(58)【調査した分野】(Int.Cl.,DB名)
前記テレビジョンシステムは、ディスプレイと、前記ディスプレイの周りに延在するベゼルとを含み、前記ベゼルは前記複数のRF送信アンテナのうちの少なくとも1つを含む、請求項1に記載の装置。
前記テレビジョンシステムが、ディスプレイと、前記ディスプレイの反対側の後部とを含み、前記後部は前記複数のRF送信アンテナのうちの少なくとも1つを含む、請求項1に記載の装置。
前記送信機はコミュニケータを含み、前記コミュニケータは、前記受信機を位置付けるためのデータを含む通信信号を前記受信機から受信するように構成され、前記制御された建設的干渉パターンの場所が前記通信信号のデータに基づいて決定される、請求項1に記載の装置。
前記コミュニケータは、Bluetooth(登録商標)、Wi-Fi(登録商標)、ZigBee(登録商標)および周波数変調(FM)無線を含むグループから選択される通信プロトコルを介して前記受信機から前記通信信号を受信するように構成される、請求項8に記載の装置。
前記送信機は第1の電力源から電力を受信するように構成され、前記テレビジョンシステムは第2の電力源から電力を受信するように構成され、前記第1の電力源は前記第2の電力源から独立している、請求項10に記載の装置。
前記テレビジョンシステムは、ディスプレイと、前記ディスプレイの周囲に延在するベゼルとを含み、前記ベゼルは前記複数のRF送信アンテナのうちの少なくとも1つを含む、請求項12に記載の方法。
前記テレビジョンシステムは、ディスプレイと、前記ディスプレイの反対側の後部とを含み、前記後部は前記複数のRF送信アンテナのうちの少なくとも1つを含む、請求項12に記載の方法。
【発明を実施するための形態】
【0015】
詳細な説明
ここでは、本開示は、本明細書の一部を形成する、図面に示される実施形態を参照して詳細に説明する。本開示の趣旨または範囲から逸脱することなく、他の実施形態を使用することおよび/または他の変更形態をなすことができる。詳細な説明で説明される例示的な実施形態は、ここで提示される対象物を限定することを意図しない。さらに、本発明の趣旨または範囲から逸脱することなく、本明細書で説明される様々なコンポーネントおよび実施形態を組み合わせて、明確に説明されていない追加の実施形態を形成することができる。
【0016】
ここでは、図面に示される例示的な実施形態を参照し、ここではそれを説明するために特殊言語を使用する。それにもかかわらず、それにより本発明の範囲を限定することは意図されないことが理解されよう。関連する技術分野における本開示を所有する当業者が想到するであろう、ここに示される本発明の特徴の代替形態およびさらなる変更形態、ならびにここに示されるような本発明の原理の追加の応用は、本発明の範囲内であると見なされるものとする。
【0017】
1.無線電力伝送のためのシステムおよび方法
A.コンポーネントシステム実施形態
図1は、エネルギーのポケット104を形成することによる無線電力伝送のためのシステム100を示す。システム100は、送信機101、受信機103、クライアントデバイス105およびポケット検出器107を含み得る。送信機101は、受信機103によって捕捉することができる電力伝送波を含む電力伝送信号を伝送することができる。受信機103は、アンテナ、アンテナ素子および他の回路(後に詳述する)を含み得、受信機103と関連付けられたクライアントデバイス105の代わりに、捕捉した波を使用可能な電気エネルギー源に変換することができる。いくつかの実施形態では、送信機101は、電力伝送波の位相、利得および/もしくは他の波形特徴を操作することにより、ならびに/または異なる送信アンテナを選択することにより、電力伝送波で構成される電力伝送信号を1つまたは複数の軌道で伝送することができる。そのような実施形態では、送信機101は、電力伝送信号の軌道を操作することができ、その結果、根底にある電力伝送波が空間の特定の場所に集中し、特定の形態の干渉をもたらす。電力伝送波の集中において生成される干渉のタイプの1つである「建設的干渉」は、電力伝送波が互いに加え合ってその場所に集結するエネルギーを強化するような、電力伝送波の集中によって生じるエネルギーのフィールドであり得、互いに差し引き合ってその場所に集結するエネルギーを縮小するように互いに加え合う「相殺的干渉」と呼ばれるものとは対照的である。建設的干渉における十分なエネルギーの蓄積は、エネルギーのフィールドまたは「エネルギーのポケット」104を確立することができ、エネルギーのフィールドまたは「エネルギーのポケット」104は、アンテナが電力伝送信号の周波数で動作するように構成される場合、受信機103のアンテナによって捕捉することができる。それに従って、電力伝送波は、空間の特定の場所にエネルギーのポケット104を確立し、受信機103は、電力伝送波の受信、捕捉および使用可能な電気エネルギーへの変換を行うことができ、それにより、関連付けられた電気クライアントデバイス105への給電または充電を行うことができる。検出器107は、受信機103を含むデバイスであり、電力伝送信号の受信に応答して通知または警告の生成が可能である。例として、ユーザのクライアントデバイス105を充電するために受信機103の最適な配置を探しているユーザは、LED光108を含む検出器107を使用することができ、LED光108は、検出器107が単一のビームまたはエネルギーのポケット104から電力伝送信号を捕捉した際に明るくなるものであり得る。
【0018】
1.送信機
送信機101は、デバイス105と関連付けられた受信機103に電力伝送信号を伝送または放送することができる。以下で言及される実施形態のいくつかは、高周波(RF)の波として電力伝送信号を説明しているが、電力伝送は、空間を通じて伝播が可能なおよび電気エネルギー源103への変換が可能な物理的な媒体であり得ることを理解すべきである。送信機101は、受信機103に向けられた単一のビームとして電力伝送信号を伝送することができる。いくつかの事例では、1つまたは複数の送信機101は、複数の方向に伝播され、物理的な障害(例えば、壁)で反射され得る複数の電力伝送信号を伝送することができる。複数の電力伝送信号は、三次元空間の特定の場所に集中させ、エネルギーのポケット104を形成することができる。エネルギーのポケット104の境界内の受信機103は、電力伝送信号を捕捉し、使用可能なエネルギー源に変換することができる。送信機101は、建設的干渉パターンを形成するために、電力伝送信号の位相および/または相対振幅調整に基づいてポケット形成を制御することができる。
【0019】
例示的な実施形態は、RF波伝送技法の使用について記述しているが、無線充電技法は、RF波伝送技法に限定されるべきではない。むしろ、可能性のある無線充電技法は、伝送エネルギーを電力に変換する受信機にエネルギーを伝送するためのいかなる数の代替または追加の技法も含み得ることを理解すべきである。受信デバイスによって電力に変換できるエネルギーのための非限定的な例示的な伝送技法は、超音波、マイクロ波、共鳴および誘導磁場、レーザ光、赤外線または他の形態の電磁エネルギーを含み得る。超音波の事例では、例えば、1つまたは複数のトランスデューサ素子は、超音波を受信してそれらを電力に変換する受信デバイスに向けて超音波を伝送するトランスデューサアレイを形成するように配置することができる。共鳴または誘導磁場の事例では、磁場は、送信機コイルにおいて生成され、受信機コイルによって電力に変換される。加えて、例示的な送信機101は、潜在的に複数の送信機(送信アレイ)を含む単一のユニットとして示されているが、この段落で言及されている電力のRF伝送と他の電力伝送方法との両方に対して、送信アレイは、コンパクトな規則的な構造よりむしろ、部屋中に物理的に広がる複数の送信機を含み得る。
【0020】
送信機は、アンテナアレイを含み、アンテナは、電力伝送信号を送信するために使用される。各アンテナは、電力伝送波を送信し、送信機は、異なる位相および振幅を異なるアンテナから伝送された信号に適用する。エネルギーのポケットの形成と同様に、送信機は、伝送される信号の遅延バージョンのフェーズドアレイを形成することができ、次いで異なる振幅を信号の遅延バージョンに適用し、次いで適切なアンテナから信号を送信する。RF信号、超音波、マイクロ波またはその他などの正弦波形の場合、信号の遅延は、位相シフトを信号に適用することと同様である。
【0021】
2.エネルギーのポケット
エネルギーのポケット104は、送信機101によって伝送される電力伝送信号の建設的干渉パターンの場所で形成することができる。エネルギーのポケット104は、エネルギーのポケット104内に位置する受信機103によってエネルギーを捕捉することができる三次元場として現れ得る。ポケット形成中に送信機101によって生成されたエネルギーのポケット104は、受信機103によって捕捉し、電荷に変換し、次いで受信機103と関連付けられた電子クライアントデバイス105(例えば、ラップトップコンピュータ、スマートフォン、再充電可能バッテリ)に提供することができる。いくつかの実施形態では、様々なクライアントデバイス105への給電を行う複数の送信機101および/または複数の受信機103が存在し得る。いくつかの実施形態では、適応ポケット形成は、電力レベルの調節および/またはデバイス105の動きの識別を行うために電力伝送信号の伝送を調整することができる。
【0022】
3.受信機
受信機103は、関連付けられたクライアントデバイス105に給電するか、またはそれを充電するために使用することができ、関連付けられたクライアントデバイス105は、受信機103と結合されるか、または統合された電気デバイスであり得る。受信機103は、1つまたは複数の送信機101から生じる1つまたは複数の電力伝送信号から電力伝送波を受信することができる。受信機103は、送信機101によって生成された単一ビームとして電力伝送信号を受信することができるか、または受信機103は、1つまたは複数の送信機101によって生成された複数の電力伝送波を集中させた結果生じる空間における三次元場であり得るエネルギーのポケット104から電力伝送波を捕捉することができる。受信機103は、電力伝送信号から電力伝送波を受信し、単一のビームまたはエネルギーのポケット104の電力伝送信号からエネルギーを捕捉するように構成されたアンテナのアレイ112を含み得る。受信機103は、電力伝送信号(例えば、高周波電磁放射線)のエネルギーを電気エネルギーに変換する回路を含み得る。受信機103の整流器は、電気エネルギーをACからDCに変換することができる。また、他のタイプの調節を適用することもできる。例えば、電圧調節回路は、クライアントデバイス105によって必要とされるように、電気エネルギーの電圧を増加または減少させることができる。継電器は、次いで、受信機103からクライアントデバイス105に電気エネルギーを伝えることができる。
【0023】
いくつかの実施形態では、受信機103は、リアルタイムまたはほぼリアルタイムでデータを交換するために、制御信号を送信機101に伝送する通信コンポーネントを含み得る。制御信号は、クライアントデバイス105、受信機103または電力伝送信号についてのステータス情報を含み得る。ステータス情報は、例えば、他のタイプの情報のなかでも特に、デバイス105の現在の場所情報、受け取った電荷の量、使用した電荷の量およびユーザアカウント情報を含み得る。さらにいくつかの応用では、それが含む整流器を含む受信機103は、クライアントデバイス105に組み込むことができる。実用的な目的のため、受信機103、ワイヤ111およびクライアントデバイス105は、単一のパッケージに含まれる単一のユニットであり得る。
【0024】
4.制御信号
いくつかの実施形態では、制御信号は、電力伝送信号の生成および/またはポケット形成を制御する役割を有する様々なアンテナ素子によって使用されるデータ入力として機能し得る。制御信号は、外部電源(図示せず)およびローカル発振回路チップ(図示せず)を使用して(いくつかの事例では、圧電材料の使用を含み得る)、受信機103または送信機101によって生成することができる。制御信号は、RF波またはプロセッサ間でのデータ通信が可能な他の任意の通信媒体もしくはプロトコル(Bluetooth(登録商標)、RFID、赤外線、近距離無線通信(NFC)など)であり得る。後に詳述するように、制御信号は、電力伝送信号を調整するために使用される情報を送信機101と受信機103との間で伝えるために使用すること、ならびにステータス、効率、ユーザデータ、電力消費量、請求、地理的な場所および他のタイプの情報に関連する情報を含むことができる。
【0025】
5.検出器
検出器107は、受信機103と同様のハードウェアを含み得、それにより、検出器107は、1つまたは複数の送信機101から生じる電力伝送信号を受信することができる。検出器107は、ユーザがエネルギーのポケット104の場所を識別するために使用することができ、その結果、ユーザは、受信機103の好ましい配置を決定することができる。いくつかの実施形態では、検出器107は、検出器がエネルギーのポケット104内に配置された際にそれを示す表示灯108を含み得る。例として、
図1では、検出器107a、107bは、送信機101によって生成されたエネルギーのポケット104内に位置しており、検出器107a、107bがエネルギーのポケット104の電力伝送信号を受信するため、それは、検出器107a、107bがそれぞれの表示灯108a、108bをオンにすることを引き起こし得る。その一方で、エネルギーのポケット104の外側に位置する第3の検出器107cの表示灯108cは、第3の検出器107cが送信機101から電力伝送信号を受信しないため、オフにされる。検出器の機能(表示灯など)は、受信機に組み込むか、または代替の実施形態ではクライアントデバイスに組み込むことができることを理解すべきである。
【0026】
6.クライアントデバイス
クライアントデバイス105は、連続的な電気エネルギーを必要とするか、またはバッテリから電力を必要とするいかなる電気デバイスでもあり得る。クライアントデバイス105の非限定的な例は、他のタイプの電気デバイスのなかでも特に、ラップトップ、携帯電話、スマートフォン、タブレット、音楽プレーヤ、玩具、バッテリ、懐中電燈、ランプ、電子時計、カメラ、ゲームコンソール、電化製品、GPSデバイス、および着用可能デバイスまたは「ウェアラブル」と呼ばれるもの(例えば、フィットネスブレスレット、歩数計、スマートウオッチ)を含み得る。
【0027】
いくつかの実施形態では、クライアントデバイス105aは、クライアントデバイス105aと関連付けられた受信機103aと異なる物理的なデバイスであり得る。そのような実施形態では、クライアントデバイス105aは、受信機103aからクライアントデバイス105aに変換された電気エネルギーを伝えるワイヤ111上で受信機に接続することができる。いくつかの事例では、電力消費ステータス、電力使用量計量、デバイス識別子および他のタイプのデータなどの他のタイプのデータをワイヤ111上で輸送することができる。
【0028】
いくつかの実施形態では、クライアントデバイス105bは、受信機103bに永久的に組み込むことも、受信機103bと取り外し可能に結合することもでき、それにより、単一の統合製品またはユニットを形成する。例として、クライアントデバイス105bは、受信機103bに埋め込まれたスリーブ、およびデバイス105bのバッテリを充電するために通常使用できるデバイス105bの電源入力と取り外し可能に結合できるスリーブに入れることができる。この例では、デバイス105bは、受信機から分離することができるが、デバイス105bが充電を必要とするか否かまたは使用されているか否かにかかわらず、スリーブ内にとどめることができる。別の例では、デバイス105bのための電荷を保持するバッテリを有する代わりに、デバイス105bは、統合受信機105bを含み得、統合受信機105bは、区別できない製品、デバイスまたはユニットを形成するために、デバイス105bに永久的に組み込むことができる。この例では、デバイス105bは、エネルギーのポケット104を捕捉することによって電気エネルギーを生成するため、ほぼ完全に統合受信機103bに依存し得る。受信機103とクライアントデバイス105との間の接続は、ワイヤ111であっても、回路基板または集積回路上での電気的な接続であっても、誘導または磁気などの無線接続であってもよいことは当業者に明確であるべきである。
【0029】
B.無線電力伝送の方法
図2は、例示的な方法200の実施形態による無線電力伝送のステップを示す。
【0030】
第1のステップ201では、送信機(TX)は、受信機(RX)との接続を確立するか、または他に受信機(RX)と関連付ける。すなわち、いくつかの実施形態では、送信機および受信機は、電気デバイスの2つのプロセッサ間での情報の伝送が可能な無線通信プロトコル(例えば、Bluetooth(登録商標)、Bluetooth(登録商標) Low Energy(BLE)、Wi-Fi、NFC、ZigBee(登録商標))を使用して、上で制御データを伝達することができる。例えば、Bluetooth(登録商標)またはBluetooth(登録商標)の変形形態を実装する実施形態では、送信機は、受信機の放送広告信号を走査することができるか、または受信機は、広告信号を送信機に伝送することができる。広告信号は、受信機の存在を送信機に知らせることができ、送信機と受信機とを関連付けることを引き起こし得る。本明細書で説明されるように、いくつかの実施形態では、広告信号は、ポケット形成手順を実行および管理するため、様々なデバイス(例えば、送信機、クライアントデバイス、サーバーコンピュータ、他の受信機)によって使用できる情報を伝達することができる。広告信号に含まれる情報は、デバイス識別子(例えば、MACアドレス、IPアドレス、UUID)、受信された電気エネルギーの電圧、クライアントデバイス電力消費量および電力伝送に関連する他のタイプのデータを含み得る。送信機は、伝送された広告信号を使用して、受信機を識別することができ、いくつかの事例では、二次元空間または三次元空間において受信機を位置付けることができる。送信機が受信機を識別した時点で、送信機は、送信機において受信機と関連付けられた接続を確立し、送信機および受信機が第2のチャネル上で制御信号を伝達できるようにすることができる。
【0031】
次のステップ203では、送信機は、電力伝送信号を伝送するための一連の電力伝送信号特徴を決定し、次いで、エネルギーのポケットを確立するために、広告信号を使用することができる。電力伝送信号の特徴の非限定的な例は、他のもののなかでも特に、位相、利得、振幅、大きさおよび方向を含み得る。送信機は、受信機の広告信号または受信機から受信された後続の制御信号に含まれる情報を使用して、受信機が電力伝送信号を受信できるように、電力伝送信号をどのように生成して伝送するかを決定することができる。いくつかの事例では、送信機は、受信機が電気エネルギーを捕捉できるエネルギーのポケットを確立する方法で、電力伝送信号を伝送することができる。いくつかの実施形態では、送信機は、電力伝送信号から受信機によって捕捉された電気エネルギーの電圧などの受信機から受信された情報に基づいてエネルギーのポケットを確立するために必要な電力伝送信号特徴を自動的に識別できるソフトウェアモジュールを実行するプロセッサを含み得る。いくつかの実施形態では、プロセッサおよび/またはソフトウェアモジュールの機能は、特定用途向け集積回路(ASIC)において実装できることを理解すべきである。
