特許第6638681号(P6638681)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6638681
(24)【登録日】2020年1月7日
(45)【発行日】2020年1月29日
(54)【発明の名称】燃料電池
(51)【国際特許分類】
   H01M 8/1286 20160101AFI20200120BHJP
   H01M 8/026 20160101ALI20200120BHJP
   H01M 8/2418 20160101ALI20200120BHJP
   H01M 8/12 20160101ALN20200120BHJP
【FI】
   H01M8/1286
   H01M8/026
   H01M8/2418
   !H01M8/12 101
   !H01M8/12 102A
【請求項の数】3
【全頁数】20
(21)【出願番号】特願2017-60668(P2017-60668)
(22)【出願日】2017年3月27日
(65)【公開番号】特開2018-163811(P2018-163811A)
(43)【公開日】2018年10月18日
【審査請求日】2018年6月11日
(73)【特許権者】
【識別番号】000003609
【氏名又は名称】株式会社豊田中央研究所
(74)【代理人】
【識別番号】110000110
【氏名又は名称】特許業務法人快友国際特許事務所
(72)【発明者】
【氏名】明石 照久
(72)【発明者】
【氏名】船橋 博文
(72)【発明者】
【氏名】井口 紘子
(72)【発明者】
【氏名】松尾 秀仁
(72)【発明者】
【氏名】堀 茂雄
【審査官】 守安 太郎
(56)【参考文献】
【文献】 国際公開第2016/190813(WO,A1)
【文献】 特表2010−538423(JP,A)
【文献】 米国特許出願公開第2012/0009501(US,A1)
【文献】 国際公開第2009/096399(WO,A1)
【文献】 特開2002−170577(JP,A)
【文献】 国際公開第2002/080299(WO,A1)
【文献】 特開2008−098070(JP,A)
【文献】 特開2014−123481(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/12
H01M 8/02
(57)【特許請求の範囲】
【請求項1】
固体酸化物型の燃料電池であって、
シリコン基板と、
シリコン基板に積層された電解質膜と、
シリコン基板の内部に形成されたガス流路を備えており、
電解質膜は電極膜を介してガス流路に対向しており、
ガス流路の側壁が、ガス流路の上端の箇所でフィレット形状を有しており、
ガス流路の側壁のフィレット形状を有する部分の電解質膜に対する傾斜角度が滑らかに変化しており、
フィレット形状を有する部分よりも下方のガス流路の側壁の電解質膜に対する傾斜角度が90度である、燃料電池。
【請求項2】
シリコン基板を平面視した時に、ガス流路の側壁のフィレット形状を有する部分が、ガス流路の全周にわたっている、請求項1の燃料電池。
【請求項3】
ガス流路の側壁のフィレット形状を有する部分の曲率半径が1μm−10μmの範囲内にある、請求項1または2の燃料電池。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書は、燃料電池に関する。
【背景技術】
【0002】
特許文献1に、燃料電池が開示されている。燃料電池は、シリコン基板と、シリコン基板に積層された電解質膜と、シリコン基板の内部に形成されたガス流路を備えている。電解質膜は電極膜を介してガス流路に対向している。ガス流路の側壁の電解質膜に対する傾斜角度は、略55度で一定である。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特表2008−505453号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
燃料電池として固体酸化物型の燃料電池を用いる場合、燃料電池は発電時に500−700℃の高温に曝され、発電停止時は室温に曝されることになる。シリコン基板と電解質膜では線膨張係数に相違があるので、発電時の温度上昇および発電停止時の温度降下によって、電解質が一体化されたシリコン基板に反りが生じ、その結果、電解質膜に応力が作用する。このため、電解質膜に応力集中が生じやすい箇所があると、燃料電池のオン/オフを繰り返した時に、電解質膜の応力集中部に繰り返し大きな応力が作用し、この箇所の電解質膜に亀裂が生じて電解質膜が破損してしまうおそれがある。
【0005】
シリコン基板の面方位を(100)とし、シリコンの異方性エッチングによってガス流路を形成する場合、特許文献1の燃料電池と同様に、ガス流路の側壁の傾斜角度は略55度となる。この場合、ガス流路の上端に応力集中が生じにくいので、燃料電池がオン/オフを繰り返して、それに伴う温度上昇および温度降下に起因して線膨張係数が異なる電解質膜が一体化されたシリコン基板に反りが繰り返し生じても、電解質膜に極端な応力集中が発生せず、電解質膜の破損を抑制することができる。しかしながら、このような構成では、ガス流路を上下方向に深くするほど、ガス流路が横方向にも広がってしまい、デッドスペースが大きくなるという問題がある。ガス流路の流路抵抗を低減するためには、ガス流路を上下方向にある程度の深さを有する形状に形成する必要があるので、横方向の広がりを小さくすることはできない。この結果、シリコンの異方性エッチングでは、燃料電池の集積化、小型化が困難なものとなる。
【0006】
