【実施例】
【0196】
以下の実施例の多くは、多能性ヒト細胞の使用を記載する。多能性ヒト細胞を産生する方法は、当該技術分野で既知であり、多数の科学出版物、例えば米国特許第5,453,357号、第5,670,372号、第5,690,926号、第6,090,622号、第6,200,806号及び第6,251,671号、並びに米国特許出願公開第2004/0229350号に記載されている。
【0197】
[実施例1]
ヒトES細胞
内胚葉発達についてのわれわれの研究のために、多能性であり、そして正常核型を保持しながら培養中に外見上無限に分裂し得るヒト胚性幹細胞を用いた。単離のための免疫学的又は機械的方法を用いて、5日齢胚内部細胞塊からES細胞を得た。特にヒト胚性幹細胞株hESCyt−25を、患者によるインフォームドコンセント後に、in vitro
受精サイクルからの過剰凍結胚から得た。解凍時に、ES培地(DMEM、20%FBS、非必須アミノ酸、β−メルカプトエタノール、ITSサプリメント)中のマウス胚線維芽細胞(MEF)上に孵化胚盤胞をプレート化した。胚が培養皿に接着し、そして約2週間後、非分化hESCの領域を、MEFとともに新たな皿に移した。機械的に切断し、ディスパーゼで手短に消化し、その後、細胞クラスターを機械的に取り出して、洗浄し、再プレート化することにより移動を成し遂げた。誘導以来、hESCyt−25を、100回にわたって逐次継代した。胚体内胚葉の産生のための出発物質として、hESCyt−25ヒト胚性幹細胞株を用いた。
【0198】
幹細胞又は他の多能性細胞は本明細書中に記載される分化手法のための出発物質としても用いられ得る、と当業者により理解される。例えば当該技術分野で既知の方法により単離され得る胚性生殖腺隆起から得られる細胞は、多能性細胞出発物質として用いられ得る。
【0199】
[実施例2]
hESCyt−25特徴づけ
ヒト胚性幹細胞株hESCyt−25は、培養中に18ヶ月にわたって、正常形態学、核型、増殖及び自己再生特性を保持した。この細胞株は、OCT4、SSEA−4及びTRA−1−60抗原(これらはすべて、未分化hESCに特有である)に対する強い免疫反応性を示し、そしてアルカリ性ホスファターゼ活性、並びに他の確立されたhESC株と同一の形態学を示す。さらにヒト幹細胞株hESCyt−25は、懸濁液中で培養される場合、胚様体(EB)も容易に形成する。その多能性性質の実証として、hESCyT−25は、3つの主要胚葉を表わす種々の細胞型に分化する。ZIC1に関するQ−PCR、並びにネスチン及びより成熟したニューロンマーカーに関する免疫細胞化学(ICC)により、外胚葉産生を実証した。β−IIIチューブリンに関する免疫細胞化学染色を、初期ニューロンに特徴的な伸長細胞のクラスター中で観察した。予め、レチノイン酸で懸濁液中のEBを処理して、臓側内胚葉(VE)、胚体外系統への多能性幹細胞の分化を誘導した。処理細胞は、高レベルのα−フェトタンパク質(AFP)及びSOX7(VEの2つのマーカー)を54時間の処理により発現した。単層中で分化された細胞は、免疫細胞化学染色により実証されるように、散在性パッチ中でAFPを発現した。以下で記載するように、hESCyT−25細胞株は、AFP発現の非存在下でのSOX17に関するリアルタイム定量的ポリメラーゼ連鎖反応(Q−PCR)及び免疫細胞化学により立証されるように、胚体内胚葉も形成し得た。中胚葉への分化を実証するために、分化中のEBを、いくつかの時点でのブラキュリ遺伝子発現に関して分析した。ブラキュリ発現は、実験経過中に漸進的に増大した。上記に鑑みて、三つの胚葉を表わす細胞を形成する能力により示されるように、hESCyT−25株は多能性である。
【0200】
[実施例3]
SOX17抗体の産生
hESC培養物における胚体内胚葉の同定に対する主要な妨害は、適切なツールの欠如である。したがって、本発明者等は、ヒトSOX17タンパク質に対して高められる抗体の産生に着手した。
【0201】
マーカーSOX17は、それが原腸形成中に形成する際に胚体内胚葉全体にわたって発現
し、その発現は、器官形成の開始まで腸管で維持される(しかし、発現のレベルは、A−P軸に沿って変化する)。SOX17はまた、胚体外内胚葉細胞のサブセットでも発現する。このタンパク質の発現はまた、中胚葉又は外胚葉では観察されていない。SOX17は、胚体外系統を排除するためのマーカーと併用される場合、胚体内胚葉系統に適切なマーカーであることが現在発見されている。
【0202】
本明細書中で詳述するように、SOX17抗体は、SOX17陽性胚体内胚葉細胞の産生を目的とした様々な処理及び分化手順の影響を具体的に検査するのに利用された。AFP、SPARC及びトロンボモジュリンに対しての他の抗体との反応性もまた、臓側及び壁側内胚葉(胚体外内胚葉)の産生を除外するのに使用された。
【0203】
SOX17に対する抗体を産生するために、SOX17タンパク質のカルボキシ末端におけるアミノ酸172〜414(配列番号2)に相当するヒトSOX17 cDNA(配列
番号1)の一部(
図2)は、抗体産生会社GENOVAC(Freiberg, Germany)にて、そこで開発された手順に従って、ラットにおける遺伝子免疫化に使用した。遺伝子免疫化に関する手段は、米国特許第5,830,876号、同第5,817,637号、同第6,165,993号及び同第6,261,281号、並びに国際特許出願公開第WO00/29442号及び同第WO99/13915号に見出すことができる。
【0204】
遺伝子免疫化に関する他の適切な方法はまた、非特許文献にも記載されている。例えば、Barry他は、Biotechniques 16: 616-620, 1994において遺伝子免疫化によるモノクローナル抗体の産生について記載している。特異的タンパク質に対する抗体を産生するための遺伝子免疫化方法の具体例は、例えば、Costaglia et al., (1998) ヒト甲状腺刺激ホルモ
ン受容体に対する遺伝子免疫化は、甲状腺炎を引き起こし、且つ自然受容体を認識するモノクローナル抗体の産生を可能にする(Genetic immunization against the human thyrotropin receptor causes thyroiditis and allows production of monoclonal antibodies
recognizing the native receptor), J. Immunol. 160: 1458-1465、Kilpatrick et al (1998) 遺伝子銃送達されるDNAベースの免疫化は、Flt−3受容体に対するマウス
モノクローナル抗体の迅速な産生を媒介する(Gene gun delivered DNA-based immunizations mediate rapid production of murine monoclonal antibodies to the Flt-3 receptor), Hybridoma 17: 569-576、Schmolke et al., (1998) DNA免疫化により産生されるE2特異的モノクローナル抗体によるヒト血清におけるG型肝炎ウイルス粒子の同定(Identification of hepatitis G virus particles in human serum by E2-specific monoclonal antibodidesgenerated by DNA immunization), J. Virol. 72: 4541-4545、Krasemann et al., (1999) 異例の核酸ベースの免疫化戦略を用いたタンパク質に対するモノクロ
ーナル抗体の生成(Generation of monoclonal antibodides against proteins with an unconventional nucleic acid-based immunization strategy), J. Biotechnol. 73: 119-129、及びUlivieri et al, (1996) DNA免疫化によるヘリコバクター・ピロリ細胞空胞化毒素の規定部分に対するモノクローナル抗体の生成(Generation of a monoclonal antibody to a defined portion of the Heliobacterpylori vacuolating cytotoxinby DNA immunization), J. Biotechnol. 51: 191-194に見出すことができる。
【0205】
SOX7及びSOX18は、
図3に示される相関系統樹に表されるようにSOX17に対する最も密接なSoxファミリー類縁体である。本発明者等は、遺伝子免疫化により産生されるSOX17抗体がSOX17に特異的であり、またその最も密接なファミリー成員と反応しないことを実証するために、陰性対照としてヒトSOX7ポリペプチドを用いた。特に、SOX7及び他のタンパク質は、ヒト線維芽細胞において発現させ、続いてウェスタンブロット及びICCによりSOX17抗体との交差反応性に関して分析した。例えば、SOX17、SOX7及びEGFP発現ベクターの産生、ヒト線維芽細胞へのそれらのトランスフェクション、並びにウェスタンブロットによる分析に関して以下の方法を利
