(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
実施形態で説明する二次電池は、柱状体である第1電極と、第1集電部と、第1接続部と、第2電極と、第2集電部と、第2接続部と、分離膜とを備えている。この二次電池は、第1電極が第1活物質として正極活物質を含む正極であり、第2電極が第2活物質として負極活物質を含む負極であるものとしてもよい。あるいは、この二次電池は、第1電極が負極活物質を含む負極であり、第2電極が正極活物質を含む正極であるものとしてもよい。なお、各電極には、活物質のほか導電材や結着材を含むものとしてもよい。この第1電極は、円柱体又は多角形柱体などの柱状体であるものとしてもよく、第2電極は、円柱体又は多角形柱体などの柱状体であるものとしてもよい。また、第1電極及び第2電極の少なくとも一方が柱状であればよく、他方は柱状でないものとしてもよい。また、第1電極は、集電線、集電箔及び3次元網目構造体のうち少なくとも1以上である集電部材が埋設されているものとしてもよいし、この集電部材を備えないものとしてもよい。第2電極は、集電線、集電箔及び3次元網目構造体のうち少なくとも1以上である集電部材が埋設されているものとしてもよいし、この集電部材を備えないものとしてもよい。ここでは、説明の便宜のため、第1電極11が負極であり、第2電極16が正極であり、リチウムイオンをキャリアとするリチウム二次電池をその主たる一例として以下説明する。
【0012】
(第1実施形態)
次に、本実施形態で開示する二次電池について図面を用いて説明する。
図1は、二次電池10の一例を示す模式図である。
図2は、
図1の二次電池10のA−A断面図である。
図3は、二次電池10の平面図である。この二次電池10は、
図1〜3に示すように、第1電極11と、第1集電部12と、集電線13と、第1接続部14と、第2電極16と、第2集電部17と、集電線18と、第2接続部19と、分離膜21とを備えている。
【0013】
第1電極11は、第1活物質を有する柱状体である。第1電極11は、断面が矩形状の四角柱である。この二次電池10では、50本以上の第1電極11が結束された構造を有しているものとしてもよい。例えば、第1電極11は、セル容量の1/nの容量を有し、n個が第1集電部12に並列接続されているものとしてもよい。第1電極11は、端面以外の外周が分離膜21を介して第2電極16に対向している。この第1電極11は、長手方向に直交する方向の1辺の長さが100μm以上300μm以下の柱状体であることが好ましい。この範囲では、単位体積あたりのエネルギー密度をより高めることができる。あるいは、この範囲では、キャリアのイオンの移動距離をより短くすることができ、より大きな電流で充放電を行うことができる。
【0014】
第1電極11は、第1活物質を含んでいるが、第1活物質が導電性を有さない場合は、例えば導電性を有する導電材と混合して成形したものとしてもよい。この第1電極11は、例えば、第1活物質と、必要に応じて導電材と、結着剤とを混合し成形したものとしてもよい。第1活物質は、例えば、キャリアであるリチウムを吸蔵放出可能な材料が挙げられる。第1活物質としては、例えば、リチウム金属、リチウム合金、スズ化合物などの無機化合物、リチウムイオンを吸蔵・放出可能な炭素質材料、複数の元素を含む複合酸化物、導電性ポリマーなどが挙げられる。炭素質材料は、例えば、コークス類、ガラス状炭素類、グラファイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などが挙げられる。このうち、人造黒鉛、天然黒鉛などのグラファイト類が好ましい。また、グラファイト構造を有する炭素繊維としてもよい。このような炭素繊維は、例えば、繊維方向である長手方向に結晶が配向したものが好ましい。また、長手方向(繊維方向)に直交する方向に断面視したときに結晶が中心から外周面側に放射状に配向したものであることが好ましい(後述
図5,6参照)。複合酸化物としては、例えば、リチウムチタン複合酸化物やリチウムバナジウム複合酸化物などが挙げられる。導電材は、電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。結着材は、第1活物質粒子や導電材粒子を繋ぎ止めて所定の形状を保つ役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレンプロピレンジエンモノマー(EPDM)ゴム、スルホン化EPDMゴム、天然ブチルゴム(NBR)等を単独で、あるいは2種以上の混合物として用いることができる。また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。