上記と異なり、シリコンの深掘りエッチング(DRIE)によってガス流路を形成する場合、ガス流路の側壁の傾斜角度は略90度となる。この場合、ガス流路の流路抵抗を低減するためにガス流路を上下方向に深くしても、ガス流路が横方向に広がらない。従って、デッドスペースを少なくして、燃料電池の集積化、小型化を図ることができる。しかしながら、このような構成では、ガス流路の上端の角部近傍が応力集中部となる。このため次のようなことが課題となる。燃料電池がオン/オフを繰り返して、それに伴う温度上昇および温度降下(500−700℃⇔室温)が繰り返されると、線膨張係数が異なる電解質膜が形成されたシリコン基板に反りが繰り返し生じる。このとき、電解質膜に応力が作用し、特に応力集中部であるガス流路の上端の角部近傍の電解質膜に大きな応力が作用する。このため、この部分の電解質膜に亀裂が生じて電解質膜が破損してしまうおそれがある。
【0007】
本明細書では、上記の課題を解決する。本明細書では、シリコン基板に電解質膜が積層された固体酸化物型の燃料電池において、燃料電池がオン/オフを繰り返した時の電解質膜の破損を抑制しつつ、燃料電池の集積化、小型化を図ることが可能な技術を提供する。
【課題を解決するための手段】
【0008】
本明細書は、固体酸化物型の燃料電池を開示する。燃料電池は、シリコン基板と、シリコン基板に積層された電解質膜と、シリコン基板の内部に形成されたガス流路を備えている。電解質膜は電極膜を介してガス流路に対向している。ガス流路の側壁は、電解質膜に近い箇所でフィレット形状を有している。
【0009】
上記の構成によれば、ガス流路の上端の角部が応力集中部となることを抑制することができる。すなわち、フィレット形状により応力を分散させることができる。このため、燃料電池がオン/オフを繰り返して、それに伴う温度上昇および温度降下(500−700℃⇔室温)が繰り返され、線膨張係数が異なる電解質膜が形成されたシリコン基板に反りが繰り返し生じても、応力集中部であるガス流路の上端の角部近傍の電解質膜に極端な応力集中が発生せず、電解質膜の破損を抑制することができる。また、上記の構成によれば、電解質膜に近い箇所のガス流路の側壁にフィレット形状を有する部分が存在していればよく、ガス流路の側壁の傾斜角度を上下方向の全体にわたって小さくする必要がないので、ガス流路を上下方向に深くしても、ガス流路が横方向にそれほど広がることがない。このため、デッドスペースを少なくして、燃料電池の集積化、小型化を図ることができる。
【0010】
上記の燃料電池では、シリコン基板を平面視した時に、ガス流路の側壁のフィレット形状を有する部分が、ガス流路の全周にわたっていてもよい。
【0011】
上記の構成によれば、ガス流路を大口径化した場合でも、電解質膜に応力集中が生じにくい構成とすることができる。燃料電池のオン/オフを繰り返した時に、電解質膜に亀裂が生じて電解質膜が破損してしまうことをさらに効果的に防止することができる。
【0012】
上記の燃料電池では、ガス流路の側壁の電解質膜に対する傾斜角度が、電解質膜から離れた箇所において略90度であってもよい。
【0013】
上記の構成によれば、ガス流路を上下方向に深くしても、ガス流路が横方向にほとんど広がらないので、デッドスペースをより少なくすることができ、燃料電池のさらなる集積化、小型化を図ることができる。なお、上記の構成は、電解質膜から離れた箇所のガス流路を、例えば、シリコンの深掘りエッチング(DRIE)によって形成することで、実現可能である。
【0014】
上記の燃料電池では、ガス流路の側壁のフィレット形状を有する部分の電解質膜に対する傾斜角度が滑らかに変化していてもよい。
【0015】
上記の構成によれば、ガス流路の上端の角部に、滑らかなフィレット形状が形成されるので、この部位が応力集中部となることを抑制することができる。すなわち、フィレット構造により応力を分散させることができる。このため、燃料電池がオン/オフを繰り返して、それに伴う温度上昇および温度降下(500−700℃⇔室温)が繰り返され、線膨張係数が異なる電解質膜が形成されたシリコン基板に反りが繰り返し生じても、応力集中部であるガス流路の上端の角部近傍の電解質膜に極端な応力集中が発生せず、電解質膜の破損を抑制することができる。なお、上記の構成は、例えば、ガス流路を形成する際に、シリコンの深掘りエッチング(DRIE)を途中で終了することで実現することができる。
【0016】
上記の燃料電池では、ガス流路の側壁のフィレット形状を有する部分の曲率半径が1μm−10μmの範囲内にあってもよい。
【0017】
通常、固体酸化物型の燃料電池において、電解質膜の膜厚は20−2000nm程度である。このため、ガス流路の側壁のフィレット形状を有する部分の曲率半径が1μm−10μm程度であれば、電解質膜を十分に補強することができる。上記の構成によれば、すなわち、フィレット構造により応力を分散させることができる。このため、燃料電池がオン/オフを繰り返して、それに伴う温度上昇および温度降下(500−700℃⇔室温)が繰り返され、線膨張係数が異なる電解質膜が形成されたシリコン基板に反りが繰り返し生じても、応力集中部であるガス流路の上端の角部近傍の電解質膜に極端な応力集中が発生せず、電解質膜の破損を抑制することができる。
【0018】
あるいは、上記の燃料電池は、ガス流路の側壁のフィレット形状を有する部分の電解質膜に対する傾斜角度が略55度であってもよい。
【0019】
上記の構成によれば、ガス流路の上端の角部に、直線的なフィレット形状が形成されるので、この部位が応力集中部となることを抑制することができる。すなわち、フィレット構造により応力を分散させることができる。このため、燃料電池がオン/オフを繰り返して、それに伴う温度上昇および温度降下(500−700℃⇔室温)が繰り返され、線膨張係数が異なる電解質膜が形成されたシリコン基板に反りが繰り返し生じても、応力集中部であるガス流路の上端の角部近傍の電解質膜に極端な応力集中が発生せず、電解質膜の破損を抑制することができる。なお、上記の構成は、例えば、ガス流路を形成する際に、シリコンの深掘りエッチング(DRIE)を途中で終了し、その後にシリコンの異方性エッチングを行うことで、実現することができる。
