【実施例1】
【0028】
図2は異形表示パネルの例である。
図2は、表示領域1000、外形とも、上下が直線で、側部が曲線であるようなレーストラック状となっている。
図2はTFT基板側の平面図である。
図2において、表示領域1000には、横方向に走査線10が延在し、縦方向にドレイン線20が延在し、走査線10とドレイン線20で囲まれた領域に画素が形成されている。
【0029】
図2において、表示領域1000より下側には、セレクタ30とドライバIC40とが配置されている。ドライバIC40の外側は、フレキシブル配線基板と接続するための端子領域150となっている。表示領域1000のドレイン線20にはセレクタ30を介してドライバIC40から映像信号が供給される。ドレイン線20は、表示領域1000の横方向の画素分存在するが、ドライバIC40からセレクタ30までの映像信号引き出し線21の数は、例えば、ドレイン線の1/3である。なお、ドレイン線の数をNdとし、映像信号引き出し線の数をNvとすると、Nd/Nv=nで、nは2以上の整数となっている。
【0030】
表示領域1000の両側には、走査線10に走査信号を供給するための走査回路11が存在している。
図2では、セレクタ30が表示領域1000と隣接して配置されている。表示領域1000がレーストラック状であるため、表示領域1000の側部の曲線部の外側における領域Aにおいて、走査回路11と表示領域1000の間にセレクタ30が存在している。この場合、走査線10とセレクタ30との間で、配線上の干渉が生ずる。
【0031】
図9は、表示領域1000が矩形の場合の表示装置の平面図である。
図9において、表示領域1000の下側にはセレクタ30とドライバIC40、端子部150が順に配置し、表示領域1000の両側には走査回路11が存在している。この場合は、走査回路11から延在する走査線10とセレクタ30との干渉はない。
【0032】
本発明は、異形表示パネルにおいて、走査線10とセレクタ30との干渉を防止して、かつ、額縁領域を小さくする構成を与えるものである。
図3はセレクタ30の構成を示す等価回路である。上側が表示領域側であり、下側がドライバIC側である。
図3において、TFT51および画素容量52を有する画素50が横方向に配列している。各画素50には、ドレイン線20を介して映像信号が供給される。また、各画素50のTFT51は走査線10によって制御される。
【0033】
セレクタ30は表示領域外におけるドレイン引き出し線(映像信号引き出し線)21の数を減らすために配置され、表示領域の最外部に隣接して配置される。
図3におけるセレクタによって、ドライバICから出力する映像信号引き出し線21の数はドレイン線20の1/3になっている。したがって、映像信号引き出し線21の引き回し配線のための面積を節約することが出来る。
【0034】
一方、セレクタ30を制御するために、セレクタ制御線31が必要になる。
図4は、
図2の領域Aにおけるセレクタ30と画素50の配置を示す平面図である。
図4において、赤画素R、緑画素G、青画素Bの3つの画素50のセットは、表示領域1000の外端が曲線に近似されるように、階段状に形成されている。各画素セットに対応するセレクタ30は画素セットに隣接して形成されている。従来は、表示領域1000の外端部に隣接して、表示領域のコモン電極にコモン電圧を供給するコモンバス配線が形成されていたが、本発明では、セレクタ30が配置している点が異なっている。
【0035】
各画素には、
図4の横方向の外側に配置する走査回路から走査線が接続される。つまり、セレクタ30はセレクタ用TFTを有しているが、セレクタ用TFTのゲート電極、すなわち、セレクタ制御線と走査線の干渉を防ぐ必要がある。
【0036】
図5は、ドレイン線20が形成された状態までにおける表示領域端部付近の配線レイアウトを示す平面図である。
図5の表示領域には、くの字型に屈曲したドレイン線20が縦方向に延在して横方向に配列し、走査線10が横方向に延在して縦方向に配列している。ドレイン線20と走査線10とで囲まれた領域が画素であり、画素電極が形成されるが、
図5では、まだ、画素電極は形成されていない。
図5において、点線より、ドレイン線20が形成された側が表示領域になっている。
【0037】
最外周の画素に隣接してセレクタ用TFT32がドレイン線20毎に配置している。各セレクタ用TFT32にゲート信号を送るための3本のセレクタ制御線31がセレクタ用TFT32の外側に延在している。走査線10とセレクタ制御信号線31との干渉を防止するために、セレクタ制御線31はドレイン線20と同じ層で配線し、セレクタ用TFT32と接続する直前でスルーホールを介して走査線10と同じ層に乗りかえている。これによって、表示領域が異形であっても、セレクタ30を表示領域に隣接して配置することが出来る。
【0038】
セットになった3つのセレクタ用TFT32には、共通して映像信号引き出し線21を介して映像信号が送られる。この映像信号を、セレクタ制御線31を介する信号によって、ドレイン線20に振り分けて供給する。したがって、
図5では、映像信号引き出し線21の数はドレイン線20の数の1/3になっている。本願発明では、セレクタを表示領域に近接して設けている。そのため、映像信号引き出し線21と走査線とが交差することとなる。しかし、セレクタを表示領域から離間して設けた場合は、映像信号引き出し線と走査線との交差箇所を減らすことができるが、ドレイン線との交差数が増加してしまう。本願発明の構成により、走査線とドレイン線との交差箇所数を減らすことができる。更に、セレクタ制御線31を映像信号引き出し線とセレクタとの間に設けることにより、セレクタ制御線と映像信号引き出し線との交差個所を少なくすることが出来るとともに、セレクタ制御線の長さを短くすることができる。尚、
図5では、セレクタ制御線をセレクタに沿って配置しているが、映像線引き出し線と平行に設けることも可能である。それにより、セレクタ制御線の長さを更に短くすることが可能となる。
