特許第6641765号(P6641765)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士通オプティカルコンポーネンツ株式会社の特許一覧

<>
  • 特許6641765-光通信装置、及び、光モジュール 図000002
  • 特許6641765-光通信装置、及び、光モジュール 図000003
  • 特許6641765-光通信装置、及び、光モジュール 図000004
  • 特許6641765-光通信装置、及び、光モジュール 図000005
  • 特許6641765-光通信装置、及び、光モジュール 図000006
  • 特許6641765-光通信装置、及び、光モジュール 図000007
  • 特許6641765-光通信装置、及び、光モジュール 図000008
  • 特許6641765-光通信装置、及び、光モジュール 図000009
  • 特許6641765-光通信装置、及び、光モジュール 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6641765
(24)【登録日】2020年1月8日
(45)【発行日】2020年2月5日
(54)【発明の名称】光通信装置、及び、光モジュール
(51)【国際特許分類】
   G02B 6/12 20060101AFI20200127BHJP
   H01L 31/0232 20140101ALI20200127BHJP
   H01L 31/10 20060101ALI20200127BHJP
   G02B 6/122 20060101ALI20200127BHJP
【FI】
   G02B6/12 301
   H01L31/02 D
   H01L31/10 A
   G02B6/122
【請求項の数】5
【全頁数】14
(21)【出願番号】特願2015-154885(P2015-154885)
(22)【出願日】2015年8月5日
(65)【公開番号】特開2017-32901(P2017-32901A)
(43)【公開日】2017年2月9日
【審査請求日】2018年5月1日
(73)【特許権者】
【識別番号】309015134
【氏名又は名称】富士通オプティカルコンポーネンツ株式会社
(74)【代理人】
【識別番号】100092978
【弁理士】
【氏名又は名称】真田 有
(72)【発明者】
【氏名】杉山 昌樹
【審査官】 奥村 政人
(56)【参考文献】
【文献】 特開2012−256869(JP,A)
【文献】 国際公開第2014/171005(WO,A1)
【文献】 米国特許出願公開第2009/0022500(US,A1)
【文献】 特開2008−147209(JP,A)
【文献】 特開2011−027769(JP,A)
【文献】 特表2007−501448(JP,A)
【文献】 特開2011−076086(JP,A)
【文献】 特開2014−165292(JP,A)
【文献】 特開2001−042149(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 6/12− 6/14
H01L 31/00−31/02
H01L 31/08−31/10
H01L 31/18
(57)【特許請求の範囲】
【請求項1】
支持基板と、
前記支持基板上に形成されるとともに酸化シリコン或いは酸化シリコンを含む材料からなる第1のクラッド層、前記第1のクラッド層上に形成された第2のクラッド層、及び、前記第2のクラッド層内の位置或いは前記第1のクラッド層と前記第2のクラッド層に挟まれた位置に形成されるとともにシリコン或いはシリコンを含む材料からなるコアを有する光導波路と、
入力導波路と出力導波路とを有し、前記コアの一部に接するとともに、前記コアを通過する光の強度を検出する検出器と、
を有し、
前記検出器は、前記コアと接することにより前記コアとともにフォトダイオードを形成する半導体と、前記フォトダイオードに電圧を印加する電極と、を備え、
前記半導体は、前記コアが光を伝送する伝送方向に沿って、前記光導波路の屈折率を連続して変化させる形状を有し、
前記半導体は、
前記伝送方向における中央部である中央基部と、
