7.1分に5%の収率で溶出したことが示されている。
【0084】
上述の脱カルボキシル化反応で製造されたアセトインは食品添加物として利用でき、電気化学的還元により2,3−ブタンジオールが得られる。このジオールは、溶媒として利用でき、又は脱水して1,3−ブタジエンを形成できる。1,3−ブタジエンは、異なる種のゴム材料の製造に使用されるモノマーとして利用できる。
【0085】
実施例3:
本発明の他の実施例として、実施例2で使用したものと同じカルボン酸を直接ジオールに変換した。製造されたジオールは溶媒として利用でき、更にジエンに変換できる。この実施例の陽極液はL−乳酸ナトリウム塩の20重量%メタノール溶液から成り、L−乳酸ナトリウム塩(98%、Sigma)を直接メタノールに溶解させて調製した。陰極液としては、10重量%水酸化ナトリウム水溶液を使用した。
【0086】
電解は、対応するセルのアノード室およびカソード室に循環されながら、バッチ式で行われた。電解は、十分な電荷が流れ、ナトリウム塩の理論変換率が80%まで行われた。電解中、電解質の温度は50℃に維持され、電流密度は18mA/cm
2であった。
【0087】
陽極液室およびカソード室で電解中に起こる反応は以下の通りである。
CH
3C(OH)HCO
2Na → CH
2C(OH)H・+CO
2+Na
++e
−
H
2O + e
− → H
2 + OH
−
【0088】
アノード室内で脱カルボキシル化によりCO
2が生じ、水酸化カルシウム溶液を通じて泡立ち、炭酸カルシウムを形成し、TGAを使用して分析した。これらの条件下で、ラジカルが発生し、ホモカップリングが進行し、以下の式に従って2,3−ブタンジオールが生成した。
2CH
3C(OH)H・ → CH
3C(OH)HC(OH)HCH
3
【0089】
電解反応が完了の後、1−ブタノールを1重量%と添加し、硫酸(30%)を使用して陽極液をpH=3まで酸性化させた。硫酸ナトリウムの沈殿を陽極液溶液から濾別し、GCを使用してろ液を分析した。
図7に示すように、2,3−ブタンジオールの3つの異性体に対応する2つの溶出ピークが得られ、これらのピークを積分し、1−ブタノールを内部標準として使用した検量線に基づいた収率は20%であった。2つのピークは、溶出時間6.5分および7.1分の2,3−ブタンジオールの3種の異性体のピークである。
【0090】
L−乳酸ナトリウム塩の電解で得られた2,3−ブタンジオールは、溶媒として利用でき、又は脱水して1,3−ブタジエンを形成できる。1,3−ブタジエンは、異なる種のゴム材料の製造に使用されるモノマーとして利用できる。
【0091】
実施例4:
本発明の他の実施例として、実施例2及び3で使用したものと同じカルボン酸を異なる溶媒を用いて直接ジオールに変換した。この脱カルボキシル化の陽極液はL−乳酸ナトリウム塩の20重量%乳酸エチル溶液から成り、L−乳酸ナトリウム塩(98%、Sigma)を直接乳酸エチルに溶解させて調製した。陰極液としては、10重量%水酸化ナトリウム水溶液を使用した。
【0092】
電解はバッチ式で行われ、陽極液および陰極液は対応するセルの陽極液室およびカソード室に循環させられた。電解は、理論的にナトリウム塩80%を変換するために十分な電荷が透過するまで続けられた。電解中、電解質の温度は50℃に維持され、9mA/cm
2の電流密度が印加された。
【0093】
陽極液室およびカソード室で電解中に起こる反応は以下の通りである。
CH
3C(OH)HCO
2Na → CH
2C(OH)H・+CO
2+Na
++e
−
H
2O + e
− → H
2 + OH
−
【0094】
アノード室内で脱カルボキシル化によりCO
2が生じ、水酸化カルシウム溶液を通じて泡立ち、炭酸カルシウムを形成し、TGAを使用して分析した。
図8はこの電解の過渡電位および電流密度を含み、9.5mA/cm
2の電流密度を印加した際に、開始電位が15Vで、5時間で13Vまで減少したことを示す。これらの条件下、ラジカル(複数)がラジカル−ラジカルカップリングし、以下のように2,3−ブタンジオールを形成する。
2CH
3C(OH)H・→CH
3C(OH)HC(OH)HCH
3
【0095】
電解の完了に引き続き、1−ブタノールが1重量%添加され、陽極液は、硫酸酸(30%)を使用してpH3に達するまで酸性化された。沈殿した硫酸ナトリウムは陽極液溶液から濾別され、濾過された液体はGC(ガスクロマトグラフィー)を使用して分析された。2,3−ブタンジオールの3つの異性体に対応する2つのピークが、
図9に示すGC上で溶出して認められ、これらのピークの積分値の合計から、内部標準として1−ブタノールを使用して作成されたキャリブレーションを基に得られた収率は27%であった。2,3−ブタンジオールの異性体の溶出時間は6.5分および7.1分で、乳酸エチルの溶出時間は4.1分であった。
【0096】
乳酸エチル中のL−乳酸ナトリウム塩の電解で得られた2,3−ブタンジオールは、溶媒として利用でき、又は脱水して1,3−ブタジエンを形成できる。1,3−ブタジエンは、異なる種のゴム材料の製造に使用されるモノマーとして利用できる。
【0097】
本発明で引用された全ての特許出願および特許文献は参照により本発明に引用される。