【0015】
第1電極11において、第1活物質の含有量は、より多いことが好ましく、第1電極11の体積全体に対して70体積%以上であることが好ましく、80体積%以上であることがより好ましい。導電材の含有量は、第1活物質を含む電極合材の全体の体積に対して0体積%以上20体積%以下の範囲であることが好ましく、0体積%以上15体積%以下の範囲であることがより好ましい。このような範囲では、電池容量の低下を抑制し、導電性を十分に付与することができる。また、結着材の含有量は、第1電極11の体積全体に対して0.1体積%以上5体積%以下の範囲であることが好ましく、0.2体積%以上1体積%以下の範囲であることがより好ましい。
【0016】
第1電極11の内部には、断面が円形状の集電線13が埋設されている。この集電線13は、導電性を有する材質、例えば、アルミニウム、銅、チタン、ステンレス鋼、ニッケル、鉄、白金などの金属で形成されることが好ましい。この集電線13は、外部に引き出されて第1接続部14を構成する。集電線13の径方向の長さ(太さ)は第1接続部14と同じとしてもよいし、異なるものとしてもよい。集電線13の径方向の長さは、例えば、50μm以下であることが好ましく、40μm以下であることがより好ましく、30μm以下であることが更に好ましい。集電線13は、導電性を確保した上でできるだけ細いことが、単位体積あたりのエネルギー密度をより向上でき、好ましい。集電線13の径方向の長さは、例えば、1μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることが更に好ましい。集電線13は、導電性を確保する観点からは、より太いことが好ましい。
【0017】
第1集電部12は、導電性を有する部材であり、第1電極11に電気的に接続されている。第1集電部12には、50本以上の第1電極が集電線13を介して並列接続されている。この第1集電部12は、例えば、カーボンペーパー、アルミニウム、銅、チタン、ステンレス鋼、ニッケル、鉄、白金、焼成炭素、導電性高分子、導電性ガラスなどのほか、接着性、導電性及び耐酸化(還元)性向上の目的で、アルミニウムや銅などの表面をカーボン、ニッケル、チタン、銀、白金、金などで処理したものも用いることができる。第1集電部12の形状は、複数の集電線13が接続できるものであれば特に限定されず、例えば、板状、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。
【0018】
第2電極16は、第2活物質を有する柱状体である。第2電極16は、断面が矩形状の四角柱である。この二次電池10では、50本以上の第2電極16が結束された構造を有しているものとしてもよい。例えば、第2電極16は、セル容量の1/nの容量を有し、n個が第2集電部17に並列接続されているものとしてもよい。第2電極16は、端面以外の外周が分離膜21を介して第1電極11に対向している。この第2電極16は、長手方向に直交する方向の1辺の長さが100μm以上300μm以下の柱状体であることが好ましい。この範囲では、単位体積あたりのエネルギー密度をより高めることができる。あるいは、この範囲では、キャリアのイオンの移動距離をより短くすることができ、より大きな電流で充放電を行うことができる。
【0019】
第2電極16は、第2活物質を含んでいるが、第2活物質が導電性を有さない場合は、例えば導電性を有する導電材と混合して成形したものとしてもよい。この第2電極16は、例えば、第2活物質と、必要に応じて導電材と、結着剤とを混合し成形したものとしてもよい。第2活物質は、例えば、キャリアであるリチウムを吸蔵放出可能な材料が挙げられる。第2活物質としては、例えば、リチウムと遷移金属とを有する化合物、例えば、リチウムと遷移金属元素とを含む酸化物や、リチウムと遷移金属元素とを含むリン酸化合物などが挙げられる。具体的には、基本組成式をLi
(1-x)MnO
2(0<x<1など、以下同じ)やLi
(1-x)Mn
2O
4などとするリチウムマンガン複合酸化物、基本組成式をLi
(1-x)CoO
2などとするリチウムコバルト複合酸化物、基本組成式をLi
(1-x)NiO
2などとするリチウムニッケル複合酸化物、基本組成式をLi
(1-x)Co
aNi
bMn
cO
2(a>0、b>0、c>0、a+b+c=1)などとするリチウムコバルトニッケルマンガン複合酸化物、基本組成式をLiV