用した。SOX17、SOX7及びEGFPの産生に用いられる発現ベクターは、それぞれpCMV6(OriGeneTechnologies, Inc., Rockville, MD)、pCMV−SPORT6(Invitrogen, Carlsbad, CA)及びpEGFP−N1(Clonetech, Palo Alto, CA)であった。タンパク質産生に関して、テロメラーゼ不死化MDXヒト線維芽細胞を、リポフェクタミン2000(Invitrogen Carlsbad, CA)の存在下で、スーパーコイルDNAで一過的にト
ランスフェクトした。総細胞溶解産物は、トランスフェクションの36時間後に、プロテアーゼ阻害剤のカクテル(Roche Diagnostics Corporation, Indianapolis, IN)を含有す
る50mM TRIS−HCl(pH8)、150mM NaCl、0.1% SDS、0
.5%デオキシコール酸中に収集した。NuPAGE(4〜12%ポリアクリルアミド勾配、Invitrogen, Carlsbad, CA)上でのSDS−PAGEにより分離され、且つPDVF
膜(Hercules, CA)上へのエレクトロブロッティングにより移入された細胞タンパク質100μgのウェスタンブロット分析は、10mM TRIS−HCl(pH8)、150m
M NaCl、10%BSA、0.05%Tween−20(Sigma, St. Louis, MO)中の
ラットSOX17抗血清の1/1000希釈で、アルカリホスファターゼ結合抗ラットIgG(Jackson ImmunoResearchLaboratories, West Grove, PA)によりプロービングして、ベクターブラックアルカリホスファターゼ染色(Vector Laboratories, Burlingame, CA)
により明らかにした。使用される標準サイズのタンパク質は、広範囲の色彩マーカー(Sigma, St. Louis, MO)であった。
【0206】
図4では、SOX17、SOX7又はEGFP cDNAで一過的にトランスフェクトさ
れたヒト線維芽細胞から作製されるタンパク質抽出物を、SOX17抗体によりウェスタンブロットでプロービングした。hSOX17トランスフェクト細胞からのタンパク質抽出物のみが、ヒトSOX17タンパク質の予測された46Kda分子量に近い約51Kdaのバンドを生じた。ヒトSOX7又はEGFPトランスフェクト細胞のいずれかから作製される抽出物に対してSOX17抗体の反応性は見られなかった。さらに、SOX17抗体は、hSOX発現構築でトランスフェクトしたヒト線維芽細胞の核を明らかに標識したが、EGFPのみでトランスフェクトした細胞は標識しなかった。したがって、SOX17抗体は、ICCによる特異性を示す。
【0207】
[実施例4]
胚体内胚葉のマーカーとしてのSOX17抗体の確認
部分的に分化させたhESCをSOX17及びAFP抗体で同時標識して、SOX17抗体がヒトSOX17タンパク質に特異的であること、さらに胚体内胚葉をマークすることを実証した。SOX17、SOX7(これは、SOX遺伝子ファミリーサブグループFの密接に関連する成員である(
図3))及びAFPはそれぞれ、臓側内胚葉で発現されることが実証されている。しかしながら、AFP及びSOX7は、ICCにより検出可能なレベルでは、胚体内胚葉細胞では発現されず、したがってそれらは、真正の胚体内胚葉細胞に関する陰性マーカーとして用いることができる。SOX17抗体は、細胞の別個の分類として存在するか、或いはAFP陽性細胞と混合される細胞の集団を標識することが示された。特に、
図5Aは、少数のSOX17細胞がAFPで同時標識されることを示すが、SOX17+細胞の区域においてAFP+細胞がほとんど存在しないか、或いは全く存在しない領域も見られた(
図5B)。同様に、壁側内胚葉は、SOX17を発現することが報告されているため、壁側マーカーSPARC及び/又はトロンボモジュリン(TM)と共にSOX17による抗体同時標識を使用して、壁側内胚葉であるSOX17+細胞を同定
することができる。
図6A〜
図6Cに示されるように、トロンボモジュリン及びSOX17同時標識された壁側内胚葉細胞は、hES細胞の無作為分化により産生された。
【0208】
上記細胞標識実験を考慮して、胚体内胚葉細胞の独自性は、マーカープロフィールSOX17hi/AFPlo/[TMlo又はSPARClo]により確立され得る。換言すると、SOX17マーカーの発現は、臓側内胚葉の特徴であるAFPマーカー、及び壁側内胚葉の特
徴であるTM又はSPARCマーカーの発現よりも多い。したがって、SOX17に関して陽性であるが、AFPに対して陰性であり、且つTM又はSPARCに対して陰性である細胞は、胚体内胚葉である。
【0209】
胚体内胚葉の予測となるようなSOX17hi/AFPlo/TMlo/SPARCloマーカープロフィールの特異性のさらなる徴候として、SOX17及びAFP遺伝子発現が、抗体標識細胞の相対数と定量的に比較された。
図7Aに示されるように、レチノイン酸(臓側内胚葉誘導物質)又はアクチビンA(胚体内胚葉誘導物質)で処理したhESCは、SOX17 mRNA発現のレベルにおいて10倍の差をもたらした。この結果は、SOX1
7抗体標識細胞数における10倍の差に反映している(
図7B)。さらに、
図8Aに示されるように、hESCのアクチビンA処理は、処理無しと比較して6.8倍分AFP遺伝子発現を抑制した。これは、
図8B及び
図8Cに示されるように、これらの培養物におけるAFP標識細胞の数の劇的な減少により可視的に反映された。これをさらに定量化するために、AFP遺伝子発現におけるこのおよそ7倍の減少は、フローサイトメトリーにより測定される場合のAFP抗体標識細胞数における同様の7倍の減少の結果であることが実証された(
図9A及び
図9B)。この結果は、Q−PCRにより観察されるような遺伝子発現の定量的変化は、抗体染色により観察されるような細胞型特定化における変化を反映することを示すという点で極めて有意である。
【0210】
ノーダルファミリー成員(ノーダル、アクチビンA及びアクチビンB−NAA)の存在下でのhESCのインキュベーションは、経時的にSOX17抗体標識細胞の有意な増大をもたらした。連続的なアクチビン処理の5日目までには、50%を超える細胞がSOX17で標識された(
図10A〜
図10F)。アクチビン処理の5日後にはAFPで標識された細胞はほとんど存在しなかったか、或いは全く存在しなかった。
【0211】
要約すると、ヒトSOX17タンパク質のカルボキシ末端の242個のアミノ酸に対して産生される抗体は、ウェスタンブロットでヒトSOX17タンパク質を同定したが、その最も密接なSoxファミリー類縁体であるSOX7を認識しなかった。SOX17抗体は、主としてSOX17+/AFPlo/-である分化hESC培養物における細胞のサブセッ
ト(95%を超える標識細胞)並びにSOX17及びAFP(臓側内胚葉)に関して同時標識する少量パーセント(5%未満)の細胞を認識した。アクチビンによるhESC培養物の処理は、SOX17遺伝子発現並びにSOX17標識細胞の顕著な増大をもたらし、AFP mRNAの発現及びAFP抗体で標識した細胞の数を劇的に抑制した。
【0212】
[実施例5]
Q−PCR遺伝子発現アッセイ
以下の実験では、リアルタイム定量的RT−PCR(Q−PCR)が、hESC分化に対する様々な処理の影響をスクリーニングするのに使用される主要なアッセイであった。特に、遺伝子発現のリアルタイム測定は、Q−PCRにより多数の時点で多数のマーカー遺伝子に関して分析した。細胞集団の全体的な動態のより良好な理解を得るために、所望の細胞型並びに望ましくない細胞型のマーカー遺伝子の特徴を評価した。Q−PCR分析の長所として、ゲノム配列が容易に入手可能である場合、その極度の感受性及び必要なマーカーを開発することが比較的容易であることが挙げられる。さらに、Q−PCRの極めて高い感受性により、相当大きな集団内での比較的少数の細胞からの遺伝子発現の検出が可能となる。さらに、非常に低レベルの遺伝子発現を検出する能力は、集団内の「分化の偏り」に関する指標を提供する。これらの細胞の表現型の顕在的な分化に先立つ特定の分化経路に対する偏りは、免疫細胞化学的技法を使用して認知することができない。このため、Q−PCRは、分化処理の成功をスクリーニングするための少なくとも補完的であり且つ免疫組織化学的技法よりも潜在的に相当優れている分析の方法を提供する。さらに、Q−PCRは、半ハイスループットスケール(semi-high throughput scale)の分析にて定量
的方式で分化プロトコルの成功を評価するメカニズムを提供する。
【0213】
本実施例で採用するアプローチは、Rotor Gene 3000機器(Corbett Research)上でのSYBR Green化学及び2段階RT−PCR方式を使用して相対定量を実
施することであった。かかるアプローチにより、今後のさらなるマーカー遺伝子の分析用のcDNAサンプルの積上げが可能となり、したがって、サンプル間の逆転写効率における可変性を回避した。
【0214】
プライマーは、これが混入ゲノムDNAからの増幅を排除すると実験的に確定されているため、エクソン間境界にわたって存在するか、又は可能であれば少なくとも800bpの長さのイントロンにまたがるように設計された。イントロンを含有しないマーカー遺伝子を使用したか、又はマーカー遺伝子がシュードジーンを保有した場合、RNAサンプルのDNアーゼI処理が実施された。
【0215】
