特許第6643309号(P6643309)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザイリンクス インコーポレイテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6643309
(24)【登録日】2020年1月8日
(45)【発行日】2020年2月12日
(54)【発明の名称】高速アナログコンパレータ
(51)【国際特許分類】
   H03F 3/45 20060101AFI20200130BHJP
   H03F 3/68 20060101ALI20200130BHJP
【FI】
   H03F3/45
   H03F3/68
【請求項の数】12
【全頁数】24
(21)【出願番号】特願2017-500955(P2017-500955)
(86)(22)【出願日】2015年7月2日
(65)【公表番号】特表2017-521009(P2017-521009A)
(43)【公表日】2017年7月27日
(86)【国際出願番号】US2015038972
(87)【国際公開番号】WO2016007370
(87)【国際公開日】20160114
【審査請求日】2018年5月18日
(31)【優先権主張番号】14/324,858
(32)【優先日】2014年7月7日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】591025439
【氏名又は名称】ザイリンクス インコーポレイテッド
【氏名又は名称原語表記】XILINX INCORPORATED
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林特許業務法人
(72)【発明者】
【氏名】キャリー, デクラン
(72)【発明者】
【氏名】マラード, トーマス
(72)【発明者】
【氏名】スミス, マーク
(72)【発明者】
【氏名】ハドナー, ジェームズ
【審査官】 工藤 一光
(56)【参考文献】
【文献】 特開2010−28809(JP,A)
【文献】 特開2004−297462(JP,A)
【文献】 米国特許出願公開第2009/0295481(US,A1)
【文献】 米国特許出願公開第2007/0096832(US,A1)
【文献】 米国特許第6046638(US,A)
【文献】 特開昭52−5204(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H03F1/22
H03F3/45
H03F3/68
H03K5/04
H03K5/24
(57)【特許請求の範囲】
【請求項1】
バイアス電圧を与えるために入力電圧と基準電圧との間の差を受け取りかつ増幅するように結合された増幅器と、
前記バイアス電圧を受け取るように前記増幅器に結合された第1のコンバータおよび第2のコンバータと、を具備し、
前記第1のコンバータが、
前記増幅器に結合された第1のトランスコンダクタであって、前記第1のトランスコンダクタが第1の差動入力回路、第1の定電流源、および第1のバイアス電流を調節するために前記バイアス電圧を受け取るように構成された第1の調節可能な電流源を有し、前記第1のバイアス電流が前記第1のトランスコンダクタへのテール電流の一部であり、前記第1の差動入力回路が第1の差動入力を受け取り、第1のトランスインピーダンス増幅器負荷の電流を生成するように構成される、第1のトランスコンダクタと、
前記第1のトランスインピーダンス増幅器負荷を与えるために第1のインバータの入力部出力部との間に結合された第1のフィードバックデバイスを有する第1のインバータであって、前記第1のトランスインピーダンス増幅器負荷の電流が前記第1の差動入力回路に結合された前記第1の差動入力および前記第1のバイアス電流によって決定される、第1のインバータと、を備え、
前記第1のインバータの入力ノードが前記第1のトランスコンダクタの出力ノードに結合され、
前記第2のコンバータが、
前記増幅器に結合された第2のトランスコンダクタであって、前記第2のトランスコンダクタが第2の差動入力回路、第2の定電流源、および第2のバイアス電流を調節するために前記バイアス電圧を受け取るように構成された第2の調節可能な電流源を有し、前記第2のバイアス電流が前記第2のトランスコンダクタへのテール電流の一部であり、前記第2の差動入力回路が第2の差動入力を受け取り、第2のトランスインピーダンス増幅器負荷の電流を生成するように構成され、前記第2の差動入力が、反転した極性を有する前記第1の差動入力である、第2のトランスコンダクタと、
前記第2のトランスインピーダンス増幅器負荷を与えるために第2のインバータの入力部出力部との間に結合された第2のフィードバックデバイスを有する第2のインバータであって、前記第2のトランスインピーダンス増幅器負荷の電流が前記第2の差動入力回路に結合された前記第2の差動入力および前記第2のバイアス電流によって決定される、第2のインバータと、
を備え、
前記第2のインバータの入力ノードが前記第2のトランスコンダクタの出力ノードに結合される、装置。
【請求項2】
前記第1のフィードバックデバイスが前記第1のインバータの前記入力部と前記出力部との間に結合された第1の抵抗器を備え、前記第2のフィードバックデバイスが前記第2のインバータの前記入力部と前記出力部との間に結合された第2の抵抗器を備える、請求項1に記載の装置。
【請求項3】
前記第1の抵抗器および前記第2の抵抗器が、相互にしく、各々が、0,000オームよりも大きい、請求項2に記載の装置。
【請求項4】
前記第1のフィードバックデバイスが前記第1のインバータの前記入力部と前記出力部との間に結合された第1のトランジスタを備え、前記第2のフィードバックデバイスが前記第2のインバータの前記入力部と前記出力部との間に結合された第2のトランジスタをえ、前記トランジスタの各々が、前記トランジスタの線形領域で動作する、請求項1に記載の装置。
【請求項5】
前記第1のインバータの第1の出力ポートおよび前記第2のインバータの第2の出力ポートにそれぞれ結合された第3のインバータおよび第4のインバータをさらに備える、請求項1に記載の装置。
【請求項6】
前記第1のトランスコンダクタおよび前記第2のトランスコンダクタが、第1の電源電圧とグランドとの間にバイアスされ、
前記第1のインバータおよび前記第2のインバータが、第2の電源電圧と前記グランドとの間にバイアスされ、
前記第1の電源電圧および前記第2の電源電圧が、異なる電圧レベルである、請求項1に記載の装置。
【請求項7】
前記第1のトランスコンダクタおよび前記第2のトランスコンダクタが、第1の電源電圧とグランドとの間にバイアスされ、
前記第1のインバータおよび前記第2のインバータが、第2の電源電圧と前記グランドとの間にバイアスされ、
前記第1の電源電圧および前記第2の電源電圧が、同じ電圧レベルである、請求項1に記載の装置。
【請求項8】
前記基準電圧を与えるために入力部から出力部へ結合された第3のインバータをさらに備え、
前記第1のインバータ、前記第2のインバータ、および前記第3のインバータが、同じトリップ点を有するように各々構成され、
前記第1のトランスコンダクタおよび前記第2のトランスコンダクタが、第1の電源電圧とグランドとの間にバイアスされ、
前記第1のインバータ、前記第2のインバータ、および前記第3のインバータが、第2の電源電圧と前記グランドとの間にバイアスされる、請求項1に記載の装置。
【請求項9】
バイアス電圧を与えるために入力電圧と基準電圧との間の差を増幅することと、
前記バイアス電圧で第1のトランスコンダクタおよび第2のトランスコンダクタをバイアスすることと、
第1の定電流源および第1の調節可能な電流源を有する前記第1のトランスコンダクタの第1の差動入力回路に第1の差動入力を入力することと、
第2の定電流源および第2の調節可能な電流源を有する前記第2のトランスコンダクタの第2の差動入力回路に第2の差動入力を入力することであって、前記第1の差動入力が、反対の極性を有する前記第2の差動入力である、第2の差動入力を入力すること
前記第1の差動入力回路によって、第1のトランスインピーダンス増幅器負荷へ第1のテール電流の一部を入力するために前記第1のトランスコンダクタの前記第1の差動入力回路の、前記第1のトランスコンダクタへの前記第1のテール電流を生成することであって、前記第1のテール電流の前記一部が前記第1の調節可能な電流源によって決定される、前記第1のテール電流を生成することと、
前記第2の差動入力回路によって、第2のトランスインピーダンス増幅器負荷へ第2のテール電流の一部を入力するために前記第2のトランスコンダクタの前記第2の差動入力回路の、前記第2のトランスコンダクタへの前記第2のテール電流を生成することであって、前記第2のテール電流の前記一部が前記第2の調節可能な電流源によって決定される、前記第2のテール電流を生成することと、
前記第1のトランスインピーダンス増幅器負荷から第1の出力電圧を出力することと、
前記第2のトランスインピーダンス増幅器負荷から第2の出力電圧を出力することと、を含む、方法。
【請求項10】
前記第1のトランスインピーダンス増幅器負荷および前記第2のトランスインピーダンス増幅器負荷が、第1のインバータおよび第2のインバータを用いてそれぞれ与えられ、
前記第1のインバータおよび前記第2のインバータの各々が、前記第1のインバータおよび前記第2のインバータの各々の入力ノードを出力ノードに結合するためそれぞれの抵抗器を含む、請求項9に記載の方法。
【請求項11】
前記第1のトランスインピーダンス増幅器負荷から電圧アベレージャに前記第1の出力電圧をフィードバックすることと、
前記第2のトランスインピーダンス増幅器負荷から前記電圧アベレージャに前記第2の出力電圧をフィードバックすることと、
前記第1の出力電圧および前記第2の出力電圧の平均として、電圧アベレージャを用いて前記入力電圧を生成することと、をさらに含む、請求項10に記載の方法。
【請求項12】
第1の電源電圧で前記第1のインバータおよび前記第2のインバータをバイアスすることと、