【図面の簡単な説明】
【0020】
図1】実施例1,2の燃料電池システム2の概略の構成を示す模式図である。
図2】実施例1の燃料電池4の概略の構成を示す斜視図である。
図3】実施例1の燃料電池4の縦断面図である。
図4】比較例のガス流路48の形状を示す断面図である。
図5】別の比較例のガス流路48の形状を示す断面図である。
図6】さらに別の比較例のガス流路48の形状を示す断面図である。
図7】実施例1の燃料電池4の製造方法を説明する図である。
図8】実施例1の燃料電池4の製造方法を説明する図である。
図9】実施例1の燃料電池4の製造方法を説明する図である。
図10】実施例1の燃料電池4の製造方法を説明する図である。
図11】実施例1の燃料電池4の製造方法を説明する図である。
図12】実施例1の燃料電池4の製造方法を説明する図である。
図13】実施例1の燃料電池4の製造方法を説明する図である。
図14】実施例1の燃料電池4の製造方法を説明する図である。
図15】実施例1の燃料電池4の製造方法を説明する図である。
図16】実施例1の燃料電池4のガス流路48の形状の例を示す平面図である。
図17】実施例1の燃料電池4のガス流路48の形状の別の例を示す平面図である。
図18】実施例1の燃料電池4のガス流路48の形状のさらに別の例を示す平面図である。
図19】実施例1の燃料電池4のガス流路48の形状のさらに別の例を示す平面図である。
図20】実施例2の燃料電池74の縦断面図である。
図21】実施例2の燃料電池74の製造方法を説明する図である。
図22】実施例2の燃料電池74の製造方法を説明する図である。
図23】実施例2の燃料電池74の製造方法を説明する図である。
図24】実施例2の燃料電池74の製造方法を説明する図である。
図25】実施例2の燃料電池74の製造方法を説明する図である。
図26】実施例2の燃料電池74の製造方法を説明する図である。
図27】実施例1,2の燃料電池システム2の用途の例を示す図である。
図28】実施例1,2の燃料電池システム2の用途の別の例を示す図である。
図29】実施例1,2の燃料電池システム2の用途のさらに別の例を示す図である。
【発明を実施するための形態】
【0021】
(実施例1)
図1は、燃料電池システム2の構成を模式的に示している。燃料電池システム2は、空気中の酸素と、燃料ガス中の水素を反応させて、電気と熱を生成する。燃料電池システム2は、固体酸化物型燃料電池(SOFC)である燃料電池4と、燃料電池4を加熱するヒータ6と、ヒータ6に電力を供給するバッテリ8と、燃料電池4から放熱するヒートシンク10と、燃料電池システム2の外部から燃料電池4に空気を供給する空気供給経路12と、空気供給経路12に設けられた開閉弁14と、燃料電池4から燃料電池システム2の外部に反応後の空気を排出する空気排出経路16と、空気排出経路16に設けられた封止弁18と、燃料ガスが充填されたカートリッジ20と、カートリッジ20から燃料電池4に燃料ガスを供給する燃料ガス供給経路22と、燃料ガス供給経路22に設けられた減圧弁24と、燃料電池4から燃料電池システム2の外部に反応後の燃料ガスを排出する燃料ガス排出経路26と、燃料ガス排出経路26に設けられた封止弁28を備えている。燃料電池システム2は、燃料電池4が発電した電力を、電力線Wを介して対象負荷Lに供給する。
【0022】
燃料電池システム2で発電を行う際には、減圧弁24を開いて、カートリッジ20に充填された燃料ガスを、燃料ガス供給経路22を介して、燃料電池4に供給する。燃料電池4内に燃料ガスが充満したら、封止弁28と減圧弁24を閉じる。また、開閉弁14を開いて、燃料電池システム2の外部の空気を、空気供給経路12を介して、燃料電池4に供給する。燃料電池4内に空気が充満したら、封止弁18と開閉弁14を閉じる。その後、バッテリ8からの電力によってヒータ6を駆動し、燃料電池4を所定の反応温度、例えば600℃まで加熱する。これによって、燃料電池4において、酸素と水素の化学反応によって、発電が開始される。酸素と水素の化学反応は発熱反応でもあるので、発電が開始された後は、ヒータ6による加熱をオフにしても、燃料電池4は高温に維持されて、発電は継続される。その後、封止弁28や封止弁18を開いて、反応に寄与しなかったガスや反応で発生した水蒸気を燃料電池システム2の外部に排出するとともに、減圧弁24や開閉弁14を開いて、燃料電池4内に燃料ガスと空気を再び供給する。これを繰り返すことで、燃料電池4による発電が継続される。燃料電池4が発電した電力は、電力線Wを介して、対象負荷Lに供給される。なお、対象負荷Lの種類に応じて、複数の燃料電池4を直列または並列に接続する構成としてもよい。
【0023】
図2に示すように、燃料電池4は、第1シリコン基板30と、第2シリコン基板32と、第3シリコン基板34と、電解質膜36が、順に積層された積層基板に形成されている。第1シリコン基板30と、第2シリコン基板32と、第3シリコン基板34は、いずれも、ノンドープの高抵抗のシリコン基板である。電解質膜36は、LSO(ランタンシリケート)、YSZ(イットリア安定化ジルコニア)、LaGaO3(ランタンガレート)等の薄膜である。電解質膜36の膜厚は、20−2000nm程度である。第3シリコン基板34の電解質膜36との界面には、酸化シリコンからなる絶縁膜38が形成されている。電解質膜36の上面には、複数の第1電極膜40と、第1電極パッド42と、第1電極膜40と第1電極パッド42を電気的に接続する配線44が形成されている。また、電解質膜36の一部がエッチングにより除去されており、電解質膜36が除去された箇所の絶縁膜38の上面には、第2電極パッド46が形成されている。この第2電極パッド46の下方に、貫通電極(図示せず)が形成されている。複数の第1電極膜40は、触媒および集電効果を持つ電極膜であって、Pt、Cr/Ni、Ni/Pt、Ti/Pt、Cr/Pt、またはこれらを含む混合物あるいは積層膜で形成された金属膜である。あるいは、複数の第1電極膜40は、これらの金属の粒子を含む、またはこれらの金属の粒子が担持された、導電性を持つ膜、例えば導電性セラミックス膜であってもよい。複数の第1電極膜40は、燃料電池4において、空気極として機能する。複数の第1電極膜40は、ポーラス(多孔質)構造を有している。複数の第1電極膜40は、空気供給経路12および空気排出経路16に連通する空間に露出している。図2に示す例では、複数の第1電極膜40は、3×3のアレイ状に配置されている。なお、複数の第1電極膜40の個数は、これに限定されるものではない。第1電極パッド42と、配線44と、第2電極パッド46は、500−700℃の高温に対して耐性を有する導電性材料であればよく、例えば、Pt/Cr、Pt/Ni、Pt/Ti、Mo、Ta、W、WSi等の金属から構成されている。