本発明者等は、細胞サンプルにおける遺伝子発現の広範囲のプロファイル記述を提供するために、日常的にQ−PCRを使用して、標的及び非標的細胞型の多数のマーカーの遺伝子発現を測定した。hESC分化の初期(具体的には、外胚葉、中胚葉、胚体内胚葉及び胚体外内胚葉)に関連し、且つ確証されたプライマーセットが利用可能であるマーカーを以下の表1に提供する。これらのプライマーセットのヒト特異性もまた実証されている。hESCが多くの場合マウスフィーダー層上で成長するため、このことは重要な事実である。最も典型的には、三重反復サンプルが各条件に関して採取され、各定量的測定に関連した生物学的可変性を評価するために二重反復で個別に分析された。
【0216】
PCR鋳型を生成するために、総RNAは、RNeasy(Qiagen)を使用して単離されて、RiboGreen(Molecular Probes)を用いて定量化された。総RNA 350〜5
00ngからの逆転写は、オリゴdT及び無作為なプライマーのミックスを含有するiScript逆転写酵素キット(BioRad)を使用して実施した。続いて、反応物それぞれ20μLを総容量100μLにまで希釈して、3μlをそれぞれ400nM順方向プライマー及び逆方向プライマー並びに2×SYBR Greenマスターミックス(Qiagen) 5μLを含有するQ−PCR反応物10μLにおいて使用した。2段階サイクリングパラメータは、85〜94℃(具体的には各プライマー組に関するアンプリコンの融点に従って選択される)で5秒の変性、続く60℃での45秒のアニール/伸長を用いて使用された。各伸長段階の最後の15秒の間に、蛍光データを収集した。3点の10倍希釈シリーズを使用して、各実施に関する標準曲線を作成して、サイクル閾値(Ct)をこの標準曲線に基づいて定量値へ変換した。各サンプルに関する定量値は、ハウスキーピング遺伝子性能に対して標準化され、続いて平均値及び標準偏差は、三重反復サンプルに関して算出された。PCRサイクリングの終わりには、融解曲線分析を実施して、反応物の特異性を確かめた。単一の特異的産物は、そのPCRアンプリコンに適したTmでの単一ピークにより示
された。さらに、逆転写酵素無しで実施される反応は、陰性対照として役立ち、増幅しない。
【0217】
Q−PCR方法論を確立する際の第1の工程は、実験系における適切なハウスキーピング遺伝子(HG)の検証であった。HGは、RNAインプット、RNA完全性及びRT効率に関してサンプル全域で標準化するのに使用されるため、標準化が意味のあるものであるためには、HGがすべてのサンプル型において経時的に一定レベルの発現を示すことに重要性があった。本発明者等は、分化hESCにおけるサイクロフィリンG (cyclophilin G)、ヒポキサンチンホスホリボシルトランスフェラーゼ1(hypoxanthine phosphoribosyl
transferase 1)(HPRT)、β−2−ミクログロブリン(beta-2-microglobulin)、ヒ
ドロキシメチルビランシンターゼ(hydroxymethylbiane synthase)(HMBS)、TAT
A結合タンパク質(TATA-binding protein)(TBP)及びグルクロニダーゼβ(glucoroni
dase beta)(GUS)の発現レベルを測定した。本発明者等の結果により、β−2−ミクログロブリン(bata-2-microglobulin)発現レベルが、分化の間に増大されることが示され、したがって本発明者等は、標準化に関してこの遺伝子の使用を排除した。他の遺伝子は、経時的に、並びに複数の処理にわたって不変的な発現レベルを示した。本発明者等は日常的に、サイクロフィリンG及びGUSの両方を使用して、すべてのサンプルに関して標準化因子を算出した。多数のHGの使用は、同時に標準化プロセスに固有の可変性を低減し、相対遺伝子発現値の信頼性を増大させる。
【0218】
標準化において使用するための遺伝子を獲得した後、続いてQ−PCRを利用して、種々の実験処理を施したサンプルにわたる多くのマーカー遺伝子の相対遺伝子発現レベルを測定した。用いたマーカー遺伝子は、それらが初期胚葉の代表的な特異的集団において富化を示すことから選択されており、特に胚体内胚葉及び胚体外内胚葉で差次的に発現される遺伝子の組に焦点を当てている。これらの遺伝子並びにそれらの関連富化プロファイルを表1に強調している。
【0219】
【表1】
【0220】
多くの遺伝子が、1つよりも多い胚葉で発現されるため、同じ実験内で多くの遺伝子の発現レベルを定量的に比較することが有用である。SOX17は、胚体内胚葉で、またより程度は低いが、臓側及び壁側内胚葉で発現される。SOX7及びAFPは、この初期発達時点で、臓側内胚葉で発現される。SPARC及びTMは、壁側内胚葉で発現され、ブラキュリは、初期中胚葉で発現される。
【0221】
胚体内胚葉細胞は、高レベルのSOX17 mRNA並びに低レベルのAFP及びSOX
7(臓側内胚葉)、SPARC(壁側内胚葉)及びブラキュリ(中胚葉)を発現すると予測された。さらに、ZIC1は、初期外胚葉の誘導をさらに除外するのに本明細書で使用された。最後に、GATA4及びHNF3bは、胚体及び胚体外内胚葉の両方で発現され、したがって、胚体内胚葉におけるSOX17発現と相関する(表1)。表1に記載するマーカー遺伝子が、様々なサンプル間でどのように互いに相関するかを実証し、したがって、胚体内胚葉及び胚体外内胚葉への、並びに中胚葉及び神経細胞型への分化の特異的パターンを強調する代表的な実験を
図11〜
図14に示している。
【0222】
上記データを考慮すると、アクチビン用量の増大が、SOX17遺伝子発現の増大をもたらしたことが明らかである。さらに、このSOX17発現は、胚体外内胚葉とは対照的に主として胚体内胚葉を表した。この結論は、SOX17遺伝子発現が、AFP、SOX7及びSPARC遺伝子発現と逆相関したという観察から生じる。
【0223】
[実施例6]
胚体内胚葉へのヒトES細胞の指示された分化
ヒトES細胞培養物は、それらの未分化状態を活性で維持しない条件下で培養される場合に、無作為に分化する。この不均一分化は、壁側及び臓側内胚葉の両方から構成される胚体外内胚葉細胞(AFP、SPARC及びSOX7発現)並びにZIC1及びネスチン(外胚葉)及びブラキュリ(中胚葉)発現によりマークされるような初期外胚葉誘導体及び中胚葉誘導体の産生をもたらす。胚体内胚葉細胞出現は、ES細胞培養物における特異的抗体マーカーの欠如に関して実験又は特定されていない。それ自体で、またデフォルトで、ES細胞培養物における初期胚体内胚葉産生は、十分研究されていない。胚体内胚葉細胞に関する満足のいく抗体試薬が入手不可能であったため、特徴づけの大部分が、外胚葉及び胚体外内胚葉に焦点を当ててきた。概して、無作為に分化されたES細胞培養物においてSOX17hi胚体内胚葉細胞と比較して、有意な多数の胚体外細胞型及び神経外胚葉細胞型が存在する。
【0224】
未分化hESCコロニーは線維芽細胞フィーダーの床上で拡大するため、コロニーの縁にある細胞は、コロニーの内部に存在する細胞とは異なった別の形態を呈する。これらの外側の縁細胞の多くが、それらのあまり一様ではない、より大きな細胞体の形態により、またより高いレベルのOCT4の発現により識別され得る。ES細胞が分化し始めると、ES細胞は、未分化ES細胞に関してのOCT4発現のレベルを上方又は下方へ変更させることが記載されている。未分化閾値を上回るか、又は下回るOCT4レベルの変更は、多能性状態から離れた分化の初期状態の表れであり得る。
【0225】
未分化コロニーがSOX17免疫細胞化学により検査される場合、時折SOX17陽性細胞の小さな10〜15個の細胞クラスターが、外縁上の無作為な位置で、また未分化hESCコロニー間の接合部で検出された。上述したように、外側コロニー縁のこれらの散在ポケットは、コロニーのサイズが拡大し、且つより混雑してくるため、古典的なES細胞形態から離れて分化するための第1の細胞のいくつかであるようであった。より若くてより小さな完全未分化コロニー(1mm未満、4〜5日齢)は、コロニー内で又はコロニーの縁でSOX17陽性細胞を示さなかったのに対して、より時間の経過したより大きなコロニー(直径1〜2mm、5日齢超)は、いくつかのコロニーの外縁で、或いは上述の古典的なhESC形態を示さない縁に対して内部の領域で、SOX17陽性AFP陰性細胞の散発的な単離パッチを有していた。これが有効なSOX17抗体の第1の発達であると考えると、かかる初期「未分化」ES細胞培養物で発達する胚体内胚葉細胞は、これまでに実証されていない。
【0226】
Q−PCRによるSOX17及びSPARC遺伝子発現レベルの逆相関に基づくと、これらのSOX17陽性AFP陰性細胞の大部分が、抗体同時標識による壁側内胚葉マーカーに関して陰性であろう。これは、
図15A及び
図15Bに示されるように、TM発現壁側内胚葉細胞に関して具体的に実証された。ノーダル因子であるアクチビンA及びBへの暴露は、TM発現の強度及びTM陽性細胞の数の劇的な減少をもたらした。アクチビン処理培養物に関するSOX17、AFP及びTM抗体を使用した三重標識により、AFP及びTMに関しても陰性であるSOX17陽性細胞のクラスターが観察された(
図16A〜
図16D)。これらは、分化hESC培養物におけるSOX17陽性胚体内胚葉細胞の第1の細胞の実証である(
図16A〜
図16D及び
図17)。
【0227】
上述のSOX17抗体及びQ−PCRツールを用いて、本発明者等は、SOX17hi/AFPlo/SPARC/TMlo胚体内胚葉細胞となるようにhESCを効率的にプログラミングすることが可能な多数の手順を探究してきた。本発明者等は、SOX17遺伝子発現に関してQ−PCRにより集団レベルで、及びSOX17タンパク質の抗体標識により個々の細胞のレベルで測定される場合、これらの細胞の数及び増殖能力を増大させることを目的とした様々な分化プロトコルを適用した。