前記第1の電源電圧とは異なる第2の電源電圧で前記第1のトランスコンダクタおよび前記第2のトランスコンダクタをバイアスすることと、
前記第1のインバータおよび前記第2のインバータを使用して前記第2の電源電圧から前記第1の電源電圧にレベルシフトすることと、をさらに含む、請求項10に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
下記の説明は、集積回路デバイス(IC)に関する。より詳細には、下記の説明は、IC用の高速アナログコンパレータに関する。
【背景技術】
【0002】
アナログ信号方式は、より高い周波数用途、特に、高速信号処理用途に対してより意味のあるものになってきている。いくつかのアナログ用途では、従来型の非同期式アナログコンパレータを使用することができる。しかしながら、従来型のアナログコンパレータは、制御されていない状態のレイテンシのためにいくつかの高速アナログ用途にとっては遅すぎることがある。さらに、いくつかの従来型の非同期式アナログコンパレータは、回路の帯域幅を制限する高インピーダンスノードを有することがある。したがって、従来型のアナログコンパレータに付随する上に説明した制限のうちの1つまたは複数を克服するアナログコンパレータを提供することが望ましくかつ有用である。
【発明の概要】
【0003】
装置は、一般に電圧変換に関する。このような装置では、増幅器が、バイアス電圧を与えるため入力電圧および基準電圧を受け取るように結合される。第1のコンバータおよび第2のコンバータが、バイアス電圧を受け取るように増幅器に結合される。第1のコンバータは、第1のトランスコンダクタおよび第1のインバータを含む。第1のトランスコンダクタが、第1のバイアス電流を調節するためにバイアス電圧を受け取るように、かつ第1の差動入力を受け取るように増幅器に結合される。第1のインバータは、第1のトランスインピーダンス増幅器負荷を与えるために第1のインバータの入力部から出力部へ結合された第1のフィードバックデバイスを有する。第1のインバータが、第1のトランスコンダクタに結合される。第2のコンバータは、第2のトランスコンダクタおよび第2のインバータを含む。第2のトランスコンダクタは、第2のバイアス電流を調節するためにバイアス電圧を受け取るように、かつ第2の差動入力を受け取るように増幅器に結合される。第2の差動入力は、反転した極性を有する第1の差動入力である。第2のインバータは、第2のトランスインピーダンス増幅器負荷を与えるために第2のインバータの入力部から出力部へ結合された第2のフィードバックデバイスを有する。第2のインバータは、第2のトランスコンダクタに結合される。
【0004】
非同期式アナログコンパレータは、一般に電圧変換に関する。このような非同期式アナログコンパレータでは、増幅器は、バイアス電圧を与えるために入力電圧および基準電圧を受け取るように結合される。第1のコンバータおよび第2のコンバータは、バイアス電圧を受け取るように増幅器の出力ポートに共通に結合される。第1のコンバータは、第1のトランスコンダクタおよび第1のインバータを含む。第1のトランスコンダクタは:バイアス電圧を受け取るように結合された第1の電流源回路と;第1の電流源回路に結合された第1の差動入力回路と;第1の差動入力回路に結合された第1の電流ミラー回路とを含む。第1のトランスコンダクタの第1の差動入力回路は、第1の出力ノードを有する。第1のインバータは、第1のトランスインピーダンス増幅器負荷を与えるために第1のインバータの第1のシリーズの入力部から出力部へ結合された第1のフィードバックデバイスを有する。第1のインバータの第1の入力ノードは、第1のトランスコンダクタの第1の出力ノードに結合される。第2のコンバータは、第2のトランスコンダクタおよび第2のインバータを含む。第2のトランスコンダクタは:バイアス電圧を受け取るように結合された第2の電流源回路と;第2の電流源回路に結合された第2の差動入力回路と;第2の差動入力回路に結合された第2の電流ミラー回路とを含む。第2の差動入力回路は、反転した極性の差動入力を有する第1の差動入力回路である。第2のトランスコンダクタの第2の差動入力回路は、第2の出力ノードを有する。第2のインバータは、第2のトランスインピーダンス増幅器負荷を与えるために第2のインバータの第2のシリーズの入力部から出力部へ結合された第2のフィードバックデバイスを有する。第2のインバータの第2の入力ノードは、第2のトランスコンダクタの第2の出力ノードに結合される。
【0005】
方法は、一般に電圧変換に関する。このような方法では、入力電圧と基準電圧との間の差が、バイアス電圧を与えるために増幅される。第1のトランスコンダクタおよび第2のトランスコンダクタが、バイアス電圧でバイアスされる。第1の差動入力が、第1のトランスコンダクタに入力される。第2の差動入力が、第2のトランスコンダクタに入力される。第1の差動入力は、反対の極性を有する第2の差動入力である。第1の差動入力に関係する第1の電流が、第1のトランスインピーダンス増幅器負荷への第1の電流の一部分の入力のために、第1のトランスコンダクタを用いて生成される。第2の差動入力に関係する第2の電流が、第2のトランスコンダクタへの入力のために、第2のトランスインピーダンス増幅器負荷を用いて生成される。第1の出力電圧が、第1のトランスインピーダンス増幅器負荷から出力される。第2の出力電圧が、第2のトランスインピーダンス増幅器負荷から出力される。
【0006】
他の特徴は、後に続く詳細な説明および特許請求の範囲を考慮して認識されるであろう。
【0007】
添付の図面は、例示的な装置および/または方法を示す。しかしながら、添付の図面は、特許請求の範囲を限定するように見なされるべきではなく、説明および理解のためであるに過ぎない。
【図面の簡単な説明】
【0008】
図1-1】例示的な非同期式アナログコンパレータおよび/またはレベルシフタを示すブロック図である。
図1-2】例示的なコンパレータを示す模式図である。
図1-3】別の例示的なコンパレータを示す模式的/ブロック図である。
図2】例示的なコンパレータの流れを示す流れ図である。
図3】例示的な列状のフィールドプログラマブルゲートアレイ(「FPGA」)アーキテクチャを示す単純化したブロック図である。
【発明を実施するための形態】
【0009】
次に続く説明では、本明細書において説明する具体的な例のより完全な説明を提供するために、数多くの具体的な詳細を記述する。しかしながら、当業者には、1つまたは複数の他の例および/またはこれらの例の変形形態を、下記に与えられるすべての具体的な詳細を用いないで実施することができることは、明らかであるはずである。他の事例では、よく知られている特徴を、本明細書の例の説明を不明瞭にしないように詳細には説明していない。例示を容易にするために、同じアイテムを参照するために、同じ番号ラベルを異なる図において使用する、しかしながら、代替の例では、アイテムは、異なっていてもよい。
【0010】
いくつかの図に例示的に示された例を説明する前に、一般的な導入部を、理解を深めるために提供する。
【0011】
一般に、アナログコンパレータは、クロック式または非同期式のいずれかである。非同期式アナログコンパレータを、さらに詳細に下記に説明する。このようなコンパレータを、低レイテンシまたは低遅延非同期用途において使用することができる。コンパレータは、反転した差動入力の極性を有するが相互にコピーである2つの電圧−電流−電圧コンバータを含む。各電圧−電流−電圧コンバータは、調節可能なテール電流段(「トランスコンダクタ段」)を有するトランスコンダクタを含み、トランスインピーダンス増幅器負荷段(「トランスインピーダンス段」)が続くまたはカスケード接続される。このようなトランスコンダクタ段の出力ノードは、このようなトランスインピーダンス段に結合される。バイアス印加することが、平衡させることを促進するためにこのようなコンバータに与えられ、その結果、トランスコンダクタ段およびトランスインピーダンス段は、静的なオフセットを導入せずに動作することができ、この平衡させることは、このようなコンパレータの最適なバイアス点またはトリップ点をもたらすことができる。各コンバータは、トランスコンダクタ段およびトランスインピーダンス段の両者を含み、その結果、平衡させたときに、これらの段の間のカップリングノードに電流がほとんど流れないまたはまったく流れなくてもよい。しかしながら、静的なオフセットがこのような段への入力に存在する場合には、バイアス状態は、このような静的なオフセットが存在しないかのように残ることがある。実際にトリップ点バイアス型インバータであるこのようなトランスインピーダンス段は、このようなトランスインピーダンス段の入力および出力をカップリングさせるために電流フィードバックを使用するので、低インピーダンス入力を有することができる。バイアス電圧またはバイアス電流を、このようなトリップ点に対してコンバータを平衡させるために使用することができる。
【0012】
これらの点で、高速信号処理用に使用することができる回路を説明する。実装形態では、このような回路を、非同期式アナログコンパレータとして使用することができる。このようなコンパレータは、2つの電圧−電流−電圧コンバータまたは平衡しているバイアスフィードバックループと組み合わされ、かつ静的なオフセットを解消するように結合されたゲイン段を含むことができる。2つの電圧−電流−電圧コンバータを相互に反転した入力端子の極性およびバイアス制御ループと組み合わせることによって、差動入力信号が平衡しているか否かに拘わらず最適なバイアス点またはトリップ点で、CMOSと互換性のある出力段を維持することができ、何らかの線形性制限に従うことができる。このように、速い応答時間を有する回路を、非同期式回路に関する短い制御されていない状態のレイテンシで使うことができる。
【0013】
上記の一般的な理解に留意して、非同期式アナログコンパレータに関する様々な構成を、下記に一般的に説明する。
【0014】