【0039】
ところで、
図4に示すように、各セレクタで受け持つY方向の画素の数はX方向によって異なっている。例えば、表示領域1000の外形が直線となっている部分では、セレクタ30が受け持つ画素の数は320画素、表示領域の外形が曲線になっている部分での、セレクタ30が受け持つ画素の最も少ない数は6画素である。
【0040】
そうすると、各セレクタ30で受け持つ配線の抵抗や容量が異なり、したがって、信号の大きさや遅延等が場所によって異なることになる。これを防止するために、本発明では、セレクタ用TFT32のチャンネル幅を場所によって変えている。例えば、直線部に配置するセレクタ用TFT32のチャンネル幅は曲線部に配置されるおけるセレクタ用TFT32のチャンネル幅よりも大きくする。また、曲線部に配置するセレクタ用TFT32のチャンネル幅も場所によって変えている。これによって、異形表示パネルであっても均一な画像を形成することが出来る。
【0041】
図6は、
図5と同じ領域に対し画素電極112まで形成した状態における平面図である。すなわち、
図5に対し、無機パッシベーション膜、有機パッシベーション膜、コモン電極、容量絶縁膜、画素電極が積層して形成された状態である。
図6において、点線より、ドレイン線20が形成された側が表示領域になっている。
【0042】
図6において、透明電極であるコモン電極110がスルーホール130を除く全面に形成されている。表示領域において、ドレイン線20と走査線10とで囲まれた領域に画素電極112がITOによって形成されている。表示領域の外側には、画素電極112と同じ形状のダミー画素電極1121が表示領域の画素電極112と同じピッチで形成されている。これによって、表示領域の最外部における画素電極112が他の表示領域内の画素電極112と同様のプロセス条件で形成できるようにしている。後で述べるように、ダミーの画素電極1121には、コモン電圧を印加することが出来る。
【0043】
図7は
図5、のA−Aに対応する断面図であり、セレクタ用TFT32付近の断面図を示している。層構造は、
図1で説明した表示領域における断面構造と同じである。すなわち、半導体層103の上にゲート絶縁膜104が形成され、その上にゲート電極105が形成され、これを覆って層間絶縁膜106が形成されている。
【0044】
ゲート電極105はセレクタ制御線31に接続されており、ソース電極は映像信号線21となっている。また、ドレイン電極はドレイン線20である。すなわち、セレクタ用TFT32はソース電極が並列して2個形成されている。ドレイン電極およびソース電極を覆って無機パッシベーション膜108が形成され、その上に有機パッシベーション膜109が形成されている。有機パッシベーション膜109の上には、平面状にITOで形成されたコモン電極110が形成されている。
【0045】
コモン電極110を覆って容量絶縁膜111が形成され、その上にダミー画素電極1121が形成されている。すなわち、本発明では、セレクタ用TFT32の上をコモン電極110で覆う形となっている。このコモン電極110は表示領域のコモン電極110と連続して形成されている。このような構成とすることによって、セレクタ30をコモン電極110でシールドすることになる。そして、コモン電極110には、セレクタ30よりもさらに外側に形成されたコモン配線(コモンバス配線)からコモン電圧が供給される。
【0046】
従来は、コモンバス配線は表示領域に隣接して形成されていたが、本発明の構成では、コモンバス配線はセレクタ30よりも外側に形成される。このような構成とすることによって、セレクタ制御線31をドレイン線20あるいはコモンバス配線と同層で形成することが出来るようになる。
【0047】
図6に示すダミー画素電極1121をフロートにしたくない場合は、
図7の右側に示すように、容量絶縁膜111にスルーホール140を形成して、ダミー画素電極1121にコモン電圧を供給することが出来る。なお、容量絶縁膜111に形成するスルーホール140は表示領域におけるスルーホール130内において、容量絶縁膜111に形成するスルーホールと同時に形成することが出来る。
【0048】
以上説明したように、本発明によれば、異形表示パネルの場合であっても、表示領域と隣接してセレクタを形成することができるので、異形表示パネルにおける額縁領域の面積の増大を防止することが出来る。また、セレクタをコモン電極によってシールドすることが出来、かつ、セレクタ用TFTのチャンネル幅を場所によって変化させることによって、異形表示パネルにおいても均一な画面を形成することが出来る。
【0049】
以上は
図2に示すようなレーストラック状の異形表示パネルについて説明したが、これに限らず、例えば、
図8に示すようなハート型異形表示パネルについても適用することが出来る。
図8の形状に対しては、
図2で説明したのとほとんど同じ構成を適用することが出来る。つまり、
図8の領域Aは
図2の領域Aと同様な構成とすることが出来る。ただし、
図8では表示領域の上部が直線ではないので、表示領域の下方に配置するセレクタ用TFTの容量、すなわち、チャンネル幅は、直線部においても変える必要がある。
【0050】
図2、
図8等の異形表示領域は、直線と曲線の組み合わせであるが、3角形、5角形、6角形等の辺が直線の組み合わせで形成された表示領域を有する表示装置に対しても本発明を適用することが出来る。また、
図2、
図8等は走査回路が画面の両側に存在しているが、走査回路は画面の片側に存在する場合にも本発明を適用することが出来る。尚、本発明は、液晶表示装置に限定されるものではなく、矩形以外の形状の表示領域を有し、表示領域のドレイン線(映像信号線)に対し、映像信号を時分割で供給するセレクタ(スイッチ回路)を有する、有機EL型表示装置等、表示装置全般に適用することが可能となる。