前記伝送方向における前記中央基部を挟んだ両端部に、前記伝送方向に直交する平面による前記半導体の断面における、前記半導体と前記コアとの境界に沿った幅方向における前記半導体の長さが前記伝送方向に沿って連続して変化するテーパー部とを備える、
光通信装置。
【請求項2】
請求項1に記載の光通信装置であって、
前記コアは、
前記コアが光を伝送する方向に直交する平面による前記コアの断面において長方形状を有する基部と、
前記コアの前記断面において、前記基部が有する第1の辺の中央部にて前記第1の辺に接するとともに長方形状を有するリブ部と、
を備える、光通信装置。
【請求項3】
請求項2に記載の光通信装置であって、
前記検出器は、前記リブ部と接することにより前記コアとともにフォトダイオードを形成する半導体と、前記フォトダイオードに電圧を印加する電極と、を備える、光通信装置。
【請求項4】
請求項1乃至請求項のいずれか一項に記載の光通信装置であって、
前記光導波路に入力される光の強度を調整する調整器と、
前記検出された光の強度に基づいて前記調整器を制御する制御器と、
を備える、光通信装置。
【請求項5】
支持基板と、
前記支持基板上に形成されるとともに酸化シリコン或いは酸化シリコンを含む材料からなる第1のクラッド層、前記第1のクラッド層上に形成された第2のクラッド層、及び、前記第2のクラッド層内の位置或いは前記第1のクラッド層と前記第2のクラッド層に挟まれた位置に形成されるとともにシリコン或いはシリコンを含む材料からなるコアを有する光導波路と、
入力導波路と出力導波路とを有し、前記コアの一部に接するとともに、前記コアを通過する光の強度を検出する検出器と
を有し、
前記検出器は、前記コアと接することにより前記コアとともにフォトダイオードを形成する半導体と、前記フォトダイオードに電圧を印加する電極と、を備え、
前記半導体は、前記コアが光を伝送する伝送方向に沿って、前記光導波路の屈折率を連続して変化させる形状を有し、
前記半導体は、
前記伝送方向における中央部である中央基部と、
前記伝送方向における前記中央基部を挟んだ両端部に、前記伝送方向に直交する平面による前記半導体の断面における、前記半導体と前記コアとの境界に沿った幅方向における前記半導体の長さが前記伝送方向に沿って連続して変化するテーパー部とを備える、
光モジュール。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光信号を送信又は受信する光通信装置、及び、光モジュールに関する。
【背景技術】
【0002】
シリコン材料からなるコアと該コアを覆う酸化シリコンとを有する光導波路を備える光通信装置が知られている(例えば、特許文献1を参照)。例えば、図1に表されるように、光通信装置90は、外部の光素子へ光を伝送する光導波路91と、光導波路91から光を分岐するカプラ92と、カプラ92によって分岐された光を導く光導波路93と、光導波路93により導かれた光の強度を検出する検出器94と、を備える。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2011−27769号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
シリコン材料からなるコアを有する光導波路は、コアを構成するシリコンと、クラッドを構成する酸化シリコンとの間で、光の屈折率の変化が大きい。そのため、光の閉じ込めが強く、コアの壁面で光の散乱が生じ易くなる。このような光の散乱により、光導波路の単位長さ当たりの光の散乱による損失(所謂、散乱損失)が大きくなる。
【0005】
従って、光導波路93における光の損失も大きくなるため、カプラ92での(検出器94に対する)分岐光として大きな光の量が必要になるという問題がある。
【0006】
一つの側面として、本発明の目的の一つは、光通信装置における光の損失を抑制することにある。
【課題を解決するための手段】
【0007】