【0032】
加えてまたは代替として、いくつかの実施形態では、広告信号または第2の通信チャネル上で受信機によって伝送される後続の信号は、1つまたは複数の電力伝送信号特徴を示し得、送信機は、電力伝送信号を生成および伝送してエネルギーのポケットを確立するために、1つまたは複数の電力伝送信号特徴を使用することができる。例えば、いくつかの事例では、送信機は、デバイスの場所および受信機またはデバイスのタイプに基づいて、電力伝送信号を伝送するために必要な位相および利得を自動的に識別することができ、いくつかの事例では、受信機は、電力伝送信号を効果的に伝送するための位相および利得を送信機に通知することができる。
【0033】
次のステップ205では、送信機が電力伝送信号を伝送する際に使用するための適切な特徴を決定した後、送信機は、制御信号とは別のチャネル上での電力伝送信号の伝送を開始することができる。電力伝送信号は、エネルギーのポケットを確立するために伝送することができる。送信機のアンテナ素子は、電力伝送信号が受信機の周りの二次元または三次元空間に集中するように電力伝送信号を伝送することができる。受信機の周りの結果として得られたフィールドは、エネルギーのポケットを形成し、エネルギーのポケットから受信機は電気エネルギーを捕捉することができる。電力伝送信号を伝送して二次元エネルギー伝送を確立するために、1つのアンテナ素子を使用することができ、いくつかの事例では、電力伝送信号を伝送して三次元のエネルギーのポケットを確立するために、第2のまたは追加のアンテナ素子を使用することができる。いくつかの事例では、電力伝送信号を伝送してエネルギーのポケットを確立するために、複数のアンテナ素子を使用することができる。さらに、いくつかの事例では、複数のアンテナ素子は、送信機のアンテナのすべてを含み得、いくつかの事例では、複数のアンテナ素子は、送信機の多くのアンテナを含むが、送信機のアンテナのすべてのものよりは少ない。
【0034】
以前に言及されたように、送信機は、決定された一連の電力伝送信号特徴に従って、電力伝送信号を生成して伝送することができ、一連の電力伝送信号特徴は、外部電力源およびローカル発振回路チップ(圧電材料を含む)を使用して、生成して伝送することができる。送信機は、受信機から受信された電力伝送およびポケット形成に関連する情報に基づいて電力伝送信号の生成および伝送を制御するRFICを含み得る。この制御データは、BLE、NFCまたはZigBee(登録商標)などの無線通信プロトコルを使用して、電力伝送信号から異なるチャネル上で伝達することができる。送信機のRFICは、必要に応じて、電力伝送信号の位相および/または相対的な大きさを自動的に調整することができる。ポケット形成は、送信機が建設的干渉パターンを形成する方法で電力伝送信号を伝送することによって遂行される。
【0035】
送信機のアンテナ素子は、ポケット形成中に電力伝送信号を伝送する際、波干渉の概念を使用して、特定の電力伝送信号特徴(例えば、伝送方向、電力伝送信号波の位相)を決定することができる。また、アンテナ素子は、建設的干渉の概念を使用して、エネルギーのポケットを生成することもできるが、相殺的干渉の概念を利用して、特定の物理的な場所における伝送ゼロ領域(transmission null)を生成することもできる。
【0036】
いくつかの実施形態では、送信機は、ポケット形成を使用して複数の受信機に電力を提供することができ、それには、送信機が複数のポケット形成のための手順を実行する必要がある。複数のアンテナ素子を含む送信機は、電力伝送信号をそれぞれの受信機に伝送するタスクを担う送信機の各アンテナ素子に対して、電力伝送信号波の位相および利得を自動的に演算することにより、複数のポケット形成を遂行することができる。各電力伝送信号のための複数の波経路は、受信機のそれぞれのアンテナ素子に電力伝送信号を伝送するために送信機のアンテナ素子によって生成することができるため、送信機は、位相および利得を独立して演算することができる。
【0037】
XおよびYの2つの信号(Yは、Xの180度位相シフトバージョン(Y=−X)である)を伝送する2つのアンテナ素子のための位相/利得調整の演算の例としてである。累積受信波形がX−Yである物理的な場所では、受信機は、X−Y=X+X=2Xを受信する一方で、累積受信波形がX+Yである物理的な場所では、受信機は、X+Y=X−X=0を受信する。
【0038】
次のステップ207では、受信機は、単一のビームまたはエネルギーのポケットの電力伝送信号から電気エネルギーを捕捉または他に受信することができる。受信機は、整流器およびAC/DC変換器を含み得、AC/DC変換器は、AC電流からDC電流に電気エネルギーを変換することができ、次いで、受信機の整流器は、電気エネルギーを整流することができ、受信機と関連付けられたクライアントデバイス(ラップトップコンピュータ、スマートフォン、バッテリ、玩具または他の電気デバイスなど)のための使用可能な電気エネルギーが生じる。受信機は、電子デバイスを充電するか、または他にそれに給電するためにポケット形成中に送信機によって生成されたエネルギーのポケットを利用することができる。
【0039】
次のステップ209では、受信機は、受信機に電力伝送信号を提供する単一のビームまたはエネルギーのポケットの有効性を示す情報を含む制御データを生成することができる。次いで、受信機は、制御データを含む制御信号を送信機に伝送することができる。制御信号は、送信機と受信機とが同期通信している(すなわち、送信機が受信機から制御データを受信する予定である)かどうかに応じて、断続的に伝送することができる。加えて、送信機は、送信機と受信機とが制御信号を伝達しているかどうかに関係なく、電力伝送信号を受信機に連続的に伝送することができる。制御データは、電力伝送信号の伝送および/または効果的なエネルギーのポケットの確立に関連する情報を含み得る。制御データ内の一部の情報は、電力伝送信号の特徴をどのように効果的に生成して伝送するか(いくつかの事例では、どのように効果的に調整するか)を送信機に通知することができる。制御信号は、BLE、NFC、Wi-Fiまたは同様のものなど、電力伝送信号および/またはポケット形成に関連する制御データの伝送が可能な無線プロトコルを使用して、電力伝送信号から独立して、第2のチャネル上で伝送および受信することができる。
【0040】
言及されるように、制御データは、単一のビームまたはエネルギーのポケットの確立による電力伝送信号の有効性を示す情報を含み得る。制御データは、受信機および/または受信機と関連付けられたクライアントデバイスの様々な態様をモニタする受信機のプロセッサによって生成することができる。制御データは、電力伝送信号および/またはポケット形成の調整に役立つ他のタイプの情報のなかでも特に、電力伝送信号から受信された電気エネルギーの電圧、電力伝送信号受信の質、バッテリ充電の質または電力受信の質、受信機の場所または動きなどの様々なタイプの情報に基づき得る。
【0041】
いくつかの実施形態では、受信機は、送信機から伝送された電力伝送信号から受信される電力の量を決定することができ、次いで、送信機が電力伝送信号をそれほど強力ではない電力伝送信号に「分割」またはセグメント化すべきであることを示し得る。それほど強力ではない電力伝送信号は、デバイスの近くの物体または壁に跳ね返され、それにより、送信機から受信機に直接伝送される電力の量が低減する。
【0042】
次のステップ211では、送信機は、アンテナがより効果的な一連の特徴(例えば、方向、位相、利得、振幅)を有する電力伝送信号を伝送するように、電力伝送信号を伝送するアンテナを較正することができる。いくつかの実施形態では、送信機のプロセッサは、受信機から受信された制御信号に基づいて、電力伝送信号を生成して伝送するためのより効果的な特徴を自動的に決定することができる。制御信号は、制御データを含み得、いかなる数の無線通信プロトコル(例えば、BLE、Wi-Fi、ZigBee(登録商標))も使用して受信機によって伝送することができる。制御データは、電力伝送波のより効果的な特徴を明確に示す情報を含み得るか、または送信機は、制御信号の波形特徴(例えば、形状、周波数、振幅)に基づいてより効果的な特徴を自動的に決定することができる。次いで、送信機は、新たに決定されたより効果的な特徴に従って再較正された電力伝送信号を伝送するために、アンテナを自動的に再構成することができる。例えば、送信機のプロセッサは、エネルギーのポケットが確立された三次元空間の外側にユーザが受信機を移動した後、受信機の場所の変化に合わせて調整するために、電力伝送特徴の他の特徴のなかでも特に、電力伝送信号の利得および/または位相を調整することができる。
【0043】
C.電力伝送システムのシステムアーキテクチャ
図3は、例示的な実施形態による、ポケット形成を使用する無線電力伝送のためのアーキテクチャ300を示す。「ポケット形成」は、三次元空間の特定の場所に集中する2つ以上の電力伝送波342を生成し、その場所で建設的干渉パターンを生じさせることを指し得る。送信機302は、三次元空間に集中させることができる制御された電力伝送波342(例えば、マイクロ波、電波、超音波波)を伝送および/または放送することができる。これらの電力伝送波342は、エネルギーのポケットが意図される場所に建設的干渉パターン(ポケット形成)を形成するために、位相および/または相対振幅調整を通じて制御することができる。送信機は、同じ原理を使用して、その場所に相殺的干渉を生み出し、それにより、伝送ゼロ領域(すなわち、伝送された電力伝送波が実質的に互いに打ち消し合い、有意なエネルギーが受信機によって収集されない場所)を生成できることも理解すべきである。典型的な使用事例では、受信機の場所に電力伝送信号の照準を合わせることが目的であり、他の事例では、特定の場所への電力伝送を明確に避けることが望ましい場合があり、他の事例では、特定の場所に電力伝送信号の照準を合わせると同時に、第2の場所への伝送を明確に避けることが望ましい場合がある。送信機は、電力伝送のためにアンテナを較正する際に使用事例を考慮する。
【0044】
送信機302のアンテナ素子306は、単一のアレイ、ペアアレイ、クワッドアレイ、または所望の応用に従って設計できる他の任意の適切な配列で動作することができる。エネルギーのポケットは、建設的干渉パターンで形成することができ、建設的干渉パターンでは、電力伝送波342が蓄積してエネルギーの三次元場を形成し、その周りには、相殺的干渉パターンにより、特定の物理的な場所における1つまたは複数の対応する伝送ゼロ領域が生成され得る。特定の物理的な場所における伝送ゼロ領域は、電力伝送波342の相殺的干渉パターンが原因でエネルギーのポケットが形成されない空間のエリアまたは領域を指し得る。
【0045】
次いで、受信機320は、電子デバイス313を充電するか、またはそれに給電するためのエネルギーのポケットを確立するために送信機302によって放出された電力伝送波342を利用することができ、従って、無線電力伝送が効果的に提供される。エネルギーのポケットは、電力伝送波342の建設的干渉パターンの形態でエネルギーまたは電力が蓄積する空間のエリアまたは領域を指し得る。他の状況では、例えば、スマートフォン、タブレット、音楽プレーヤ、玩具およびその他などの様々な電子機器への給電を同時に行うため、複数の送信機302および/または複数の受信機320が存在し得る。他の実施形態では、適応ポケット形成を使用して、電子デバイス上の電力を調節することができる。適応ポケット形成は、1つまたは複数の対象とする受信機の電力を調節するためにポケット形成を動的に調整することを指し得る。
【0046】
受信機320は、送信機302に対するその位置を示すために、アンテナ素子324を通じて短い信号を生成することにより、送信機302と通信することができる。加えて、いくつかの実施形態では、受信機320は、いくつかの送信機302の集合体を管理するクラウドコンピューティングサービスなど、システム300の他のデバイスまたはコンポーネントとネットワーク340を通じて通信するために、ネットワークインタフェースカード(図示せず)または同様のコンピュータネットワーキングコンポーネントを利用することができる。受信機320は、アンテナ素子324によって捕捉された電力伝送信号342を、電気デバイス313および/またはデバイスのバッテリ315に提供できる電気エネルギーに変換するための回路308を含み得る。いくつかの実施形態では、回路は、電気エネルギーを受信機のバッテリ335に提供することができ、受信機のバッテリ335は、電気デバイス313を受信機320と通信可能に結合することなく、エネルギーを貯蔵することができる。
【0047】
通信コンポーネント324は、無線プロトコル上で制御信号345を伝送することにより、受信機320が送信機302と通信できるようにする。無線プロトコルは、独自のプロトコルであり得るか、またはBluetooth(登録商標)、BLE、Wi-Fi、NFC、ZigBeeおよび同様のものなどの従来の無線プロトコルを使用することができる。次いで、通信コンポーネント324は、電子デバイス313の識別子、およびバッテリレベル情報、地理的な場所データまたは電力をいつ受信機320に送信するかを決定する際に送信機302で役に立ち得る他の情報、ならびにエネルギーのポケットを生成する電力伝送波342を伝達する場所などの情報を転送するために使用することができる。他の実施形態では、適応ポケット形成を使用して、電子デバイス313に提供される電力を調節することができる。そのような実施形態では、受信機の通信コンポーネント324は、受信機320で受信された電力の量および/または電子デバイス313bもしくはバッテリ315に提供された電圧の量を示す電圧データを伝送することができる。
【0048】
送信機302が受信機320を識別して位置付けた時点で、制御信号345のためのチャネルまたは経路を確立することができ、それを通じて、送信機302は、受信機320から到来する制御信号345の利得および位相を知ることができる。送信機302のアンテナ素子306は、制御された電力伝送波342(例えば、高周波、超音波)の伝送または放送を開始することができ、制御された電力伝送波342は、少なくとも2つのアンテナ素子306を使用してそれぞれのアンテナ素子306から放出される電力伝送波342を操作することにより、三次元空間に集中させることができる。これらの電力伝送波342は、外部電力源およびローカル発振回路チップ(適切な圧電材料を使用する)を使用することによって生成することができる。電力伝送波342は、送信機回路301によって制御することができ、送信機回路301は、電力伝送波342の位相および/または相対的な大きさを調整するための独自のチップを含み得る。電力伝送波342の位相、利得、振幅および他の波形特徴は、建設的および相殺的干渉パターン(ポケット形成)を形成するためのアンテナ素子306に対する入力として機能し得る。いくつかの実装形態では、送信機302のマイクロコントローラ310または他の回路は、電力伝送信号を生成することができ、電力伝送信号は、電力伝送波342を含み、電力伝送信号は、送信機回路301に接続されたアンテナ素子306の数に応じて、送信機回路301によって複数の出力に分割することができる。例えば、4つのアンテナ素子306a〜dが1つの送信機回路301aに接続されている場合、電力伝送信号は、4つの異なる出力に分割され、各出力は、それぞれのアンテナ素子306から生じる電力伝送波342として伝送されるようにアンテナ素子306に向かう。
【0049】
ポケット形成は、干渉を活用してアンテナ素子306の方向性を変更することができ、建設的干渉はエネルギーのポケットを生成し、相殺的干渉は伝送ゼロ領域を生成する。次いで、受信機320は、電子デバイスを充電するか、またはそれに給電するためにポケット形成によって生成されたエネルギーのポケットを利用することができ、従って、無線電力伝送が効果的に提供される。
【0050】
複数のポケット形成は、送信機302の各アンテナ306から各受信機320までの位相および利得を演算することによって達成することができる。
【0051】
D.エネルギーのポケットを形成するシステムのコンポーネント
図4は、ポケット形成手順を使用する無線電力伝送の例示的なシステム400のコンポーネントを示す。システム400は、1つまたは複数の送信機402、1つまたは複数の受信機420、および1つまたは複数のクライアントデバイス446を含み得る。
【0052】
1.送信機
送信機402は、本明細書で説明されるように、無線電力伝送のための、RF波442であり得る、無線電力伝送信号の放送が可能ないかなるデバイスでもあり得る。送信機402は、電力伝送信号の伝送に関連するタスクを実行する役割を有し得、タスクは、ポケット形成、適応ポケット形成および複数のポケット形成を含み得る。いくつかの実装形態では、送信機402は、いかなる周波数または波長も有するいかなる電波信号も含み得るRF波の形態で、無線電力伝送を受信機420に伝送することができる。送信機402は、1つまたは複数のアンテナ素子406、1つまたは複数のRFIC 408、1つまたは複数のマイクロコントローラ410、1つまたは複数の通信コンポーネント412、電力源414、および送信機402に必要なすべてのコンポーネントを割り当てることができるハウジングを含み得る。送信機402の様々なコンポーネントは、メタ材料、回路のマイクロプリンティング、ナノ材料および同様のものを含み得、かつ/またはそれらを使用して製造することができる。
【0053】
例示的なシステム400では、送信機402は、三次元空間の特定の場所に集中する制御されたRF波442を伝送または他に放送し、それにより、エネルギーのポケット444を形成することができる。これらのRF波は、建設的または相殺的干渉パターンを形成するために(すなわち、ポケット形成)、位相および/または相対振幅調整を通じて制御することができる。エネルギーのポケット444は、建設的干渉パターンで形成されたフィールドであり得、三次元の形状のものであり得る。その一方で、相殺的干渉パターンでは、特定の物理的な場所における伝送ゼロ領域が生成され得る。受信機420は、電子クライアントデバイス446(例えば、ラップトップコンピュータ、携帯電話)を充電するか、またはそれに給電するために、ポケット形成によって生成されたエネルギーのポケット444から電気エネルギーを捕捉することができる。いくつかの実施形態では、システム400は、様々な電子機器への給電を行うための複数の送信機402および/または複数の受信機420を含み得る。同時に、クライアントデバイス446の非限定的な例は、スマートフォン、タブレット、音楽プレーヤ、玩具およびその他を含み得る。いくつかの実施形態では、適応ポケット形成は、電子デバイス上の電力を調節するために使用することができる。