【0024】
図3に示すように、第3シリコン基板34の内部には、それぞれの第1電極膜40に対応して、複数のガス流路48と、複数の第2電極膜50が形成されている。複数の第2電極膜50は、それぞれのガス流路48に設けられている。複数の第2電極膜50は、触媒および集電効果を持つ電極膜であって、Pt、Cr/Ni、Ni/Pt、Ti/Pt、Cr/Pt、またはこれらを含む混合物あるいは積層膜で形成された金属膜である。あるいは、複数の第2電極膜50は、これらの金属の粒子を含む、またはこれらの金属の粒子が担持された、導電性を持つ膜、例えば導電性セラミックス膜であってもよい。複数の第2電極膜50は、燃料電池4において、燃料極として機能する。複数の第2電極膜50は、ポーラス(多孔質)構造を有している。
【0025】
第3シリコン基板34の、それぞれのガス流路48の第2電極膜50との界面には、酸化シリコンからなる絶縁膜52が形成されている。それぞれのガス流路48において、電解質膜36は、第2電極膜50を介して、ガス流路48に対向している。また、それぞれのガス流路48において、第1電極膜40は、電解質膜36を介して、第2電極膜50に対向している。燃料電池4においては、第1電極膜40と、電解質膜36と、第2電極膜50によって、複数の発電要素60が構成されている。なお、それぞれの第2電極膜50は、第3シリコン基板34の裏面側に配置された配線(図示せず)と、第3シリコン基板34を貫通する貫通電極(図示せず)を介して、第3シリコン基板34の表面側の第2電極パッド46(図2参照)に電気的に接続している。これらの配線および貫通電極は、500−700℃の高温に対して耐性を有する導電性材料であればよく、例えば、Pt/Cr、Pt/Ni、Pt/Ti、Mo、Ta、W、WSi等の金属から構成されている。
【0026】
第2シリコン基板32の内部には、ガス分配路54が形成されている。ガス分配路54は、第3シリコン基板34のそれぞれのガス流路48に連通している。第1シリコン基板30の内部には、燃料ガス供給経路22に連通するガス流入路56と、燃料ガス排出経路26に連通するガス流出路58が形成されている。燃料ガス供給経路22から燃料電池4に供給された燃料ガスは、ガス流入路56およびガス分配路54を介して、それぞれのガス流路48に供給される。また、それぞれのガス流路48において反応した後の燃料ガスは、ガス分配路54およびガス流出路58を介して、燃料ガス排出経路26に排出される。
【0027】
燃料電池4においては、それぞれのガス流路48に燃料ガスが供給されている。一方、燃料電池4の上面側には、空気が供給されている。空気中の酸素は、ポーラス(多孔質)構造の第1電極膜40の中に入り、電解質膜36に到達する。そして、到達した酸素は、触媒の役割をするPt粒子によって酸化物イオン(O2−)となり、酸化物イオンが電解質膜36を通過して、第2電極膜50に到達する。また、燃料ガス中の水素は、ポーラス(多孔質)構造の第2電極膜50を通過して電解質膜36に到達し、酸化物イオンと反応して水蒸気が生成されるとともに、電子が放出される。放出された電子は、第2電極膜50、配線および貫通電極を介して第2電極パッド46に集電される。また、反応によって生成された水蒸気はガス流路48に放出され、反応に寄与しなかった水素とともに、ガス流路48から排出される。
【0028】
図3に示すように、本実施例の燃料電池4では、ガス流路48の上端の角部が丸みを有する形状となっており、電解質膜36の近傍に、第3シリコン基板34のフィレットが形成されている。すなわち、本実施例の燃料電池4では、ガス流路48の側壁が、電解質膜36に近い箇所でフィレット形状を有している。第3シリコン基板34を平面視した時に、ガス流路48の側壁のフィレット形状を有する部分は、ガス流路48の全周にわたっている。ガス流路48の側壁のフィレット形状を有する部分の電解質膜36に対する傾斜角度は、滑らかに変化している。ガス流路48の側壁のフィレット形状を有する部分の曲率半径は、1μm−10μmの範囲内にある。さらに、ガス流路48の側壁の電解質膜36に対する傾斜角度は、電解質膜36から離れた箇所において略90度となっている。このような構成による利点について、以下に説明する。
【0029】
固体酸化物型の燃料電池4は、発電時に500−700℃の高温に曝され、発電停止時は室温に曝されることになる。第3シリコン基板34と電解質膜36では線膨張係数に相違があるので、発電時の温度上昇および発電停止時の温度降下によって、電解質膜36が一体化された第3シリコン基板34に反りが生じ、その結果電解質膜36に応力が作用する。このため、電解質膜36に応力集中が生じやすい箇所があると、燃料電池4のオン/オフを繰り返した時に、電解質膜36の応力集中部に繰り返し大きな応力が作用し、この箇所の電解質膜36に亀裂が生じて電解質膜36が破損してしまうおそれがある。
【0030】