図1−1は、例示的な非同期式アナログコンパレータおよび/またはレベルシフタ100を示すブロック図である。わかりやすいように、限定ではなく例として、非同期式アナログコンパレータおよび/またはレベルシフタ100を、「コンパレータ」100としてさらに説明する。
【0015】
コンパレータ100を、差動アナログコンパレータとすることができる。コンパレータ100を、差動入力117を受け取るように結合することができ、差動入力は、プラス側またはプラスレール入力電圧117Pおよびマイナス側またはマイナスレール入力電圧117Mを含むことができる。下記に追加して詳細に説明するように、コンパレータ100を平衡型、低遅延コンパレータとすることができる。しかしながら、より一般的に、このようなコンパレータ100を、限定ではなく、高速ワイアレス通信およびワイアライン通信を含む多様なアナログ信号処理用途において使用することができる。このようなコンパレータ100、またはコンパレータの回路トポロジを、高速レベルシフティング用に、低デューティサイクル歪み(「DCD」)電流モードロジック(「CML」)信号チェーンに、および/または低雑音CML信号チェーンに使用することができる。
【0016】
これらの点で、本明細書において説明するような回路は、差動入力段および作動出力段が必ずしも同じ電源電圧レベルである必要がないので、高速レベルシフタとして有用であり得る。トランスコンダクタンス入力段とトランスインピーダンス出力段との間のインターフェースが電流モードであるので、異なる電源レールをこれらの段に対して使用することができる。本明細書において説明するような回路は、小さな信号CMLから大きなスイングCMOSまで効率的に行うために2つの段だけを使用することができるという理由で、低雑音設計と互換性があるので有用であり得る。段の数を少なくすることができ、よりわずかな雑音寄与という結果をもたらす。本明細書において説明するような回路は、バイアス構成の平衡の取れた性質が、出力段をトリップ点近くで最適にバイアスすることができることを意味するという理由で、低DCD CMLチェーン用に有用であり得る。このように、差動アナログコンパレータ100を、わかりやすいようにかつ限定ではなく説明する。
【0017】
コンパレータ100を、電源電圧バス109および148でバイアスすることができ、下記に追加して詳細に説明するように、電源電圧バスは、同じ電圧レベルであっても異なる電圧レベルであってもよい。コンパレータ100を、グランド110に結合することができ、下記に追加して詳細に説明するように、コンパレータ100の平衡を調節するためにバイアス電圧102を受け取るように結合することができる。コンパレータ100は、出力電圧147−1および出力電圧147−2を有する差動出力147を与えることができる。
【0018】
高速信号方式に関して、入力電圧117Pおよび117Mは、共通モード電圧用の小さなスイング、すなわち、この例では電源電圧レベルおよびグランドの十分に範囲内の小さなスイングを有することができる。この例では、入力電圧117Pおよび117Mは、差動入力117の動作の線形領域に沿っていてもよく、その例を、下記に追加して詳細に説明する。下記に追加して詳細に説明するように、相互に反転した極性を有しそれぞれの差動入力のNMOSトランジスタのゲートに与えられる入力電圧117Pおよび117Mに関して、入力電圧117Pおよび117Mを、例えば、1VのVddに対してほぼ0.50Vから0.90Vの範囲など、このようなNMOSトランジスタをバイアスするために使用する電源電圧レベルのほぼ50から90パーセントの範囲内にすることができる。この適用は、入力電圧117Pと117Mとの間の小さな差に対してとすることができ、小さな差はコンパレータ100に対して「低タウ」が有用である高速用途用であってもよい。「低タウ」は、低遅延またはレイテンシを一般に意味する。しかしながら、入力電圧117Pと117Mとの間の大きな差を使用することができ、そのため例えば、CMOS実装形態についての入力電圧117Pおよび117Mを、ほぼグランドからCMOS電源電圧レベルの範囲内にすることができる。しかしながら、フルCMOSレベルスイングが実施される場合には、コンパレータ100に関する低タウを犠牲にすることができる。一般に、コンパレータ100は、限られた大きさのヘッドルームを有することができ、そのために、コンパレータ100用の共通モード電圧が十分なヘッドルームに対して電源電圧レベルのほぼ50から90パーセントの範囲内である高速用途において、コンパレータ100を使用することができる。
【0019】
図1−2は、例示的なコンパレータ100を示す模式図である。図2は、図1−2または図1−3のコンパレータ100で使用することができる例示的なコンパレータの流れ200を示す流れ図である。したがって、コンパレータ100およびコンパレータの流れ200を、図1−2および図2を同時に参照してさらに説明する。
【0020】
この例では、コンパレータ100は、増幅器101を含む。増幅器101を、入力電圧121および基準電圧122を受け取るように結合することができる。この例では、入力電圧121を、増幅器101のプラスポートに与え、基準電圧122を、増幅器101のマイナスポートに与える。コンパレータ100は、電圧−電流−電圧コンバータ(「コンバータ」)111および電圧−電流−電圧コンバータ(「コンバータ」)112をさらに含み、このようなコンバータ111および112は、共通バイアス入力ノード138で増幅器101の出力ポートに共通に結合されて、増幅器101からバイアス電圧102を受け取る。下記に追加して詳細に説明するように、コンバータ111および112は、反転した差動入力を有するが、一般に相互のコピーであってもよい。このように、コンバータ111および112内の対応するトランジスタを、相互にマッチングさせることができる。この構成では、増幅器101を、出力電圧を与えるために使用する従来型の電圧ゲイン増幅器とすることができる。しかしながら、別の構成では、調節可能な電流源103および104を、(例えば、このような電圧差入力に応じた電圧差入力−増幅電流出力を)トランスコンダクタ増幅器101に取り込むことができ、バイアス電圧102というよりはそれぞれのバイアス電流113および114を与える。
【0021】
バイアス電圧102を、コンバータ111および112のそれぞれ調節可能な電流源103および104に与えることができる。この例では、バイアス電圧102は、正の電圧である(すなわち、グランドまたはゼロボルトよりも低くない)。これらの点で、CMOS増幅器101を、バイアス電圧102に対して、一般にほぼミッドレールの少なくともごくわずかな(de minimis)量のバイアス電圧を与えるように構成することができ、増幅器101のゲインを保護する。しかしながら、バイアス電圧102は、線形の平衡した状態においてさえ、必ずしも小さい必要がない。より一般的に、バイアス電圧102は、このような電流源103から結果として得られるバイアス電流113または114の大きさとともに、バイアス電圧102によって駆動しようとする電流源103または電流源104の幾何学的形状/サイズに依存することがある。異なる参照番号が調節可能な電流源103および104に対して使用されているとしても、これらの電流源は、それを動作させるために同じ構成および同じサイズのトランジスタを有することができる。このようなバイアス電圧102の値は、限定しないが、このような電流源103を与えるために使用するトランジスタのトランジスタしきい値電圧を含むプロセス変数にさらに依存することがある。これらの点で、入力電圧121が基準電圧122に等しい場合には、出力電圧147−1、147−2を、Vdd/2またはある他の適切な共通モード出力電圧に近くすることができる。コンバータ111および112に対して、それぞれバイアス電流113および114を与えるための電流源回路105−1および電流源回路105−2のそれぞれの調節可能な電流源103および104のn型トランジスタを動作させるために、このようなバイアス電圧102を使用することができる。これらのバイアス電流113および114を、それぞれのテール電流、またはより具体的には全テール電流の一部分と考えることができる。
【0022】
この例では、バイアス電圧102を、正の電源電圧とグランドとの間として生成する、しかしながら、別の構成(例えば、DMOSまたはバイポーラ)では、電力バイアシングを、正の電圧レベルと負の電圧レベルとの間にすることができる。しかしながら、下記に追加して詳細に説明するように、正の電圧を用いるCMOS構成を説明する。このような構成は、単一の電源電圧レベルおよび共通グランドを図1−2のコンパレータ100のすべての回路、ならびに下記に追加して詳細に説明するように図1−3のコンパレータ100のすべての回路に対して使用することを可能にする。
【0023】
281においては、増幅器101は、入力電圧121と基準電圧122との間の差を増幅して、バイアス電圧102を与える。コンパレータ100を平衡させかつ線形に少なくとも近づいた後で、バイアス電圧102は、小さな電圧になろうとする。一般に、この小さなバイアス電圧102は、大きな電圧差と比較して小さな電圧差の間を移動することに関してはほとんど時間がかからないので、コンパレータ100が低タウを有する助けとなる。
【0024】
電圧−電流−電圧コンバータ111は、トランスコンダクタ131およびインバータ141を含む。電圧−電流−電圧コンバータ112は、トランスコンダクタ132およびインバータ142を含む。トランスコンダクタ131は、電流源回路105−1、差動入力回路106−1、および電流ミラー回路107−1を含む。トランスコンダクタ132は、電流源回路105−2、差動入力回路106−2、および電流ミラー回路107−2を含む、282においては、第1のトランスコンダクタ131および第2のトランスコンダクタ132を、両者とも281において与えられたバイアス電圧102でバイアスする。より具体的には、電流源回路105−1および電流源回路105−2のそれぞれの調節可能な電流源103および104を、両者とも281において与えられたバイアス電圧102でバイアスすることができる。