2O
3などとするリチウムバナジウム複合酸化物、基本組成式をV
2O
5などとする遷移金属酸化物などを用いることができる。また、基本組成式をLiFePO
4とするリン酸鉄リチウム化合物などを正極活物質として用いることができる。これらのうち、リチウムコバルトニッケルマンガン複合酸化物、例えば、LiCo
1/3Ni
1/3Mn
1/3O
2やLiNi
0.4Co
0.3Mn
0.3O
2などが好ましい。なお、「基本組成式」とは、他の元素、例えば、AlやMgなどの成分を含んでもよい趣旨である。
【0020】
第2電極16において、第2活物質の含有量は、より多いことが好ましく、第2電極16の体積全体に対して70体積%以上であることが好ましく、80体積%以上であることがより好ましい。導電材の含有量は、第2電極16の全体の体積に対して0体積%以上20体積%以下の範囲であることが好ましく、0体積%以上15体積%以下の範囲であることがより好ましい。このような範囲では、電池容量の低下を抑制し、導電性を十分に付与することができる。また、結着材の含有量は、第2電極16の体積全体に対して0.1体積%以上5体積%以下の範囲であることが好ましく、0.2体積%以上1体積%以下の範囲であることがより好ましい。
【0021】
第2電極16の内部には、断面が円形状の集電線18が埋設されている。この集電線18は、導電性を有する材質、例えば、アルミニウム、銅、チタン、ステンレス鋼、ニッケル、鉄、白金などの金属で形成されることが好ましい。この集電線18は、外部に引き出されて第2接続部19を構成する。集電線18の径方向の長さ(太さ)は、集電線13と同様である。
【0022】
第2集電部17は、導電性を有する部材であり、第2電極16に電気的に接続されている。第2集電部17には、50本以上の第2電極16が集電線18を介して並列接続されている。この第2集電部17は、第1集電部12と同様の部材とするものとしてもよい。
【0023】
分離膜21は、キャリアであるイオン(例えばリチウムイオン)のイオン伝導性を有し第1電極11と第2電極16とを絶縁するものである。分離膜21は、第2電極16と対向する第1電極11の外周面の全体、及び第1電極11と対向する第2電極16の外周面の全体に形成されており、第1電極11と第2電極16との短絡を防止している。分離膜21は、イオン伝導性と絶縁性とを有するポリマーが好適である。この分離膜21は、例えば、ポリフッ化ビニリデン(PVdF)とヘキサフルオロプロピレン(HFP)との共重合体や、ポリメタクリル酸メチル(PMMA)、及びPMMAとアクリルポリマーとの共重合体などが挙げられる。例えば、PVdFとHFPとの共重合体では、電解液の一部がこの膜を膨潤ゲル化し、イオン伝導膜となる。この分離膜21の厚さtは、例えば、0.5μm以上であることが好ましく、2μm以上であることがより好ましく、5μm以上であるものとしてもよい。厚さtが0.5μm以上では、絶縁性を確保する上で好ましい。また、分離膜21の厚さtは、20μm以下であることが好ましく、10μm以下であることがより好ましい。厚さtが20μm以下では、イオン伝導性の低下を抑制できる点で好ましい。厚さtが0.5〜20μmの範囲では、イオン伝導性及び絶縁性が好適である。この分離膜21は、例えば、原料を含む溶液へ第1電極11や第2電極16を浸漬させてその表面にコートすることにより形成されるものとしてもよい。
【0024】
分離膜21は、キャリアであるイオンを伝導するイオン伝導媒体を含むものとしてもよい。このイオン伝導媒体は、例えば、支持塩を溶媒に溶解した電解液などが挙げられる。電解液の溶媒としては、例えば、非水電解液の溶媒などが挙げられる。この溶媒としては、例えば、カーボネート類、エステル類、エーテル類、ニトリル類、フラン類、スルホラン類及びジオキソラン類などが挙げられ、これらを単独又は混合して用いることができる。具体的には、カーボネート類としてエチレンカーボネート(EC)やプロピレンカーボネート、ビニレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネートなどの環状カーボネート類や、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート、エチル−n−ブチルカーボネート、メチル−t−ブチルカーボネート、ジ−i−プロピルカーボネート、t−ブチル−i−プロピルカーボネートなどの鎖状カーボネート類、γ−ブチルラクトン、γ−バレロラクトンなどの環状エステル類、ギ酸メチル、酢酸メチル、酢酸エチル、酪酸メチルなどの鎖状エステル類、ジメトキシエタン、エトキシメトキシエタン、ジエトキシエタンなどのエーテル類、アセトニトリル、ベンゾニトリルなどのニトリル類、テトラヒドロフラン、メチルテトラヒドロフラン、などのフラン類、スルホラン、テトラメチルスルホランなどのスルホラン類、1,3−ジオキソラン、メチルジオキソランなどのジオキソラン類などが挙げられる。支持塩は、例えば、二次電池10のキャリアであるイオンを含む。この支持塩としては、例えば、LiPF