図4は、参考例として、燃料電池4のガス流路48を、第3シリコン基板34の異方性エッチングによって形成した場合の構成を示している。この場合、第3シリコン基板34の面方位は(100)であり、異方性エッチングにより形成されるガス流路48の側壁の電解質膜36に対する傾斜角度は、略55度となる。また、ガス流路48の側壁の電解質膜36に対する傾斜角度は、電解質膜36に近い箇所でも、電解質膜36から遠い箇所でも、略55度で同一である。図4に示す構成では、電解質膜36に近い箇所に応力集中が生じにくいので、燃料電池4がオン/オフを繰り返して、それに伴う温度上昇および温度降下に起因して第3シリコン基板34に反りが繰り返し生じても、電解質膜36に極端な応力集中が発生せず、電解質膜36の破損を抑制することができる。しかしながら、図4に示す構成では、ガス流路48が、電解質膜36から遠くなるほど(図4の下方に行くほど)横方向に広がる形状となっている。このため、図4に示す構成では、デッドスペースが大きくなり、発電要素60の集積化、小型化が困難なものとなる。
【0031】
図5は、別の参考例として、燃料電池4のガス流路48を、第3シリコン基板34の深掘りエッチング(DRIE)によって形成した場合の構成を示している。この場合、深掘りエッチングにより形成されるガス流路48の側壁の電解質膜36に対する傾斜角度は、略90度となる。また、ガス流路48の側壁の電解質膜36に対する傾斜角度は、電解質膜36に近い箇所でも、電解質膜36から遠い箇所でも、略90度で同一である。図5に示す構成では、ガス流路48が電解質膜36から遠い箇所(図5の下方の箇所)でも横方向に広がらない形状となっている。このため、図5に示す構成では、デッドスペースを少なくして、発電要素60の集積化、小型化を図ることができる。しかしながら、図5に示す構成では、ガス流路48の上端の角部近傍が応力集中部となる。このため、次のようなことが課題となる。燃料電池4がオン/オフを繰り返して、それに伴う温度上昇および温度降下(500−700℃⇔室温)が繰り返されると、線膨張係数が異なる電解質膜36や絶縁膜38や絶縁膜52が形成された第3シリコン基板34に繰り返し反りが生じる。このとき、電解質膜36に応力が作用し、特に応力集中部であるガス流路48の上端の角部近傍の電解質膜36に大きな応力が作用する。このため、この部分の電解質膜36に亀裂が生じて電解質膜36が破損してしまうおそれがある。
【0032】
また、深掘りエッチングによって図5のようなガス流路48を形成しようとする場合、図6に示すように、第3シリコン基板34の絶縁膜38との界面近傍に、ノッチ61が形成されることがある。このようなノッチ61は、深掘りエッチングにおいて、プラズマによってエッチングガスから乖離して発生したイオンが、絶縁膜38の表面に溜まったチャージに反発して進行方向が横方向に曲げられ、第3シリコン基板34が絶縁膜38との界面近傍で横方向にエッチングされることによって形成される。このようなノッチ61が形成されると、ノッチ61の近傍が応力集中部となる。このため、次のようなことが課題となる。燃料電池4がオン/オフを繰り返して、それに伴う温度上昇および温度降下(500−700℃⇔室温)が繰り返されると、線膨張係数が異なる電解質膜36や絶縁膜38や絶縁膜52が形成された第3シリコン基板34に反りが繰り返し生じる。このとき、電解質膜36に応力が作用し、特に応力集中部であるガス流路48の上端の角部近傍の電解質膜36に大きな応力が作用する。このため、この部分の電解質膜36に亀裂が生じて電解質膜36が破損してしまうおそれがある。また、第2電極膜50を形成する際に、ノッチ61の内部に金属粒子が回り込まずに、第2電極膜50のうち、電解質膜36を覆う部分と、第3シリコン基板34の裏面側の部分が分断されてしまい、導通不良を起こすおそれがある。
【0033】
これに対して、図3に示すように、本実施例の燃料電池4では、ガス流路48の側壁が、電解質膜36に近い箇所でフィレット形状を有している。このような構成とすると、ガス流路48の上端の角部近傍における応力集中部となることを抑制することができる。すなわち、フィレット形状により、応力を分散させることができる。このため、燃料電池4がオン/オフを繰り返して、それに伴う温度上昇および温度降下(500−700℃⇔室温)が繰り返され、線膨張係数が異なる電解質膜36や絶縁膜38や絶縁膜52が形成された第3シリコン基板34に反りが繰り返し生じても、応力集中部であるガス流路48の上端の角部近傍の電解質膜36に極端な応力集中が発生せず、電解質膜36の破損を抑制することができる。また、本実施例の燃料電池4では、ガス流路48を上下方向に深くしても、ガス流路48が横方向にそれほど広がらないので、デッドスペースを少なくして、発電要素60の集積化、小型化を図ることができる。
【0034】
図2に示す例では、複数の発電要素60が全て電気的に並列に接続されており、燃料電池4において発電に寄与する領域の大口径化が図られている。このような構成とすることで、個々の発電要素60のサイズを小さくして破損しにくくすることができ、信頼性を高めることができる。また、このような構成とすることで、仮に一部の発電要素60が破損した場合であっても、残りの発電要素60が機能していれば、燃料電池4としての機能を維持することができる。すなわち、燃料電池4の寿命を延ばすことができる。
【0035】
以下では、本実施例の燃料電池4の製造方法について説明する。
【0036】
まず、図7に示すように、第3シリコン基板34となる面方位(100)のシリコン基板を準備する。そして、第3シリコン基板34をRCA洗浄した後、1:100のHF溶液にてライトエッチングし、自然酸化膜を除去する。そして、プラズマCVDを用いて第3シリコン基板34の裏面にシリコン酸化膜である絶縁膜52を成膜する。絶縁膜52は、例えば1.5μm程度の厚い膜厚とする。次いで、プラズマCVDを用いて第3シリコン基板34の表面にシリコン酸化膜である絶縁膜38を成膜する。絶縁膜38は、例えば10−20nm程度の膜厚とする。そして、第3シリコン基板34の表面にLSO前駆体膜62をゾルゲル法によって成膜する。LSO前駆体膜62の成膜は、例えば、LSO前駆体膜62を形成する溶媒を、1500rpm、30秒の条件でスピンコーティングすることで行われる。LSO前駆体膜62を形成する溶媒は、例えば、硝酸ランタンの水とエタノールの混合溶液とTEOSを混ぜ合わせたものである。スピンコーティングの条件は、成膜したいLSO前駆体膜62の膜厚に応じて変更可能である。スピンコーティングの後、ホットプレート上で200−400℃の範囲でプリベークを行う。