一つの側面では、光通信装置は、支持基板と、光導波路と、検出器と、を有する。光導波路は、支持基板上に形成されるとともに酸化シリコン或いは酸化シリコンを含む材料からなる第1のクラッド層、第1のクラッド層上に形成された第2のクラッド層、及び、第2のクラッド層内の位置或いは第1のクラッド層と第2のクラッド層に挟まれた位置に形成されるとともにシリコン或いはシリコンを含む材料からなるコアを有する。検出器は、入力導波路と出力導波路とを有し、コアの一部に接するとともに、コアを通過する光の強度を検出する。検出器は、コアと接することによりコアとともにフォトダイオードを形成する半導体と、フォトダイオードに電圧を印加する電極と、を備える。半導体は、コアが光を伝送する伝送方向に沿って、光導波路の屈折率を連続して変化させる形状を有する。また、半導体は、伝送方向における中央部である中央基部と、伝送方向における中央基部を挟んだ両端部に、伝送方向に直交する平面による半導体の断面における、半導体とコアとの境界に沿った幅方向における半導体の長さが伝送方向に沿って連続して変化するテーパー部とを備える。
【発明の効果】
【0008】
光通信装置における光の損失を抑制する。
【図面の簡単な説明】
【0009】
図1】光通信装置の構成の一例を表すブロック図である。
図2】第1実施形態の受信装置の構成の一例を表すブロック図である。
図3図2の光導波路の構成の一例を表す図である。
図4図2の検出器の構成の一例を表す図である。
図5図2の検出器の構成の一例を表す図である。
図6】第1実施形態の変形例の検出器の構成の一例を表す図である。
図7】第1実施形態の変形例の光導波路の構成の一例を表す図である。
図8】第1実施形態の変形例の検出器の構成の一例を表す図である。
図9】第1実施形態の変形例の光導波路の構成の一例を表す図である。
【発明を実施するための形態】
【0010】
以下、図面を参照して実施形態を説明する。ただし、以下に説明される実施形態は例示である。従って、以下に明示しない種々の変形や技術が実施形態に適用されることは排除されない。なお、以下の実施形態で用いる図面において、同一の符号を付した部分は、変更又は変形が明示されない限り、同一若しくは同様の部分を表す。
【0011】
<第1実施形態>
(構成)
例えば、図2に表されるように、第1実施形態の受信装置1は、局部発振器(LO;Local Oscillator)10と、光集積回路20と、信号処理回路30と、を備える。受信装置1は、光通信装置の一例である。光集積回路20は、光モジュールの一例である。本例では、受信装置1は、デジタルコヒーレント光通信方式に従って、受信した光信号を処理する。例えば、デジタルコヒーレント光通信方式は、変調方式として、偏波多重変調方式を用いる。偏波多重変調方式は、例えば、DP−QPSK(Dual Polarization Quadrature Phase Shift Keying)方式である。
【0012】
LO10は、局部発振光を出力する。LO10は、半導体レーザ、又は、レーザダイオードである。例えば、半導体レーザは、分布帰還型レーザであってよい。
本例では、光集積回路20は、モノリシック光集積回路である。光集積回路20は、光導波路21と、VOA22と、検出器23と、PBS24と、PR25と、BS26と、2つの光90度ハイブリッド27a及び27bと、2つの光電変換器28a及び28bと、制御器29と、を備える。
【0013】
VOAは、Variable Optical Attenuatorの略記である。VOA22は、可変光減衰器と表されてよい。PBSは、Polarizing Beam Splitterの略記である。PBS24は、偏光ビームスプリッタと表されてよい。PRは、Polarization Rotatorの略記である。PR25は、偏波回転器と表されてよい。BSは、Beam Splitterの略記である。BS26は、ビームスプリッタと表されてよい。
【0014】
本例では、光導波路21は、シリコン細線光導波路である。光導波路21は、VOA22とPBS24とを接続する。更に、光導波路21は、PBS24と、PR25及び光90度ハイブリッド27bのそれぞれと、を接続する。加えて、光導波路21は、PR25と光90度ハイブリッド27aとを接続する。更に、光導波路21は、光90度ハイブリッド27aと光電変換器28aとを接続する。
【0015】
加えて、光導波路21は、BS26と、光90度ハイブリッド27a及び光90度ハイブリッド27bのそれぞれと、を接続する。更に、光導波路21は、光90度ハイブリッド27bと光電変換器28bとを接続する。
【0016】
例えば、図3に表されるように、X軸、Y軸及びZ軸を有する右手系の直交座標系を用いて、光導波路21について説明を加える。本例では、光導波路21は、Z軸に沿った方向(換言すると、Z軸方向)にて光を伝送する。更に、本例では、光集積回路20が備える基板201は、Y軸に沿った方向(換言すると、Y軸方向)と直交する。