6、LiBF
4、LiAsF
6、LiCF
3SO
3、LiN(CF
3SO
2)
2、LiC(CF
3SO
2)
3、LiSbF
6、LiSiF
6、LiAlF
4、LiSCN、LiClO
4、LiCl、LiF、LiBr、LiI、LiAlCl
4などが挙げられる。このうち、LiPF
6、LiBF
4、LiClO
4などの無機塩、及びLiCF
3SO
3、LiN(CF
3SO
2)
2、LiC(CF
3SO
2)
3などの有機塩からなる群より選ばれる1種又は2種以上の塩を組み合わせて用いることが電気特性の点から見て好ましい。この支持塩は、電解液中の濃度が0.1mol/L以上5mol/L以下であることが好ましく、0.5mol/L以上2mol/L以下であることがより好ましい。
【0025】
この二次電池10では、
図1〜3に示すように、柱状体である第1電極11と第2電極16とが分離膜21を介して交互に配設されて結束された構造を有する。この二次電池10では、電極を微小柱状化にすることにより、各電極は、全周からキャリアのイオンを吸蔵放出することができる(
図2参照)。この電極構造体では、全周からキャリアのイオンを吸蔵放出するため、正負極対向面積の増加による反応促進に加えて、深部(奥側)にいくほど対向面積当たりの活物質量が減少する(深部の活物質ほど反応しにくい)ことによる平均反応速度の向上(正/負極活物質間の平均距離低下)効果が期待できる。また、この二次電池10において、柱状電極の1辺の長さは、100μm〜300μmであることがより好ましい。この範囲では、高エネルギー密度を確保しやすい。
【0026】
以上詳述した二次電池10では、エネルギー密度をより高めた二次電池を提供することができる。このような効果が得られる理由は、以下のように推察される。例えば、金属箔の集電体上に活物質を形成しセパレータを介して積層した従来の電極構造では、エネルギー密度を高めようとすると、集電箔上の電極合材の塗布量や密度を高めなければならず、イオン伝導性が低下するなどの弊害が生じうる。これに対して、本開示の二次電池10では、柱状体の電極を結束した構造を採用することによって、イオンの伝導距離をより短くすることができる。また、本開示の二次電池では、構造内部に箔状の集電体を設けなくてもよく、更に、セパレータなどを分離膜に変更してより薄くするなど、活物質による空間の占有率をより高めることができる。このため、よりエネルギー密度を高めることができる。
【0027】
上述した二次電池10では、集電線13、集電線18は、断面が円形状として説明したが、特にこれに限定されない。
図4は、二次電池10B〜10Eの一例を示す断面図である。例えば、二次電池10Bは、各電極の断面において対角に配置された集電箔13B,18Bを備えている。また、二次電池10Cは、各電極の断面において水平に配置された集電箔13C,18Cを備えている。また、二次電池10Dは、各電極の断面において垂直に配置された集電箔13D,18Dを備えている。また、二次電池10Eは、各電極の内部に3次元網目構造体である集電部材13E,18Eを備えている。このような、二次電池10B〜10Eにおいても、柱状体の電極を結束した構造を採用することによって、よりエネルギー密度をより高めることができる。
【0028】
(第2実施形態)
次に、二次電池30について説明する。
図5は、二次電池30の一例を示す模式図である。
図6は、
図5の二次電池30のA−A断面図である。この二次電池30は、
図5,6に示すように、第1電極31と、第1集電部32と、集電線33と、第1接続部34と、第2電極36と、第2集電部37と、分離膜41とを備えている。この二次電池30は、断面が円形状の円柱体である第1電極31と、第1電極31の周りに形成された第2活物質を含む活物質層により形成された第2電極36とを備えている。即ち、二次電池30は、第2電極36が柱状体ではない構造を有する。なお、二次電池30において、各構成物を構成する材質などは、二次電池10と同様であるものとしてその説明を省略する。