【0037】
次いで、図8に示すように、第3シリコン基板34を、例えば高温電気炉に投入し、大気雰囲気で800−1100℃の範囲で2時間ほど焼成する。これによって、LSO前駆体膜62が結晶化されて電解質膜36が形成される。次いで、図8には図示されないが、第2電極パッド46を形成する部分に対応した電解質膜36をエッチングして除去し、絶縁膜38を露出させる。そして、例えば、ドープドポリシリコン膜を用いて貫通電極(図示せず)を形成する。さらに、第3シリコン基板34の裏面側の絶縁膜52に、膜厚1μm程度のレジスト64を塗布し、ホトリソグラフィによってレジスト64にマスクパターンを形成する。
【0038】
次いで、図9に示すように、レジスト64をマスクとして、酸化シリコンのエッチングを行い、絶縁膜52にパターンを形成する。この段階では、第3シリコン基板34と第2シリコン基板32の接合箇所に対応する箇所の絶縁膜52が選択的に除去される。そして、例えばレジストリムーバーを用いて、絶縁膜52上のレジスト64を除去する。
【0039】
次いで、図10に示すように、第3シリコン基板34の裏面側に、膜厚1−2μm程度のレジスト64を再び塗布し、ホトリソグラフィによってレジスト64にマスクパターンを形成する。
【0040】
次いで、図11に示すように、レジスト64をマスクとして、酸化シリコンのエッチングを行い、絶縁膜52にマスクパターンを形成する。この段階では、第3シリコン基板34のガス流路48に対応する箇所の絶縁膜52が選択的に除去される。そして、レジスト64と絶縁膜52をマスクとして、シリコンの深掘りエッチングを行う。深掘りエッチングは、デポ膜形成とエッチングを繰り返すサイクリックプロセスであり、トレンチ66の側壁をデポ膜で保護しながら第3シリコン基板34の厚み方向(上下方向)にエッチングを進める異方性ドライエッチングである。深掘りエッチングでは、トレンチ66の中央部のエッチング速度が速く、トレンチ66の外縁部のエッチング速度が遅いという傾向がある。このため、図11に示すように、深掘りエッチングで形成されるトレンチ66は、先端の角部が丸みを帯びた形状となる。図11に示すように、本実施例では、トレンチ66の中央部が絶縁膜38まで到達し、トレンチ66の外縁部が絶縁膜38まで到達していない状態で、深掘りエッチングを終了する。トレンチ66はガス流路48を形成する。なお、図示はしていないが、この時点では、ガス流路48の側壁にデポ膜が形成されている。
【0041】
次いで、図12に示すように、酸化シリコンのエッチングを行って、絶縁膜38のうちガス流路48に露出した部分を除去する。これによって、電解質膜36が、ガス流路48に露出する。
【0042】
次いで、図13に示すように、例えば酸素プラズマアッシングにより、ガス流路48の側壁のデポ膜と、絶縁膜52上のレジスト64を除去する。この酸素プラズマアッシングによって、ガス流路48の側壁のデポ膜が除去された後、ガス流路48の側壁に10nm程度のシリコン酸化膜である絶縁膜52が形成される。なお、第3シリコン基板34の裏面側に形成されたシリコン酸化膜である絶縁膜52と、ガス流路48の側壁に形成されたシリコン酸化膜である絶縁膜52は、膜厚が異なるものであるが、図面では便宜上、両者を同程度の膜厚で図示している。
【0043】
次いで、図14に示すように、メタルマスク法によってポーラスPt膜を部分的に成膜して、複数の第1電極膜40を形成する。ポーラスPt膜の成膜は、蒸着によって行ってもよいし、スパッタリングによって行ってもよい。さらに、メタルマスク法またはホトリソグラフィによって、第1電極パッド42、配線44および第2電極パッド46を形成する。
【0044】
次いで、図15に示すように、メタルマスク法によってポーラスPt膜を部分的に成膜して、複数の第2電極膜50を形成する。ポーラスPt膜の成膜は、蒸着によって行ってもよいし、スパッタリングによって行ってもよい。また、Pt膜を蒸着し、その後熱処理して多孔質化させてポーラスPt膜を得てもよい。さらに、メタルマスク法によって導電性材料を成膜して、集電用の貫通電極(図示せず)に接続される配線(図示せず)を形成する。
【0045】
その後、図3に示すように、第1シリコン基板30と、第2シリコン基板32をそれぞれ準備し、第1シリコン基板30と第2シリコン基板32の接合、および第2シリコン基板32と第3シリコン基板34の接合を行う。第1シリコン基板30は、シリコン基板に、ガス流入路56と、ガス流出路58を形成したものである。第2シリコン基板32は、シリコン基板に、ガス分配路54を形成したものである。第1シリコン基板30と第2シリコン基板32は、シリコン直接接合によって接合される。この接合は、燃料ガスが流れる流路を外部から密封できるものであれば、必ずしもシリコン直接接合に限定されることはなく、OH基接合や共晶接合が用いられてもよい。同様に、第2シリコン基板32と第3シリコン基板34は、シリコン直接接合によって接合される。この接合は、燃料ガスが流れる流路を外部から密封できるものであれば、必ずしもシリコン直接接合に限定されることはなく、OH基接合や共晶接合が用いられてもよい。以上のプロセスによって、燃料電池4が製造される。
【0046】