【0228】
本発明者等はまず、in vitro細胞培養物において胚性幹細胞から胚体内胚葉細胞
を創出するのに使用するためのノーダル/アクチビン/BMPのようなTGFβファミリー成長因子の影響を分析及び記載した。通常の実験では、アクチビンA、アクチビンB、BMP又はこれらの成長因子の組合せを未分化ヒト幹細胞系hESCyt−25の培養物へ添加して、分化プロセスを開始させた。
【0229】
図19に示されるように、100ng/mlでのアクチビンAの添加は、分化の4日目までに、未分化hESCに対して、SOX17遺伝子発現の19倍の誘導をもたらした。アクチビンAと共に、アクチビンファミリーの第2の成員であるアクチビンBを添加することにより、併用アクチビン処理の4日目までに、未分化hESCを上回る37倍の誘導がもたらされた。最後に、アクチビンA及びアクチビンBと共に、ノーダル/アクチビン由来のTGFβファミリーの第3の成員、並びにBMPサブグループであるBMP4を添加することにより、未分化hESCの誘導の57倍に誘導を増大させた(
図19)。アクチビン及びBMPによるSOX17誘導を、因子無しの培地対照と比較した場合、5倍、10倍及び15倍の誘導が4日目の時点で生じた。アクチビンA、B及びBMPによる三重処理の5日目までに、SOX17は、hESCの70倍より高く誘導された。これらのデータは、ノーダル/アクチビン TGFβファミリー成員のより高い用量及びより長い処
理時間がSOX17の増大された発現をもたらすことを示している。
【0230】
ノーダル並びに関連分子アクチビンA、B及びBMPは、in vivo又はin vitroでSOX17の発現及び胚体内胚葉形成を促進する。さらに、BMPの添加は、おそらくノーダル補助受容体であるCriptoのさらなる誘導により、改善されたSOX17の誘導をもたらす。
【0231】
本発明者等は、BMP4と一緒のアクチビンA及びBの組合せが、SOX17誘導、したがって胚体内胚葉形成の相加的増大をもたらすことを実証している。アクチビンA及びBと組み合わせた長期間(4日を超える)のBMP4添加は、壁側及び臓側内胚葉並びに胚体内胚葉においてSOX17を誘導し得る。したがって、本発明のいくつかの実施形態では、添加の4日以内に処理からBMP4を除去することは有益である。
【0232】
個々の細胞レベルでのTGFβ因子処理の影響を測定するために、経時的なTGFβ添加を、SOX17抗体標識を使用して検査した。すでに
図10A〜
図10Fで示したように、経時的にSOX17標識細胞の相対数の劇的な増大が見られた。相対定量化(
図20)は、SOX17標識細胞の20倍を超える増大を示す。この結果は、細胞の数並びにSOX17遺伝子発現レベルの両方が、TGFβ因子暴露の時間とともに増大していることを示す。
図21に示されるように、ノーダル、アクチビンA、アクチビンB及びBMP4への暴露の4日後に、SOX17誘導のレベルは、未分化hESCに対して168倍に到達した。
図22は、SOX17陽性細胞の相対数もまた、用量応答性であったことを示す。100ng/ml又はそれ以上のアクチビンA用量は、SOX17遺伝子発現及び細胞数を強力に誘導することが可能であった。
【0233】
TGFβファミリー成員のほかに、Wntファミリーの分子が、胚体内胚葉の特定化及び/又は維持において役割を果たし得る。Wnt分子の使用もまた、アクチビン単独を上回
るアクチビン+Wnt3aで処理したサンプルにおける増大したSOX17遺伝子発現により示されるように、胚体内胚葉へのhESCの分化に有益であった(
図23)。
【0234】
上述の実験はすべて、添加因子を伴って10%血清を含有する組織培養培地を使用して実施した。驚くべきことに、
図24A〜
図24Cに示されるように、血清の濃度が、添加アクチビンの存在下でSOX17発現のレベルに対して影響することを本発明者等は発見した。血清レベルが10%から2%へ低減すると、SOX17発現は、アクチビンA及びBの存在下で3倍になった。
【0235】
最後に、本発明者等は、アクチビン誘導SOX17+細胞が、
図25A〜
図25Dに表さ
れるように培養物中で分裂することを実証した。矢印は、PCNA/DAPI標識有糸分裂プレートパターン及び位相差有糸分裂プロフィールにより明らかなように有糸分裂中であるSOX17/PCNA/DAPIで標識された細胞を示す。
【0236】
[実施例7]
ケモカイン受容体4(CXCR4)発現は、胚体内胚葉に関するマーカーと相関し、中胚葉、外胚葉又は臓側内胚葉に関するマーカーとは相関しない
上述したように、hESCは、TGFβファミリー、より具体的にはアクチビン/ノーダルサブファミリーのサイトカインの適用により、胚体内胚葉の胚葉へ分化するように誘導することができる。さらに、本発明者等は、分化培養培地におけるウシ胎児血清(FBS)の比率が、hESCからの胚体内胚葉分化の効率に影響を及ぼすことを示している。この影響は、培地においてアクチビンAの所定濃度で、より高いレベルのFBSが胚体内胚葉への最大限の分化を阻害するようなものである。外因性アクチビンAの非存在下では、胚体内胚葉系統へのhESCの分化は、非常に非効率であり、FBS濃度は、hESCの分化プロセスに対して相当穏やかに影響する。
【0237】
これらの実験では、0.5%、2.0%又は10%FBSを補充し、且つ100ng/mlのアクチビンAを伴うか、又は伴わないRPMI培地(Invitrogen, Carlsbad, CA;cat#61870−036)中で6日間成長させることにより、hESCを分化させた。さらに、分化の最初の3日間にわたる0.5%〜2.0%に及ぶFBSのグラジエントもまた、100ng/mlのアクチビンAと併用した。6日後に、反復サンプルを各培養条件から収集して、リアルタイム定量的PCRにより相対遺伝子発現に関して分析した。残存細胞は、SOX17タンパク質の免疫蛍光検出用に固定した。
【0238】
CXCR4の発現レベルは、使用した7つの培養条件にわたって劇的に変化した(
図26)。概して、CXCR4発現は、アクチビンA処理培養物(A100)では高く、外因性アクチビンAを施さない培養物(NF)では低かった。さらに、A100処理培養物の中でも、CXCR4発現は、FBS濃度が最も低かった場合に最も高かった。相対発現が、アクチビンAを施さない条件(NF)により一致するように、10%FBS条件におけるCXCR4レベルの顕著な低減が見られた。
【0239】
上述したように、SOX17、GSC、MIXL1及びHNF3β遺伝子の発現は、胚体内胚葉としての細胞の特性化と一致する。7つの分化条件に関するこれらの4つの遺伝子の相対発現は、CXCR4の相対発現を反映する(
図27A〜
図27D)。このことは、CXCR4もまた胚体内胚葉のマーカーであることを実証する。
【0240】
外胚葉及び中胚葉系統は、各種マーカーのそれらの発現により胚体内胚葉と識別することができる。初期中胚葉は、遺伝子ブラキュリ及びMOX1を発現する一方で、新生神経外胚葉は、SOX1及びZIC1を発現する。
図28A〜
図28Dは、外因性アクチビンAを施さない培養物が、中胚葉及び外胚葉遺伝子発現に関して優先的に富化されたこと、及
びアクチビンA処理培養物の中でも、10%FBS条件がまた、中胚葉及び外胚葉マーカー発現の増大レベルを有したことを実証している。発現のこれらのパターンはCXCR4のパターンと反比例し、CXCR4が、この発達期間にhESCに由来する中胚葉又は外胚葉中ではそれほど高度に発現されないことを示した。
【0241】
哺乳類発達中の初期に、胚体外系統への分化もまた起こる。ここでは、SOX17を包含する胚体内胚葉と共通して多くの遺伝子の発現を共有する臓側内胚葉の分化が特に関連している。胚体内胚葉を胚体外臓側内胚葉と識別するためには、これらの2つの間を識別できるマーカーを検査するべきである。SOX7は、臓側内胚葉では発現されるが、胚体内胚葉系統では発現されないマーカーを表す。したがって、SOX7発現の非存在下での強健なSOX17遺伝子発現を示す培養条件は、胚体内胚葉を含有し、臓側内胚葉を含有しない可能性が高い。SOX7が、アクチビンAを施さない培養において高度に発現され、SOX7はまた、FBSが10%で包含される場合に、アクチビンAの存在下でさえ増大された発現を示したことが
図28Eに示されている。このパターンは、CXCR4発現パターンの逆であり、CXCR4が、臓側内胚葉ではあまり高度に発現されないことを示唆する。
【0242】
上述の分化条件それぞれに存在するSOX17免疫反応性(SOX17+)細胞の相対数
もまた測定した。hESCは、高用量アクチビンA及び低FBS濃度(0.5%〜2.0%)の存在下で分化させた場合、SOX17+細胞は、培養物全体にわたって遍在的に分
布した。高用量アクチビンAを使用したが、FBSは10%(v/v)で包含された場合、SOX17+細胞は、相当低い頻度で出現し、培養物全体にわたって均一に分布される
のではなく、常に単離クラスターに出現した(
図29A及び
図29C、並びに
図29B及び
図29E)。外因性アクチビンAが使用されなかった場合に、SOX17+細胞のさら
なる減少が観察された。これらの条件下では、SOX17+細胞はまたクラスターに出現
し、これらのクラスターは、高アクチビンA低FBS処理で見出されるものよりも小さく、且つ相当稀であった(
図29C及び
図29F)。これらの結果は、CXCR4発現パターンが、各条件下で胚体内胚葉遺伝子発現に対応するだけでなく、胚体内胚葉細胞の数にも対応することを実証している。