【0025】
この例では、電流ミラー回路107−1および107−2は、各々、一対のp型トランジスタ115および116を含む。電流ミラー回路107−1および107−2の各トランジスタ116は、電源電圧バス109に結合されたソース領域を有することができる。この例では、電源電圧バス109は、Vdd電圧レベルである、しかしながら、Vdd以外の電圧レベルを、他の例では使用することができる。さらに、各電源電圧バス109は、同じ電圧バスであっても異なる電圧バスであってもよいが、各電源電圧バスは、両者とも同じ電圧レベルである。電流ミラー回路107−1および107−2の各々のトランジスタ115および116を、共通にゲート制御する。電流ミラー回路107−1のトランジスタ116のドレイン領域を、トランジスタ116のゲートならびに入力側ノード118−1に結合し、電流ミラー回路107−2のトランジスタ116のドレイン領域を、トランジスタ116のゲートならびに入力側ノード118−2に結合する。
【0026】
この例では、差動入力回路106−1および106−2は、各々、一対のn型トランジスタ123および124を含む。差動入力回路106−1のトランジスタ123は、入力電圧117Pのプラス側もしくは正側またはレールを受け取るように結合されたゲートを有し、差動入力回路106−1のトランジスタ124は、入力電圧117Mのマイナス側もしくは負側またはレールを受け取るように結合されたゲートを有する。差動入力回路106−2のトランジスタ124は、入力電圧117Pのプラス側もしくは正側またはレールを受け取るように結合されたゲートを有し、差動入力回路106−2のトランジスタ123は、入力電圧117Mのマイナス側もしくは負側またはレールを受け取るように結合されたゲートを有する。組み合わせて、入力電圧117Pおよび117Mは、アナログコンパレータ100への差動入力電圧を与える。
【0027】
283においては、第1の差動入力を第1のトランスコンダクタ131に与える。一般に、283、284における動作と同時に、第2の差動入力を第2のトランスコンダクタ132に与える。特に、入力電圧117Pおよび117Mからの第1の差動入力をトランスコンダクタ131に与え、入力電圧117Pおよび117Mからの第2の差動入力をトランスコンダクタ132に与える。これらの第1および第2の差動入力を、トランスコンダクタ131および132のそれぞれ差動入力回路106−1および106−2に与えるように、相互に反転する。
【0028】
これらの点で、差動入力回路106−1のトランジスタ123のドレイン領域を、トランジスタ123の出力または出力側ノード108−1に結合し、差動入力回路106−2のトランジスタ123のドレイン領域を、トランジスタ123の出力または出力側ノード108−2に結合する。差動入力回路106−1のトランジスタ124のドレイン領域を、入力側ノード118−1に結合し、差動入力回路106−2のトランジスタ124のドレイン領域を、入力側ノード118−2に結合する。差動入力回路106−1のトランジスタ123および124のソース領域を、共通インターリムソースノード119−1に共通に結合し、差動入力回路106−2のトランジスタ123および124のソース領域を、共通インターリムソースノード119−2に共通に結合する。しかしながら、別の実装形態では、別々のインターリムノードを、コンパレータ100の動作の線形領域を増加させるためなどで、ソース縮退構成のためのトランスコンダクタ131および132のトランジスタ123および124用に使用することができる。
【0029】
この例では、電流源回路105−1および105−2は、各々、n型トランジスタ電流源であってもよい一対の電流源を含む。電流源回路105−1の定電流源125を、インターリムノード119−1とグランド110との間に結合し、電流源回路105−2の定電流源125を、インターリムノード119−2とグランド110との間に結合する。電流源回路105−1の調節可能な電流源103を、インターリムノード119−1とグランド110との間に結合し、電流源回路105−2の調節可能な電流源104を、インターリムノード119−2とグランド110との間に結合する。再び、この例では、バイアス電圧102は正の電圧であり、バイアス電圧を、コンバータ111および112について、それぞれバイアス(「テール」)電流113および114を与えるためn型トランジスタの線形領域に調節可能な電流源103および104のn型トランジスタを調節するために使用することができる。これは、コンバータ111および112の動作の平衡した動作のためにテール電流113および114を調節することである。言い換えると、バイアス電流113および114を、コンバータ111および112を平衡させるために使用することができ、増幅器101への電圧入力121および122を相互に極めて近づけることができるので、バイアス電圧102を小さくすることができる。例えば、増幅器101に関して、出力電圧をVdd/2プラスA(Vin−Vref)により与えることができ、Aが増幅器101のゲインであり、Vin−Vrefが増幅器101に与えられる入力電圧の差である。
【0030】
電流源回路105−1および105−2は、電流源回路105−1および105−2の各々の定電流源125と並列に結合された、それぞれ調節可能な電流源103および調節可能な電流源104を含む。各調節可能な電流源103および定電流源125ならびに調節可能な電流源104および定電流源125対により与えられる電流を、トランスコンダクタ131および132の対応するトランスコンダクタについての全テール電流とすることができる。調節可能な電流源103および104により与えられる電流の量は、使用するトランジスタのサイズに依存する。例えば、調節可能な電流源103および104を形成するための大きなNMOSトランジスタは、対応する小さなNMOSトランジスタよりも小さなバイアス電圧102に応じてそれぞれより多くのバイアス電流113および114を配送することができる。このように、大きなNMOSトランジスタは実効的に、より大きなバイアス電流範囲を有することができる。出力側ノード108−1の電圧を、テール電流113の変動に応じて電源電圧とグランドとの間で変えることができ、出力側ノード108−2の電圧を、テール電流114の変動に応じて電源電圧とグランドとの間で変えることができる。
【0031】
コンバータ111および112は、それぞれインバータ141およびインバータ142を含む。インバータ141および142の各々は、インバータの入力部から出力部へ結合されたフィードバックデバイス145を含み、それぞれのトランスインピーダンス増幅器負荷を与える。この例では、このようなフィードバックデバイス145は、抵抗器(「抵抗器145」)である。しかしながら、例えば、デバイスの線形領域で動作するMOSFETなどの他のタイプの線形デバイスを、フィードバックデバイス145として使用することができる。例えば、インバータ141の入力ノード149−1を、トランスコンダクタ131の出力ノード108−1に結合し、インバータ142の入力ノード149−2を、トランスコンダクタ132の出力ノード108−2に結合する。各インバータ141および142は、一対のトランジスタ、すなわち、p型トランジスタ143およびn型トランジスタ144を有する。
【0032】
インバータ141および142の各々のトランジスタ143のソース領域を、電源電圧バス148に結合し、電源電圧バス148を、電源電圧バス109の電源電圧レベルと同じ電源電圧レベルとすることができる。しかしながら、電源電圧バス109および148は、同じ電源電圧バスまたはレール(すなわち、トレース)であっても異なってもよい。このように、インバータ141および142を、レベルシフティングのために使用することができる。インバータ141および142の各々では、トランジスタ143および144の各対のゲートを共通に結合し、それぞれ入力ノード149−1および149−2を形成する。この例では、インバータ141および142内の抵抗器145であるフィードバック構成部品を除いて、インバータ141および142を、図1−3のインバータ220と同じ(すなわち、幾何学的形状/サイズ、極性、しきい値電圧、および他のトランジスタパラメータ)にすることができる。
【0033】
インバータ141および142の各々のトランジスタ144のソース領域を、グランド110に結合する。インバータ141および142の各々では、トランジスタ143および144の各対のドレイン領域を、共通に結合し、それぞれ出力ノード146−1および146−2を形成する。インバータ141では、抵抗器145を、ノード149−1と146−1との間に結合し、トランスインピーダンス増幅器負荷を与え、インバータ142では、抵抗器145を、ノード149−2と146−2との間に結合し、別のトランスインピーダンス増幅器負荷を与える。言い換えると、インバータ141および142は、トランスコンダクタ131および132に与えられたような差動入力117に関するそれぞれのトランスインピーダンス増幅器負荷として作用する。
【0034】
インバータ141および142を、トリップ点バイアス型インバータとすることができ、それぞれ出力側ノード108−1および108−2に結合することは、このようなインバータの各々の入力部から出力部へ結合するそれぞれのフィードバック抵抗器145に起因する低インピーダンス特性を有する。これらの点で、このようなフィードバック抵抗器145は、電流がインバータ141および142の入力部から出力部への電位の変化に対していずれの方向にも流れることを可能にする。低インピーダンス状態は、コンパレータ100が平衡しているときに存在することができる。フィードバックを用いるトリップ点バイアス型インバータ141および142の入力電圧および出力電圧が相互に等しい、すなわち平衡しているときに、このようなインバータ141および142を、最大ゲインおよび感度点にバイアスすることができる。インバータ141および142は、それぞれインバータ141および142からの出力電圧でCMOSへの直接インターフェースをさらに容易にすることができる。