【0017】
例えば、図3に表されるように、光導波路21は、コア211と、第1のクラッド212と、第2のクラッド213と、を備える。第1のクラッド212は、第1のクラッド層と表されてもよい。第2のクラッド213は、第2のクラッド層と表されてもよい。
【0018】
本例では、基板201は、シリコン(Si)或いはシリコン(Si)を含む材料からなる。例えば、基板201は、単結晶シリコンからなってよい。基板201は、支持基板と表されてもよい。
第1のクラッド212は、基板201上に形成される。具体的には、基板201の表面上に略同じ厚さで(基板201と平行に)形成されている。即ち、第1のクラッド212は、基板201と接する平板形状を有している。本例では、第1のクラッド212は、シリコン酸化物或いはシリコン酸化物を含む材料からなる。例えば、シリコン酸化物は、二酸化ケイ素(SiO)であってよい。
【0019】
コア211は、シリコン(Si)或いはシリコン(Si)を含む材料からなる。例えば、コア211は、単結晶シリコンからなってよい。コア211は、ベースとなる基部211aと、基部211aから第1のクラッド212とは反対方向に突出したリブ部211bと、を備える。
【0020】
基部211aは、第1のクラッド212と平行であり、且つ、第1のクラッド212と接する平板形状を有する。基部211aは、Z軸方向に直交する平面(換言すると、XY平面)によるコア211の断面において長方形状を有する。XY平面によるコア211の断面において、基部211aが有する長方形状は、X軸に沿った方向(換言すると、X軸方向)において長辺を有し、且つ、Y軸方向において短辺を有する。XY平面によるコア211の断面における基部211aの長辺の長さは、基部211aの幅と表されてよい。
【0021】
リブ部211bは、基部211aと平行であり、且つ、基部211aと接する平板形状を有する。リブ部211bは、XY平面によるコア211の断面において、基部211aが有する長辺の中央部にて当該長辺に接するとともに長方形状を有する。リブ部211bが、XY平面によるコア211の断面において接する基部211aの長辺は、第1の辺の一例である。
【0022】
XY平面によるコア211の断面において、リブ部211bが有する長方形状は、X軸方向において長辺を有し、且つ、Y軸方向において短辺を有する。XY平面によるコア211の断面において、リブ部211bの長辺の中点は、基部211aの長辺の中点を通り且つY軸に平行な直線上に位置する。XY平面によるコア211の断面におけるリブ部211bの長辺の長さは、リブ部211bの幅と表されてよい。リブ部211bの幅は、基部211aの幅よりも短い。
【0023】
第2のクラッド213は、例えば、第1のクラッド212上に形成される。具体的には、第1のクラッド212の表面上に略同じ厚さで(第1のクラッド201と平行に)形成されている。即ち、第2のクラッド213は、第1のクラッド212と接する平板形状を有している。
本例では、第2のクラッド213は、シリコン酸化物或いはシリコン酸化物を含む材料からなる。例えば、シリコン酸化物は、二酸化ケイ素(SiO)であってよい。
第2のクラッド213は、第1のクラッド212と接する側の表面に、コア211と同じ形状を有する溝213aを有する。第2のクラッド213の溝213aは、コア211と接する。このようにして、コア211は、第1のクラッド212と第2のクラッド213との間に位置し、第1のクラッド212及び第2のクラッド213により被覆される。
【0024】
光導波路21は、シリコンからなる支持基板と、SOI(Silicon On Insulator)と、支持基板及びSOIの間に介在する埋め込み酸化膜(BOX;Buried Oxide)と、を備えるSOI基板を加工することにより製造されてよい。この場合、基板201は、支持基板であってよい。また、この場合、第1のクラッド212は、埋め込み酸化膜であってよい。また、この場合、コア211は、SOIを加工することにより形成されてよい。
本例では、光導波路21は、リブ型光導波路と表されてよい。
【0025】
VOA22には、通信ケーブルFBが接続される。本例では、通信ケーブルFBは、光ファイバを備える。例えば、光ファイバは、SMF(Single Mode Fiber)である。