ガス流路48の断面形状は、種々の形状とすることができる。図16は、ガス流路48の断面形状を円形状とした場合の、ガス流路48の裏面側の開口部の断面形状C1と、ガス流路48の表面側の開口部の断面形状C2の関係を示している。ここで、ガス流路48の表面側の開口部の断面形状C2は、ガス流路48の上端において、電解質膜36と第2電極膜50が接触する範囲の形状を示している。ここで、ガス流路48の裏面側の開口部の断面形状C1と、ガス流路48の表面側の開口部の断面形状C2の間の領域は、ガス流路48の側壁のフィレット形状を有する部分に相当する。ガス流路48の裏面側の開口部の断面形状C1の半径と、ガス流路48の表面側の開口部の断面形状C2の半径の差は、ガス流路48の側壁のフィレット形状を有する部分の曲率半径に相当する。同様に、図17は、ガス流路48の断面形状を楕円形状とした場合の、ガス流路48の裏面側の開口部の断面形状C1と、ガス流路48の表面側の開口部の断面形状C2の関係を示している。図18は、ガス流路48の断面形状を四角形状とした場合の、ガス流路48の裏面側の開口部の断面形状C1と、ガス流路48の表面側の開口部の断面形状C2の関係を示している。図19は、ガス流路48の断面形状を六角形状とした場合の、ガス流路48の裏面側の開口部の断面形状C1と、ガス流路48の表面側の開口部の断面形状C2の関係を示している。いずれの場合についても、ガス流路48の表面側の開口部の断面形状C2はガス流路48の裏面側の開口部の断面形状C1に比べて小さく、ガス流路48の側壁が、電解質膜36に近い箇所でフィレット形状を有している。このような構成とすると、ガス流路48の上端の角部近傍における応力集中部となることを抑制することができる。すなわち、フィレット形状により、応力を分散させることができる。このため、燃料電池4がオン/オフを繰り返して、それに伴う温度上昇および温度降下(500−700℃⇔室温)が繰り返され、線膨張係数が異なる電解質膜36や絶縁膜38や絶縁膜52が形成された第3シリコン基板34に反りが繰り返し生じても、応力集中部であるガス流路48の上端の角部近傍の電解質膜36に極端な応力集中が発生せず、電解質膜36の破損を抑制することができる。
【0047】
(実施例2)
図20に示す本実施例の燃料電池74は、実施例1の燃料電池4とほぼ同様の構成を備えている。本実施例の燃料電池74も、実施例1の燃料電池4と同様に、図1に示す燃料電池システム2に組み込まれて使用される。以下では、本実施例の燃料電池74について、実施例1の燃料電池4と相違する点について詳細に説明し、共通する点については説明を省略する。
【0048】
図20に示すように、本実施例の燃料電池74では、ガス流路76の側壁のフィレット形状を有する部分では、電解質膜36に対する傾斜角度が略55度であり、ガス流路76の側壁の電解質膜36から離れた箇所では、電解質膜36に対する傾斜角度が略90度である。本実施例の燃料電池74も、実施例1の燃料電池4と同様に、第3シリコン基板34を平面視した時に、ガス流路76の側壁のフィレット形状を有する部分が、ガス流路76の全周にわたっている。このような構成とすると、ガス流路76の上端の角部における応力集中を抑制することができる。すなわち、フィレット形状により応力を分散させることができる。このため、燃料電池74がオン/オフを繰り返して、それに伴う温度上昇および温度降下(500−700℃⇔室温)が繰り返され、線膨張係数が異なる電解質膜36や絶縁膜38や絶縁膜52が形成された第3シリコン基板34に反りが繰り返し生じても、応力集中部であるガス流路48の上端の角部近傍の電解質膜36に極端な応力集中が発生せず、電解質膜36の破損を抑制することができる。また、このような構成とすると、ガス流路76を上下方向に深くしても、ガス流路76が横方向にそれほど広がらないので、デッドスペースを少なくして、発電要素60の集積化、小型化を図ることができる。
【0049】
以下では、本実施例の燃料電池74の製造方法について、実施例1の燃料電池4と相違する点について説明する。
【0050】
本実施例の燃料電池74は、シリコンの深掘りエッチングを行う際に、図11に示す実施例1の製造方法とは異なり、図21に示すように、トレンチ66の中央部が絶縁膜38まで到達していない状態で、深掘りエッチングを終了する。図示はしていないが、この時点では、トレンチ66の側壁にデポ膜が形成されている。
【0051】
次いで、図22に示すように、酸素プラズマアッシングにより、トレンチ66の側壁のデポ膜と、絶縁膜52上のレジスト64を除去する。この酸素プラズマアッシングを長時間にわたって行うことで、トレンチ66の側壁のデポ膜が除去された後、トレンチ66の側壁に10−50nmの膜厚のシリコン酸化膜である絶縁膜52が形成される。なお、第3シリコン基板34の裏面側に形成されたシリコン酸化膜である絶縁膜52と、トレンチ66の側壁に形成されたシリコン酸化膜である絶縁膜52は、膜厚が異なるものであるが、図面では便宜上、両者を同程度の膜厚で図示している。
【0052】
次いで、図23に示すように、酸化シリコンのRIEまたはDRIEによって、トレンチ66の底の絶縁膜52のみを除去する。この際に、DRIEで全面エッチングを実施すると、第3シリコン基板34の裏面側の絶縁膜52よりも、トレンチ66の底の絶縁膜52の方が膜厚が薄いので、トレンチ66の底の絶縁膜52のみが先にエッチングされて、トレンチ66の底にシリコンが露出する。
【0053】
次いで、図24に示すように、シリコンの異方性エッチングを行う。この際に、電解質膜36については、治具によって全面を覆う、または、ワックス等を塗布することで、異方性エッチングの影響を受けないように保護する。異方性エッチングには、TMAH(テトラメチルアンモニウムハイドロオキサイト、水酸化テトラメチルアンモニウム)の溶液を使用する。このTMAH溶液では、シリコン酸化膜はシリコンに対して選択比が1000以上と高く、マスク材として機能する。そのため、トレンチ66の側壁は、絶縁膜52によってエッチングされることなく保護される。この異方性エッチングによって、トレンチ66の底が絶縁膜38まで到達する。トレンチ66は、ガス流路76を形成する。なお、この時点では、ガス流路76の異方性エッチングによって形成された側壁には、第3シリコン基板34のシリコンが露出している。