【0035】
コンバータ111の出力電圧147−1を、インバータ141の出力ノード146−1から供給することができ、コンバータ112の出力電圧147−2を、インバータ142の出力ノード146−2から供給することができる。この例では、各抵抗器145は、相互に少なくともほぼ等しく、各々が、ほぼ10,000オーム(「Ω」)よりも大きい。この例では、各抵抗器145を、ほぼ40から70kΩの範囲内にすることができる。十分な抵抗器を有することによって、小さな割合の相互の差以内で抵抗器を製造することが向上される。さらに、インバータ141および142を用いてそれぞれ与えられるトランスインピーダンス増幅器負荷を、トランスコンダクタ131および132によってそれぞれ与えられるトランスコンダクタンスとそれぞれカスケード接続する。しかしながら、別の構成では、各抵抗器145を、ほぼ2kΩから10kΩの範囲内などの10kΩ未満とすることができる。
【0036】
低バイアス電流113に関して、出力側ノード108−1の電圧は、電源電圧レベルに向かってドリフトして上昇する傾向があり得、高バイアス電流113に関して、出力側ノード108−1の電圧は、グランドに向かってドリフトして低下する傾向があり得る。同様に、低バイアス電流114に関して、出力側ノード108−2の電圧は、電源電圧レベルに向かってドリフトして上昇する傾向があり得、高バイアス電流114に関して、出力側ノード108−2の電圧は、グランドに向かってドリフトして低下する傾向があり得る。各調節可能な電流源103および関係する定電流源125ならびに調節可能な電流源104および関係する定電流源125対によって与えられる全テール電流を、バイアス電圧102に応じてこのように調節することができ、その結果、対応する出力側ノード108−1または108−2の電圧は、基準電圧122に等しい、または少なくとも実質的に等しい。コンパレータ100に関する差動入力信号が存在しない場合には、電流はフィードバック抵抗器145には流れないはずであり、このように、出力側ノード108−1および108−2での電圧ならびに出力電圧147−1および147−2を、基準電圧122とすべて同じ電圧にすることができる。したがって、バイアス電流113および114を、いずれか両者とも上にまたは両者とも下に駆動することによって、コンパレータ100を平衡させることができ、コンパレータ100を、それ以降平衡した状態に維持することができる。
【0037】
図1−2および図1−3のコンパレータ100に関係して図2の説明を続けると、285においては、283における第1の差動入力に関係して、この例に関して図1−3に一般的に示したように、第1の電流161は、トランスコンダクタ131を用いて生成した電流の一部分である。285においては、このような第1の電流161を、抵抗器145の抵抗を用いてインバータ141の第1のトランスインピーダンス増幅器負荷に入力することができる。このような第1の電流161を、抵抗器145を用いてインバータ141により与えられるトランスインピーダンス増幅器負荷によって出力電圧147−1へ効果的に変換する。一般に285における動作と同時に、286においては、284における第2の差動入力に関係して、この例に関して図1−3に一般的に示したような第2の電流162を、インバータ142を用いて生成する。このような電流162を、トランスコンダクタ132の出力側ノード108−2に与えて、電流の差を作り出す。286においては、このような第2の電流162を、トランスコンダクタ132に入力する。
【0038】
285における生成することから、287においては、抵抗器145を用いてインバータ141により与えられる第1のトランスインピーダンス増幅器負荷からコンバータ111の第1の出力電圧147−1を、出力することができる。同様に、一般に285における生成することと同時に、286における生成することから、288においては、別の抵抗器145を用いてインバータ142により与えられる第2のトランスインピーダンス増幅器負荷からコンバータ112の第2の出力電圧147−2を、出力することができる。任意選択の動作289から291を、図1−2を追加して参照して下記に説明する。
【0039】
反転した極性を有する同じ差動入力がコンバータ111および112にそれぞれ与えられるという理由で、出力電圧147−1および147−2は、このような差動入力に応じて反対方向に移動する。このように、出力電圧147−1は、より大きな電流161に応じてより大きく(より大きな正に)なることができ、出力電圧147−2は、より小さな電流162に応じてより小さく(より小さな正に)なることができ、図1−3を参照して逆も成り立つ。
【0040】
入力電圧117Mが0.60Vであり、入力電圧117Pが0.70Vであることをわかりやすいように仮定すると、一般にNMOSトランジスタ124は、トランスコンダクタ132に関して、等しいサイズのNMOSトランジスタ123よりもチャネルを介してより導電性であるはずである。トランスコンダクタ132のトランジスタ116および115の電流ミラーに関して、トランジスタ124を流通する電流の量が、一般にトランジスタ116のチャネルを流通する量と同じであるはずであり、したがって電流のこのような量が、同様に、トランジスタ115のチャネルを流通するはずであることを、これは意味する。しかしながら、より少ない量の電流が、この例に関してトランジスタ123のチャネルを流通するはずである。したがって、トランジスタ115および123のそれぞれのチャネルを流通する電流の間の差は、インバータ142の抵抗器145に、また抵抗器145を流通する電流、すなわち、電流162である。これは、出力電圧147−2が減少することがあることを事実上意味する。
【0041】
上記の例に関して、トランスコンダクタ131を参照して、電流方向における反対の差が生じるはずである。これらの点で、前のように、入力電圧117Mが0.60Vであり、入力電圧117Pが0.70Vである場合には、一般にNMOSトランジスタ124は、トランスコンダクタ131に関して等しいサイズのNMOSトランジスタ123よりもチャネルを介してより導電性ではないはずである。トランスコンダクタ131のトランジスタ116および115の電流ミラーに関して、トランジスタ124を流通する電流の量は、一般にトランジスタ116のチャネルを流通する量と同じであるはずであり、したがってこのような量の電流が、同様にトランジスタ115のチャネルを流通するはずであることを、これは意味する。しかしながら、より多くの電流の量が、この例に関してトランジスタ123のチャネルを流通するはずである。したがって、トランジスタ115および123のそれぞれのチャネルを流通する電流の間の差は、インバータ142の抵抗器145を流通する電流、すなわち、電流161である。しかしながら、この電流161は、インバータ141のチャネルから、すなわち、インバータ141のトランジスタ143を流通する電流から実効的に供給される。これは、事実上、電流の差を作り出すために出力電圧147−1が増加することを意味する。
【0042】
上記の例は、ほんの一例であり、当然のことながら、入力電圧の他の値の他の例を使用することができる。さらに、このような他の例では、差動入力117で変わることがあるように、入力電圧117Mは、入力電圧117Pよりも大きくても小さくてもよい。したがって、信号が存在していない、すなわち差動入力117がない場合には、トランスコンダクタ131および132の各々についてトランジスタ115および123のチャネルを通る電流を、同じにすることができ、それゆえ出力電圧147−1および147−2を、このように基準電圧122と等しくできる。しかしながら、ある信号が差動入力117の形で存在する場合には、出力側ノード108−1における電流の差および出力側ノード108−2における電流の差を表しているそれぞれ電流161および162が、それぞれの抵抗器145を流通する。電流161および162に関する矢印が上に説明した例に関して電流の流れの方向を例示的に示すとはいえ、このような電流の流れが双方向的であることを、上の説明から認識するはずである。言い換えると、入力電圧117Mが入力電圧117Pよりも大きい例では、電流161は、出力側ノード108−1から遠くへまたは外へ流れることができ、この例では、電流162が、出力側ノード108−2へ向かってまたは中に流れることができる。
【0043】
手短に、トランスコンダクタ131および132の共通に結合されたトランジスタ115および123のチャネルを流通する電流の間に差がある場合には、このような差はどこかに行かなければならない、またはこのような差はどこかから供給されなければならず、これはこの例では、事実上、インバータ141および142のうちの一方の抵抗器145を通るフィードバック電圧経路、ならびにインバータ141および142のうちの他方の抵抗器145のフィードフォワード電圧経路である。わかりやすいように、限定ではなく例として、抵抗器145の各々が随時フィードバック経路を与えることができるので、このような抵抗器145は、一般にフィードバックデバイスと呼ばれる。
【0044】