【0243】
[実施例8]
胚体内胚葉に関して富化する分化条件は、CXCR4陽性細胞の比率を増大させる
アクチビンAの用量はまた、胚体内胚葉がhESCから得られ得る効率に影響を及ぼす。この実施例は、アクチビンAの用量を増大させることにより培養物におけるCXCR4+
細胞の比率が増大することを実証する。
【0244】
hESCは、0.5%〜2%FBS(分化の最初の3日にわたって0.5%から1.0%、そして2.0%へ増大される)及び0、10又は100ng/mlのアクチビンAを補充したRPMI培地中で分化させた。分化の7日後に、2%FBS及び2mM(EDTA)を含有するCa2+/Mg2+を伴わないPBS中で、室温で5分間、細胞を解離させた。細胞は、35μmナイロンフィルタに通して濾過して、計数して、ペレット化した。ペレットは、少容量の50%ヒト血清/50%正常ロバ血清中に再懸濁させて、氷上で2分間インキュベートして、非特異的抗体結合部位をブロックした。これに、50μl(およそ105個の細胞を含有する)当たりマウス抗CXCR4抗体(Abcam、cat# ab10
403−100)1μlを添加して、氷上で45分間ラベリングした。細胞は、2%ヒト血清を含有するPBS(緩衝液)5mlを添加することにより洗浄して、ペレット化した。緩衝液5mlによる第2の洗浄を完了させた後、細胞は、105個の細胞当たり緩衝液
50μl中に再懸濁させた。二次抗体(FITC結合ロバ抗マウス、Jackson ImmunoResearch、cat# 715−096−151)を最終濃度5μg/mlで添加して、30分
間標識させた後、上述のように緩衝液中で2回洗浄を行った。細胞は、緩衝液中に5×1
06個の細胞/mlで再懸濁させて、フローサイトメトリーの中心的な施設(The Scripps Research Institute)にてスタッフによりFACS Vantage(Beckton Dicklenson)を使用して分析及び選別した。細胞は、これに続くリアルタイム定量的PCRによる遺伝子発現分析用の総RNAの単離のために、RLT溶解緩衝液(Qiagen)へ直接収集した。
【0245】
フローサイトメトリーにより測定される場合のCXCR4+細胞の数は、アクチビンAの
容量が分化培養培地中で増大されると、劇的に増大することが観察された(
図30A〜
図30C)。CXCR4+細胞は、R4ゲート内に納まり、このゲートは、事象の0.2%
がR4ゲートに位置される二次抗体のみの対照を使用して設定された。CXCR4+細胞
の劇的に増大する数は、アクチビンA用量が増大される場合に、胚体内胚葉遺伝子発現における強健な増大と相関する(
図31A〜
図31D)。
【0246】
[実施例9]
CXCR4陽性細胞の単離は、胚体内胚葉遺伝子発現に関して富化し、また中胚葉、外胚葉及び臓側内胚葉のマーカーを発現する細胞を激減させる
上記実施例8で同定されるCXCR4+及びCXCR4-細胞を収集して、相対遺伝子発現に関して分析し、母集団の遺伝子発現を同時に測定した。
【0247】
CXCR4遺伝子発現の相対レベルは、アクチビンAの用量の増大に伴って劇的に増大した(
図32)。これは、CXCR4+細胞のアクチビンA用量依存的増大と極めて強く相
関した(
図30A〜
図30C)。また、各集団からのCXCR4+細胞の単離は、この集
団におけるほぼすべてのCXCR4遺伝子発現を占めたことも明らかである。これは、これらの細胞を収集するためのFACS方法の効率を実証している。
【0248】
遺伝子発現分析により、CXCR4+細胞は、CXCR4遺伝子発現の大部分を含有する
だけでなく、CXCR4+細胞はまた、胚体内胚葉の他のマーカーに関する遺伝子発現も
含有することが明らかとなった。
図31A〜
図31Dに示されるように、CXCR4+細
胞はさらに、SOX17、GSC、HNF3B及びMIXL1に関して母A100集団を上回って富化した。さらに、CXCR4-分画は、これらの胚体内胚葉マーカーに関して
非常に少ない遺伝子発現を含有した。さらに、CXCR4+及びCXCR4-集団は、中胚葉、外胚葉及び胚体外内胚葉のマーカーに関して逆パターンの遺伝子発現を示した。
図33A〜
図33Dは、CXCR4+細胞が、A100母集団に対してブラキュリ、MOX1
、ZIC1及びSOX7の遺伝子発現に関して激減したことを示す。このA100母集団は、低用量条件又はアクチビンA無しの条件に対して、これらのマーカーの発現がすでに低かった。これらの結果は、高アクチビンAの存在下で分化されるhESCからのCXCR4+細胞の単離は、胚体内胚葉に関して高度に富化され、且つ実質的に純粋な胚体内胚
葉である集団を生じることを示す。
【0249】
[実施例10]
CXCR4を使用した細胞集団における胚体内胚葉細胞の定量化
本明細書中ですでに確定されるような、及び2003年12月23日に出願された「胚体内胚葉(DEFINITIVE ENDODERM)」と題する米国仮特許出願第60/532,004号で測
定されるような細胞培養物又は細胞集団中に存在する胚体内胚葉細胞の比率の定量化を確認するために、CXCR4及び胚体内胚葉の他のマーカーを発現する細胞をFACSにより分析した。
【0250】
上記実施例に記載されるような方法を使用して、hESCを分化させて、胚体内胚葉を産生した。特に、分化細胞培養物における収率及び純度を増大させるために、培地の血清濃度を以下の通りに制御した:1日目には0.2%FBS、2日目には1.0%FBS及び3〜6日目には2.0%FBS。分化培養物は、3つの細胞表面エピトープであるE−カ
ドヘリン、CXCR4及びトロンボモジュリンを使用して、FACSにより選別した。続いて、選別した細胞集団をQ−PCRにより分析して、胚体及び胚体外内胚葉並びに他の細胞型に関するマーカーの相対発現レベルを測定した。最適に分化させた培地から採取されるCXCR4選別した細胞は、98%を超える純度の胚体内胚葉細胞の単離をもたらした。
【0251】
表2は、本明細書中に記載する方法を使用してhESCから分化させた胚体内胚葉培養物に関するマーカー分析の結果を示す。
【0252】
【表2】
【0253】
特に、表2は、CXCR4及びSOX17陽性細胞(内胚葉)が細胞培養物における細胞の70〜80%を構成したことを示す。これらのSOX17発現細胞のうち、2%未満がTM(壁側内胚葉)を発現し、1%未満がAFP(臓側内胚葉)を発現した。TM陽性細胞及びAFP陽性細胞の比率(組み合わせた壁側内胚葉及び臓側内胚葉、総計3%)をSOX17/CXCR4陽性細胞の比率から差し引きした後、細胞培養物の約67%〜約77%が胚体内胚葉であったことが観察され得る。およそ10%の細胞が、hESCに関するマーカーであるE−カドヘリン(ECAD)に関して陽性であり、細胞の約10〜20%が他の細胞型であった。
【0254】
FACS分離前に得られる分化細胞培養物における胚体内胚葉の純度は、5〜6日の分化手順全体にわたって0.5%以下でFBS濃度を維持することにより、上述の低血清手順と比較して改善させることができることを本発明者等は発見している。しかしながら、5〜6日の分化手順全体にわたって0.5%以下で細胞培養物を維持することはまた、産生される総胚体内胚葉細胞の数の低減をもたらす。
【0255】
本明細書中に記載する方法により産生される胚体内胚葉細胞は、それほどの分化を伴わずに50日よりも長い間、アクチビンの存在下で培養において維持及び拡大されている。かかる場合では、SOX17、CXCR4、MIXL1、GATA4、HNF3β発現は、培養期間にわたって維持される。さらに、TM、SPARC、OCT4、AFP、SOX7、ZIC1及びBRACHは、これらの培養物では検出されなかった。かかる細胞は、それほどの分化を伴わずに50日よりも実質的に長い間、培養において維持及び拡大させることができる可能性が高い。
【0256】
[実施例11]
胚体内胚葉細胞のさらなるマーカー
以下の実験では、精製された胚体内胚葉及びヒト胚性幹細胞集団からRNAを単離した。続いて、遺伝子発現は、各精製された集団からのRNAの遺伝子チップ分析により分析した。Q−PCRも実施して、胚体内胚葉に関するマーカーとして、胚体内胚葉では発現さ
れるが、胚性幹細胞では発現されない遺伝子の潜在性をさらに研究した。
【0257】
ヒト胚性幹細胞(hESC)は、20%ノックアウト血清代替物、4ng/mlの組換えヒト塩基性線維芽細胞成長因子(bFGF)、0.1mM2−メルカプトエタノール、L−グルタミン、非必須アミノ酸及びペニシリン/ストレプトマイシンを補充したDMEM/F12培地中で維持された。hESCは、100ng/mlの組換えヒトアクチビンA、ウシ胎児血清(FBS)及びペニシリン/ストレプトマイシンを補充したRPMI培地中で5日間培養することにより胚体内胚葉へ分化させた。FBSの濃度は、毎日以下の通りに変化させた:0.1%(1日目)、0.2%(2日目)、2%(3〜5日目)。
【0258】
遺伝子発現分析のためにhESC及び胚体内胚葉の精製集団を得るために、細胞を蛍光標示式細胞分取器(FACS)により単離した。免疫精製は、hESCに関してはSSEA4抗原(R&D Systems、cat#FAB1435P)を使用して、また胚体内胚葉に関し
てはCXCR4(R&D Systems、cat#FAB170P)を使用して達成された。細胞
は、トリプシン/EDTA(Invitrogen、cat#25300−054)を使用して解離させて、2%ヒト血清を含有するリン酸緩衝生理食塩水(PBS)中で洗浄して、氷上で10分間100%ヒト血清中に再懸濁させて、非特異的結合をブロックした。染色は、ヒト血清800μl中で5×106個の細胞にフィコエリトリン結合抗体200μlを添加