【0029】
第1電極31は、第1活物質を有する断面が円形状の円柱体である。この二次電池30では、50本以上の第1電極31が結束された構造を有しているものとしてもよい。第1電極31は、端面以外の外周が分離膜21を介して第2電極36に対向している。この第1電極31は、径方向の長さ(太さ)が10μm以上200μm以下の円柱体であることが好ましい。この範囲では、単位体積あたりのエネルギー密度をより高めることができる。あるいは、この範囲では、キャリアのイオンの移動距離をより短くすることができ、より大きな電流で充放電を行うことができる。この第1活物質は、繊維状又は円柱状の炭素繊維であるものとしてもよい。この炭素繊維は、グラフェン構造が中心から外周方向に放射状に配向すると共に、繊維長方向にも配向した高結晶炭素繊維であることが好ましい。このような炭素繊維では、外周からキャリアであるリチウムイオンを吸蔵放出することができ、イオン伝導性が高く好ましい。この第1電極31では、それ自体に導電性を有しており、集電線などの埋設は省略されている。
【0030】
第2電極36は、第2活物質を有し、第1電極31の外周に分離膜41を介して形成されている。第2電極36は、断面の外形が六角形状であり、円柱状の第1電極31を内包している。なお、第2電極36は、第1電極31の間に充填されるものとすればよく、外形が六角形状には特に限定されない。第2電極36は、それ自体に導電性を有しており、集電部材は省略されている。第2電極36の端面が第2集電部37に直接接続されている。この第2電極36は、例えば、第1電極31の外周に分離膜41を形成したのち、その外周に第2電極36の原料を塗布して形成されたものとしてもよい。
【0031】
分離膜41は、キャリアであるイオン(例えばリチウムイオン)のイオン伝導性を有し第1電極31と第2電極36とを絶縁するものである。分離膜41は、第2電極36と対向する第1電極31の外周面の全体に形成されており、第1電極31と第2電極36との短絡を防止している。
【0032】
この二次電池30は、二次電池10と同様に、円柱状の第1電極31を結束した構造を有するため、各電極は、全周からキャリアのイオンを吸蔵放出することができる。このため、二次電池30では、正負極対向面積の増加による反応促進に加えて、深部(奥側)にいくほど対向面積当たりの活物質量が減少することによる平均反応速度の向上効果が期待できる。
【0033】
次に、二次電池の製造方法について説明する。この製造方法は、分離膜形成工程と、結束工程とを含む。分離膜形成工程では、第1活物質を有する柱状体である第1電極の表面に、イオン伝導性及び絶縁性を有する分離膜を形成する。結束工程では、形成した分離膜を介して第2活物質を有する第2電極と隣り合う状態で複数の第1電極を結束する。ここでは、具体例として、二次電池30の製造工程について説明する。
図7は、二次電池30の製造工程の一例を示す説明図であり、
図7(a)が熱処理工程、
図7(b)が分離膜形成工程、
図7(c)が第2活物質形成工程、
図7(d)が導電材添加工程、
図7(e)が結束工程である。熱処理工程では、炭素繊維の原料を熱処理し、繊維長方向及び外周面に配向した高配向炭素繊維を作製する。次に、炭素繊維の外表面に分離膜を形成する。上記分離膜の原料を塗布し、乾燥させるものとしてもよい。次に、分離膜上に第2活物質を形成する。この第2活物質は、例えば、活物質の微粒子に導電材や結着材を付着させたものとしてもよい。このような第2活物質粒子をスラリー状にして、分離膜上に塗布するものとしてもよい。次に、必要に応じて導電材を添加する処理を行う。導電材としては、炭素材や金属粒子(例えばCu、Ni、Alなど)を用いてもよい。そしてこのように作製された第1電極の柱状体を複数並べ、結束する。このようにして、二次電池30を作製することができる。
【0034】
なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
【0035】
例えば、上述した実施形態では、二次電池30において、第1電極31は集電線を有しないものとして説明したが、特にこれに限定されず、各電極は、集電線33を埋設していてもよい。
図8は、二次電池30Bの一例を示す模式図である。
図9は、