したがって、トランスコンダクタ131のトランジスタ115および123のチャネルを通る電流の差をインバータ141の抵抗器145の抵抗と乗算することによって、出力電圧147−1を決定する。同様に、トランスコンダクタ132のトランジスタ115および123のチャネルを通る電流の差をインバータ142の抵抗器145の抵抗と乗算することによって、出力電圧147−2を決定する。抵抗器145に関する大きな抵抗を有することによって、電流の小さな差でさえも、大きな出力電圧スイングを結果としてもたらすことができる。これらの点で、平衡させるために調節可能なテール電流を用いるトランスコンダクタ131および132は、それぞれ出力側ノード108−1および108−2においてあるトランスコンダクタンス電流を与える。このように、電圧差入力を、出力側ノード108−1および108−2などの出力側ノードにおいて差電流に変換して、それぞれのトランスコンダクタンス、g、を与え、コンバータ段の電圧ゲインは、このようなトランスコンダクタンス、g、を抵抗器145の抵抗、R、で乗算したものである。一対の電流源103および125からまたは一対の電流源104および125からなどのバイアス電流が抵抗器145のいずれにも流れないという理由で、抵抗器145を大きな抵抗にすることができる。抵抗器145にとってのこの大きな抵抗は、大きな出力電圧スイングを意味し、ならびに、出力側ノード108−1および108−2などの出力側ノードの状態の変化が少ししか移動しなくてもよいことを意味する。このように、出力側ノード108−1および108−2などの出力側ノードは、感度の向上をともなう仮想グランドとして機能することができる。言い換えると、電圧ゲインが大きい場合には、出力側ノード108−1および108−2などの出力側ノードにおける電圧は、低遅延での動作に関してほとんど移動しないことがある。出力側ノード108−1および108−2は、事実上、電圧ベースではなく電流ベースのノードであり、それ自体として、ノードは、トランスインピーダンス増幅器への入力部である。
【0045】
図1−3は、別の例示的なコンパレータ100を示す模式的/ブロック図である。コンパレータ100のこの例を、図1−2を同時に参照してさらに説明し、コンバータ111およびコンバータ112を、わかりやすいようにかつ限定ではなく、図1−2における詳細を用いずにそれぞれのブロックとして示している。したがって、コンパレータ100に関して図1−2を参照した上の説明を、わかりやすいようにかつ限定ではなく繰り返さない。加えて、図2のコンパレータの流れ200の上の説明は、同様に図1−3のコンパレータ100にも当てはまる。これらの点で、図2のコンパレータの流れ200のこのような説明を繰り返さない、しかしながら、コンパレータの流れ200の追加の説明を、図1−3のコンパレータ100で行うことができる任意選択の動作289から291を参照して与える。したがって、図1−3のコンパレータ100を、図1−2、図1−3、および図2を同時に参照してさらに説明する。
【0046】
コンパレータ100のこの例では、以前に説明したように、増幅器101の出力部からのバイアス電圧102を、コンバータ111およびコンバータ112への入力のための入力ノード138へ与える。加えて、出力電圧147−1および147−2を、電圧アベレージャ210へのそれぞれの入力として与えることができる。別個の電圧アベレージャ210が明確化のために例示として示されている一方で、別の構成の増幅器101を、出力電圧147−1および147−2の平均を得るために制御センシングを用いる抵抗器ラダーを用いて構成することができ、増幅器101は、3つ以上の入力を有することができ、平均値算出を非明示的に実行する。この構成では、増幅器101は、従来型の電圧増幅器であり、すなわち、増幅器のプラスおよびマイナス入力ポートに与えられる入力電圧の間の何らかの電圧差を増幅して電圧出力を与える。電圧アベレージャ210の出力は、出力電圧147−1および147−2の平均であり、これを、増幅器101へ与える入力電圧121として使用する。
【0047】
コンバータ111およびコンバータ112のそれぞれのインバータ141および142の出力ポートから供給される出力電圧147−1および147−2を、インバータ201および202への入力としてそれぞれ与える。インバータ201および202を、出力のためのCMOSレベル用のそれぞれCMOSインバータとすることができる。この例では、インバータ201および202を、Vddとグランドとの間にバイアスする。インバータ201の出力を、マイナス側ポート電圧出力203とすることができ、インバータ202の出力を、プラス側ポート電圧出力204とすることができる。
【0048】
図2を参照し続けると、287における動作から289において任意選択で、第1の出力電圧147−1を、インバータ141を用いて与えられた第1のトランスインピーダンス増幅器負荷から電圧アベレージャ210にフィードバックすることができる。一般に289における動作と同時に、288における動作から任意選択で、290においては、第2の出力電圧147−2を、インバータ142を用いて与えられた第2のトランスインピーダンス増幅器負荷から電圧アベレージャ210にフィードバックすることができる。任意選択で、291においては、入力電圧121を、このような第1および第2の出力電圧147−1および147−2の平均として電圧アベレージャ210を用いて生成することができる。例えば、バイアス電圧102を、基準電圧122を与えるために使用する電源電圧レベルのほぼ50から90パーセントの範囲内にすることができる。それゆえ例えば、Vddが1Vであり、基準電圧、Vref、122が0.5Vである場合には、コンパレータ100の付近のループゲインに応じて、入力電圧121を、Vrefのほぼ5mV以内とすることができる。一般に、平衡した入力電圧に関して、すなわち入力電圧117Mに等しい入力電圧117Pに関して、出力側ノード108−1および108−2における電圧を等しくすることができる。増幅器101のゲインが十分に大きい場合には、出力電圧147−1および147−2を、ほぼ等しい基準電圧122にバイアスされる両方の出力ノードと等しくすることができる。当然のことながら、デバイスミスマッチによって引き起こされるランダムオフセットは、入力電圧を平衡させることに影響を及ぼすことがある。
【0049】
上記の点で、入力電圧121を与えるために出力電圧147−1および147−2をフィードバックすることによって、コンパレータ100を、自己平衡させることができる。言い換えると、基準インバータ220、基準増幅器101、出力電圧の平均を得るための出力電圧フィードバックは、閉ループ制御を与える。これは、出力電圧147−1および147−2の平均を、事実上、基準電圧122にほぼ等しくなるようにさせることができることを意味し、制御可能で調節可能なバイアス電流113および114が、コンパレータ100の安定な平衡のための同じ最適なバイアス条件で存続することができ、低タウを与えることを意味する。差動入力117が不平衡である、すなわち、入力電圧117Pが入力電圧117Mに等しくないときでさえ、出力電圧147−1および147−2のこの平均を維持することができる。
【0050】
出力電圧147−1および147−2が反対方向に移動するという理由で、出力電圧147−1および147−2の平均は、信号の存在においてさえ、すなわち差動入力がコンパレータ100に加えられるときでさえ、比較的一定のままに留まることができ、これが動作中のコンパレータ100の低遅延を容易にする。一般に、コンパレータ100の動作の線形領域に関して、出力電圧147−1は、反対の符号ではあるが基準電圧122からの出力電圧147−2の乖離と等しい大きさ基準電圧122から乖離する、すなわち、各乖離の大きさは等しく、コンパレータ100が平衡したままであることを意味する。言い換えると、バイアス電流113および114を安定にすることができる、すなわち、バイアス電流113および114が設定された後で、変化する信号差動入力117の存在に応じて変化する必要がない。このように、コンパレータ100は、動作の線形領域を与えた以前の差動入力117信号方式の処理が維持されることに起因する「メモリ効果」のかなりの量を効果的に取り除くことができる。一般に、出力電圧147−1および147−2がレールごとにスイングしない限り、すなわち動作の非線形領域において動作し、このような出力電圧147−1および147−2における大きさの差を不均等にさせ、バイアス電流113および114の調節がコンパレータ100を再び平衡させる限り、「メモリ効果」を、変化しないバイアス電流113および114があることにより取り除くことができる。
【0051】
基準電圧122は、CMOSインバータ220の出力部から与えられる電圧である。CMOSインバータ220を、電源電圧バス148とグランド110との間にバイアスする。この例では、電源電圧バス148は、Vdd電圧レベルである、しかしながら、Vdd以外の電圧レベルを、他の例では使用することができる。さらに、各電源電圧バス148が両者とも同じ電圧レベルであるが、各電源電圧バス148は、同じ電圧バスであっても異なる電圧バスであってもよい。インバータ220は、PMOSトランジスタ221およびNMOSトランジスタ222を含み、トランジスタ221および222のドレインノードを、共通出力ノード223に相互に結合し、この出力ノードから基準電圧122を供給する。
【0052】
この例では、基準電圧122を出力ノード223から供給し、インバータ220の入力ノードおよび出力ノードを相互にショートする。これらの点で、トランジスタ221および222のゲートを、相互にかつ出力ノード223に結合する。最後に、トランジスタ221のソースノードを電源電圧バス148に結合し、トランジスタ222のソースノードをグランド110に結合する。
【0053】
数ある中で一定のバンドギャップまたは抵抗器ラダー基準などの基準電圧122入力を与えるために、別のタイプの回路を使用することができる一方で、インバータ220を使用することによって、インバータ141、142、および220に関する同じまたは類似のトリップ点を有するように、トランジスタ221および222を、インバータ141および142内の対応するトランジスタと同じまたは類似のサイズにすることができる。ある実装形態では、トランジスタ143および221を、相互にすべてマッチングさせることができ、トランジスタ144および222を、相互にすべてマッチングさせることができる。これらの点で、インバータ141、142、および220に関する同じトリップ点を有することによって、デューティサイクル歪みを、回避するまたは少なくとも実質的に減少させることができる。その上、プロセス、電圧、および/または温度(「PVT」)が変わるので、このようなインバータ141、142、および220は、同じトリップ点を維持するために相互に関係して対応するように変わることができる。増幅器101内のCMOS入力ゲートに電流が流れることができないという理由で、基準電圧122は、インバータ220のトリップ点を与える。インバータ141および142の大きなゲインを活用するために、ならびにそれぞれこのようなインバータ141および142の入力ノードである出力側ノード108−1および108−2における低いインピーダンスを活用するために、コンパレータ100をこのようなトリップ点においてバイアスすることができる。