することにより氷上で30分間実施した。細胞をPBS緩衝液8mlで2度洗浄して、同1ml中に再懸濁させた。FACS単離は、FACS Vantage(BD Biosciences)
を使用して、The Scripps Research Instituteの中心的な施設により実施された。細胞は、RLT溶解緩衝液へ直接収集して、RNAは、製造業者の指示書に従ってRNeasy(Qiagen)により単離した。
【0259】
精製されたRNAは、Affymetrixプラットフォーム及びU133 Plus2
.0高密度オリゴヌクレオチドアレイを使用して、発現プロフィールデータの作成のためにExpression Analysis(Durham, NC)へ正副2通提出した。提示されたデータは、2つの
集団、すなわちhESCと胚体内胚葉の間で差次的に発現する遺伝子を同定する群の比較である。hESCに見出される発現レベルを上回る発現レベルの頑強な上方変化を示す遺伝子は、胚体内胚葉の高度に特性化される新たな候補マーカーとして選択された。選択遺伝子は、上述のようにQ−PCRによりアッセイして、遺伝子チップ上に見られる遺伝子発現変化を確証し、またhESC分化の経時変化中のこれらの遺伝子の発現パターンを研究した。
【0260】
図34A〜
図34Mは、或る特定のマーカーに関する遺伝子発現の結果を示す。結果は、100ng/mlアクチビンAの添加の1日後、3日後及び5日後に分析した細胞培養物、5日目の分化手順の終わりに精製されたCXCR4発現性胚体内胚葉細胞(CXDE)に関して、及び精製hESCにおいて表示される。
図34C及び
図34G〜
図34Mの比較により、6つのマーカー遺伝子、すなわちFGF17、VWF、CALCR、FOXQ1、CMKOR1及びCRIP1が、互いにほぼ一致し、且つまたCXCR4の発現のパターン及びSOX17/SOX7の比と同一である発現パターンを示す。上述したように、SOX17は、胚体内胚葉並びにSOX7発現胚体外内胚葉の両方において発現される。SOX7は胚体内胚葉で発現されないため、SOX17/SOX7の比は、全体として集団において証明されるSOX17発現への胚体内胚葉の寄与の信頼性高い推定を提供する。パネルCに対するパネルG〜L及びMの類似性は、FGF17、VWF、CALCR、FOXQ1、CMKOR1及びCRIP1が、胚体内胚葉のマーカーである可能性が高いこと、及びそれらが胚体外内胚葉細胞で有意に発現されないことを示す。
【0261】
本明細書中に記載されるQ−PCRの結果は、ICCによりさらに確認することができることが理解されよう。
【0262】
[実施例12]
レチノイン酸及びFGF−10は、胚体内胚葉培養物において特異的にPDX1を誘導する
以下の実験は、RA及びFGF−10が胚体内胚葉細胞においてPDX1の発現を誘導することを実証する。
【0263】
ヒト胚性幹細胞をアクチビン有り又は無しで4日間培養した。4日目に、1μM RA及
び50ng/ml FGF−10を細胞培養物へ添加した。RA/FGF−10添加の4
8時間後に、PDX1マーカー遺伝子及び前腸内胚葉に特異的でない他のマーカー遺伝子の発現をQ−PCRにより定量した。
【0264】
胚体内胚葉細胞へのRAの適用は、臓側内胚葉(SOX7、AFP)、神経(SOX1、ZIC1)又はニューロン(NFM)遺伝子発現マーカーの発現を増大させずに(
図36A〜
図36F)、PDX1遺伝子発現の頑強な増大を引き起こした(
図35を参照)。PDX1遺伝子発現は、1μM RA及び50ng/ml FGF−10への暴露の48時間後に、胚体内胚葉において観察されるものよりもおよそ500倍高いレベルまで誘導された。さらに、これらの結果は、実質的なPDX1誘導が、RA適用に先立ってアクチビンを施さない培養物に比べてアクチビン処理細胞培養物に見出される160倍高いPDX1発現により示されるように、胚体内胚葉(SOX17)に予め分化させた細胞培養物においてのみ起こったことを示す。
【0265】
[実施例13]
FGF−10は、RA単独を上回るPDX1発現のさらなる増大を提供する
この実施例は、RA及びFGF−10の組合せが、RA単独よりも大いにPDX1発現を誘導することを示す。
【0266】
これまでの実施例と同様に、hESCは、アクチビン有り又は無しで4日間培養した。4日目に、細胞を以下のうちの1つで処理した:1μM RA単独、FGF−4又はFGF
−10のいずれかと併用した1μM RA、或いはFGF−4及びFGF−10の両方と
併用した1μM RA。PDX1、SOX7及びNFMの発現は、RA又はRA/FGF
の96時間後に、Q−PCRにより定量された。
【0267】
アクチビン、これに続くレチノイン酸によるhESC培養物の処理は、PDX1遺伝子発現の60倍の増大を誘導した。RA処理へのFGF−4の添加は、わずかに多いPDX1を誘導した(RA単独に対しておよそ3倍)。しかしながら、FGF−10及びレチノイン酸を共に添加することにより、PDX1の誘導はさらに、RA単独に対して60倍増強された(
図37Aを参照)。この非常に頑強なPDX1誘導は、アクチビン無し又はRA/FGF処理を用いた場合よりも1400倍超高かった。興味深いことに、FGF−4及びFGF−10の添加は、FGF−10の有益な効果を同時に根絶させて、FGF−4添加に起因して少量のPDX1の増大のみをもたらした。
【0268】
RA/FGF−4又はRA/FGF−10の組合せの添加は、RA/FGFの組合せに暴露させない細胞と比較した場合、前腸内胚葉に関連しないマーカー遺伝子の発現を増大させなかった(
図37B及び
図37Cを参照)。
【0269】
[実施例14]
レチノイン酸用量は、in vitroで前方−後方(A−P)位置に影響を及ぼす
RAの用量がin vitro細胞培養物のA−P位置に影響を及ぼすかどうかを判定す
るために、以下の実験を実施した。
【0270】
ヒト胚性幹細胞は、アクチビン有り又は無しで4日間培養した。4日目に、50ng/mlでのFGF−10は、0.04μM、0.2μM又は1.0μMで、RAを併用して培養物へ添加された。PDX1マーカー遺伝子の発現並びに前腸内胚葉に特異的でない他のマーカーの発現をQ−PCRにより定量化した。
【0271】
50ng/mlでのFGF−10と併用した様々な用量でのレチノイン酸の添加は、特異的な前方−後方位置的パターンと相関する差次的遺伝子発現パターンを誘導した。RAの最高用量(1μM)は、前方の内胚葉マーカー(HOXA3)の発現を優先的に誘導し
、またPDX1の最も頑強な増大をもたらした(
図38A及び
図38B)。RAの中間的な用量(0.2μM)は、中腸内胚葉マーカー(CDX1、HOXC6)を誘導した(
図38C及び
図41Eを参照)のに対して、RAの最小用量(0.04μM)は、後腸内胚葉のマーカー(HOXA13)を優先的に誘導した(
図38Dを参照)。RA用量は、神経(SOX1)又はニューロン(NFM)マーカーのいずれかの相対発現に対して実質的に影響しなかった(
図38F及び
図38Gを参照)。この実施例は、in vitroで
モルフォゲンとしての、特に分化hESCの内胚葉誘導体のモルフォゲンとしてのRAの使用を強調する。
【0272】
[実施例15]
B27サプリメントの使用は、PDX1の発現を増強する
胚体内胚葉におけるPDX1発現は、多数の因子の使用及び細胞成長/分化状態により影響を与え得る。以下の実験では、B27サプリメントの使用が胚体内胚葉細胞においてPDX1の発現を増強することを示す。
【0273】
ヒト胚性幹細胞は、マウス胚線維芽細胞フィーダー上で成長させた未分化hES細胞を高用量のアクチビンA(0.5〜2%FBS/DMEM/F12中100〜200ng/ml)で4日間処理することにより胚体内胚葉へ分化するように誘導された。アクチビンA無しの対照に、アクチビンAを添加せずに0.5〜2%FBS/DMEM/F12を施した。4日目に、培養物に、2%FBS中のアクチビンA無し(無し)及び2%血清代替物中のアクチビンA無し(SR)、又は2%FBS/DMEM/F12中の2μM RA及
び50ng/ml FGF−10と共に50ng/mlのアクチビンA(無し、+FBS
、+B27)、並びに同様に2%血清代替物(SR)の2μM RA及び50ng/ml FGF−10と共に50ng/mlのアクチビンAのいずれかを施した。B27サプリメント(Gibco/BRL)は、2%FBS/DMEM/F12へ直接1/50希釈として添加した
(+B27)。二重反復細胞サンプルを各点に関して採取して、総RNAを単離して、上述のようにQ−PCRへ付した。
【0274】
図39A〜
図39Eは、無血清サプリメントB27が、血清無しで成長させた細胞におけるかかるマーカー遺伝子発現と比較した場合、前腸内胚葉に特異的でないマーカー遺伝子の発現の増大を誘導することなく、PDX1遺伝子発現の誘導にさらなる有益性を提供することを示す。
【0275】
[実施例16]
PDX1の誘導を増強するためのアクチビンBの使用
この実施例は、アクチビンBの使用が、in vitro細胞培養物においてPDX1陽
性細胞へのPDX1陰性細胞の分化を増強することを示す。
【0276】
ヒト胚性幹細胞は、マウス胚線維芽細胞フィーダー上で成長させた未分化hES細胞を低血清/RPMI中の高用量のアクチビンA(50ng/ml)で6日間処理することにより胚体内胚葉へ分化するように誘導された。FBS用量は、1日目に0%、2日目に0.