図8の二次電池30BのA−A断面図である。この第1電極31の内部には、断面が円形状の集電線33が埋設されている。この集電線33は、外部に引き出されて第1接続部34を構成する。集電線33の径方向の長さ(太さ)は第1接続部34と同じとしてもよいし、異なるものとしてもよい。集電線33の直径は、例えば、50μm以下であることが好ましく、40μm以下であることがより好ましく、30μm以下であることが更に好ましい。集電線33は、導電性を確保した上で、できるだけ細いことが、単位体積あたりのエネルギー密度をより向上でき、好ましい。集電線33の径方向の長さは、例えば、1μm以上であることが好ましく、5μm以上であることがより好ましく、10μm以上であることが更に好ましい。集電線33は、導電性を確保する観点からは、より太いことが好ましい。この二次電池30Bにおいて、第1電極31は、例えば、集電線33の表面に炭素原料を形成したのち、熱処理を行いグラフェン構造の結晶化や配向などを高めたものとしてもよい。
【0036】
同様に、二次電池10において、第1電極11は集電線13を有し、第2電極16は集電線18を有するものとして説明したが、特にこれに限定されず、各電極は、集電線を省略してもよい。
図10は、二次電池10Fの一例を示す模式図である。この二次電池10Fでは、第1電極11は、それ自体が導電性を有するものとして集電線13が省略されている。第1電極11は、第1集電部12に直接、電気的に接続され、その端部が第1接続部14Fを構成する。また、第2電極16は、それ自体が導電性を有するものとして集電線18が省略されている。第2電極16は、第2集電部17に直接、電気的に接続され、その端部が第2接続部19Fを構成する。この二次電池10Fでは、内部構造に集電線を有しないため、よりエネルギー密度を高めることができる。
【0037】
上述した二次電池10では、第1電極11を負極とし、第2電極16を正極としたが、特にこれに限定されず、第1電極を正極とし、第2電極を負極としてもよい。また、上述した実施形態では、二次電池のキャリアをリチウムイオンとしたが、特にこれに限定されず、ナトリウムイオンやカリウムイオンなどのアルカリイオン、カルシウムイオンやマグネシウムイオンなどの2族元素イオンとしてもよい。また、電解液を非水系電解液としたが、水溶液系電解液としてもよい。
【実施例】
【0038】
以下には、上述した二次電池を具体的に作製した例を実施例として説明する。
【0039】
[実施例1]
図1に示した構造の二次電池10を作製した。まず、1辺が200μmで内部に直径50μmの金属製集電ワイヤを配置した長さ30mmの四角柱電極を正極および負極として作製した。作製は押出成型にて行った。正極は、正極活物質としてLi(Ni,Co,Mn)O
2と、導電材としてのアセチレンブラックと、結着材としてのPVdFとを質量比で90/7/3で混合したものを成形して作製した。負極は、負極活物質として黒鉛と、結着材としてPVdFとを質量比で97/3で混合したものを成形して作製した。これらの電極の外周にPVdF−HFP膜をディップコートで10μmの厚さになるよう塗布した。次に、50組の正/負極を格子状に配置して結束し、ワイヤ状の集電線を集電板に並列接続した電極構造体とした。このときワイヤを3mm残し接続部とした。この電極構造体をALラミネート袋に入れて、電解液(1M−LiPF
6/EC+EMC+DMC)を含浸後、封止し、得られた二次電池を実施例1とした。
【0040】
図11は、
図1に示した二次電池10における、電極の1辺の長さと、正負極合材の体積分率、正負極対向面積及び電極の80体積%での正負極間距離とを計算により求めた関係図である。
図11では、分離膜の厚さを5μm、10μm、15μm、20μmとして計算した。
図11に示すように、電極の1辺の長さが100〜300μmの範囲では、体積分率が85%を超え、対向面積が50cm
2を超え、正負間距離が150μmを下回り、高エネルギー密度と高出力とを両立することができる範囲であることがわかった。
【0041】
図12は、柱状体の結束構造及び電極箔の積層構造における正負極合材の体積分率、正負極対向面積及び電極の80体積%での正負極間距離を計算により求めた関係図である。
図12に示した正極及び負極の辺の長さ、分離膜の厚さ、集電線の直径などを用いて実施例2〜4を計算した。なお、比較例1は、積層構造の従来電極であり、比較例2は、従来電極の電極合材を厚膜化した高エネルギー型の電極をモデルとした。
図12の表に示すように、実施例2〜4では、電極中における正負極合材の体積分率が85%を超え、厚膜化した比較例2の88.4%とほぼ同等(エネルギー密度が高い)の値を示した。また、実施例2〜4では、正負極の対向面積は、比較例2の47.3cm