【0054】
2.受信機
受信機420は、ハウジングを含み得、ハウジングには、少なくとも1つのアンテナ素子424、1つの整流器426、1つの電力変換器428および通信コンポーネント430を含めることができる。
【0055】
受信機420のハウジングは、例えば、プラスチックまたは硬質ゴムなど、信号または波伝送および/または受信の促進が可能ないかなる材料からでも作ることができる。ハウジングは、例えば、ケースの形態の異なる電子機器に追加できる外部ハードウェアであっても、電子機器内に埋め込んでもよい。
【0056】
3.アンテナ素子
受信機420のアンテナ素子424は、送信機402Aによって使用される周波数帯域での信号の伝送および/または受信が可能ないかなるタイプのアンテナも含み得る。アンテナ素子424は、垂直もしくは水平偏波、右もしくは左偏波、楕円偏波または他の偏波、ならびに任意の数の偏波の組合せを含み得る。複数の偏波の使用は、使用時の好ましい配向がないか、または時間と共に配向が連続的に変化し得るデバイス(例えば、スマートフォンまたはポータブルゲームシステム)において有益であり得る。明確に定義された予想される配向を有するデバイス(例えば、両手用のテレビゲームコントローラ)の場合、アンテナに好ましい偏波がある可能性があり、それにより、所定の偏波のアンテナの数に対する割合を決定することができる。受信機420のアンテナ素子424のアンテナのタイプは、パッチアンテナを含み得、パッチアンテナは、約1/8インチ〜約6インチの高さおよび約1/8インチ〜約6インチの幅を有し得る。パッチアンテナは、好ましくは、接続性に依存する偏波を有し得る(すなわち、偏波は、いずれの方向からパッチへの供給が行われるかに応じて変化し得る)。いくつかの実施形態では、アンテナのタイプは、パッチアンテナなど、無線電力伝送を最適化するためにアンテナ偏波を動的に変化させることができるいかなるタイプのアンテナでもあり得る。
【0057】
4.整流器
受信機420の整流器426は、アンテナ素子424によって生成された交流電流(AC)電圧を直流電流(DC)電圧に整流するためのダイオード、抵抗器、誘導子および/またはコンデンサを含み得る。整流器426は、電力伝送信号から集められる電気エネルギーの損失を最小限に抑えるために、技術的に可能な限りアンテナ素子A24Bの近くに配置することができる。AC電圧を整流した後、結果として得られたDC電圧は、電力変換器428を使用して調節することができる。電力変換器428は、入力にかかわらず、定電圧出力を電子デバイスにまたはこの例示的なシステム400のようにバッテリに提供するうえで役立てることができるDC/DC変換器であり得る。典型的な電圧出力は、約5ボルト〜約10ボルトであり得る。いくつかの実施形態では、電力変換器は、高効率を提供できる電子切替モードDC/DC変換器を含み得る。そのような実施形態では、受信機420は、電力変換器428の前に電気エネルギーを受信するために置かれるコンデンサ(図示せず)を含み得る。コンデンサは、効果的に動作するように、電子スイッチングデバイス(例えば、切替モードDC/DC変換器)に十分な電流が提供されることを保証し得る。電子デバイス(例えば、電話またはラップトップコンピュータ)を充電する際、電子切替モードDC/DC変換器の動作の起動に必要とされる最小電圧を超える初期の高電流が必要とされ得る。そのような事例では、必要とされる追加のエネルギーを提供するために、コンデンサ(図示せず)を受信機420の出力側に追加することができる。その後、より低い電力を提供することができる。例えば、依然として電話またはラップトップに電荷を蓄積させている間に使用することができる総初期電力の1/80である。
【0058】
5.通信コンポーネント
受信機420の通信コンポーネント430は、他の受信機420、クライアントデバイスおよび/または送信機402など、システム400の1つまたは複数の他のデバイスと通信することができる。以下の実施形態で説明されるように、受信機に対して異なるアンテナ、整流器または電力変換器の配列が可能である。
【0059】
E.複数のデバイスのためのポケット形成の方法
図5は、例示的な実施形態による複数の受信機デバイスへの給電のステップを示す。
【0060】
第1のステップ501では、送信機(TX)は、受信機(RX)との接続を確立するか、または他に受信機(RX)と関連付ける。すなわち、いくつかの実施形態では、送信機および受信機は、電気デバイスの2つのプロセッサ間での情報の伝送が可能な無線通信プロトコル(例えば、Bluetooth(登録商標)、BLE、Wi-Fi、NFC、ZigBee(登録商標))を使用して、上で制御データを伝達することができる。例えば、Bluetooth(登録商標)またはBluetooth(登録商標)の変形形態を実装する実施形態では、送信機は、受信機の放送広告信号を走査することができるか、または受信機は、広告信号を送信機に伝送することができる。広告信号は、受信機の存在を送信機に知らせることができ、送信機と受信機とを関連付けることを引き起こし得る。後に説明されるように、いくつかの実施形態では、広告信号は、ポケット形成手順を実行および管理するため、様々なデバイス(例えば、送信機、クライアントデバイス、サーバーコンピュータ、他の受信機)によって使用できる情報を伝達することができる。広告信号に含まれる情報は、デバイス識別子(例えば、MACアドレス、IPアドレス、UUID)、受信された電気エネルギーの電圧、クライアントデバイス電力消費量および電力伝送波に関連する他のタイプのデータを含み得る。送信機は、伝送された広告信号を使用して、受信機を識別することができ、いくつかの事例では、二次元空間または三次元空間において受信機を位置付けることができる。送信機が受信機を識別した時点で、送信機は、送信機において受信機と関連付けられた接続を確立し、送信機および受信機が第2のチャネル上で制御信号を伝達できるようにすることができる。
【0061】
例として、Bluetooth(登録商標)プロセッサを含む受信機が電源を入れられるか、または送信機の検出範囲内に持ち込まれると、Bluetooth(登録商標)プロセッサは、Bluetooth(登録商標)規格に従って受信機の広告を開始することができる。送信機は、広告を認識し、制御信号および電力伝送信号を伝達するための接続の確立を開始することができる。いくつかの実施形態では、広告信号は、一意の識別子を含み得、その結果、送信機は、範囲内の近くのすべての他のBluetooth(登録商標)デバイスから、その広告および最終的にはその受信機を区別することができる。
【0062】
次のステップ503では、送信機が広告信号を検出すると、送信機は、その受信機との通信接続を自動的に形成することができ、それにより、送信機および受信機は、制御信号および電力伝送信号を伝達することができる。次いで、送信機は、リアルタイムのサンプルデータまたは制御データの伝送を開始するように受信機に命令することができる。また、送信機は、送信機のアンテナアレイのアンテナから電力伝送信号の伝送を開始することもできる。
【0063】
次いで、次のステップ505では、受信機は、受信機のアンテナによって受信されたエネルギーに基づいて、電力伝送信号の有効性に関連する他の計量のなかでも特に、電圧を測定することができる。受信機は、測定された情報を含む制御データを生成し、次いで、制御データを含む制御信号を送信機に伝送することができる。例えば、受信機は、例えば、毎秒100回のレートで、受信された電気エネルギーの電圧測定値をサンプリングすることができる。受信機は、制御信号の形態で、毎秒100回にわたり電圧サンプル測定値を送信機に返送することができる。
【0064】
次のステップ507では、送信機は、受信機から受信された計量(電圧測定値など)をモニタする1つまたは複数のソフトウェアモジュールを実行することができる。アルゴリズムは、受信機の周りのエネルギーのポケットの有効性を最大化するために、送信機のアンテナによって電力伝送信号の生成および伝送を変化させることができる。例えば、送信機は、受信機によって受信されたその電力が受信機の周りのポケットエネルギーの効果的な確立を示すまで、送信機のアンテナが電力伝送信号を伝送する位相を調整することができる。アンテナに対する最適な構成が識別されると、送信機のメモリは、その最高のレベルでの送信機の放送を維持するため、構成を格納することができる。
【0065】
次のステップ509では、送信機のアルゴリズムは、電力伝送信号を調整する必要がある際にそれを判断することができ、また、そのような調整が必要であるという判断に応答して、送信アンテナの構成を変化させることもできる。例えば、送信機は、受信機から受信されたデータに基づいて、受信機で受信された電力が最大値より少ないと判断することができる。次いで、送信機は、電力伝送信号の位相を自動的に調整することができるが、同時に、受信機から折り返して報告されている電圧の受信およびモニタリングを継続することもできる。
【0066】
次のステップ511では、特定の受信機との通信に対して決定された時間が経過すると、送信機は、送信機の範囲内にあり得る他の受信機からの広告を走査することおよび/または自動的に検出することができる。送信機は、第2の受信機からのBluetooth(登録商標)広告に応答して、第2の受信機との接続を確立することができる。
【0067】
次のステップ513では、第2の受信機との第2の通信接続を確立した後、送信機は、送信機のアンテナアレイの1つまたは複数のアンテナの調整に進むことができる。いくつかの実施形態では、送信機は、第2の受信機にサービスを提供するために、アンテナのサブセットを識別し、それにより、受信機と関連付けられたアレイのサブセットにアレイを解析することができる。いくつかの実施形態では、アンテナアレイ全体は、所定の時間にわたり第1の受信機にサービスを提供し、次いで、アレイ全体は、その時間にわたり第2の受信機にサービスを提供することができる。
【0068】
送信機によって実行される手動または自動プロセスは、第2の受信機へのサービス提供のためのアレイのサブセットを選択することができる。この例では、送信機のアレイを半分に分割し、2つのサブセットを形成することができる。その結果、アンテナの半分は、電力伝送信号を第1の受信機に伝送するように構成することができ、アンテナの半分は、第2の受信機用に構成することができる。本ステップ513では、送信機は、第2の受信機のためにアンテナのサブセットを構成または最適化するために上記で論じられる同様の技法を適用することができる。電力伝送信号を伝送するためのアレイのサブセットを選択する一方で、送信機と第2の受信機は、制御データを伝達することができる。その結果、送信機が第1の受信機との通信に戻る時点および/または新しい受信機の走査に移る時点までに、送信機は、電力伝送波を第2の受信機に効果的に伝送するため、送信機のアンテナアレイの第2のサブセットによって伝送された波の位相を調整するのに十分な量のサンプルデータを既に受信している。
【0069】
次のステップ515では、第2の受信機に電力伝送信号を伝送するために第2のサブセットを調整した後、送信機は、第1の受信機との制御データの通信に戻ることまたは追加の受信機の走査に移行することができる。送信機は、アンテナの第1のサブセットを再構成し、次いで、既定の間隔で第1の受信機と第2の受信機との間を移行することができる。
【0070】
次のステップ517では、送信機は、既定の間隔で受信機間を移行し続け、新しい受信機を走査することができる。それぞれの新しい受信機が検出されると、送信機は接続を確立し、電力伝送信号の伝送を相応に開始することができる。
【0071】
例示的な一実施形態では、受信機は、スマートフォンのようなデバイスと電気的に接続することができる。送信機のプロセッサは、いかなるBluetooth(登録商標)デバイスも走査するであろう。受信機は、Bluetooth(登録商標)チップを通じてそれがBluetooth(登録商標)デバイスであるという広告を開始することができる。広告内には一意の識別子があり得、その結果、送信機は、その広告を走査する際、範囲内の近くのすべての他のBluetooth(登録商標)デバイスから、その広告および最終的にはその受信機を区別することができる。送信機がその広告を検出し、それが受信機であることを認識すると、送信機は、その受信機との通信接続を速やかに形成し、リアルタイムのサンプルデータの送信を開始するようにその受信機に命令することができる。
【0072】
次いで、受信機は、その受信アンテナで電圧を測定し、その電圧サンプル測定値を送信機に返送するであろう(例えば、毎秒100回)。送信機は、位相を調整することにより、送信アンテナの構成の変更を開始することができる。送信機が位相を調整する際、送信機は、受信機から返送される電圧をモニタする。いくつかの実装形態では、電圧が高いほど、より多くのエネルギーがポケット内に存在し得る。アンテナ位相は、電圧が最高レベルになり、受信機の周りに最大のエネルギーのポケットが存在するようになるまで変更することができる。送信機は、電圧が最高レベルになるように、アンテナを特定の位相に維持することができる。
【0073】
送信機は、個々のアンテナの各々を1つずつ変化させることができる。例えば、送信機に32個のアンテナがあり、各アンテナが8つの位相を有する場合、送信機は、第1のアンテナから始めて、第1のアンテナの8つのすべての位相を検討するであろう。次いで、受信機は、第1のアンテナの8つの位相の各々に対する電力レベルを返送することができる。次いで、送信機は、第1のアンテナの最大位相を格納することができる。送信機は、第2のアンテナに対してこのプロセスを繰り返し、その8つの位相を検討することができる。再び、受信機は、各位相からの電力レベルを返送することができ、送信機は、最高レベルを格納することができる。次に、送信機は、第3のアンテナに対してプロセスを繰り返し、32個のすべてのアンテナの8つの位相の検討を終えるまで、プロセスを繰り返すことができる。プロセスの終了時、送信機は最も効率的な方法で最大電圧を受信機に伝送し得る。
【0074】
別の例示的な実施形態では、送信機は、第2の受信機の広告を検出し、第2の受信機との通信接続を形成することができる。送信機が第2の受信機との通信を形成する際、送信機は、オリジナルの32個のアンテナを第2の受信機に向けて、第2の受信機に向けた32個のアンテナの各々に対して位相プロセスを繰り返すことができる。プロセスが完了した時点で、第2の受信機は、可能な限り多くの電力を送信機から得ていることができる。送信機は、1秒間にわたり第2の受信機と通信し、次いで、既定の時間(例えば、1秒)にわたり第1の受信機に戻ることができ、送信機は、既定の時間間隔で第1の受信機と第2の受信機との間を移行し続けることができる。
【0075】
さらなる別の実装形態では、送信機は、第2の受信機の広告を検出し、第2の受信機との通信接続を形成することができる。最初に、送信機は、第1の受信機と通信し、第1の受信機に向けた例示的な32個のアンテナの半分を再度割り当て、16個のみを第1の受信機専用にすることができる。次いで、送信機は、アンテナの残りの半分を第2の受信機に割り当て、16個のアンテナを第2の受信機専用にすることができる。送信機は、アンテナの残りの半分に対して位相を調整することができる。16個のアンテナが8つの位相の各々を検討し終えた時点で、第2の受信機は、受信機にとって最も効率的な方法で最大電圧を得ていることができる。
【0076】
F.選択範囲での無線電力伝送
1.建設的干渉
図6Aおよび
図6Bは、例示的なポケット形成プロセス中に実装できる無線電力伝送原理を実装する例示的なシステム600を示す。アンテナアレイにおいて複数のアンテナを含む送信機601は、他の可能性のある属性のなかでも特に、送信機601のアンテナから伝送されている電力伝送波607の位相および振幅を調整することができる。
図6Aに示されるように、位相または振幅調整をしなければ、電力伝送波607aは、アンテナの各々から伝送され、異なる場所に到達し、異なる位相を有する。これらの違いは、送信機601aの各アンテナ素子から1つの受信機605aまたはそれぞれの場所に位置する複数の受信機605aまでの異なる距離に起因する場合が多い。
【0077】
図6Aを続けると、受信機605aは、送信機601aの複数のアンテナ素子から、各々が電力伝送波607aを含む、複数の電力伝送信号を受信することができる。この例では、電力伝送波は互いに相殺的に加え合うため、これらの電力伝送信号の複合体は本質的にゼロであり得る。すなわち、送信機601aのアンテナ素子は、全く同じ電力伝送信号(すなわち、位相および振幅など、同じ特徴を有する電力伝送波607aを含む)を伝送し得、その結果、それぞれの電力伝送信号の電力伝送波607aが受信機605aに到達すると、互いに180度で相殺される。結果的に、これらの電力伝送信号の電力伝送波607aは、互いに「打ち消し合う」。一般に、このように互いに相殺し合う信号は「相殺的」と称することができ、従って「相殺的干渉」をもたらす。
【0078】
対照的に、
図6Bに示されるように、いわゆる「建設的干渉」の場合、互いに完全に「同相で」受信機に到達する電力伝送波607bを含む信号は、組み合わされて各信号の振幅を増大させ、各構成信号より強力な複合体をもたらす。
図6Aの説明に役立つ例では、送信信号の電力伝送波607aの位相は伝送場所において同じであり、次いで、最終的には、受信機605aの場所において相殺的に加え合うことに留意されたい。対照的に、
図6Bでは、送信信号の電力伝送波607bの位相は伝送場所において調整され、その結果、電力伝送波607bは、位相整列された状態で受信機605bに到達し、結果的に、電力伝送波607bは、建設的に加えられる。この説明に役立つ例では、
図6Bでは、受信機605bの周りに位置する結果として生じたエネルギーのポケットが存在し、
図6Aでは、受信機の周りに位置する伝送ゼロ領域がある。
【0079】
図7は、選択範囲700での無線電力伝送について描写し、送信機702は、電気デバイス701と関連付けられた複数の受信機に対するポケット形成を生成することができる。送信機702は、選択範囲700での無線電力伝送を通じてポケット形成を生成することができ、選択範囲700は、1つまたは複数の無線充電半径704と、特定の物理的な場所における1つまたは複数の伝送ゼロ領域半径706とを含み得る。複数の電子デバイス701は、無線充電半径704において充電または給電することができる。従って、いくつかのエネルギースポットが生成され、そのようなスポットは、電子デバイス701の給電および充電に対する制限を可能にするために採用することができる。例として、制限は、無線充電半径704内に含まれる特定のまたは制限されたスポットにおける特定の電子機器の操作を含み得る。さらに、安全制限は、選択範囲700での無線電力伝送を使用することによって実装することができ、そのような安全制限により、エネルギーを回避する必要があるエリアまたはゾーン上のエネルギーのポケットを回避することができ、そのようなエリアは、エネルギーのポケットに対して感度が高い機器ならびに/またはその頭上および/もしくは近くにエネルギーのポケットを望まない人々を含むエリアを含み得る。