VOA22は、通信ケーブルFBを介して入力された光を、制御器29による制御に従って減衰させ、減衰させられた光を光導波路21を介してPBS24へ出力する。VOA22は、VOA22とPBS24とを接続する光導波路21に入力される光の強度を調整する調整器の一例である。
【0026】
検出器23は、VOA22とPBS24とを接続する光導波路21に設けられる。換言すると、検出器23は、第1の光素子としてのVOA22と、第2の光素子としてのPBS24と、の間の位置にて光導波路21に設けられる。
検出器23は、光導波路21のコア211が伝送する光の強度(又は、エネルギー)を検出する。PBS24は、光素子の一例である。
【0027】
例えば、図4に表されるように、X軸、Y軸及びZ軸を有する右手系の直交座標系を用いて、検出器23について説明を加える。本例でも、図3と同様に、光導波路21は、Z軸方向にて光を伝送する。更に、図3と同様に、光集積回路20が備える基板201は、Y軸方向と直交する。
【0028】
例えば、図4に表されるように、検出器23は、半導体231と、電極232a及び232bと、を備える。本例では、半導体231は、ゲルマニウム(Ge)からなる。本例では、電極232a及び232bは、アルミニウム(Al)からなる。
【0029】
半導体231は、リブ部211bと平行であり、且つ、リブ部211bと接する平板形状を有する。半導体231は、XY平面による検出器23の断面において、リブ部211bが有する長辺に接するとともに長方形状を有する。
【0030】
XY平面による検出器23の断面において、半導体231が有する長方形状は、X軸方向において長辺を有し、且つ、Y軸方向において短辺を有する。XY平面による検出器23の断面において、半導体231の長辺の中点は、リブ部211bの長辺の中点を通り且つY軸に平行な直線上に位置する。XY平面による検出器23の断面における半導体231の長辺の長さは、半導体231の幅と表されてよい。半導体231の幅は、リブ部211bの幅と等しい。半導体231の幅は、半導体231とコア211との境界に沿った方向(本例では、X軸方向)における半導体231の長さの一例である。
【0031】
本例では、図5に表されるように、半導体231のZ軸方向における長さは、Z軸方向における光導波路21の長さ(本例では、VOA22とPBS24との間の距離)よりも短い。図5は、図4のY軸に沿った、Y軸の負の方向(換言すると、Y軸負方向)にてコア211及び半導体231を見た図である。
【0032】
更に、本例では、図5に表されるように、半導体231の幅は、Z軸方向に沿って連続して変化する。このようにして、半導体231は、コア211が光を伝送する方向に沿って、光導波路21の屈折率を連続して変化させる形状を有する。
【0033】
本例では、半導体231は、Z軸方向における中央部である基部231aと、Z軸方向における端部であるテーパー部231bと、を備える。基部231aのX軸方向における長さ(換言すると、基部231aの幅)は、リブ部211bの幅と等しい。テーパー部231bのX軸方向における長さ(換言すると、テーパー部231bの幅)は、リブ部211bの幅から、基部231aからの距離に比例した長さを減じた長さに等しい。
【0034】
このようにして、半導体231は、リブ部211bと接することによりコア211とともにフォトダイオードを形成する。
【0035】
例えば、図4に表されるように、電極232aは、半導体231に接し、且つ、コア211に接しない。更に、電極232bは、コア211のうちの基部211aに接し、且つ、半導体231に接しない。本例では、電極232aと、電極232bと、は、互いに異なる電位に制御される。これにより、電極232a及び232bは、フォトダイオードに電圧を印加する。
【0036】
例えば、半導体231のZ軸方向における長さは、コア211によって伝送される光の強度(又は、エネルギー)に対する、フォトダイオードによって消費される強度(又は、エネルギー)の割合が所定の目標値に一致するように設定される。例えば、目標値は、3%から20%までの値であり、より好ましくは、5%から10%までの値である。
【0037】