2%、及び3〜6日目に2%であった。胚体内胚葉産生に関する陰性対照(NF)には、アクチビンAを添加せずに2%FBS/RPMIを施した。PDX1発現を誘導するために、培養物それぞれに、6日目に2%FBS/RPMI中で2μMにてレチノイン酸を施した。1日目〜5日目にアクチビンAで処置した培養物に、種々の投与組合せのアクチビンA及びアクチビンBを供給したか、或いは50ng/mlでのアクチビンA単独中の状態のままであった。アクチビンA無しの対照培養物(NF)にはアクチビンAもアクチビンBも供給しなかった。このRA/アクチビン処理は3日間実施して、3日目にPDX1遺伝子発現を二重反復細胞サンプルからのQ−PCRにより測定した。
【0277】
図40Aは、25ng/ml(A25)又は50ng/ml(A50)のアクチビンAの存在下での10〜50ng/ml(a10、a25及びa50)の範囲の用量でのアクチビンBの添加が、50ng/mlでアクチビンAのみを施した培養物を少なくとも2倍越えてPDX1発現を増大させたことを示す。アクチビンBの添加の結果としてのPDX1の増大は、発達におけるこの時点で肝臓並びに膵臓に関するマーカーであるHNF6発現の増大を伴わなかった(
図40Bを参照)。この結果は、膵臓へ分化している細胞の比率が肝臓に比べて増大していることを示唆する。
【0278】
[実施例17]
PDX1の誘導を増強するための血清用量の使用
胚体内胚葉細胞におけるPDX1の発現は、分化プロセス全体にわたって細胞培養物中に存在する血清の量により影響を受ける。以下の実験は、PDX1陰性胚体内胚葉へのhESCの分化中の培養物における血清のレベルが、PDX1陽性内胚葉へのこれらの細胞のさらなる分化中のPDX1の発現に影響したことを示す。
【0279】
ヒト胚性幹細胞は、マウス胚線維芽細胞フィーダー上で成長させた未分化hESCを、低血清/RPMI中の高用量のアクチビンA(100ng/ml)で5日間処理することにより胚体内胚葉へ分化するように誘導された。FBS用量は、1日目に0.1%、2日目に0.5%、及び3〜5日目に0.5%、2%又は10%のいずれかであった。アクチビンA無しの対照(NF)には、毎日同じFBS/RPMI投与を施したが、アクチビンAは添加しなかった。PDX1発現は、RAの添加により6日目に開始して誘導した。6〜7日目中に、培養物に、0.5%FBS/RPMI中で2μMにて、8日目に1μMにて、及び9〜11日目に0.2μMにてレチノイン酸を施した。アクチビンAは、レチノイン酸処理中50ng/mlへ低減させて、アクチビンA無しの対照(NF)から取り去った。
【0280】
図41Aは、3日間の胚体内胚葉誘導(3日目、4日目及び5日目)中のFBS投与は、レチノイン酸処理中にPDX1遺伝子発現の誘導を変化させる持続的な能力を有したことを示す。これは、ZIC1(
図41B)又はSOX7(
図41C)遺伝子発現の発現パターンの有意な変更を伴わなかった。
【0281】
[実施例18]
PDX1の誘導を増強するための条件培地の使用
また、胚体内胚葉細胞におけるPDX1の発現に影響を与える他の因子及び成長条件を研究した。以下の実験は、PDX1陽性内胚葉細胞へのPDX1陰性胚体内胚葉細胞の分化に対する条件培地の影響を示す。
【0282】
ヒト胚性幹細胞は、マウス胚線維芽細胞フィーダー上で成長させた未分化hES細胞を、低血清/RPMI中の高用量のアクチビンA(100ng/ml)で5日間処理することにより胚体内胚葉へ分化するように誘導された。FBS用量は、1日目に0.2%、2日目に0.5%、及び3〜5日目に2%であった。
【0283】
続いて、5日間のアクチビンA処理により生成された胚体内胚葉培養物は、25ng/mlでアクチビンAを含有する2%FBS/RPMI中でのRAの添加により、PDX1発現内胚葉へ分化するように4日間誘導させた。RAは、添加の最初の2日間に関しては2μM、3日目には1μM、及び4日目には0.5μMであった。PDX1誘導に関するこの基本培地は、新鮮な状態で(2A25R)或いは4つの異なる細胞集団のうちの1つにより24時間条件付けした後に供給された。条件培地(CM)は、マウス胚線維芽細胞(MEFCM)から、或いは3つの条件;i)3%FBS/RPMI(CM2)又はii)アクチビンA(CM3)又はiii)骨形態形成タンパク質4(BMP4)(CM4)のうちの1つによりまず5日間分化させたhESCから生成した。アクチビンA又はBMP4因子は、上述したものと同じFBS投与レジメン(0.2%、0.5%、2%)下で100ng/mlで供給された。これらの3つの異なる分化パラダイムは、PDX1誘導培地が条件付けられ得るヒト細胞の3つの非常に異なる集団を生じる。成長因子を添加しない3%FBS(NF)は、大部分が胚体外内胚葉、外胚葉及び中胚葉細胞で構成される不均一集団を生じる。アクチビンA処理培養物(A100)は、大部分の胚体内胚葉をもたらし、BMP4処理培養物(B100)は、主として栄養外胚葉及び幾らかの胚体外内胚葉をもたらす。
【0284】
図42Aは、PDX1が最初の2日間のRA処理にわたって新鮮な培地及び条件培地において同等に誘導されたことを示す。しかしながら、3日目までには、PDX1発現は、新鮮な培地及びMEF条件培地処理において減少し始めた。分化されたhESCは、維持、或いは新鮮な培地よりも3〜4倍高いレベルでPDX1遺伝子発現のさらなる増大をもたらす条件培地を生じた。hESC条件培地において高PDX1発現を維持する効果はさらに、RA処理の4日目に増幅されて、新鮮な培地よりも6〜7倍高いレベルを達成した。
図42Bは、条件培地処理が、CDX1遺伝子発現の相当低いレベルをもたらし、遺伝子は、PDX1発現内胚葉の領域では発現されなかったことを示す。これは、PDX1発現内胚葉の全体的な純度が、分化されたhESC培養物から生成される条件培地で胚体内胚葉を処理することによりかなり増強されたことを示している。
【0285】
図43は、PDX1遺伝子発現が、胚体内胚葉細胞へ適用させる条件培地の量に対する明白な用量応答を示したことを示す。各プレートへ添加される培地の総容量は5mlであり、条件培地の指示容量(
図43を参照)は、新鮮な培地(A25R)へ希釈した。新鮮な培地4mlへ添加される条件培地ちょうど1mlは、依然として新鮮な培地単独5mlよりも高いPDX1発現レベルを誘導及び維持することが可能であったことに注目されたい。これは、PDX1発現内胚葉の誘導に関する条件培地の有益な影響が、細胞から条件培地への幾らかの物質(単数又は複数)の放出に依存的であること、及びこの物質(単数又は複数)が、PDX1発現内胚葉の産生を用量依存的に増強することを示唆する。
【0286】
[実施例19]
PDX1へ結合する抗体の確証
PDX1へ結合する抗体は、細胞集団におけるPDX1発現の誘導をモニタリングするための有用なツールである。この実施例は、PDX1に対するウサギポリクローナル抗体及びIgY抗体を使用して、このタンパク質の存在を検出することができることを示す。
【0287】
第1の実験では、細胞可溶化物におけるPDX1と結合するIgY抗PDX1(IgY α−PDX1)抗体をウェスタンブロット分析により確証した。この分析で、MDX12ヒト線維芽細胞又はPDX1発現ベクターで予め24時間トランスフェクトしたMDX12細胞由来の総細胞可溶化物50μgへのIgY α−PDX1抗体の結合を比較した。
細胞可溶化物は、SDS−PAGEにより分離して、エレクトロブロッティングにより膜へ転写して、その後IgY α−PDX1一次抗血清で、それに続いてアルカリホスファ
ターゼ結合ウサギ抗IgY(Rb α−IgY)二次抗体でプロービングした。一次抗体
及び二次抗体の種々の希釈は、細長い膜を分離するために以下の組合せで適用した:A(500倍一次希釈、10,000倍二次希釈)、B(2,000倍、10,000倍)、C(500倍、40,000倍)、D(2,000倍、40,000倍)、E(8,000倍、40,000倍)。
【0288】
結合は、試験した抗体の組合せすべてにてPDX1発現ベクター(PDX1陽性)でトランスフェクトした細胞中で検出された。最高濃度の一次抗体及び二次抗体の両方を共に使用する場合(組合せA)で、結合は、トランスフェクトしていない(PDX1陰性)線維芽細胞において観察されるのみであった。かかる非特異的結合は、トランスフェクトした線維芽細胞及びトランスフェクトしていない線維芽細胞の両方においてPDX1よりもわずかに高い分子量でのさらなるバンドの検出を特徴とした。
【0289】
第2の実験では、PDX1へのポリクローナルウサギ抗PDX1(Rb α−PDX1)
抗体の結合を免疫組織化学により試験した。かかる実験用のPDX1発現細胞を産生するために、MS1−V細胞(ATCC#CRL−2460)をPDX1−EGFPの発現ベクター(pEGFP−N1(Clontech)を用いて構築した)で一過的にトランスフェクトした。続いて、トランスフェクトした細胞をRb α−PDX1及びα−EGFP抗血清で
標識した。トランスフェクトした細胞は、Cy5結合二次抗体の使用によるEGFP蛍光並びにα−EGFP免疫組織化学の両方により可視化した。PDX1免疫蛍光は、α−Rb Cy3結合二次抗体の使用により可視化した。
【0290】
Rb α−PDX1及びα−EGFP抗体の結合は、GPF発現と共局在化した。
【0291】
[実施例20]
ヒト膵臓組織の免疫組織化学
この実施例は、PDX1に対する特異性を有する抗体を使用して、免疫組織化学によりヒトPDX1陽性細胞を同定することができることを示す。
【0292】
第1の実験では、ヒト膵臓のパラフィン包埋切片を、1/200希釈でのモルモット抗インスリン(Gp α−Ins)一次抗体で、これに続いて1/100希釈でのCy2へ結
合されたイヌ抗モルモット(D α−GP)二次抗体でインスリンに関して染色した。第
2の実験では、ヒト膵臓の同じパラフィン包埋切片を、1/4000希釈でのIgY α