【0054】
この例では、インバータ201、202、および220、ならびにインバータ141および142を、Vddなどの同じ電源電圧レベルとグランドとの間にすべて結合する。両方のトランスコンダクタ131および132を、同じ電源電圧レベルとグランドとの間にバイアスする一方で、トランスコンダクタ131および132を、インバータ141、142、201、202、および220と同じ電源電圧レベルにしてもしなくてもよい。この例では、トランスコンダクタ131および132、ならびにインバータ141、142、201、202、および220を、同じ電圧供給レベルにすべてバイアスする。しかしながら、別の構成では、トランスコンダクタ131および132を、これらの間と同じ電圧供給レベルにバイアスするが、インバータ141、142、201、202、および220に対して異なる電源電圧レベルにバイアスしてもよい。一般に、この例に関して、増幅器101への入力電圧間の差は、小さくてもよい。
【0055】
本明細書において説明する例のうちの1つまたは複数を、FPGAに実装することができるという理由で、このようなICの詳細な説明を提供する。しかしながら、高速動作にふさわしいASICまたはブロック機能を含むが限定しない他のタイプのICが、本明細書において説明する技術から利益を得ることができることが理解されるはずである。
【0056】
プログラマブルロジックデバイス(「PLD」)は、指定された論理機能を実行するようにプログラムすることができるよく知られたタイプの集積回路である。PLDの1つのタイプ、フィールドプログラマブルゲートアレイ(「FPGA」)は、典型的にはプログラマブルタイルのアレイを含む。これらのプログラマブルタイルは、例えば、入力/出力ブロック(「IOB」)、構成可能なロジックブロック(「CLB」)、専用のランダムアクセスメモリブロック(「BRAM」)、乗算器、ディジタル信号処理ブロック(「DSP」)、プロセッサ、クロックマネージャ、遅延ロックループ(「DLL」)、等を含むことができる。本明細書において使用するように、「含む(include)」および「含んでいる(including)」は、限定なしに含んでいることを意味する。
【0057】
各プログラマブルタイルは、典型的にはプログラマブル相互接続およびプログラマブルロジックの両者を含む。プログラマブル相互接続は、典型的にはプログラマブル相互接続点(「PIP」)によって相互接続された様々な長さの多数の相互接続ラインを含む。プログラマブルロジックは、例えば、関数発生器、レジスタ、演算ロジック、等を含むことができるプログラマブル素子を使用してユーザ設計の論理を実施する。
【0058】
プログラマブル素子をどのように構成するかを規定するコンフィギュレーションデータのストリームを内部コンフィギュレーションメモリセルにロードすることによって、プログラマブル相互接続およびプログラマブルロジックを典型的にはプログラムする。コンフィギュレーションデータを、メモリから(例えば、外部PROMから)読み込む、または外部デバイスによってFPGAに書き込むことができる。個々のメモリセルの集団状態は、次いで、FPGAの機能を決定する。
【0059】
別のタイプのPLDは、コンプレックスプログラマブルロジックデバイス、またはCPLDである。CPLDは、相互接続スイッチマトリックスによって一緒に接続され、入力/出力(「I/O」)リソースに接続された2つ以上の「機能ブロック」を含む。CPLDの各機能ブロックは、プログラマブルロジックアレイ(「PLA」)デバイスおよびプログラマブルアレイロジック(「PAL」)デバイスにおいて使用されるものと類似の2レベルAND/OR構造を含む。CPLDでは、コンフィギュレーションデータを、典型的には不揮発性メモリにオンチップで記憶する。いくつかのCPLDでは、コンフィギュレーションデータを、不揮発性メモリにオンチップで記憶し、次いで、初期コンフィギュレーション(プログラミング)シーケンスの一部として揮発性メモリにダウンロードする。
【0060】
これらのプログラマブルロジックデバイス(「PLD」)のすべてに関して、デバイスの機能を、制御の目的でデバイスに与えられるデータビットにより制御する。データビットを、揮発性メモリ(例えば、FPGAおよびいくつかのCPLDにおけるように、スタティックメモリセル)に、不揮発性メモリ(例えば、いくつかのCPLDにおけるように、FLASHメモリ)に、または任意の他のタイプのメモリセルに記憶することができる。
【0061】
デバイス上の様々な素子をプログラム可能に相互接続する金属層などの加工層を付けることによって、他のPLDをプログラムする。これらのPLDは、マスクプログラマブルデバイスとして知られている。PLDを、他の方法で、例えば、ヒューズ技術またはアンチヒューズ技術を使用してやはり実装することができる。「PLD」および「プログラマブルロジックデバイス」という用語は、それだけには限らないがこれらの例示的なデバイスを含み、ならびに部分的にしかプログラマブルであるに過ぎないデバイスを包含する。例えば、1つのタイプのPLDは、ハードコードされたトランジスタロジックと、ハードコードされたトランジスタロジックをプログラマブルに相互接続するプログラマブルスイッチファブリックとの組合せを含む。
【0062】
上に記したように、先端のFPGAは、アレイ内にいくつかの異なるタイプのプログラマブルロジックブロックを含むことができる。例えば、図3は、マルチギガビットトランシーバ(「MGT」)301、設定可能ロジックブロック(「CLB」)302、ランダムアクセスメモリブロック(「BRAM」)303、入力/出力ブロック(「IOB」)304、コンフィギュレーションおよびクロッキングロジック(「CONFIG/CLOCKS」)305、ディジタル信号処理ブロック(「DSP」)306、専用化入力/出力ブロック(「I/O」)307(例えば、コンフィギュレーションポートおよびクロックポート)、ならびにディジタルクロックマネージャ、アナログ−ディジタル変換器、システムモニタリングロジック、等などの他のプログラマブルロジック308を含んでいる多数の異なるプログラマブルタイルを含むFPGAアーキテクチャ300を図示する。いくつかのFPGAは、やはり専用のプロセッサブロック(「PROC」)310を含む。
【0063】
いくつかのFPGAでは、各プログラマブルタイルは、各隣接するタイルの対応する相互接続素子へ、およびそこからの標準化した接続部を有するプログラマブル相互接続素子(「INT」)311を含む。したがって、一緒に取ったプログラマブル相互接続素子は、図示したFPGA用のプログラマブル相互接続構造を実装する。プログラマブル相互接続素子311はやはり、図3の最上部に含まれた例により示したように、同じタイル内のプログラマブルロジック素子へ、およびそこからの接続部を含む。
【0064】
例えば、CLB302は、ユーザロジックにプラスして単一のプログラマブル相互接続素子(「INT」)311を実装するようにプログラムすることができる構成可能なロジック素子(「CLE」)312を含むことができる。BRAM303は、1つまたは複数のプログラマブル相互接続素子に加えてBRAMロジック素子(「BRL」)313を含むことができる。典型的には、タイルに含まれる相互接続素子の数は、タイルの高さに依存する。図に表した実施形態では、BRAMタイルは、5つのCLBと同じ高さを有するが、他の数(例えば、4つ)をやはり使用することができる。DSPタイル306は、適切な数のプログラマブル相互接続素子に加えてDSPロジック素子(「DSPL」)314を含むことができる。IOB304は、例えば、プログラマブル相互接続素子311の1つのインスタンスに加えて、入力/出力ロジック素子(「IOL」)315の2つのインスタンスを含むことができる。当業者には明らかであるように、例えば、I/Oロジック素子315に接続された実際のI/Oパッドは、典型的にはI/Oロジック素子315のエリアに制限されない。
【0065】
図に表した実施形態では、(図3に示した)ダイの中央近くの水平エリアを、コンフィギュレーション、クロック、および他の制御ロジック用に使用する。この水平エリアから延びている縦の列309または列を、FPGAの横幅全体にわたりクロックおよびコンフィギュレーション信号を配送するために使用する。
【0066】
図3に図示したアーキテクチャを利用しているいくつかのFPGAは、FPGAの大きな部分を作り上げている規則的な列状構造を乱す追加のロジックブロックを含む。追加のロジックブロックを、プログラマブルブロックおよび/または専用ロジックとすることができる。例えば、プロセッサブロック310は、CLBおよびBRAMのいくつかの列にまたがる。
【0067】
図3は、例示的なFPGAアーキテクチャを図示するに過ぎないものであることに留意されたい。例えば、行内のロジックブロックの数、行の相対的な幅、行の数および次数、行内に含まれるロジックブロックのタイプ、ロジックブロックの相対的なサイズ、ならびに図3の最上部に含まれる相互接続/ロジック実装形態は、純粋に例示的である。例えば、実際のFPGAでは、ユーザロジックの効率的な実装形態を容易にするために、CLBの1つよりも多くの隣接する行を、CLBが現れるときにはどこにでも典型的には含むが、隣接するCLB行の数はFPGAの全体のサイズとともに変わる。
【0068】