【0054】
次いで、図25に示すように、ガス流路76においてシリコンが露出している箇所に、シリコン酸化膜を形成する。これによって、ガス流路76の側壁が絶縁膜52によって覆われる。なお、この場合のガス流路76の裏面側の開口部の断面形状は、異方性エッチングの観点から、図18に示す矩形C1となっており、ガス流路76の表面側の開口部の断面形状は図18のC2でコーナー部が90度になった形状である。
【0055】
次いで、図26に示すように、酸化シリコンのRIEまたはDRIEによって、ガス流路76の上端の絶縁膜38のみを除去する。
【0056】
その後、実施例1の燃料電池4と同様に、複数の第1電極膜40、第1電極パッド42、配線44、第2電極パッド46、複数の第2電極膜50、貫通電極、配線をそれぞれ形成した後、第1シリコン基板30と第2シリコン基板32を第3シリコン基板34に接合することで、燃料電池74が製造される。なお、第2シリコン基板32と、第3シリコン基板34との接合には、絶縁膜52を介したOH基接合が用いられる。
【0057】
(燃料電池システム2の用途)
以上のように、実施例1の燃料電池4および実施例2の燃料電池74によれば、燃料電池4,74がオン/オフを繰り返して、それに伴う温度上昇および温度降下(500−700℃⇔室温)が繰り返され、線膨張係数が異なる電解質膜36や絶縁膜38や絶縁膜52が形成された第3シリコン基板34に反りが繰り返し生じても、応力集中部であるガス流路48の上端の角部近傍の電解質膜36に極端な応力集中が発生せず、電解質膜36の破損を抑制することができる。また、実施例1の燃料電池4および実施例2の燃料電池74によれば、ガス流路48,76を上下方向に深くしても、ガス流路48,76が横方向にそれほど広がらないので、デッドスペースを少なくして、集積化、小型化を図ることができる。このため、小型で壊れにくく、オン/オフを繰り返すことができる固体酸化物型の燃料電池4,74を提供することができる。したがって、上記のような固体酸化物型の燃料電池4,74を組み込んだ燃料電池システム2(図1参照)は、従来にない用途に用いることができる。
【0058】
例えば、図27に示すように、燃料電池システム2は、充電ケーブル80を介してタブレット等のモバイル機器82に接続可能な、充電器として用いることができる。この場合、モバイル機器82が備えるバッテリ84と、モバイル機器82の電力負荷と、燃料電池システム2を、電気的に並列に接続し、切り替えスイッチによって電力の供給先を切替可能な構成とすることで、燃料電池システム2によって、バッテリ84の充電を行うこともできるし、モバイル機器82の電力負荷に電力を供給することもできる。
【0059】
あるいは、図28に示すように、燃料電池システム2は、電力によって駆動する小型のモビリティ86(例えばシニアカー)に搭載されるサブバッテリとして用いることができる。この場合、燃料電池システム2は、電力供給線88を介して、モビリティ86が備えるバッテリ90に接続される。この場合、モビリティ86が備えるバッテリ90と、モビリティ86のモータ92と、燃料電池システム2を、電気的に並列に接続し、切り替えスイッチによって電力の供給先を切替可能な構成とすることで、燃料電池システム2によって、バッテリ90の充電を行うこともできるし、モータ92に電力を供給することもできる。
【0060】
あるいは、図29に示すように、燃料電池システム2は、電力によって駆動する歩行支援ロボット94のサブバッテリとして用いることができる。この場合、燃料電池システム2は、電力供給線96を介して、歩行支援ロボット94が備えるバッテリ98に接続される。この場合、歩行支援ロボット94が備えるバッテリ98と、歩行支援ロボット94のモータ100と、燃料電池システム2を、電気的に並列に接続し、切り替えスイッチによって電力の供給先を切替可能な構成とすることで、燃料電池システム2によって、バッテリ98の充電を行うこともできるし、モータ100に電力を供給することもできる。
【0061】
以上、本発明の実施例について詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
【0062】
本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時の請求項に記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【符号の説明】
【0063】
2:燃料電池システム、 4:燃料電池、 6:ヒータ、 8:バッテリ、 10:ヒートシンク、 12:空気供給経路、 14:開閉弁、 16:空気排出経路、 18:封止弁、 20:カートリッジ、 22:燃料ガス供給経路、 24:減圧弁、 26:燃料ガス排出経路、 28:封止弁、 30:第1シリコン基板、 32:第2シリコン基板、 34:第3シリコン基板、 36:電解質膜、 38:絶縁膜、 40:第1電極膜、 42:第1電極パッド、 44:配線、 46:第2電極パッド、 48:ガス流路、 50:第2電極膜、 52:絶縁膜、 54:ガス分配路、 56:ガス流入路、 58:ガス流出路、 60:発電要素、 61:ノッチ、 62:LSO前駆体膜、 64:レジスト、 66:トレンチ、 74:燃料電池、 76:ガス流路、 80:充電ケーブル、 82:モバイル機器、 84:バッテリ、 86:モビリティ、 88:電力供給線、 90:バッテリ、 92:モータ、 94:歩行支援ロボット、 96:電力供給線、 98:バッテリ、 100:モータ
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29