図2に表されるように、PBS24は、VOA22から入力された光を、互いに直交する、第1及び第2の偏波に分離する。本例では、第1の偏波、及び、第2の偏波は、それぞれ、TM(Transverse Magnetic)波、及び、TE(Transverse Electric)波である。PBS24は、第1の偏波をPR25へ出力するとともに、第2の偏波を光90度ハイブリッド27bへ出力する。
【0038】
PR25は、PBS24から入力された第1の偏波の偏波面を90度だけ回転させ、偏波面が回転させられた第1の偏波を光90度ハイブリッド27aへ出力する。
【0039】
BS26には、LO10により出力された局部発振光が入力される。BS26は、入力された局部発振光を2つの光に分割し、分割した2つの光を光90度ハイブリッド27a及び27bにそれぞれ出力する。
【0040】
光90度ハイブリッド27aは、PR25から入力された光と、BS26から入力された光と、を合波し、合波した信号を光電変換器28aへ出力する。光の合波は、光の混合と表されてもよい。本例では、光90度ハイブリッド27aは、BS26から入力された光を2つの光に分割し、分割した2つの光を、光の位相が互いに90度だけ異なる2つの位置にて、PR25から入力された光とそれぞれ合波する。
【0041】
光90度ハイブリッド27bは、PBS24から入力された光と、BS26から入力された光と、を合波し、合波した信号を光電変換器28bへ出力する。本例では、光90度ハイブリッド27bは、BS26から入力された光を2つの光に分割し、分割した2つの光を、光の位相が互いに90度だけ異なる2つの位置にて、PBS24から入力された光とそれぞれ合波する。
【0042】
光電変換器28aは、光90度ハイブリッド27aから入力された信号のそれぞれを、光信号から電気信号に変換し、変換された信号を信号処理回路30へ出力する。光信号から電気信号への変換は、光電変換と表されてよい。同様に、光電変換器28bは、光90度ハイブリッド27bから入力された信号のそれぞれを、光信号から電気信号に変換し、変換された信号を信号処理回路30へ出力する。
【0043】
制御器29は、検出器23により検出された光の強度(又は、エネルギー)に基づいて、VOA22を制御する。例えば、制御器29は、検出器23により検出される光の強度が所定の目標値に一致するように、VOA22における減衰率をフィードバック制御する。減衰率は、VOA22に入力される光の強度(又は、エネルギー)に対する、VOA22から出力される光の強度(又は、エネルギー)の割合である。
【0044】
信号処理回路30は、光集積回路20から入力された信号を処理する。
【0045】
(動作)
受信装置1の動作について説明する。
VOA22には、通信ケーブルFBを介して光が入力される。VOA22は、入力された光を、制御器29による制御に従って減衰させ、減衰させられた光を光導波路21を介してPBS24へ出力する。
【0046】
検出器23は、光導波路21がVOA22からPBS24へ伝送する光の強度を検出する。本例では、検出器23は、光導波路21が伝送する光の強度(又は、エネルギー)の一部を電気信号(例えば、電流)に変換することにより、光の強度を検出する。
制御器29は、検出器23により検出された光の強度に基づいて、VOA22の減衰率をフィードバック制御する。
【0047】
PBS24は、VOA22によって減衰させられた光を、互いに直交する、第1及び第2の偏波に分離し、第1の偏波をPR25へ出力するとともに、第2の偏波を光90度ハイブリッド27bへ出力する。
【0048】
PR25は、PBS24から入力された第1の偏波の偏波面を90度だけ回転させ、偏波面が回転させられた第1の偏波を光90度ハイブリッド27aへ出力する。
BS26には、LO10により出力された局部発振光が入力される。BS26は、入力された局部発振光を2つの光に分割し、分割した2つの光を光90度ハイブリッド27a及び27bにそれぞれ出力する。
【0049】
光90度ハイブリッド27aは、PR25から入力された光と、BS26から入力された光と、を合波し、合波した信号を光電変換器28aへ出力する。同様に、光90度ハイブリッド27bは、PBS24から入力された光と、BS26から入力された光と、を合波し、合波した信号を光電変換器28bへ出力する。
【0050】