本明細書において説明した例示的な装置は、一般にIC用の高速アナログコンパレータに関する。このような装置は:バイアス電圧を与えるため入力電圧および基準電圧を受け取るように結合された増幅器と;バイアス電圧を受け取るように増幅器に結合された第1のコンバータおよび第2のコンバータとを含むことができ;第1のコンバータは:第1のバイアス電流を調節するためにバイアス電圧を受け取るように、かつ第1の差動入力を受け取るように増幅器に結合され第1のトランスコンダクタと;第1のトランスインピーダンス増幅器負荷を与えるために第1のインバータの入力部から出力部へ結合された第1のフィードバックデバイスを有する第1のインバータとを備え;第1のインバータが第1のトランスコンダクタに結合され;第2のコンバータは:第2のバイアス電流を調節するためにバイアス電圧を受け取るように、かつ第2の差動入力を受け取るように増幅器に結合された第2のトランスコンダクタであって、第2の差動入力が、反転した極性を有する第1の差動入力である、第2のトランスコンダクタと;第2のトランスインピーダンス増幅器負荷を与えるために第2のインバータの入力部から出力部へ結合された第2のフィードバックデバイスを有する第2のインバータとを備え;第2のインバータが第2のトランスコンダクタに結合される。
【0069】
いくつかのこのような装置では、第1のフィードバックデバイスおよび第2のフィードバックデバイスは、第1の抵抗器および第2の抵抗器をそれぞれ含む。
【0070】
いくつかのこのような装置では、第1の抵抗器および第2の抵抗器は、相互に少なくともほぼ等しく、各々が、ほぼ10,000オームよりも大きい。
【0071】
いくつかのこのような装置では、第1のフィードバックデバイスおよび第2のフィードバックデバイスは、第1のトランジスタおよび第2のトランジスタをそれぞれ含み、トランジスタの各々が、トランジスタの線形領域で動作する。
【0072】
このような装置は、第1のインバータの第1の出力ポートおよび第2のインバータの第2の出力ポートにそれぞれ結合された第3のインバータおよび第4のインバータをさらに含むことができる。
【0073】
いくつかのこのような装置では、第1のトランスコンダクタおよび第2のトランスコンダクタは、第1の電源電圧とグランドとの間にバイアスされ;第1のインバータおよび第2のインバータは、第2の電源電圧とグランドとの間にバイアスされ;第1の電源電圧および第2の電源電圧は、異なる電圧レベルである。
【0074】
いくつかのこのような装置では、第1のトランスコンダクタおよび第2のトランスコンダクタは、第1の電源電圧とグランドとの間にバイアスされ;第1のインバータおよび第2のインバータは、第2の電源電圧とグランドとの間にバイアスされ;第1の電源電圧および第2の電源電圧は、同じ電圧レベルである。
【0075】
いくつかのこのような装置では、装置は、基準電圧を与えるために入力部から出力部へ結合された第3のインバータをさらに含み;第1のインバータ、第2のインバータ、および第3のインバータは、同じトリップ点を有するように各々構成され;第1のトランスコンダクタおよび第2のトランスコンダクタは、第1の電源電圧とグランドとの間にバイアスされ;第1のインバータ、第2のインバータ、および第3のインバータは、第2の電源電圧とグランドとの間にバイアスされる。
【0076】
別の例では、非同期式アナログコンパレータを提供する。このような非同期式アナログコンパレータは:バイアス電圧を与えるために入力電圧および基準電圧を受け取るように結合された増幅器と;バイアス電圧を受け取るように増幅器の出力ポートに共通に結合された第1のコンバータおよび第2のコンバータとを含むことができ;第1のコンバータは、第1のトランスコンダクタおよび第1のインバータを備え;第1のトランスコンダクタは:バイアス電圧を受け取るように結合された第1の電流源回路と;第1の電流源回路に結合された第1の差動入力回路と;第1の差動入力回路に結合された第1の電流ミラー回路とを備え;第1のトランスコンダクタの第1の差動入力回路は、第1の出力ノードを有し;第1のインバータは、第1のトランスインピーダンス増幅器負荷を与えるために第1のインバータの第1のシリーズの入力部から出力部へ結合された第1のフィードバックデバイスを有し;第1のインバータの第1の入力ノードは、第1のトランスコンダクタの第1の出力ノードに結合され;第2のコンバータは、第2のトランスコンダクタおよび第2のインバータを備え;第2のトランスコンダクタは:バイアス電圧を受け取るように結合された第2の電流源回路と;第2の電流源回路に結合された第2の差動入力回路と;第2の差動入力回路に結合された第2の電流ミラー回路とを備え;第2の差動入力回路は、反転した極性の差動入力を有する第1の差動入力回路であり;第2のトランスコンダクタの第2の差動入力回路は、第2の出力ノードを有し;第2のインバータは、第2のトランスインピーダンス増幅器負荷を与えるために第2のインバータの第2のシリーズの入力部から出力部へ結合された第2のフィードバックデバイスを有し;第2のインバータの第2の入力ノードは、第2のトランスコンダクタの第2の出力ノードに結合される。
【0077】
いくつかのこのような非同期式アナログコンパレータでは、第1のコンバータおよび第2のコンバータは、それぞれ電圧−電流−電圧コンバータであり、第1のフィードバックデバイスおよび第2のフィードバックデバイスは、第1の抵抗器および第2の抵抗器をそれぞれ備える。
【0078】
いくつかのこのような非同期式コンパレータは、第1のインバータの第1の出力ポートおよび第2のインバータの第2の出力ポートにそれぞれ結合された第3のインバータおよび第4のインバータをさらに含むことができる。
【0079】
いくつかのこのような非同期式アナログコンパレータでは、第1の差動入力回路は、ソース縮退構成用の第1の別個のインターリムソースノードで第1の電流源回路に結合され;第2の差動入力回路は、ソース縮退構成用の第2の別個のインターリムソースノードで第2の電流源回路に結合される。
【0080】
いくつかのこのような非同期式アナログコンパレータは、基準電圧を与えるために入力部から出力部へ結合された第3のインバータをさらに含むことができ:第1のトランスコンダクタおよび第2のトランスコンダクタは、第1の電源電圧とグランドとの間にバイアスされ;第1のインバータ、第2のインバータ、および第3のインバータは、第2の電源電圧とグランドとの間にバイアスされる。
【0081】
いくつかのこのような非同期式アナログコンパレータでは、第1のトランスコンダクタおよび第2のトランスコンダクタは、第1の電源電圧とグランドとの間にバイアスされ;第1のインバータおよび第2のインバータは、第2の電源電圧とグランドとの間にバイアスされ;第1の電源電圧および第2の電源電圧は、異なる電圧レベルである。
【0082】
いくつかのこのような非同期式アナログコンパレータでは、第1のトランスコンダクタおよび第2のトランスコンダクタは、第1の電源電圧とグランドとの間にバイアスされ;第1のインバータおよび第2のインバータは、第2の電源電圧とグランドとの間にバイアスされ;第1の電源電圧および第2の電源電圧は、同じ電圧レベルである。
【0083】
いくつかのこのような非同期式アナログコンパレータでは、第1の電流源回路および第2の電流源回路は各々、並列に結合された調節可能な電流源および定電流源をそれぞれ含む。
【0084】
本明細書において説明した例示的な方法は、一般に電圧変換に関する。このような方法は、バイアス電圧を与えるために入力電圧と基準電圧との間の差を増幅することと;バイアス電圧で第1のトランスコンダクタおよび第2のトランスコンダクタをバイアスすることと;第1のトランスコンダクタに第1の差動入力を入力することと;第2のトランスコンダクタに第2の差動入力を入力することであって、第1の差動入力が、反対の極性を有する第2の差動入力である、第2の差動入力を入力することと;第1のトランスインピーダンス増幅器負荷への第1の電流の一部分の入力のために、第1のトランスコンダクタを用いて第1の差動入力に関係する第1の電流を生成することと;第2のトランスコンダクタへの入力のために、第2のトランスインピーダンス増幅器負荷を用いて第2の差動入力に関係する第2の電流を生成することと;第1のトランスインピーダンス増幅器負荷から第1の出力電圧を出力することと;第2のトランスインピーダンス増幅器負荷から第2の出力電圧を出力することとを含むことができる。
【0085】
いくつかのこのような方法では、第1のトランスインピーダンス増幅器負荷および第2のトランスインピーダンス増幅器負荷は、第1のインバータおよび第2のインバータを用いてそれぞれ与えられ;第1のインバータおよび第2のインバータの各々は、第1のインバータおよび第2のインバータの各々の入力ノードを出力ノードに結合するためそれぞれの抵抗器を含む。
【0086】
このような方法は:第1のトランスインピーダンス増幅器負荷から電圧アベレージャに第1の出力電圧をフィードバックすることと;第2のトランスインピーダンス増幅器負荷から電圧アベレージャに第2の出力電圧をフィードバックすることと;第1の出力電圧および第2の出力電圧の平均として電圧アベレージャを用いて入力電圧を生成することとをさらに含むことができる。
【0087】
このような方法は:第1の電源電圧で第1のインバータおよび第2のインバータをバイアスすることと;第1の電源電圧とは異なる第2の電源電圧で第1のトランスコンダクタおよび第2のトランスコンダクタをバイアスすることと;第1のインバータおよび第2のインバータを使用して第2の電源電圧から第1の電源電圧にレベルシフトすることとをさらに含むことができる。
【0088】
上記は、例示的な装置および/または方法を説明している一方で、本明細書において説明した1つまたは複数の態様に従った他の例およびさらなる例を、本発明の範囲から乖離せずに考案することができ、本発明の範囲は、下記の特許請求の範囲およびその等価物によって決められる。ステップを列挙している特許請求の範囲は、ステップの何らかの順序を示唆するものではない。商標は、そのそれぞれの所有者の財産である。
図1-1】
図1-2】
図1-3】
図2
図3