2を超え、高出力、急速充電に有利であることがわかった。更に、実施例2〜4では、80体積%を占める活物質の正負極間距離が120μm以下(イオンの移動距離がより短い)であり、急速充電に有利であることがわかった。これらの効果は柱状電極の1辺が100μm程度まで小さくなると更に大きくなることがわかった。
【0042】
図13は、二次電池30における、柱状体の結束構造及び電極箔の積層構造における正負極合材の体積分率、正負極対向面積及び電極の80体積%での正負極間距離を計算によって求めた関係図である。
図13に示した負極の直径A、正極の厚さX及び分離膜の厚さtなどを用いて実施例5、6を計算した。なお、比較例3は、従来電極の電極合材を厚膜化した高エネルギー型の電極とし、比較例4は、積層構造の従来電極をモデルとした。なお、参考例1は、正負極の容量を従来よりも高めた場合について考察したものである。
図13に示すように、二次電池30の構造を採用した場合、負極の径を20〜50μmとし、正極の厚さを5〜15μmとすると、セルエネルギー密度を650Wh/L以上とし、正負極の対向面積を300cm
2以上とすることができることがわかった。
【0043】
[実施例7]
図5に示した構造の二次電池30を作製した。まず、直径が50μmでグラフェンが、中心から外周方向に配向すると共に長さ方向にも配向した高結晶性の炭素繊維を10cm(セルの長手方向)に切って負極電極(負極活物質)とした。炭素繊維の外周に分離膜(電解質膜)として、PVdF−HFPをディップコートで厚さが5μmとなるように塗布し、乾燥させた。この炭素繊維の外周に正極スラリーをディップコートして乾燥、高密度化を図った。正極スラリーは、正極活物質としてのLi(Ni,Co,Mn)O
2と、導電材としてのアセチレンブラックと、結着材としてのPVdFとを質量比で90/7/3で混合したものを溶媒に混合したものを用いた。正極スラリーのコート量は、正負極容量比が1.0となるように調整した。この炭素繊維をセル容量となる本数(例えば50本)束ねて、束ねた柱状電極の間隙が正極電極内の空孔率とほぼ等しくなる程度に高密度化し、正極電極の電子伝導性を向上させた。次に、負極の炭素繊維の端面に金属を配置して溶融固定させ、並列に接合した。得られた電極構造体をALラミネート袋に入れて、電解液(1M−LiPF
6/EC+EMC+DMC)を含浸後、封止し、得られた二次電池を実施例7とした。
【0044】
図14は、繊維状の負極活物質の直径と電極の対向面積との関係図である。
図15は、集電箔を積層した従来構造での合材膜厚と電極対向面積との関係図である。ここでは、二次電池30におけるエネルギー密度について、より詳細に検討した。
図14では、分離膜の厚さtを5μmとし、負極活物質の繊維径を変更した際の電極の対向面積及びエネルギー密度を計算により求めた。
図15では、分離膜厚さtを5μmとし、正極集電箔厚さBを12μm、負極集電箔厚さDを10μmとして計算した。
図14に示すように、繊維径が10μm以上200μm以下の範囲では、電極対向面積が100cm
2以上である、即ちキャリアイオンの出入りする面積が増大し、且つエネルギー密度が700Wh/L以上という高エネルギー密度を実現可能であることがわかった。また、この二次電池30では、最大で1210Wh/Lを示すことがわかった。一方、
図15に示すように、従来の積層構造では、電極対向面積が100cm
2以上且つエネルギー密度が700Wh/L以上を示す合材膜厚は、25〜50μmで、且つエネルギー密度は最大で810Wh/Lであり、高エネルギー密度を得るのは困難であることがわかった。
【0045】
以上のように、実施例の電極構造は、Li電池用に使用されている正極活物質、負極活物質、有機電解液を使用して、エネルギー密度をEV車に適した600Wh/L(電極合材の体積分率が88%程度)まで向上しつつ、高出力、急速充電性、高安全性を達成することができる。
【0046】
なお、本開示は上述した実施例に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
【0047】
例えば、各電極は作製プロセスを問わず、形状も四角柱のみでなく、円や六角でもよい。集電部材も集電線でなく発泡金属などでもよい。電極を被覆する分離膜は、ポリマー電解質でなくとも、固体電解質(酸化物、硫化物)でも、ゲルポリマー電解質、真性ポリマー電解質(PEO等)でもよい。電解液はLi電池に用いられているLiPF
6系電解液でなくてもよく、水系電解液でも、濃厚系有機電解液でも、溶媒に不燃性溶媒を用いた不燃有機電解液でも、さらには固体電解質(全固体電池)でもよい。