光電変換器28aは、光90度ハイブリッド27aから入力された信号のそれぞれを、光信号から電気信号に変換し、変換された信号を信号処理回路30へ出力する。同様に、光電変換器28bは、光90度ハイブリッド27bから入力された信号のそれぞれを、光信号から電気信号に変換し、変換された信号を信号処理回路30へ出力する。
【0051】
信号処理回路30は、光電変換器28a及び28bから入力された信号を処理する。
このようにして、受信装置1は、通信ケーブルFBを介して入力された光を、デジタルコヒーレント光通信方式に従って処理する。
【0052】
以上、説明したように、第1実施形態の受信装置1は、支持基板201と、光導波路21と、検出器23と、を有する。光導波路21は、支持基板201上に形成されるとともに酸化シリコン或いは酸化シリコンを含む材料からなる第1のクラッド層212、第1のクラッド層212上に形成された第2のクラッド層213、及び、第2のクラッド層213内の位置或いは第1のクラッド層212と第2のクラッド層213に挟まれた位置に形成されるとともにシリコン或いはシリコンを含む材料からなるコア211を有する。検出器23は、コア211の一部に接するとともに、コア211を通過する光の強度を検出する。
【0053】
これによれば、カプラを用いることなく、光導波路21が伝送する光の強度を検出できる。従って、カプラにおける散乱損失が生じないので、光集積回路20における光の損失を抑制できる。
【0054】
また、例えば、カプラを用いる光集積回路においては、カプラにより分岐された光が伝搬する方向に対して、検出器の位置及び回転角を適切に調整しなければ、高い精度にて光の強度を検出できないことがある。これに対し、光集積回路20によれば、光の強度を高い精度にて検出できる。
【0055】
更に、第1実施形態において、コア211の基部211aは、コア211が光を伝送する方向に直交する平面によるコア211の断面において長方形状を有する。更に、コア211のリブ部211bは、コア211の上記断面において、基部211aが有する第1の辺の中央部にて当該第1の辺に接するとともに長方形状を有する。
【0056】
これによれば、コア211が基部211aのみを備える場合(換言すると、光導波路がチャネル型光導波路である場合)と比較して、光導波路21による光の伝搬に伴って生じる光の損失(換言すると、伝搬損失)を抑制できる。この結果、光集積回路20における光の損失を抑制できる。
【0057】
更に、第1実施形態において、検出器23は、リブ部211bと接することによりコア211とともにフォトダイオードを形成する半導体231と、フォトダイオードに電圧を印加する電極232a及び232bと、を備える。
【0058】
更に、第1実施形態において、半導体231は、コア211が光を伝送する方向に沿って、光導波路21の屈折率を連続して変化させる形状を有する。
【0059】
コアが光を伝送する方向に沿って、光導波路の屈折率が不連続に変化する場合、光導波路のうちの、当該屈折率が不連続に変化する位置における散乱損失が大きくなりやすい。これに対し、光集積回路20によれば、光導波路21における散乱損失を抑制できるので、光集積回路20における光の損失を抑制できる。
【0060】
更に、第1実施形態において、コア211が光を伝送する方向に直交する平面による半導体231の断面における、半導体231とコア211との境界に沿った方向における半導体231の長さは、コア211が光を伝送する方向に沿って連続して変化する。
【0061】
これによれば、コア211が光を伝送する方向に沿って、光導波路21の屈折率を連続して変化させることができる。これにより、光集積回路20における光の損失を抑制できる。
【0062】
なお、図6に表されるように、検出器23は、半導体231に代えて、半導体231Aを備えてもよい。半導体231Aの幅は、Z軸方向に沿って不連続に変化する。本例では、半導体231Aの幅は、リブ部211bの幅と等しい。
【0063】
また、図7に表されるように、光導波路21は、コア211に代えて、コア211Aを備えてもよい。この場合、第2のクラッド213は、溝213aに代えて、溝213aAを備えてよい。
【0064】