図7に示されるものなどの実施形態では、送信機702は、サービスエリアにおいて電気デバイス701と関連付けられた受信機と異なる平面上に見られるアンテナ素子を含み得る。例えば、電気デバイス701の受信機は、送信機702を天井にマウントすることができる部屋にあり得る。送信機702のアンテナアレイを天井または他の高い場所に配置することによって同心円として表すことができる、電力伝送波を使用してエネルギーのポケットを確立するための選択範囲であり、および送信機702は、エネルギーポケットの「円錐」を生成する電力伝送波を放出することができる。いくつかの実施形態では、送信機701は、各充電半径704の半径を制御することができ、それにより、より低い平面のエリアを指し示すエネルギーのポケットを生成するためのサービスエリアの間隔を確立することができ、その間隔により、アンテナ位相および振幅の適切な選択を通じて円錐の幅を調整することができる。
【0080】
図8は、選択範囲800での無線電力伝送について描写し、送信機802は、複数の受信機806に対するポケット形成を生成することができる。送信機802は、選択範囲800での無線電力伝送を通じてポケット形成を生成することができ、選択範囲800は、1つまたは複数の無線充電スポット804を含み得る。複数の電子デバイスは、無線充電スポット804で充電または給電することができる。エネルギーのポケットは、複数の受信機806を取り囲む障害804にかかわらず、複数の受信機806上に生成することができる。エネルギーのポケットは、無線充電スポット804において、本明細書で説明される原理に従って建設的干渉を生み出すことによって生成することができる。エネルギーのポケットの場所は、受信機806を追加することにより、および他のもののなかでも特に、Bluetooth(登録商標)技術、赤外線通信、Wi-Fi、FMラジオなどの様々な通信システムによる複数の通信プロトコルを可能にすることによって実行することができる。
【0081】
G.ヒートマップを使用する例示的なシステム実施形態
図9Aおよび9Bは、例示的な実施形態による、クライアントコンピューティングプラットフォームを無線で充電するためのアーキテクチャ900A、900Bの図を示す。いくつかの実装形態では、ユーザは部屋内におり、電子デバイス(例えば、スマートフォン、タブレット)をその手に保持している場合がある。いくつかの実装形態では、電子デバイスは、部屋内の家具上にある場合がある。電子デバイスは、電子デバイスに埋め込まれているか、または別個のアダプタとして電子デバイスに接続されている受信機920A、920Bを含み得る。受信機920A、920Bは、
図11で説明されるすべてのコンポーネントを含み得る。送信機902A、902Bは、部屋の壁のうちのユーザの真後ろの壁に掛けられている場合がある。送信機902A、902Bも
図11で説明されるすべてのコンポーネントを含み得る。
【0082】
ユーザは、受信機920A、920Bと送信機902A、902Bとの間の経路を妨げているようにも見えるため、RF波を受信機920A、920Bに線形方向で向けることが難しい可能性がある。しかし、受信機920A、920Bから生成された短い信号は、使用されるアンテナ素子のタイプに対して全方向性であり得るため、これらの信号は、送信機902A、902Bに到達するまで壁944A、944Bで跳ね返る可能性がある。ホットスポット944A、944Bは、RF波を反射する部屋内のいかなるアイテムでもあり得る。例えば、ユーザの携帯電話にRF波を反射させるように、壁上の大きい金属時計を使用することができる。
【0083】
送信機のマイクロコントローラは、受信機から受信した信号に基づいて、各アンテナから伝送された信号を調整する。調整は、受信機から受信した信号位相の共役の形成、およびアンテナ素子のビルトイン位相(built-in phase)を考慮した送信アンテナ位相のさらなる調整を含み得る。アンテナ素子は、エネルギーを所定の方向に進めるために同時に制御することができる。送信機902A、902Bは、部屋を走査し、ホットスポット944A、944Bを探すことができる。較正が実行された時点で、送信機902A、902Bは、最も効率的な経路であり得る経路をたどるチャネルにRF波の焦点を合わせることができる。その後、RF信号942A、942Bは、ユーザおよび家具などの障害を避けながら、第1の電子デバイス上のエネルギーのポケットおよび第2の電子デバイスの別のエネルギーのポケットを形成することができる。
【0084】
サービスエリア(
図9Aおよび9Bの部屋)を走査する際、送信機902A、902Bは、異なる方法を採用することができる。説明に役立つ例として、ただし、使用できる可能性のある方法を限定することなく、送信機902A、902Bは、受信機から到来する信号の位相および大きさを検出し、それらを使用して、例えば、それらの共役を計算してそれらを伝送時に適用することにより、一連の送信位相および大きさを形成することができる。別の説明に役立つ例として、送信機は、後続の伝送において送信アンテナの可能性のあるすべての位相を1つずつ適用し、受信機920A、920Bからの信号に関連する情報を観察することにより、各組合せによって形成されたエネルギーのポケットの強度を検出することができる。次いで、送信機902A、902Bは、この較正を定期的に繰り返す。いくつかの実装形態では、送信機902A、902Bは、可能性のあるすべての位相を検索する必要はなく、以前の較正値に基づいて、強力なエネルギーのポケットをもたらしそうな一連の位相を検索することができる。さらなる別の説明に役立つ例では、送信機902A、902Bは、部屋内の異なる場所に向けられたエネルギーのポケットを形成するために、アンテナに対する送信位相のプリセット値を使用することができる。送信機は、例えば、後続の伝送においてアンテナに対するプリセット位相値を使用することにより、部屋内の物理的な空間を上下左右に走査することができる。次いで、送信機902A、902Bは、受信機920a、920bからの信号を観察することにより、受信機920a、920bの周りの最も強力なエネルギーのポケットから生じた位相値を検出する。本明細書で説明される実施形態の範囲または趣旨から逸脱することなく、採用できるヒートマッピングに対してサービスエリアを走査するための他の可能性のある方法があることを理解すべきである。いずれの方法が使用されるにしても、走査の結果は、受信機の周りのエネルギーのポケットを最大化するために、送信アンテナに使用するための最良の位相および大きさ値を示すホットスポットを送信機902A、902Bがそこから識別できるサービスエリア(例えば、部屋、店)のヒートマップである。
【0085】
送信機902A、902Bは、受信機920A、920Bの場所を決定するために、Bluetooth(登録商標)接続を使用することができ、RF波を異なる受信機920A、920Bに向かわせるために、RF帯域の異なる非重複部分を使用することができる。いくつかの実装形態では、送信機902A、902Bは、受信機920A、920Bの場所を決定するために、部屋の走査を実施することができ、非重複RF伝送帯域により、互いに直交するエネルギーのポケットを生成する。エネルギーを受信機に向けるために複数のエネルギーのポケットを使用することは、非常に強力な伝送は1つもないが、受信機において受信される統合された電力伝送信号は強力であるため、いくつかの代替の電力伝送方法より本質的に安全であり得る。
【0086】
H.例示的なシステム実施形態
図10Aは、1つの送信機1002Aおよび少なくとも2つ以上の受信機1020Aを含み得る複数のポケット形成1000Aを使用する無線電力伝送を示す。受信機1020Aは、送信機1002Aと通信することができ、それについては、
図11でさらに説明する。送信機1002Aが受信機1020Aを識別して位置付けた時点で、受信機1020Aから到来する利得および位相を知ることにより、チャネルまたは経路を確立することができる。送信機1002Aは、制御されたRF波1042Aの伝送を開始することができ、制御されたRF波1042Aは、最小で2つのアンテナ素子を使用することによって三次元空間に集中させることができる。これらのRF波1042Aは、外部電力源およびローカル発振回路チップ(適切な圧電材料を使用する)を使用して生成することができる。RF波1042Aは、RFICによって制御することができ、RFICは、建設的および相殺的干渉パターン(ポケット形成)を形成するためのアンテナ素子に対する入力として機能し得るRF信号の位相および/または相対的な大きさを調整するための独自のチップを含み得る。ポケット形成は、アンテナ素子の方向性を変更するために干渉を活用することができ、建設的干渉は、エネルギーのポケット1060Aを生成し、相殺的干渉は、伝送ゼロ領域を生成する。次いで、受信機1020Aは、電子デバイス(例えば、ラップトップコンピュータ1062Aおよびスマートフォン1052A)を充電するか、またはそれに給電するためにポケット形成によって生成されたエネルギーのポケット1060Aを利用することができ、従って、無線電力伝送が効果的に提供される。
【0087】
複数のポケット形成1000Aは、送信機1002Aの各アンテナから各受信機1020Aまでの位相および利得を演算することによって達成することができる。送信機1002Aからのアンテナ素子によって受信機1020Aからのアンテナ素子まで複数の経路が生成され得るため、演算は、独立して計算することができる。
【0088】
I.例示的なシステム実施形態
図10Bは、複数の適応ポケット形成1000Bの例示的な図解である。この実施形態では、ユーザは部屋内におり、電子デバイス(この事例では、タブレット1064Bであり得る)をその手に保持している。加えて、スマートフォン1052Bは、部屋内の家具上にある。タブレット1064Bおよびスマートフォン1052Bは、各々が各電子デバイスに埋め込まれているか、または別個のアダプタとしてタブレット1064Bおよびスマートフォン1052Bに接続されている受信機を含み得る。受信機は、
図11で説明されるすべてのコンポーネントを含み得る。送信機1002Bは、部屋の壁のうちのユーザの真後ろの壁に掛けられている。送信機1002Bも
図11で説明されるすべてのコンポーネントを含み得る。ユーザは、受信機と送信機1002Bとの間の経路を妨げているようにも見えるため、RF波1042Bを各受信機に見通し線で向けることが難しい可能性がある。しかし、受信機から生成された短い信号は、使用されるアンテナ素子のタイプに対して全方向性であり得るため、これらの信号は、送信機1002Bを見つけるまで壁で跳ね返る可能性がある。ほぼ瞬時に、送信機1002B内に存在し得るマイクロコントローラは、利得および位相を調整して電力伝送波の集中を形成することにより、各受信機によって送信された受信信号に基づいて伝送信号を再調整することができ、その結果、電力伝送波が互いに加え合ってその場所に集結するエネルギーを強化し、それは、互いに減じ合う方法で互いに加え合ってその場所に集結するエネルギーを低下させる「相殺的干渉」と呼ばれるものとは対照的であり、受信機から受信した信号位相の共役、およびアンテナ素子のビルトイン位相を考慮した送信アンテナ位相のさらなる調整である。較正が実行された時点で、送信機1002Bは、最も効率的な経路をたどってRF波の焦点を合わせることができる。その後、ユーザおよび家具などの障害を考慮しながら、エネルギーのポケット1060Bをタブレット1064B上に形成し、別のエネルギーのポケット1060Bをスマートフォン1052Bに形成することができる。前述の特性は、各エネルギーのポケットに沿った伝送がそれほど強力ではなく、そのRF伝送が一般に生体組織から反射されて浸透しないため、複数のポケット形成1000Bを使用する無線電力伝送が本質的に安全であり得るという点で有益であり得る。
【0089】
送信機1002Bが受信機を識別して位置付けた時点で、受信機から到来する利得および位相を知ることにより、チャネルまたは経路を確立することができる。送信機1002Bは、制御されたRF波1042Bの伝送を開始することができ、制御されたRF波1042Bは、最小で2つのアンテナ素子を使用することによって三次元空間に集中させることができる。これらのRF波1042Bは、外部電力源およびローカル発振回路チップ(適切な圧電材料を使用する)を使用して生成することができる。RF波1042Bは、RFICによって制御することができ、RFICは、建設的および相殺的干渉パターン(ポケット形成)を形成するためのアンテナ素子に対する入力として機能し得るRF信号の位相および/または相対的な大きさを調整するための独自のチップを含み得る。ポケット形成は、アンテナ素子の方向性を変更するために干渉を活用することができ、建設的干渉は、エネルギーのポケットを生成し、相殺的干渉は、特定の物理的な場所においてゼロ領域を生成する。次いで、受信機は、電子デバイス(例えば、ラップトップコンピュータおよびスマートフォン)を充電するか、またはそれに給電するためにポケット形成によって生成されたエネルギーのポケットを利用することができ、従って、無線電力伝送が効果的に提供される。
【0090】
複数のポケット形成1000Bは、送信機の各アンテナから各受信機までの位相および利得を演算することによって達成することができる。送信機からのアンテナ素子によって受信機からのアンテナ素子まで複数の経路が生成され得るため、演算は、独立して計算することができる。
【0091】
少なくとも2つのアンテナ素子に対する演算の例は、受信機からの信号の位相を決定し、受信パラメータの共役を伝送のためのアンテナ素子に適用することを含み得る。
【0092】
いくつかの実施形態では、2つ以上の受信機は、無線電力伝送中、電力損失を避けるために異なる周波数で動作することができる。これは、複数の埋め込みアンテナ素子のアレイを送信機1002Bに含めることによって達成することができる。一実施形態では、単一の周波数をアレイの各アンテナによって伝送することができる。他の実施形態では、アレイのアンテナのうちのいくつかは、異なる周波数で伝送するために使用することができる。例えば、アレイのアンテナの1/2を2.4GHzで動作させる一方で、他の1/2を5.8GHzで動作させることができる。別の例では、アレイのアンテナの1/3を900MHzで動作させ、別の1/3を2.4GHzで動作させ、アレイの残りのアンテナを5.8GHzで動作させることができる。
【0093】
別の実施形態では、アンテナ素子の各アレイは、無線電力伝送中、1つまたは複数のアンテナ素子に実質的に分割することができ、アレイのアンテナ素子の各セットは、異なる周波数で伝送することができる。例えば、送信機のアンテナ素子は、2.4GHzで電力伝送信号を伝送することができるが、受信機の対応するアンテナ素子は、5.8GHzで電力伝送信号を受信するように構成することができる。この例では、送信機のプロセッサは、アレイのアンテナ素子を独立して供給できる複数のパッチに実質的または論理的に分割するように送信機のアンテナ素子を調整することができる。その結果、アンテナ素子のアレイの1/4を受信機で必要とされる5.8GHzで伝送する一方で、アンテナ素子の別のセットを2.4GHzで伝送することができる。従って、アンテナ素子のアレイを実質的に分割することにより、受信機に結合された電子デバイスは、無線電力伝送を引き続き受信することができる。例えば、アンテナ素子のあるセットを約2.4GHzで伝送し、他のアンテナ素子を5.8GHzで伝送することができ、従って、異なる周波数で動作する受信機と協働する際に、所定のアレイのアンテナ素子の数を調整することができるため、前述の事項は有益であり得る。この例では、アレイは、アンテナ素子の同じ量のセット(例えば、4つのアンテナ素子)に分割されているが、アレイは、アンテナ素子の異なる量のセットに分割することもできる。代替の実施形態では、各アンテナ素子は、選択周波数間を移行することができる。
【0094】
無線電力伝送の効率および伝達できる電力の量(ポケット形成を使用して)は、所定の受信機および送信機システムで使用されるアンテナ素子1006の総数の関数であり得る。例えば、約1ワットを約15フィート伝達する場合、受信機は約80個のアンテナ素子を含む一方で、送信機は約256個のアンテナ素子を含み得る。別の同一の無線電力伝送システム(約1ワットを約15フィート)は、約40個のアンテナ素子を有する受信機と、約512個のアンテナ素子を有する送信機とを含み得る。受信機のアンテナ素子の数を半分に低減するには、送信機のアンテナ素子の数を倍にする必要があり得る。いくつかの実施形態では、システム規模の展開において受信機より送信機がはるかに少ないため、コストを理由に、受信機より送信機のアンテナ素子の数を多くすることが有益であり得る。しかし、例えば、送信機1002Bに少なくとも2つのアンテナ素子がある限り、送信機より受信機に多くのアンテナ素子を置くことにより、その逆を達成することができる。
【0095】
II.送信機 − 無線電力伝送のためのシステムおよび方法
送信機は、以下で説明されるコンポーネントを使用するポケット形成、適応ポケット形成および複数のポケット形成の役割を有し得る。送信機は、空間を通じた伝播および使用可能な電気エネルギーへの変換が可能ないかなる物理的な媒体の形態でも、無線電力伝送信号を受信機に伝送することができ、その例は、RF波、赤外線、音響、電磁場および超音波を含み得る。当業者であれば、電力伝送信号は、いかなる周波数または波長も有するほぼすべての電波信号であり得ることを理解すべきである。送信機は、単なる例としてRF伝送を参照して説明されているが、その範囲をRF伝送のみに限定すべきではない。
【0096】