コア211Aは、第1のクラッド212と平行であり、且つ、第1のクラッド212と接する平板形状を有する。コア211Aは、XY平面によるコア211Aの断面において長方形状を有する。XY平面によるコア211Aの断面において、コア211Aが有する長方形状は、X軸方向において長辺を有し、且つ、Y軸方向において短辺を有する。XY平面によるコア211Aの断面におけるコア211Aの長辺の長さは、コア211Aの幅と表されてよい。
【0065】
溝213aAは、XY平面によるコア211Aの断面においてコア211Aと同じ形状を有する。第2のクラッド213の溝213aAは、コア211Aと接する。このようにして、コア211Aは、第1のクラッド212及び第2のクラッド213により被覆される。
この場合、光導波路21は、チャネル型光導波路と表されてよい。
【0066】
更に、この場合、図8に表されるように、半導体231は、XY平面による検出器23の断面において、コア211Aが有する長辺に接するとともに長方形状を有する。XY平面による検出器23の断面において、半導体231の長辺の中点は、コア211Aの長辺の中点を通り且つY軸に平行な直線上に位置する。XY平面による検出器23の断面における半導体231の長辺の長さは、半導体231の幅と表されてよい。半導体231の幅は、コア211Aの幅よりも短い。半導体231の幅は、半導体231とコア211Aとの境界に沿った方向(本例では、X軸方向)における半導体231の長さの一例である。
【0067】
更に、この場合、図8に表されるように、電極232aは、半導体231に接し、且つ、コア211Aに接しない。更に、電極232bは、コア211Aに接し、且つ、半導体231に接しない。
【0068】
光導波路21としてチャネル型光導波路を用いた場合であっても、カプラを用いることなく、光導波路21が伝送する光の強度を検出できる。従って、カプラにおける散乱損失が生じないので、光集積回路20における光の損失を抑制できる。
【0069】
また、図9に表されるように、第2のクラッド213は、溝213aに代えて、Z軸に沿った方向にて第2のクラッド213を貫通する貫通孔213bを有する。貫通孔213bは、コア211と同じ形状を有する。コア211は、貫通孔213b内に位置する。このようにして、コア211は、第2のクラッド213の内部に位置し、第2のクラッド213により被覆される。この場合であっても、カプラを用いることなく、光導波路21が伝送する光の強度を検出できる。従って、カプラにおける散乱損失が生じないので、光集積回路20における光の損失を抑制できる。
【0070】
なお、第1実施形態の光集積回路20は、光信号を受信する受信装置1に適用されている。ところで、光集積回路20は、光信号を送信する送信装置に適用されてもよい。この場合、光集積回路20は、VOA22に代えて、制御器29による制御に従って、光を増幅する増幅器を備え、検出器23は、増幅器によって増幅された光の強度を検出してよい。更に、この場合、制御器29は、検出器23により検出された光の強度に基づいて増幅器における増幅率を制御してよい。増幅率は、増幅率は、増幅器に入力される光の強度(又は、エネルギー)に対する、増幅器から出力される光の強度(又は、エネルギー)の割合である。この場合、増幅器は、調整器の一例である。
【0071】
この場合、例えば、増幅器には、変調器により変調された光が入力されてよい。この場合、例えば、増幅器は、増幅した光を、光導波路を介して光素子(例えば、光90度ハイブリッド)へ出力してよい。
また、この場合、例えば、増幅器には、レーザ(例えば、波長可変レーザ)により出力された光が入力されてよい。この場合、例えば、増幅器は、増幅した光を、光導波路を介して光素子(例えば、変調器)へ出力してよい。
【符号の説明】
【0072】
1 受信装置
10 LO
20 光集積回路
201 基板
21 光導波路
211,211A コア
211a 基部
211b リブ部
212 第1のクラッド
213 第2のクラッド
213a,213aA 溝
213b 貫通孔
22 VOA
23 検出器
231,231A 半導体
231a 基部
231b テーパー部
232a,232b 電極
24 PBS
25 PR
26 BS
27a,27b 光90度ハイブリッド
28a,28b 光電変換器
29 制御器
30 信号処理回路
90 光集積回路
91,93 光導波路
92 カプラ
94 検出器
FB 通信ケーブル
図1
図2
図3
図4
図5
図6
図7
図8
図9