送信機は、多くの場所、表面、マウンティングまたは埋め込み構造(机、テーブル、床、壁および同様のものなど)に位置し得る。いくつかの事例では、送信機は、クライアントコンピューティングプラットフォームに位置し得、クライアントコンピューティングプラットフォームは、本明細書で説明されるプロセスおよびタスクの実行が可能なプロセッサおよびソフトウェアモジュールを含むいかなるコンピューティングデバイスでもあり得る。クライアントコンピューティングプラットフォームの非限定的な例は、デスクトップコンピュータ、ラップトップコンピュータ、ハンドヘルドコンピュータ、タブレットコンピューティングプラットフォーム、ネットブック、スマートフォン、ゲームコンソールおよび/または他のコンピューティングプラットフォームを含み得る。他の実施形態では、クライアントコンピューティングプラットフォームは、様々な電子コンピューティングデバイスであり得る。そのような実施形態では、クライアントコンピューティングプラットフォームの各々は、異なるオペレーティングシステムおよび/または物理的なコンポーネントを有し得る。クライアントコンピューティングプラットフォームは、同じオペレーティングシステムを実行することができ、および/またはクライアントコンピューティングプラットフォームは、異なるオペレーティングシステムを実行することができる。クライアントコンピューティングプラットフォームおよび/またはデバイスは、複数のオペレーティングシステムの実行が可能であり得る。加えて、箱状送信機は、プリント回路基板(PCB)層のいくつかの配列を含み得、X、YもしくはZ軸またはこれらの任意の組合せに配向することができる。
【0097】
無線充電技法は、RF波伝送技法に限定されず、伝送されたエネルギーを電力に変換する受信機にエネルギーを伝送するための代替または追加の技法を含み得ることを理解すべきである。受信デバイスによって電力に変換できるエネルギーのための非限定的な例示的な伝送技法は、超音波、マイクロ波、共鳴および誘導磁場、レーザ光、赤外線または他の形態の電磁エネルギーを含み得る。超音波の事例では、例えば、1つまたは複数のトランスデューサ素子は、超音波を受信してそれらを電力に変換する受信デバイスに向けて超音波を伝送するトランスデューサアレイを形成するように配置することができる。共鳴または誘導磁場の事例では、磁場は、送信機コイルにおいて生成され、受信機コイルによって電力に変換される。
【0098】
A.送信機デバイスのコンポーネント
図11は、例示的な実施形態による、クライアントデバイスを無線で充電するためのシステム1100アーキテクチャの図を示す。システム1100は、送信機1101および受信機1120を含み得、各々は、特定用途向け集積回路(ASIC)を含み得る。送信機1101のASICは、1つまたは複数のプリント回路基板(PCB)1104、1つまたは複数のアンテナ素子1106、1つまたは複数の高周波集積回路(RFIC)1108、1つまたは複数のマイクロコントローラ(MC)1110、通信コンポーネント1112、電力源1114を含み得る。送信機1101は、ハウジングに入れることができ、ハウジングは、送信機1101に必要なすべてのコンポーネントを割り当てることができる。送信機1101のコンポーネントは、メタ材料、回路のマイクロプリンティング、ナノ材料および/または他の任意の材料を使用して製造することができる。当業者であれば、送信機全体または受信機全体を単一の回路基板上で実装できること、ならびに機能ブロックのうちの1つまたは複数を別個の回路基板で実装させることができることは明らかであるはずである。
【0099】
1.プリント回路基板
いくつかの実装形態では、送信機1101は、複数のPCB 1104層を含み得、複数のPCB 1104層は、ポケット形成のより優れた制御を提供するためのアンテナ素子1106および/またはRFIC 1108を含み得、受信機を対象とするための反応を増強することができる。PCB 1104は、非導電性基板上に積層された銅板からエッチングが施された導電性トラック、パッドおよび/または他の特徴を使用して、本明細書で説明される電子コンポーネントを機械的にサポートし、電気的に接続することができる。PCBは、片面(1枚の銅層)、両面(2枚の銅層)および/または複数層であり得る。複数のPCB 1104層は、送信機1101によって転送できる電力の範囲および量を増大することができる。PCB 1104層は、単一のMC 1110および/または専用のMC 1110に接続することができる。同様に、RFIC 1108は、前述の実施形態で描写されるように、アンテナ素子1106に接続することができる。
【0100】
いくつかの実装形態では、複数のPCB 1104層をその内側に含む箱状送信機は、ポケット形成のより優れた制御を提供するためのアンテナ素子1108を含み得、受信機を対象とするための反応を増強することができる。さらに、無線電力伝送の範囲は、箱状送信機によって増大することができる。複数のPCB 1104層は、アンテナ素子1106の高密度を理由に、送信機1101によって無線で転送および/または放送できる電力波(例えば、RF電力波、超音波)の範囲および量を増大することができる。PCB 1104層は、単一のマイクロコントローラ1110および/または各アンテナ素子1106専用のマイクロコントローラ1110に接続することができる。同様に、RFIC 1108は、前述の実施形態で描写されるように、アンテナ素子1101を制御することができる。さらに、箱型の送信機1101は、無線電力伝送の活動率を増大させることができる。
【0101】
2.アンテナ素子
アンテナ素子1106は、方向性および/または全方向性であり得、無線電力伝送のための平面アンテナ素子、パッチアンテナ素子、ダイポールアンテナ素子および他の任意の適切なアンテナを含み得る。適切なアンテナタイプは、例えば、約1/8インチ〜約6インチの高さおよび約1/8インチ〜約6インチの幅を有するパッチアンテナを含み得る。アンテナ素子1106の形状および配向は、送信機1101の所望の特徴に応じて異なり得、配向は、X、YおよびZ軸方向に平面状ならびに三次元配列における様々な配向タイプおよび組合せであり得る。アンテナ素子1106材料は、高効率、良好な放熱および同様のものでのRF信号伝送を可能にすることができる適切ないかなる材料も含み得る。アンテナ素子1106の量は、所望の範囲および送信機1101の電力伝送能力に関連して異なり得、アンテナ素子1106が多いほど、より広い範囲およびより高い電力伝送能力を有する。
【0102】
アンテナ素子1106は、900MHz、2.5GHzまたは5.8GHzなどの周波数帯域で動作するための適切なアンテナタイプを含み得、その理由は、これらの周波数帯域が連邦通信委員会(FCC)規則第18部(産業、科学および医療用機器)に準拠するためである。アンテナ素子1106は、独立した周波数で動作することができ、ポケット形成のマルチチャネル操作を可能にする。
【0103】
加えて、アンテナ素子1106は、少なくとも1つの偏波または選択された偏波を有し得る。そのような偏波は、垂直偏波、水平偏波、円偏波、左偏波、右偏波または偏波の組合せを含み得る。選択された偏波は、送信機1101の特性に応じて異なり得る。加えて、アンテナ素子1106は、送信機1101の様々な表面に位置し得る。アンテナ素子1106は、単一のアレイ、ペアアレイ、クワッドアレイ、または所望の応用に従って設計できる他の任意の適切な配列で動作することができる。
【0104】
いくつかの実装形態では、プリント回路基板PCB 1104の一面全体をアンテナ素子1106で密に詰めることができる。RFIC 1108は、複数のアンテナ素子1106に接続することができる。複数のアンテナ素子1106は、単一のRFIC 1108を取り囲むことができる。
【0105】
3.高周波集積回路
RFIC 1108は、MC 1110からRF信号を受信し、RF信号を複数の出力に分割することができ、各出力は、アンテナ素子1106にリンクされる。例えば、各RFIC 1108は、4つのアンテナ素子1106に接続することができる。いくつかの実装形態では、各RFIC 1108は、8、16および/または複数のアンテナ素子1106に接続することができる。
【0106】
RFIC 1104は、増幅器、コンデンサ、発振器、圧電結晶および同様のものなどのデジタルおよび/またはアナログコンポーネントを含み得る複数のRF回路を含み得る。RFIC 1104は、ポケット形成のための利得および/または位相などのアンテナ素子1106の特徴を制御し、方向、電力レベルおよび同様のものによってそれを管理することができる。各アンテナ素子1106におけるポケット形成の位相および振幅は、所望のポケット形成および伝送ゼロ領域ステアリングを生成するために、対応するRFIC 1108によって調節することができる。加えて、RFIC 1108は、MC 1110に接続することができ、MC 1110は、デジタル信号処理(DSP)、ARM、PICクラスマイクロプロセッサ、中央処理装置、コンピュータおよび同様のものを利用することができる。送信機1101に存在するより少ない数のRFIC 1108は、低制御の複数のポケット形成、低レベルの粒度および低価の実施形態などの所望の特徴に相当し得る。いくつかの実装形態では、RFIC 1108は、1つまたは複数のMC 1110に結合することができ、MC 1110は、独立した基地局または送信機1101に含めることができる。
【0107】
送信機1101のいくつかの実装形態では、各アンテナ素子1106における各ポケット形成の位相および振幅は、所望のポケット形成および伝送ゼロ領域ステアリングを生成するために、対応するRFIC 1108によって調節することができる。各アンテナ素子1106に結合された選択されたRFIC 1108は、処理要件を低減し、ポケット形成の制御を増大することができ、それにより、MC 1110上での低負荷での複数のポケット形成および粒度のより細かいポケット形成が可能になり、複数のポケット形成のより多い数のより高い反応を可能にすることができる。さらに、複数のポケット形成は、より多い数の受信機を充電することができ、そのような受信機までのより良い軌道を可能にすることができる。
【0108】
RFIC 1108およびアンテナ素子1106は、所望の応用に従って設計できる適切ないかなる配列でも動作することができる。例えば、送信機1101は、平面配列のアンテナ素子1106およびRFIC 1108を含み得る。4、8、16および/または任意の数のアンテナ素子1106のサブセットは、単一のRFIC 1108に接続することができる。RFIC 1108は、各アンテナ素子1106の後ろに直接埋め込むことができ、そのような統合は、コンポーネント間の短い距離によって損失を低減することができる。いくつかの実装形態では、アンテナ素子1106の行または列は、単一のMC 1110に接続することができる。各行または列に接続されたRFIC 1108は、行間または列間の位相および利得を変化させることによってポケット形成を生成することができる低価な送信機1101を可能にすることができる。いくつかの実装形態では、RFIC 1108は、受信機1120が得るための、2〜8ボルトの電力を出力することができる。
【0109】
いくつかの実装形態では、RFIC 1108のカスケード配列を実装することができる。RFIC 1108のカスケード配列を使用する平面状送信機1101は、ポケット形成のより優れた制御を提供することができ、受信機1106を対象とするための反応を増強することができ、RFIC 1108の多重冗長を理由に、より高い信頼性および精度を達成することもできる。
【0110】
4.マイクロコントローラ
MC 1110は、ARMおよび/またはDSPを実行するプロセッサを含み得る。ARMは、縮小命令セットコンピューティング(RISC)に基づく汎用マイクロプロセッサのファミリである。DSPは、何らかの方法でそれを修正または改善するために情報信号の数学的な操作を提供できる汎用信号処理チップであり、一連の数値またはシンボルによる離散時間、離散周波数および/または他の離散領域信号の表現ならびにこれらの信号の処理によって特徴付けることができる。DSPは、連続的な現実世界のアナログ信号を測定、フィルタリングおよび/または圧縮することができる。第1のステップは、サンプリングに次いでアナログ/デジタル変換器(ADC)を使用してそれをデジタル化することによる、アナログからデジタル形式への信号の変換であり得、アナログ信号を離散デジタル値のストリームに変換することができる。また、MC 1110は、Linuxおよび/または他の任意のオペレーティングシステムを実行することもできる。また、MC 1110は、ネットワーク1140を通じて情報を提供するために、Wi-Fiに接続することもできる。
【0111】
MC 1110は、ポケット形成の時間放出、ポケット形成の方向、バウンド角度、電力強度および同様のものなど、RFIC 1108の様々な特徴を制御することができる。さらに、MC 1110は、複数の受信機または単一の受信機上において複数のポケット形成を制御することができる。送信機1101は、無線電力伝送の距離識別を可能にすることができる。加えて、MC 1110は、通信コンポーネント1112を制御することにより、通信プロトコルおよび信号を管理および制御することができる。MC 1110は、受信機を追跡して受信機上に高周波信号1142を集結させるため(すなわち、エネルギーのポケット)、受信機に信号を送信したり受信機から信号を受信したりすることができる通信コンポーネント1112によって受信された情報を処理することができる。他の情報を受信機1120からおよび受信機1120に伝送することもでき、そのような情報は、ネットワーク1140を通じた他のもののなかでも特に、認証プロトコルを含み得る。
【0112】
MC 1110は、シリアルペリフェラルインタフェース(SPI)および/または集積回路間(I
2C)プロトコルを通じて、通信コンポーネント1112と通信することができる。SPI通信は、例えば、埋め込みシステム、センサおよびSDカードにおける近距離のシングルマスタ通信のために使用することができる。デバイスは、マスタ/スレーブモードで通信し、マスタデバイスがデータフレームを開始する。複数のスレーブデバイスが個々のスレーブセレクトラインと共に認められている。I
2Cは、低速周辺機器をコンピュータマザーボードおよび埋め込みシステムに取り付けるために使用されるマルチマスタ、マルチスレーブ、シングルエンドのシリアルコンピュータバスである。
【0113】
5.通信コンポーネント
通信コンポーネント1112は、他のもののなかでも特に、Bluetooth(登録商標)技術、赤外線通信、Wi-Fi、FMラジオを含み得、組み合わせることができる。MC 1110は、障害に起因する損失を低減するために、ポケット形成を伝送するための最も効率的な軌道を含む、ポケット形成のための最適な時間および場所を決定することができる。そのような軌道は、直接的なポケット形成、バウンドおよびポケット形成の距離識別を含み得る。いくつかの実装形態では、通信コンポーネント1112は、受信機1120、クライアントデバイスまたは他の送信機1101を含み得る、複数のデバイスと通信することができる。
【0114】
6.電力源
送信機1101は、ACまたはDC電源を含み得る電力源1114によって供給することができる。電力源1114によって提供される電圧、電力および電流の強度は、伝送される必要な電力に応じて異なり得る。電波信号への電力の変換は、MC 1110によって管理し、RFIC 1108によって実行することができ、RFIC 1108は、多種多様な周波数、波長、強度および他の特徴の電波信号を生成するために複数の方法およびコンポーネントを利用することができる。電波信号生成のための様々な方法およびコンポーネントの例示的な使用として、異なるアンテナ素子1106において高周波を生成および変更するために、発振器および圧電結晶を使用することができる。加えて、様々なフィルタを使用して信号を平滑化したり、増幅器を使用して伝送される電力を増大したりすることができる。
【0115】
送信機1101は、特定の充電可能電子デバイスによって必要とされる少量のワット数から既定のワット数までの電力能力でポケット形成を行うRF電力波を放出することができる。各アンテナは、ある一定の電力能力を管理することができる。そのような電力能力は、応用に関連し得る。
【0116】
7.ハウジング
ハウジングに加えて、独立した基地局もMC 1110および電力源1114を含み得、従って、いくつかの送信機1101は、単一の基地局および単一のMC 1110によって管理することができる。そのような能力は、送信機1101の場所を様々な戦略的位置(天井、飾り、壁および同様のものなど)にすることを可能にする。アンテナ素子1106、RFIC 1108、MC 1110、通信コンポーネント1112および電力源1114は、複数の配列および組合せで接続することができ、配列および組合せは、送信機1101の所望の特性に依存し得る。
【0117】
B.例示的な電力伝送方法
図12は、アンテナ素子を使用して受信機の場所を決定するための方法1200である。受信機の場所を決定するための方法1200は、MCによって管理される一連のプログラムされた規則または論理であり得る。プロセスは、アンテナアレイからのアンテナの第1のサブセットを用いて第1の信号を捕捉することによってステップ1201を開始することができる。その直後、プロセスは、アンテナ素子の異なるサブセットに切り替え、次のステップ1203において、アンテナの第2のサブセットを用いて第2の信号を捕捉することによって進めることができる。例えば、第1の信号は、アンテナの行を用いて捕捉することができ、第2の捕捉は、アンテナの列を用いて行うことができる。アンテナの行は、球面座標系における方位角などの水平配向度を提供することができる。アンテナの列は、仰角などの垂直配向度を提供することができる。第1の信号の捕捉および第2の信号の捕捉に使用されるアンテナ素子は、直線、垂直、水平または斜め配向に整列させることができる。アンテナの第1のサブセットおよび第2のサブセットは、送信機の周囲の範囲をカバーするため、十字状構造で整列させることができる。
【0118】
垂直値と水平値の両方が測定された時点で、MCは、次のステップ1205において、信号を捕捉するために使用された垂直および水平アンテナ素子に対する位相および利得の適切な値を決定することができる。位相および利得の適切な値は、アンテナに対する受信機の位置関係によって決定することができる。値は、電子デバイスを充電するために受信機が使用できるエネルギーのポケットを形成するようにアンテナ素子を調整するために、MCが使用することができる。
【0119】
送信機のすべてのアンテナ素子の初期値に関するデータは、アンテナ素子に対する適切な値の計算を支援するためにMCが使用するために、事前に計算して格納することができる。次のステップ1207では、信号を捕捉するために使用された垂直および水平アンテナに対する適切な値が決定された後、プロセスは、格納されたデータを使用してアレイのすべてのアンテナに対する適切な値を決定することによって続けることができる。格納されたデータは、異なる周波数でのアレイのすべてのアンテナ素子に対する位相および利得の初期のテスト値を含み得る。異なる周波数に対して、異なるデータセットを格納することができ、MCは、適切なデータセットを相応に選択することができる。次いで、次のステップ1209では、MCは、適切な場所にエネルギーのポケットを形成するために、RFICを通じてすべてのアンテナを調整することができる。
【0120】
C.アレイサブセット構成
図13Aは、受信機の場所を決定するための方法で使用できるアレイサブセット構成1300Aの例示的な実施形態を示す。送信機は、アンテナのアレイ1306Aを含み得る。最初に、アンテナの行1368Aは、受信機によって送信された信号を捕捉するために使用することができる。次いで、アンテナの行1368Aは、信号をRFICに転送することができ、RFICでは、信号は、電波信号からデジタル信号に変換され、処理のためにMCに送ることができる。次いで、MCは、受信機の場所に基づいて適切な場所にエネルギーのポケットを形成するために、アンテナの行1368Aにおける位相および利得に対する適切な調整を決定することができる。第2の信号は、アンテナの列1370Aによって捕捉することができる。次いで、アンテナの列1370Aは、信号をRFICに転送することができ、RFICでは、信号は、電波信号からデジタル信号に変換され、処理のためにMCに送ることができる。次いで、MCは、受信機の場所に基づいて適切な場所にエネルギーのポケットを形成するために、アンテナの列1370Aにおける位相および利得に対する適切な調整を決定することができる。アンテナの行1368Aおよびアンテナの列1370Aに対して適切な調整が決定された時点で、MCは、アンテナについての事前に格納されたデータを使用してアンテナの行1368Aおよびアンテナの列1370Aからの結果を用いて相応に調整することにより、アンテナのアレイ1368Aのアンテナ素子1306Aの残りの部分に対して適切な値を決定することができる。
【0121】
D.送信機、送信機コンポーネント、アンテナタイルおよび送信機に関連するシステムのための構成
1.例示的なシステム
図13Bは、アレイサブセット構成1300Bの別の例示的な実施形態を示す。アレイサブセット構成1300Bでは、両方の初期信号は、アンテナの2つの対角線サブセットによって捕捉される。プロセスは、各サブセットが相応に調整されるように同じ経路を進む。行われた調整および事前に格納されたデータに基づいて、アンテナのアレイのアンテナ素子1306Bの残りの部分が調整される。
【0122】
2.平面状送信機
図14は、平面状送信機1402の正面図およびいくつかの実施形態の背面図について描写する。送信機1402は、平面配列のアンテナ素子1406およびRFIC 1408を含み得る。RFIC 1408は、各アンテナ素子1406の後ろに直接埋め込むことができ、そのような統合は、コンポーネント間の短い距離によって損失を低減することができる。
【0123】
送信機1402の一実施形態(すなわち、表示1)では、各アンテナ素子1406のポケット形成の位相および振幅は、所望のポケット形成および伝送ゼロ領域ステアリングを生成するために、対応するRFIC 1408によって調節することができる。各アンテナ素子1406に結合された選択されたRFIC 1408は、処理要件を低減し、ポケット形成の制御を増大することができ、それにより、MC 1410上での低負荷での複数のポケット形成および粒度のより細かいポケット形成が可能になり、従って、複数のポケット形成のより多い数のより高い反応を可能にすることができる。さらに、複数のポケット形成は、より多い数の受信機を充電することができ、そのような受信機までのより良い軌道を可能にすることができる。
図11の実施形態で説明されるように、RFIC 1408は、1つまたは複数のMC 1410に結合することができ、マイクロコントローラ1410は、独立した基地局または送信機1402に含めることができる。
【0124】
別の実施形態(すなわち、表示2)では、4つのアンテナ素子1406のサブセットは、単一のRFIC 1408に接続することができる。送信機1402に存在するより少ない数のRFIC 1408は、低制御の複数のポケット形成、低レベルの粒度および低価の実施形態などの所望の特徴に相当し得る。
図11の実施形態で説明されるように、RFIC 1408は、1つまたは複数のMC 1410に結合することができ、マイクロコントローラ1410は、独立した基地局または送信機1402に含めることができる。
【0125】
さらなる別の実施形態(すなわち、表示3)では、送信機1402は、平面配列のアンテナ素子1406およびRFIC 1408を含み得る。アンテナ素子1406の行または列は、単一のMC 1410に接続することができる。送信機1402に存在するより少ない数のRFIC 1408は、低制御の複数のポケット形成、低レベルの粒度および低価の実施形態などの所望の特徴に相当し得る。各行または列に接続されたRFIC 1408は、低価の送信機1402を可能にし、行間または列間の位相および利得を変化させることによってポケット形成を生成することができる。
図11の実施形態で説明されるように、RFIC 1408は、1つまたは複数のMC 1410に結合することができ、マイクロコントローラ1410は、独立した基地局または送信機1402に含めることができる。
【0126】
いくつかの実施形態(すなわち、表示4)では、送信機1402は、平面配列のアンテナ素子1406およびRFIC 1408を含み得る。この例示的な実施形態では、カスケード配列について描写する。2つのアンテナ素子1406を単一のRFIC 1408に接続し、次に、この単一のRFIC 1408を単一のRFIC 1408に接続することができ、その接続されたRFIC 1408を最終的なRFIC 1408に接続し、次に、この最終的なRFIC 1408を1つまたは複数のMC 1410に接続することができる。RFIC 1408のカスケード配列を使用する平面状送信機1402は、ポケット形成のより優れた制御を提供することができ、受信機を対象とするための反応を増強することができる。さらに、RFIC 1408の多重冗長を理由に、より高い信頼性および精度を達成することもできる。
図11の実施形態で説明されるように、RFIC 1408は、1つまたは複数のMC 1410に結合することができ、マイクロコントローラ1410は、独立した基地局または送信機1402に含めることができる。
【0127】
3.複数のプリント回路基板層
図15Aは、ポケット形成のより優れた制御を提供し、受信機を対象とするための反応を増強するためのアンテナ素子1506Aを含み得る複数のPCB層1204Aを含み得る送信機1502Aについて描写する。複数のPCB層1504Aは、送信機1502Aによって転送できる電力の範囲および量を増大することができる。PCB層1504Aは、単一のMCまたは専用のMCに接続することができる。同様に、RFICは、前述の実施形態で描写されるように、アンテナ素子1506Aに接続することができる。RFICは、1つまたは複数のMCに結合することができる。さらに、MCは、独立した基地局または送信機1502Aに含めることができる。
【0128】
4.箱状送信機
図15Bは、ポケット形成のより優れた制御を提供し、受信機を対象とするための反応を増強するためのアンテナ素子1506Bを含み得る、複数のPCB層1504Bをその内側に含み得る箱状送信機1502Bについて描写する。さらに、無線電力伝送の範囲は、箱状送信機1502Bによって増大することができる。複数のPCB層1504Bは、アンテナ素子1506Bの高密度を理由に、送信機1502Bによって無線で転送または放送できるRF電力波の範囲および量を増大することができる。PCB層1504Bは、単一のMCまたは各アンテナ素子1506B専用のMCに接続することができる。同様に、RFICは、前述の実施形態で描写されるように、アンテナ素子1506Bを制御することができる。さらに、箱型の送信機800は、無線電力伝送の活動率を増大させることができ、従って、箱状送信機1502Bは、机、テーブル、床および同様のものなどの複数の表面上に位置し得る。加えて、箱状送信機1502Bは、PCB層1504Bのいくつかの配列を含み得、X、YおよびZ軸またはこれらの任意の組合せに配向することができる。RFICは、1つまたは複数のMCに結合することができる。さらに、MCは、独立した基地局または送信機1502Bに含めることができる。
【0129】
5.様々なタイプの製品のための不規則なアレイ
図16は、送信機1602を異なるデバイスに組み込むためのアーキテクチャ1600の図について描写する。例えば、平面状送信機1602は、テレビ1646のフレームにまたはサウンドバー1648のフレームにわたって適用することができる。送信機1602は、平面配列のアンテナ素子およびRFICを有する複数のタイル1650を含み得る。RFICは、各アンテナ素子の後ろに直接埋め込むことができ、そのような統合は、コンポーネント間の短い距離によって損失を低減することができる。
【0130】
タイル1650は、いかなる物体のいかなる表面にも結合することができる。そのような結合は、締め付け、嵌め合わせ、インターロッキング、接着、はんだ付けまたはその他などのいかなる方法を介するものでもあり得る。そのような表面は、滑らかなものであっても、粗いものであってもよい。そのような表面は、いかなる形状のものでもよい。そのような物体は、静止物体(建物の一部または電化製品など)でも、可動物体(車両などの自走式のものまたはハンドヘルドなどの別の物体を介するものにかかわらず)でもよい。タイル1650は、モジュール式で使用することができる。例えば、タイル1650は、開放的または閉鎖的、対称的または非対称的にかかわらず、2dまたは3d形状を形成するように配列することができる。いくつかの実施形態では、タイル1650は、フィギュア形状またはデバイス/構造形状(タワーなど)で配列することができる。タイル1650は、インターロッキング、嵌め合わせ、締め付け、接着、はんだ付けまたはその他を介してなど、互いに結合し合うように構成することができる。タイル1650は、同期的または非同期的にかかわらず、互いに独立してまたは互いに依存して動作するように構成することができる。タイル1650は、個別にまたはグループとしてにかかわらず、直列または並列で供給されるように構成することができる。タイル1650は、上面、側面または底面などの少なくとも片方の面から出力するように構成することができる。タイル1650は、剛性、軟性または弾性であり得る。いくつかの実施形態では、少なくとも1つの他のコンポーネントは、デジタル式、アナログ式、機械式、電気式または非電気式にかかわらず、少なくとも2つのタイル1650間に配置することができる。いくつかの実施形態では、少なくとも1つのタイル1650は、メモリに結合されたハードウェアプロセッサを介して実行することができる。
【0131】
タイル1650は、本明細書で説明されるように、ヒートマップ技術のために使用することができる。例えば、送信機1602は、平面配列のアンテナ素子およびRFICを有する複数のタイル1650を含み得、送信機1602は、タイル1650がヒートマップ生成のためのBLE識別子を送信する際など、特定の受信機などのタイル1650のグループのヒートマップ作成を容易にすることができる。いくつかの実施形態では、タイル1650のグループは、指定された距離内に配置されたタイル1650を介して画定され、指定された距離内に配置されたタイル1650のいくつが、信号を送信し、エリアを走査し、場所入力などの受信機入力を受信するかなどがある。そのような性能は、BLE(登録商標)およびZigBee(登録商標)などの異なる通信プロトコル下で同時に起こり得ることにも留意されたい。いくつかの実施形態では、タイル1650の少なくとも2つのグループは、異なるタスクを実行する。いくつかの実施形態では、タイル1650のグループは、2つのタイルの各々が長さ8インチおよび幅2インチである際など、2つのタイルを含む。いくつかの実施形態では、アレイ全体をテレビ1646の外周に沿って広げることができ、アレイは、タイル1650の複数のグループで配列されるか、またはタイル1650の複数のグループとして機能する複数のタイル1650を含み、その理由は、本明細書で説明されるように、そのようなグループの各々は異なるヒートマップを得ることができるためであり、異なるヒートマップは、大規模なヒートマップに対するより良い理解を得るために、後に一緒に分析することができる。それに従って、ヒートマップセットの各々は異なる情報を含み得るため、複数のヒートマップセットは、互いに調和させることなく存在することができる。例えば、第1のヒートマップは、第1のデバイスと関連付けることができ、第2のヒートマップは、第1のデバイスと異なる第2のデバイスと関連付けることができる。
【0132】
例えば、テレビ1646は、複数のタイル1650を含むテレビ1646の周りのベゼルを有し得、各タイルは、特定の数のアンテナ素子で構成される。例えば、テレビ1646のベゼルの周りに20個のタイル1650がある場合、各タイル1650は、24個のアンテナ素子および/または任意の数のアンテナ素子を有し得る。
【0133】
タイル1650は、テレビ1646またはテレビ1646に結合された配線との信号干渉を回避するように配置または構成されることに留意されたい。代替としてまたは加えて、テレビ1646は、そのような信号干渉を遮断することができる。スタンドアロンスピーカまたはより大きいシステムのコンポーネントにかかわらず、サウンドバー1648または他の任意のタイプのスピーカにも同様の構成を適用することができる。しかし、そのようなタイル1650は、スタンドアロンデバイスまたはより大きいシステムのコンポーネントにかかわらず、電子式または非電子式にかかわらず、いかなるデバイス上にも配列できることにも留意されたい。
【0134】
タイル1650では、各アンテナ素子における各ポケット形成の位相および振幅は、所望のポケット形成および伝送ゼロ領域ステアリングを生成するために、対応するRFICによって調節することができる。各アンテナ素子に結合された選択されたRFICは、処理要件を低減し、ポケット形成の制御を増大することができ、それにより、マイクロコントローラ上での低負荷での複数のポケット形成および粒度のより細かいポケット形成が可能になり、従って、複数のポケット形成のより多い数のより高い反応を可能にすることができる。さらに、複数のポケット形成は、より多い数の受信機を充電することができ、そのような受信機までのより良い軌道を可能にすることができる。
【0135】
RFICは、1つまたは複数のマイクロコントローラに結合することができ、マイクロコントローラは、独立した基地局または送信機1602のタイル1650に含めることができる。アンテナ素子の行または列は、単一のマイクロコントローラに接続することができる。いくつかの実装形態では、送信機1602に存在するより少ない数のRFICは、低制御の複数のポケット形成、低レベルの粒度および低価の実施形態などの所望の特徴に相当し得る。各行または列に接続されたRFICは、より少ないRFICが送信機1602の各々の制御に必要とされるため、より少ないコンポーネントを有することにより、コストの低減を可能にすることができる。RFICは、行間または列間の位相および利得を変化させることにより、ポケット形成電力伝送波を生成することができる。
【0136】
いくつかの実装形態では、送信機1602は、ポケット形成のより優れた制御を提供することができ、受信機を対象とするための反応を増強することができるRFICを含むタイル1650のカスケード配列を使用することができる。さらに、RFICの多重冗長から、より高い信頼性および精度を達成することができる。
【0137】
一実施形態では、アンテナ素子を含む複数のPCB層は、ポケット形成のより優れた制御を提供することができ、受信機を対象とするための反応を増強することができる。複数のPCB層は、送信機1602によって転送できる電力の範囲および量を増大することができる。PCB層は、単一のマイクロコントローラまたは専用のマイクロコントローラに接続することができる。同様に、RFICは、アンテナ素子に接続することができる。
【0138】
箱状送信機1602は、ポケット形成のより優れた制御を提供するためのアンテナ素子を含み得、受信機を対象とするための反応を増強し得る、複数のPCB層をその内側に含み得る。さらに、無線電力伝送の範囲は、箱状送信機1602によって増大することができる。複数のPCB層は、アンテナ素子の高密度を理由に、送信機1602によって無線で転送または放送できるRF電力波の範囲および量を増大することができる。PCB層は、単一のマイクロコントローラまたは各アンテナ素子専用のマイクロコントローラに接続することができる。同様に、RFICは、アンテナ素子を制御することができる。箱型の送信機1602は、無線電力伝送の活動率を増大させることができる。従って、箱状送信機1602は、机、テーブル、床および同様のものなどの複数の表面上に位置し得る。加えて、箱状送信機は、PCB層のいくつかの配列を含み得、X、YおよびZ軸またはこれらの任意の組合せに配向することができる。
【0139】
いくつかの実施形態では、サウンドバー1648は、長さ4フィートおよび高さ2インチであることによってなど、細長いものである。そのような形状は、取り囲む方法で、本明細書で説明されるように、タイル1650の少なくともいくつかが信号の送信または受信を行えるような、サウンドバー1648の縦軸に沿ったタイル1650の条件を提供する。
【0140】
6.複数のアンテナ素子
図17は、複数のアンテナ素子1706を含む送信機構成1700の例である。アンテナ素子1706は、アンテナの行1768およびアンテナの列1770を配列することによってアレイを形成することができる。送信機構成は、ポケット形成のための利得および/または位相などのアンテナ素子1706の特徴を制御し、方向、電力レベルおよび同様のものによってそれを管理するための少なくとも1つのRFIC 1708を含み得る。アンテナ素子1706のアレイは、MC 1710に接続することができ、MC 1710は、障害に起因する損失を低減するために、ポケット形成を伝送するための最も効率的な軌道を含む、ポケット形成のための最適な時間および場所を決定することができる。そのような軌道は、直接的なポケット形成、バウンドおよびポケット形成の距離識別を含み得る。
【0141】
送信機デバイスは、適切な場所にエネルギーのポケットを形成するためのアンテナ素子1706の調整方法を決定するために、アンテナ素子1706を利用して、受信機の場所を決定することができる。受信機は、情報を提供するために、連続信号(train signal)を送信機に送信することができる。連続信号は、アンテナ素子1706による検出が可能ないかなる従来の公知の信号でもあり得る。受信機によって送信された信号は、位相および利得などの情報を含み得る。
【0142】
III.受信機 − 無線電力伝送を受信および利用するためのシステムおよび方法
A.受信機デバイスのコンポーネント
例示的な実施形態による、クライアントデバイスを無線で充電するためのシステム1100アーキテクチャの図を示す
図11に戻ると、システム1100は、送信機1101および受信機1120を含み得、各々は、特定用途向け集積回路(ASIC)を含み得る。受信機1120のASICは、プリント回路基板1122、アンテナ素子1124、整流器1126、電力変換器1129、通信コンポーネント1130および/または電力管理集積回路(PMIC)1132を含み得る。また、受信機1120は、すべての必要なコンポーネントを割り当てることができるハウジングも含み得る。受信機1120の様々なコンポーネントは、メタ材料、回路のマイクロプリンティング、ナノ材料および同様のものを含むか、またはそれらを使用して製造することができる。
【0143】
1.アンテナ素子
アンテナ素子1124は、送信機1101のアンテナ素子1106に対して説明される帯域と同様の周波数帯域で動作するために適切なアンテナタイプを含み得る。アンテナ素子1124は、垂直もしくは水平偏波、右もしくは左偏波、楕円偏波または他の適切な偏波、ならびに適切な偏波の組合せを含み得る。複数の偏波の使用は、使用時の好ましい配向がないか、または時間と共に配向が連続的に変化し得るデバイス(例えば、スマートフォンまたはポータブルゲームシステム)において有益であり得る。それとは正反対に、明確に定義された配向を有するデバイス(例えば、両手用のテレビゲームコントローラ)の場合、アンテナに好ましい偏波がある可能性があり、それにより、所定の偏波のアンテナの数に対する割合を決定することができる。適切なアンテナタイプは、パッチアンテナを含み得、パッチアンテナは、約118インチ〜約6インチの高さおよび約1/8インチ〜約6インチの幅を有し得る。パッチアンテナは、偏波が接続性に依存する(すなわち、いずれの方向からパッチへの供給が行われるかに応じて偏波が変化し得る)という利点を有し得る。これは、受信機1120などの受信機として有利であることをさらに証明することができ、無線電力伝送を最適化するためにそのアンテナ偏波を動的に変化させることができる。本明細書の実施形態で説明されるように、受信機に対して、異なるアンテナ、整流器または電力変換器配列が可能である。
【0144】
2.整流器
整流器1126は、周期的に方向転換する交流電流(AC)を、負の値を取らない直流電流(DC)に変換することができる。入力AC正弦波の交流性質のため、整流プロセスのみで、非負ではあるが電流のパルスからなるDC電流を生成する。整流器の出力は、定常電流を生成するために、電子フィルタによって平滑化することができる。整流器1126は、アンテナ素子1124によって生成された交流電流(AC)電圧を直流電流(DC)電圧に整流するためのダイオード、抵抗器、誘導子および/またはコンデンサを含み得る。
【0145】
いくつかの実装形態では、整流器1126は、全波整流器であり得る。全波整流器は、その出力側において入力波形全体を一定の極性(正または負)のうちの1つに変換することができる。全波整流は、入力波形の両方の極性を脈動DC(直流電流)に変換し、より高い平均出力電圧を得ることができる。全波整流器に対して、2つのダイオードおよびセンタータップ式変圧器ならびに/あるいはブリッジ構成の4つのダイオードおよび任意のAC源(センタータップ式ではない変圧器を含む)を利用することができる。単相ACの場合、変圧器がセンタータップ式であれば、バックツーバック接続(必要な出力極性に応じて、陰極と陰極または陽極と陽極)の2つのダイオードを利用して、全波整流器を形成することができる。ブリッジ整流器に対して同じ出力電圧を得るには、変圧器の二次側において2倍の巻数が必要とされるが、電力定格は変わらない。整流器1126は、損失を最小限に抑えるために、技術的に可能な限りアンテナ素子1124の近くに配置することができる。AC電圧を整流した後、DC電圧は、電力変換器1129を使用して調節することができる。
【0146】
3.電力変換器
電力変換器1129は、定電圧出力を提供するうえで役立てることができるおよび/または受信機1120への電圧を引き上げるうえで役立てることができるDC/DC変換器であり得る。いくつかの実装形態では、DC/DC変換器は、最大電力点追従装置(MPPT)であり得る。MPPTは、高い電圧DC出力をバッテリの充電に必要な低い電圧に変換する電子DC/DC変換器である。典型的な電圧出力は、約5ボルト〜約10ボルトであり得る。いくつかの実施形態では、電力変換器1129は、高効率を提供できる電子切替モードDC/DC変換器を含み得る。そのような事例では、スイッチングデバイスの動作に対して十分な電流が提供されることを保証するため、電力変換器1129の前にコンデンサを含めることができる。電子デバイス(例えば、電話またはラップトップコンピュータ)を充電する際、電子切替モードDC/DC変換器の動作の起動に必要とされる最小電圧レベルを超える初期の高電流が必要とされ得る。そのような事例では、必要とされる追加のエネルギーを提供するために、コンデンサを受信機1120の出力側に追加することができる。その後、適切な電流の量の提供に必要とされるような、より低い電力を提供することができる(例えば、依然として電話またはラップトップに電荷を蓄積させている間に使用される総初期電力の1/80)。
【0147】
一実施形態では、複数の整流器1126を1つのアンテナ素子1124に並列接続することができる。例えば、4つの整流器1126を1つのアンテナ素子1124に並列接続することができる。しかし、さらにいくつかの整流器1126を使用することができる。各整流器1126は総電力の1/4の処理のみを必要とするため、この配列は有利であり得る。電子デバイスに1ワットが伝達される予定であれば、各整流器1126は、1ワットの1/4の処理のみを必要とする。同じ量の電力を処理する一方で、複数の低電力整流器1126の使用は1つの高電力整流器1126の利用より低価であり得るため、この配列は、コストを大幅に低下させることができる。いくつかの実施形態では、整流器1126によって処理される総電力は、組み合わせて電力変換器1129に入力することができる。他の実施形態では、1つの整流器1126ごとに電力変換器1129が1つずつ存在し得る。
【0148】
他の実施形態では、複数のアンテナ素子1124を1つの整流器1126に並列接続することができ、その後、電力変換器1129を通じてDC電圧を調節することができる。この例では、4つのアンテナ素子1124を単一の整流器1126に並列接続することができる。各アンテナ素子1124は総電力の1/4の処理のみを必要とするため、この配列は有利であり得る。加えて、この配列は、信号が互いに打ち消し合わないことができるため、単一の整流器1126での異なる偏波のアンテナ素子1124の使用を可能にすることができる。前述の特性のため、この配列は、明確に定義されていないか、または他に時間と共に変化する配向を有する電子クライアントデバイスに適し得る。最後に、この配列は、等しい偏波および大きく違わない位相向けに構成されたアンテナ素子を使用する際に有益であり得る。しかし、いくつかの実施形態では、1つのアンテナ素子1124ごとに整流器1126が1つずつおよび/または1つのアンテナ素子1124ごとに複数の整流器1126が存在し得る。
【0149】
例示的な実装形態では、複数のアンテナ素子1124出力を組み合わせて並列整流器1126に接続し、並列整流器1126の出力を1つの電力変換器1129においてさらに組み合わせることができる配列を実装することができる。16個のアンテナ素子1124があり、その出力を4つの並列整流器1126において組み合わせることができる。他の実施形態では、アンテナ素子1124は、いくつかの(例えば、4つの)グループに細分し、独立した整流器1126に接続することができる。
【0150】
さらなる別の実施形態では、アンテナ素子1124のグループを異なる整流器1126に接続し、次に、異なる整流器1126も異なる電力変換器1129に接続することができる配列を実装することができる。この実施形態では、アンテナ素子1124の4つのグループ(各々が並列の4つのアンテナ素子1124を含む)の各々を4つの整流器1126に独立して接続することができる。この実施形態では、各整流器1126の出力は、電力変換器1129(合計で4つ)に直接接続することができる。他の実施形態では、総電力を並列処理するため、4つの整流器1126のすべての出力は、各電力変換器1129の前に組み合わせることができる。いくつかの実施形態では、各整流器1126の組み合わされた出力は、単一の電力変換器1129に接続することができる。この配列は、整流器1126とアンテナ素子1124との間の優れた近接性を可能にするという点で有益であり得る。この特性は、損失を最小限にとどめることができるため望ましいものであり得る。
【0151】
4.通信コンポーネント
通信コンポーネント1130は、送信機1101のものと同様に、送信機または他の電子機器と通信するために、受信機1120に含めることができる。いくつかの実装形態では、受信機1120は、バッテリレベル、ユーザが事前に定義した充電プロファイルまたはその他など、プロセッサによって提供される要件に基づいて、所定の送信機1120と通信するためのデバイス(例えば、Bluetooth(登録商標))の内蔵通信コンポーネントを使用することができる。送信機1101は、1つまたは複数のプリント回路基板(PCB)1104、1つまたは複数のアンテナ素子1106、1つまたは複数の高周波集積回路(RFIC)1108、1つまたは複数のマイクロコントローラ(MC)1110、通信コンポーネント1112および電力源1114を含み得る。送信機1101は、ハウジングに入れることができ、ハウジングは、送信機1101に必要なすべてのコンポーネントを割り当てることができる。送信機1101のコンポーネントは、メタ材料、回路のマイクロプリンティング、ナノ材料および/または他の任意の材料を使用して製造することができる。受信機と送信機との間の通信コンポーネントによって伝達される情報のタイプは、これらに限定されないが、他のもののなかでも特に、バッテリ内の現在の電力レベル、受信機で受信されている信号強度および電力レベル、タイミング情報、位相および利得情報、ユーザ識別、クライアントデバイス特権、セキュリティ関連発信、緊急発信ならびに認証交換を含む。
【0152】
5.PMIC
電力管理集積回路(PMIC)1132は、ホストシステムの電力要件を管理するためのシステムオンチップデバイスの集積回路および/またはシステムブロックである。PMIC 1132は、バッテリ管理、電圧調節および充電機能を含み得る。PMIC 1132は、動的電圧スケーリングを可能にするためのDC/DC変換器を含み得る。いくつかの実装形態では、PMIC 1132は、最大で95%の電力変換効率を提供することができる。いくつかの実装形態では、PMIC 1132は、組合せで、動的周波数スケーリングと統合することができる。PMIC 1132は、携帯電話および/またはポータブルメディアプレーヤなどのバッテリ式デバイスにおいて実装することができる。いくつかの実装形態では、バッテリは、入力コンデンサおよび出力コンデンサと置き換えることができる。PMIC 1132は、バッテリおよび/またはコンデンサに直接接続することができる。バッテリが直接充電される際には、コンデンサは実装しなくともよい。いくつかの実装形態では、PMIC 1132は、バッテリの周りでコイル状にすることができる。PMIC 1132は、電力管理チップ(PMC)を含み得、電力管理チップ(PMC)は、バッテリ充電器の役割を果たし、バッテリに接続される。PMIC 1132は、パルス周波数変調(PFM)およびパルス幅変調(PWM)を使用することができる。PMIC 1132は、スイッチング増幅器(クラスD電子増幅器)を使用することができる。いくつかの実装形態では、PMIC 1132に出力変換器、整流器および/またはBLEを含めることもできる。
【0153】
6.ハウジング
ハウジングは、例えば、プラスチックまたは硬質ゴムなど、信号または波伝送および/または受信を可能にする適切ないかなる材料からでも作ることができる。ハウジングは、例えば、ケースの形態の、異なる電子機器に追加できる外部ハードウェアであっても、電子機器内に埋め込んでもよい。
【0154】
7.ネットワーク
ネットワーク1140は、送信機1101と受信機1120との間の通信を容易にするいかなる共通の通信アーキテクチャも含み得る。当業者であれば、ネットワーク1140は、インターネット、専用イントラネットまたはその2つの何らかのハイブリッドであり得ることが理解されよう。また、当業者であれば、ネットワークコンポーネントを専用処理機器においてまたは代替としてクラウド処理ネットワークにおいて実装できることも明らかであるはずである。
【0155】
B.受信機、受信機コンポーネントおよび受信機に関連するシステムの構成
1.1つのアンテナ素子に並列接続された複数の整流器
図18Aは、複数の整流器1826Aを1つのアンテナ素子1824Aに並列接続することができる配列1800Aを示す。この例では、4つの整流器1826Aを1つのアンテナ素子1824Aに並列接続することができる。しかし、さらにいくつかの整流器1826Aを使用することができる。各整流器1826Aは総電力の1/4の処理のみを必要とするため、配列1800Aは有利であり得る。電子デバイスに1ワットが伝達される予定であれば、各整流器1826Fは、1ワットの1/4の処理のみを必要とする。同じ量の電力を処理する一方で、複数の低電力整流器1826Aの使用は1つの高電力整流器1826Aの利用より低価であり得るため、配列1800Aは、コストを大幅に低下させることができる。いくつかの実施形態では、整流器1826Aによって処理される総電力は、組み合わせてDC/DC変換器1828Aに入力することができる。他の実施形態では、1つの整流器1826AごとにDC/DC変換器1828Aが1つずつ存在し得る。
【0156】
2.1つの整流器に並列接続された複数のアンテナ素子
図18Bは、複数のアンテナ素子1824Bを1つの整流器1826Bに並列接続することができ、その後、DC/DC変換器1828Bを通じてDC電圧を調節することができる配列1800Bを示す。この例では、4つのアンテナ素子1824Bを単一の整流器1826Bに並列接続することができる。各アンテナ素子1824Bは総電力の1/4の処理のみを必要とするため、配列1800Bは有利であり得る。加えて、配列1800Bは、信号が互いに打ち消し合わないことができるため、単一の整流器1826Bでの異なる偏波のアンテナ素子1824Bの使用を可能にすることができる。前述の特性のため、配列1800Bは、明確に定義されていないか、または他に時間と共に変化する配向を有する電子デバイスに適し得る。最後に、配列1800Bは、等しい偏波および大きく違わない位相向けに構成されたアンテナ素子1824Bを使用する際に有益であり得る。しかし、いくつかの実施形態では、1つのアンテナ素子1824Bごとに整流器1826Bが1つずつまたは1つのアンテナ素子1824Bごとに複数の整流器1826Bが存在し得る(
図18Aで説明されるように)。
【0157】
3.複数の整流器に並列接続された複数のアンテナ素子
図19Aは、複数のアンテナ素子1924A出力を組み合わせて並列整流器1926Aに接続し、並列整流器1926Aの出力を1つのDC変換器1928Aにおいてさらに組み合わせることができる配列1900Aを示す。配列1900Aは、例示として、16個のアンテナ素子1924Aを示し、その出力を4つの並列整流器1926Aにおいて組み合わせることができる。他の実施形態では、アンテナ素子1924Aは、以下の
図19Bに示されるように、いくつかのグループ(例えば、4つのグループ)に細分し、独立した整流器に接続することができる。
【0158】
4.グループの並べ替え
図19Bは、アンテナ素子1624Bのグループを異なる整流器1926Bに接続し、次に、異なる整流器1926Bも異なるDC変換器1928Bに接続することができる配列1900Bを示す。配列1900Bでは、アンテナ素子1924Bの4つのグループ(各々が並列の4つのアンテナ素子1924Bを含む)の各々を4つの整流器1926Bに独立して接続することができる。この実施形態では、各整流器1926Bの出力は、DC変換器1928B(合計で4つ)に直接接続することができる。他の実施形態では、総電力を並列処理するため、4つの整流器1926Bのすべての出力は、各DC変換器1928Bの前に組み合わせることができる。他の実施形態では、各整流器1926Bの組み合わされた出力は、単一のDC変換器1928Bに接続することができる。この配列1900Bは、整流器1926Bとアンテナ素子1924Bとの間の優れた近接性を可能にするという点で有益であり得る。この特性は、損失を最小限にとどめることができるために望ましいものであり得る。
【0159】
受信機は、例えば、電話、ラップトップコンピュータ、テレビリモート、子供の玩具または他の任意のそのようなデバイスなど、その意図される機能を実行するための電力に依存し得る電子デバイスまたは機器上に実装するか、それに接続するか、またはそれに埋め込むことができる。ポケット形成を利用する受信機は、「オン」もしくは「オフ」の間に、または使用されているかもしくは使用されていない間に、デバイスのバッテリを完全に充電するために使用することができる。加えて、バッテリ寿命を大幅に強化することができる。例えば、1ワットを伝達することができる受信機を利用して2ワットで動作しているデバイスは、そのバッテリ持続時間を最大で約50%増加することができる。最後に、現在バッテリで作動しているいくつかのデバイスは、受信機を使用して完全に給電することができ、その後、バッテリはもはや必要とされない場合がある。この最後の特性は、壁時計など、バッテリの交換を達成するのが面倒または困難なデバイスに有益であり得る。以下の実施形態は、電子デバイス上で受信機の統合を行える方法のいくつかの例を提供する。
【0160】
5.埋め込み受信機
図20Aは、典型的な電話、コンピュータまたは他の電子デバイスを表し得るデバイス2000Aが埋め込み受信機2020Aを含み得る実装スキームを示す。また、デバイス2000Aは、電力源、通信コンポーネント2030Aおよびプロセッサも含み得る。受信機2020Aは、デバイス2000Aから電力源に電力を提供するためのポケット形成を利用し得る。加えて、受信機2020Aは、バッテリレベル、ユーザが事前に定義した充電プロファイルまたはその他など、プロセッサによって提供される要件に基づいて、所定の送信機と通信するためのデバイス2000A(例えば、Bluetooth(登録商標))の内蔵通信コンポーネント2030Aを使用することができる。
【0161】
6.埋め込み受信機を有するバッテリ
図20Bは、デバイス2000Bが埋め込み受信機2020Bを有するバッテリを含み得る別の実装スキームを示す。バッテリは、ポケット形成を通じて無線で電力を受信し、その埋め込み受信機2020Bを通じて充電することができる。バッテリは、電力源に対する電源として機能することも、バックアップ電源として機能することもできる。この構成は、充電のためにバッテリを取り外す必要がないという点で有利であり得る。これは、バッテリ(通常、AAまたはAAA)を継続的に取り換える必要があるゲームコントローラまたはゲームデバイスにおいて特に役立てることができる。
【0162】
7.外部の通信コンポーネント
図20Cは、デバイスに取り付けることができる外部ハードウェアに受信機2020Cおよび通信コンポーネント2030Cを含めることができる代替の実装スキーム2000Cを示す。ハードウェアは、ユニバーサルシリアルバス(USB)などの適切なインタフェースを通じて接続することができる電話、コンピュータ、リモートコントローラおよびその他の上に置くことができるケースなどの適切な形態を取ることができる。他の実施形態では、ハードウェアは、軟質フィルム上に印刷することができ、次いで、電子機器に貼り付けるか、または他に取り付けることができる。この選択肢は、低コストで生産することができ、様々なデバイスに容易に組み込むことができるため、有利であり得る。以前の実施形態のように、通信コンポーネント2030Cは、一般的に送信機または電子機器への通信を提供することができるハードウェアに含めることができる。
【0163】
8.USBに接続する受信機のケーシングまたはハウジング
図21Aは、可撓ケーブルまたはUSBを通じてスマートフォンおよび/または他の任意の電子デバイスに接続することができる受信機2102Aを含むケースの形態のハードウェアを示す。他の実施形態では、ハウジングまたはケースは、そのような他の選択肢のなかでも特に、コンピュータケース、電話ケースおよび/またはカメラケースであり得る。
【0164】
9.プリントフィルム上のPCB
図21Bは、複数のプリント受信機2102Bを含み得るプリントフィルムまたはフレキシブルプリント回路基板(PCB)の形態のハードウェアを示す。プリントフィルムは、電子デバイスに貼り付けるか、または他に取り付けることができ、USBなどの適切なインタフェースを通じて接続することができる。プリントフィルムは、特定の電子デバイスサイズおよび/または要件を満たすために、プリントフィルムからセクションを切り取ることができるという点で有利であり得る。無線電力伝送の効率および伝達できる電力の量(ポケット形成を使用して)は、所定の受信機および送信機システムで使用されるアンテナ素子の総数の関数であり得る。例えば、約1ワットを約15フィート伝達する場合、受信機は約80個のアンテナ素子を含む一方で、送信機は約256個のアンテナ素子を含み得る。別の同一の無線電力伝送システム(約1ワットを約15フィート)は、約40個のアンテナ素子を有する受信機と、約512個のアンテナ素子を有する送信機とを含み得る。受信機のアンテナ素子の数を半分に低減するには、送信機のアンテナ素子の数を倍にする必要があり得る。いくつかの事例では、受信機より送信機のアンテナ素子の数を多くすることはコスト効率の良いものであり得る。しかし、送信機に少なくとも2つのアンテナ素子がある限り、その逆(送信機より受信機に多くのアンテナ素子を置く)を達成することができる。
【0165】
IV.アンテナハードウェアおよび機能
A.間隔構成
図22は、内部ハードウェアを示し、受信機2220は、電子デバイス2252(例えば、スマートフォン)において無線電力伝送を受信するために使用することができる。いくつかの実装形態では、電子デバイス2252は、受信機2220を含み得、受信機2220は、電子デバイス2252のケース2254(例えば、スマートフォンケース)の内部エッジの周りに埋め込むことができる。他の実施形態では、受信機2220は、ケース2254の裏面を覆うように実装することができる。ケース2254は、そのような他の選択肢のなかでも特に、スマートフォンカバー、ラップトップカバー、カメラカバー、GPSカバー、ゲームコントローラカバーおよび/またはタブレットカバーのうちの1つまたは複数であり得る。ケース2254は、プラスチック、ゴムおよび/または他の任意の適切な材料から作ることができる。
【0166】
受信機2220は、
図22に示されるグリッドエリア上に戦略的に分配されたアンテナ素子2224のアレイを含み得る。ケース2254は、最適な受信のためにケース2254のエッジの周りにおよび/または裏面に沿って位置するアンテナ素子2224のアレイを含み得る。アンテナ素子2224の数、間隔およびタイプは、電子デバイス2252の設計、サイズおよび/またはタイプに従って計算することができる。いくつかの実施形態では、アンテナ素子2224を含むケース2254と電子デバイス2252との間に間隔(例えば、1mm〜4mm)および/またはメタ材料があり得る。間隔および/またはメタ材料は、RF信号に対する追加の利得を提供することができる。いくつかの実装形態では、ケース2254に実装するための多層PCBを作成する際に、メタ材料を使用することができる。
【0167】
B.メタ材料
内部ハードウェアは、プリントフィルム2256の形態であり得、および/またはフレキシブルPCBは、複数のプリントアンテナ素子2224(直列、並列または組み合わせて互いに接続される)、整流器および電力変換器素子などの異なるコンポーネントを含み得る。プリントフィルム2256は、電子デバイス2252および/またはタブレットなどの適切ないかなる電子デバイスにも貼り付けるか、または他に取り付けることができる。プリントフィルム2256は、可撓ケーブル2258などの任意の適切なインタフェースを通じて接続することができる。プリントフィルム2256は、いくつかの利益を呈することができる。それらの利益のうちの1つは、特定のスマートモバイルデバイスサイズおよび/または要件を満たすために、プリントフィルムからセクションを切り取ることができることであり得る。一実施形態によれば、受信機2220のアンテナ素子2224間の間隔は、約2nm〜約12nmの範囲であり得る(最も適切なものは約7nmである)。
【0168】
加えて、いくつかの実装形態では、スマートフォンなどの電子デバイス2252の受信機2220で使用できるアンテナ素子2224の最適な量は、約20個〜約30個の範囲であり得る。しかし、受信機2220内のアンテナ素子2224の量は、電子デバイス2252設計およびサイズに応じて異なり得る。アンテナ素子2224は、他のもののなかでも特に、銅、金および銀などの異なる導電性材料から作ることができる。さらに、アンテナ素子2224は、他のもののなかでも特に、フレキシブルPCBなどの任意の適切な非導電性フレキシブル基板上に印刷、エッチングまたは積層することができる。アンテナ素子2224の開示される構成および配向は、無線充電のより良い受信、効率および性能を呈することができる。
【0169】
C.無線電力送信機を備えるTVシステム
無線電力伝送機能を有するTVシステムが提供される。より具体的には、TVシステムは、今日では、多くの家庭の娯楽の中心となった。家族、友人および一般の人々は、ニュースやTV番組を観るため、ゲームをするため、音楽を聴くため、または単に娯楽を見つけるために、TVシステムの周りに集まる。場合により、電力源を必要とし得るラップトップコンピュータ、ゲームシステム、携帯電話または任意のデバイスなどの他のデバイスの使用がTVシステムの近くにあり得る。いくつかのテレビシステム状況では電源ソケットの使用が制限されるか、または実用的ではない場合があるため、追加のケーブルが必要とされ、これは面倒または厄介なものとなり得る。従って、電力源に対して、TVシステムの近くにおけるこれらの問題に対処する必要性が存在する。それに従って、TVシステムが提供される。TVシステムは、TVシステムの範囲内の他のデバイスに無線電力を伝送する。TVシステムは、本明細書で説明されるように、ポケット形成を通じて無線電力を伝送する送信機コンポーネントを含む。送信機コンポーネントは、個々のコンポーネントとしてTVシステム内またはTVシステム上に組み込まれる。代替としてまたは加えて、送信機コンポーネントは、TVシステムの既存のコンポーネント上に組み込まれる。受信機デバイスは、本明細書で説明されるように、電気入力を必要とし得るいかなる電気デバイスにも適応させることができる。
【0170】
図23は、無線電力を出力するテレビジョン(TV)システムの例示的な実施形態を示す。この図のいくつかの要素については上記で説明している。従って、同じ参照文字は、上記で説明される同一および/または同様のコンポーネントを識別し、それらの繰り返される詳細な説明は、以下では複雑化を避けるために省略または簡素化される。
【0171】
ポケット形成を介する無線電力伝送3000について説明する。伝送3000は、多次元空間に集中する複数の制御された無線電力波3004を伝送するTVシステム3002を必要とする。TVシステム3002は、送信機1101などの本明細書で説明される送信機を使用して、前方、側方、後方、上方または下方などのあらゆる方向になど、波3004を出力する。送信機は、TVシステム3002に結合されていようがいまいが、TVシステム3002または別の電力源(バッテリなど)を介して給電することができる。代替としてまたは加えて、送信機は、TVシステム3002に給電することができるか、または送信機およびTVシステム3002は、バッテリと主電源などの2つの異なる電力源からなど、互いに独立して給電される。波3004は、ポケット形成などの建設的および相殺的干渉パターンを形成するために、位相および/または相対振幅調整を通じて制御される。エネルギーのポケット3006は、波3004の建設的干渉パターンで形成され、三次元の形状である一方で、ゼロ空間は、波3004の相殺的干渉パターンで生成される。受信機1120などの本明細書で説明される受信機は、電子デバイスの充電または給電のためにポケット形成によって生成されたエネルギーのポケット3006を利用し、電子デバイスは、例えば、特定の方向に約20フィート、約20フィートのピーク高さ距離を含む円弧、または半径20フィートなどの少なくともTVシステム3002からの範囲内または定義範囲内のラップトップコンピュータ3008、携帯電話3010、タブレットコンピュータ3012または任意の電気デバイスなどがあり、従って、無線電力伝送3000が効果的に提供される。いくつかの実施形態では、適応ポケット形成を使用して、電子デバイス上の電力を調節することができる。いくつかの実施形態では、TVシステム3002は、本明細書で説明されるものまたは別のタイプのものにかかわらず、スピーカまたはサウンドバーを含む。いくつかの実施形態では、TVシステム3002は、リモート制御ユニットを含み、リモート制御ユニットは、本明細書で説明されるように、TVシステム3002から無線電力を受信するように構成された本明細書で説明されるような受信機を含み得る。
【0172】
図24は、TVシステムの内部構造の例示的な実施形態を示す。この図のいくつかの要素については上記で説明している。従って、同じ参照文字は、上記で説明される同一および/または同様のコンポーネントを識別し、それらの繰り返される詳細な説明は、以下では複雑化を避けるために省略または簡略化される。
【0173】
内部構造表示3014は、本明細書で説明されるように、送信機を備えるTVシステム3002について描写する。TVシステム3002は、複数のコンポーネントを含む。TVシステム3002は、前面透明画面層3016、偏光フィルム層3018、およびLED/LCDバックライト層3020を含む。加えて、TVシステム3002は、本明細書で説明されるような送信機1101を含む。別の実施形態では、送信機1101は、別個の層としての代わりに、少なくとも1つの層3016、3018、3020内に組み込むことができる。
【0174】
他の実施形態では、送信機1101の回路のほとんどは、TVシステム3002内部に配置され、アンテナ素子1106は、TVシステム3002のエッジの周りに配置される。他の実施形態では、アンテナ素子1106は、TVシステム3002の後部の外表面上に配置される。さらなる実施形態では、アンテナ素子1106は、TVシステム3002表示エリア上に内蔵することができる印刷されたマイクロアンテナであり得る。そのようなプリントアンテナは、当技術分野において周知のフォトリソグラフィまたはスクリーン印刷技法を用いて生成することができる。そのようなアンテナは、人間の目には見えないようにするスズのスケールで印刷することができるため、有益であり得る。TVシステムは、液晶ディスプレイ(LCD)、プラズマ、ブラウン管またはその他など、いかなるタイプのものでもあり得ることに留意されたい。
【0175】
図25は、タイルアーキテクチャの例示的な実施形態を示す。この図のいくつかの要素については上記で説明している。従って、同じ参照文字は、上記で説明される同一および/または同様のコンポーネントを識別し、それらの繰り返される詳細な説明は、以下では複雑化を避けるために省略または簡素化される。
【0176】
タイル2500は、本明細書で説明されるように、アンテナ2502と、アンテナ2502に結合されたRFIC 2504とを含む。タイル2500は、本明細書で説明される送信機302、送信機1101、送信機402、送信機構成1700または他の任意の送信機構成などの何らかの構造であり得る。タイル2500の動作は本明細書で説明されている。タイル2500は長方形の形状をしているが、他の実施形態では、タイル2500は、開放形状または閉鎖形状にかかわらず、異なる形状であり得る。例えば、タイル2500は、星形、三角形、多角形またはその他の形状であり得る。
【0177】
前述の方法の説明およびプロセスフロー図は、単なる説明に役立つ例として提供され、様々な実施形態のステップを提示される順番で実行しなければならないことを必要とするか、またはそれを含意することを意図しない。当業者によって理解されるように、前述の実施形態のステップは、いかなる順番でも実行することができる。「次いで」、「次に」および同様のものなどの用語は、ステップの順番を限定することを意図しない。これらの用語は、単に、方法の説明を通じて読者を導くために使用される。プロセスフロー図は、順次的なプロセスとして動作を説明し得るが、動作の多くは、並行してまたは同時に実行することができる。加えて、動作の順番は、再構成することができる。プロセスは、方法、機能、手順、サブルーチン、サブプログラムなどに相当し得る。プロセスが機能に相当する場合、その終了は、呼び出し機能または主な機能に戻ることに相当し得る。
【0178】
本明細書で開示される実施形態と関係して説明される様々な例示的な論理ブロック、モジュール、回路およびアルゴリズムステップは、電子ハードウェア、コンピュータソフトウェアまたはその両方の組合せとして実装することができる。ハードウェアとソフトウェアとのこの交換可能性を明確に示すため、様々な例示的なコンポーネント、ブロック、モジュール、回路およびステップは、上記では、一般に、それらの機能の観点から説明してきた。そのような機能がハードウェアで実装されるか、またはソフトウェアで実装されるかは、全システムに課される特定の応用および設計制約に依存する。当業者は、特定の応用の各々に対して様々な方法で説明される機能を実装することができるが、そのような実装形態の決定は本発明の範囲からの逸脱を招くものと解釈すべきではない。
【0179】
コンピュータソフトウェアにおいて実装される実施形態は、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語またはそれらの任意の組合せにおいて実装することができる。コードセグメントまたはマシン実行可能命令は、手順、機能、サブプログラム、プログラム、ルーチン、サブルーチン、モジュール、ソフトウェアパッケージ、クラス、または命令、データ構造もしくはプログラム文の任意の組合せを表し得る。コードセグメントは、情報、データ、引数、パラメータまたはメモリコンテンツを渡すおよび/または受信することによって別のコードセグメントまたはハードウェア回路に結合することができる。情報、引数、パラメータ、データなどは、メモリ共有、メッセージパッシング、トークンパッシング、ネットワーク伝送などを含む適切ないかなる手段も介して、渡すこと、転送することまたは伝送することができる。
【0180】
これらのシステムおよび方法を実装するために使用される実際のソフトウェアコードまたは専門制御ハードウェアは、本発明を限定するものではない。従って、システムおよび方法の動作および挙動は、特定のソフトウェアコードに関係なく、ソフトウェアおよび制御ハードウェアが本明細書の説明に基づいてシステムおよび方法を実装するように設計できることが理解されているものとして説明されている。
【0181】
ソフトウェアにおいて実装される際、機能は、1つまたは複数の命令またはコードとして非一時的なコンピュータ可読またはプロセッサ可読記憶媒体上に格納することができる。本明細書で開示される方法またはアルゴリズムのステップは、コンピュータ可読またはプロセッサ可読記憶媒体上に存在し得るプロセッサ実行可能ソフトウェアモジュールにおいて具体化することができる。非一時的なコンピュータ可読またはプロセッサ可読媒体は、ある場所から別の場所へのコンピュータプログラムの転送を容易にするコンピュータ記憶媒体と有形記憶媒体との両方を含む。非一時的なプロセッサ可読記憶媒体は、コンピュータによるアクセスが可能な利用可能ないかなる媒体でもあり得る。限定するものではなく、例示として、そのような非一時的なプロセッサ可読媒体は、RAM、ROM、EEPROM、CD−ROMもしくは他の光ディスク記憶装置、磁気ディスク記憶装置もしくは他の磁気記憶装置、または命令もしくはデータ構造の形態で所望のプログラムコードを格納するために使用でき、コンピュータもしくはプロセッサによるアクセスが可能な他の任意の有形記憶媒体を含み得る。ディスク(disk)およびディスク(disc)は、本明細書で使用される場合、コンパクトディスク(CD)、レーザディスク、光ディスク、デジタル多用途ディスク(DVD)、フロッピーディスクおよびブルーレイディスクを含み、ディスク(disk)は、通常、データを磁気的に再生し、ディスク(disc)は、データをレーザで光学的に再生する。また、上記の組合せは、コンピュータ可読媒体の範囲内に含まれるべきである。加えて、方法またはアルゴリズムの動作は、コンピュータプログラム製品に組み込むことができる非一時的なプロセッサ可読媒体および/またはコンピュータ可読媒体上において、コードおよび/または命令のうちの1つ、任意の組合せまたはセットとして存在し得る。
【0182】
開示される実施形態の先行の説明は、当業者が本発明を作成または使用できるようにするために提供される。これらの実施形態に対する様々な変更形態は当業者に容易に明らかであり、本明細書で定義される一般原理は、本発明の趣旨または範囲から逸脱することなく、他の実施形態に適用することができる。従って、本発明は、本明細書で示される実施形態に限定されることを意図しないが、以下の請求項ならびに本明細書で開示される原理および新規の特徴と一致する最も広い範囲が与えられることを意図する。
【0183】
様々な態様および実施形態を開示してきたが、他の態様および実施形態も企図される。開示される様々な態様および実施形態は、例示を目的とするものであり、限定することを意図せず、真の範囲および趣旨は以下の請求項によって示される。