−PDX1一次抗体で、これに続いて1/300希釈でのAF555へ結合されたRbα−IgY二次抗体でPDX1に関して染色した。第1の実験及び第2の実験から収集した画像を併せた。第3の実験では、また、IgY α−PDX1抗体で染色した細胞をDA
PIでも染色した。
【0293】
ヒト膵臓切片の分析により、ランゲルハンス島の強力な染色の存在が明らかとなった。最強のPDX1シグナルは島(インスリン陽性)に出現したが、弱い染色は腺房組織(インスリン陰性)でも観察された。DAPI及びPDX1共染色は、PDX1が、大部分(しかし、排他的ではない)核へ局在化したことを示す。
【0294】
[実施例21]
レチノイン酸処理細胞からのPDX1の免疫沈降
RAの存在下で分化させた胚体内胚葉細胞におけるPDX1発現、及びRAを用いて分化させなかった胚体内胚葉細胞におけるPDX1の欠如をさらに確認するために、ウサギ抗PDX1(Rb α−PDX1)抗体を使用して、RA分化させた胚体内胚葉細胞及びR
A分化させていない胚体内胚葉細胞の両方からPDX1を免疫沈降させた。免疫沈降させたRAは、IgY α−PDX1抗体を使用してウェスタンブロット分析により検出した
。
【0295】
免疫沈降用の未分化の胚体内胚葉細胞可溶化物及び分化した胚体内胚葉細胞可溶化物を得るために、hESCを低血清中で100ng/mlでのアクチビンAで5日間処理した(胚体内胚葉)後、50ng/mlでのアクチビンA及び2μMのオールトランスRAで2日間(1μMで1日間、及び0.2μMで1日間)処理した(PDX1陽性前腸内胚葉)。陽性対照として、細胞可溶化物はまた、PDX1発現ベクターでトランスフェクトしたMS1−V細胞(ATCC#CRL−2460)からも調製した。PDX1は、Rb α
−PDX1及びウサギ特異的二次抗体を各可溶化液へ添加することにより免疫沈降させた。沈降物を遠心分離により収集した。免疫沈降物をSDS含有緩衝液中に溶解させた後、ポリアクリルアミドゲル上へ負荷した。分離後、タンパク質をエレクトロブロッティングにより膜へ転写し、その後IgY α−PDX1一次抗体、これに続いて標識Rb α−IgY二次抗体でプロービングした。
【0296】
MS1−V陽性対照細胞から収集した免疫沈降物並びに8日目(レーンd8、RA処理の開始の3日後)及び9日目(レーンd9、RAの開始の4日後)の細胞からの免疫沈降物は、PDX1タンパク質に関して陽性であった(
図44)。未分化の胚体内胚葉細胞(すなわち、アクチビンAで処理した5日目の細胞−
図44において(A)で示す)及び未分化のhESC(すなわち、未処理の5日目の細胞−
図44において(NF)で示す)から得られた沈降物はPDX1に関して陰性であった。
【0297】
[実施例22]
PDX1プロモーター−EGFPトランスジェニックhESC系の生成
細胞単離に関してPDX1マーカーを使用するために、本発明者等は、PDX1陽性前腸内胚葉細胞を発現可能なレポーター遺伝子で遺伝的にタグ付けした。この実施例は、PDX1調節領域の制御下でレポーター遺伝子を含有するレポーターカセットを含むベクターの構築について記載する。この実施例はまた、このベクターでトランスフェクトした細胞(例えば、ヒト胚性幹細胞)、並びにそのゲノムに組み込まれたこのレポーターカセットを有する細胞の調製について記載する。
【0298】
レポーター遺伝子で遺伝的にタグ付けしたPDX1発現胚体内胚葉細胞系は、PDX1遺伝子の調節領域(プロモーター)の制御下にGFPレポーター遺伝子を配置させることにより構築された。まず、EGFP発現がヒトPDX1遺伝子プロモーターにより駆動されるプラスミド構築物は、ベクターpEGFP−N1(Clontech)のCMVプロモーターをPDX1転写開始部位の上流約4.4キロ塩基対(kb)から下流約85塩基対(bp)に及ぶヌクレオチド配列を含むヒトPDX1制御領域(Genbankアクセッション番号AF192496)で置き換えることにより生成された。この領域は、PDX1遺伝子の特徴とされる調節要素を含有し、トランスジェニックマウスにおいて正常なPDX1発現パターンを付与するのに十分である。得られたベクターにおいて、EGFPの発現は、PDX1プロモーターにより駆動される。いくつかの実験では、このベクターは、hESCへトランスフェクトすることができる。
【0299】
PDX1プロモーター/EGFPカセットを上記ベクターから切除して、続いてホスホグリセリン酸キナーゼ1プロモーターの制御下でネオマイシンホスホトランスフェラーゼ遺伝子を含有する選択ベクターへサブクローニングした。選択カセットは、カセットの除去を可能にするためにflpリコンビナーゼ認識部位に隣接された。この選択ベクターを線状化した後、標準的なリポフェクション方法を使用してhESCへ導入した。G418における選択の10〜14日後に、未分化のトランスジェニックhESCクローンを単離及び拡大させた。
【0300】
[実施例23]
PDX1陽性前腸内胚葉の単離
以下の実施例は、PDX1プロモーター/EGFPカセットを含むhESCがPDX1陽性内胚葉細胞へ分化され得て、これに続いて蛍光標示式細胞分取器(FACS)により単離され得ることを実証する。
【0301】
PDX1プロモーター/EGFPトランスジェニックhESCは、アクチビンA含有培地中で5日間、これに続いてアクチビンA及びRAを含む培地中で2日間分化させた。続いて、分化細胞は、トリプシン消化により収集して、Becton Dickinson FACS Diva上でRNA溶解緩衝液又はPBSへ直接選別した。単一の生細胞のサン
プルが、EGFPに関してゲーティングすることなく採取され(Live)、単一の生細胞は、EGFP陽性(GFP)及びGFP陰性(Neg)集団へゲーティングされた。一実験では、EGFP陽性分画は、蛍光強度に従って2つの同様のサイズの集団に分離された(Hi及びLo)。
【0302】
選別後、細胞集団は、Q−PCR及び免疫組織化学の両方により分析した。Q−PCRに関して、RNAは、Qiagen RNeasyカラムを使用して調製されて、その後c
DNAへ変換された。Q−PCRは、上述したように実施した。免疫組織化学分析に関して、細胞をPBS中に選別して、4%パラホルムアルデヒド中で10分間固定して、Cytospin遠心分離機を使用してスライドガラス上へ接着させた。サイトケラチン19(KRT19)に対する一次抗体はChemicon製であり、肝細胞核因子3β(HNF3β)に対する一次抗体はSanta Cruz製であり、グルコーストランスポーター2(GLUT2)に対する一次抗体はR&D systems製であった。FITC(緑色)又はローダミン(赤色)に結合させた適切な二次抗体を使用して、一次抗体の結合を検出した。
【0303】
分化細胞の典型的なFACS選別を
図45に示す。この実施例における単離PDX1陽性細胞パーセントはおよそ7%であり、約1%〜約20%まで分化効率に応じて変化した。
【0304】
選別した細胞はさらに、Q−PCR分析に付した。分化細胞は、EGFP蛍光と内因性PDX1遺伝子発現との相関を示した。非蛍光性細胞と比較して、EGFP陽性細胞は、PDX1発現レベルの20倍を超える増大を示した(
図46)。高及び低EGFP強度の細胞の分離は、EGFP発現レベルがPDX1発現レベルと相関することを示した(
図47)。PDX1マーカー分析に加えて、選別した細胞は、膵臓内胚葉において発現されるいくつかの遺伝子のQ−PCR分析に付した。これらのマーカー遺伝子(NKX2.2、GLUT2、KRT19、HNF4α及びHNF3β)のそれぞれの産物はすべて、EGFP陽性分画で富化された(
図48A〜
図48E)。対照的に、神経マーカーZIC1及びGFAPは、選別されたEGFP発現細胞において富化されなかった(
図49A及び
図49B)。
【0305】
免疫組織化学により、事実上すべての単離PDX1陽性細胞が、KRT19及びGLUT2を発現するとみなされた。この結果は、膵臓内胚葉系統の細胞に関して予測される。これらの細胞の多くはまた、抗体染色によりHNF3β陽性であった。
【0306】
[実施例24]
マウス腎臓被膜下のヒト胚体内胚葉細胞の移植
本明細書中に記載される方法を用いて産生されたヒト胚体内胚葉細胞が、腸管由来の細胞を産生するよう分化因子に応答し得ることを実証するために、このようなヒト胚体内胚葉細胞をin vivo分化プロトコールに付した。
【0307】
ヒト胚体内胚葉細胞を、上記実施例に記載されたように産生した。このような細胞を収穫
し、標準手法を用いて免疫無防備状態マウスの腎臓被膜下に移植した。3週間後、マウスを屠殺し、移植組織を取り出して、切片にして、組織学的及び免疫細胞化学的分析に付した。
【0308】
図50〜
図50Dは、移植後3週間目に、ヒト胚体内胚葉細胞は腸管由来の細胞及び細胞構造物に分化した、ということを示す。特に
図50Aは、腸管様構造物に分化した移植ヒト胚体内胚葉組織のヘマトキシリン及びエオシン染色切片を示す。
図50Bは、肝細胞特異的抗原(HSA)に対する抗体で免疫染色した移植ヒト胚体内胚葉切片を示す。この結果は、ヒト胚体内胚葉細胞が肝臓又は肝臓前駆体細胞に分化し得る、ということを示す。
図50C及び
図50Dはそれぞれ、ビリンに対する抗体及び尾型ホメオボックス転写因子2(CDX2)に対する抗体で免疫染色した移植ヒト胚体内胚葉切片を示す。これらの結果は、ヒト胚体内胚葉細胞が腸細胞又は腸細胞前駆体に分化し得る、ということを示す。
【0309】
[実施例25]
in vitroでヒト胚体内胚葉細胞の分化を促進することが可能な分化因子の同定
本明細書中に記載する分化因子のスクリーニング方法を例証するために、様々な時点で或る特定のマーカー遺伝子産物の標準化した発現レベルを測定しながら、本明細書中に記載する方法を使用して産生されるヒト胚体内胚葉細胞の集団に、いくつかの候補分化因子を別個に供給した。
【0310】
ヒト胚体内胚葉細胞は、上述の実施例に記載されるように産生した。簡潔に述べると、hESC細胞は、低血清RPMI培地中で100ng/mlのアクチビンAの存在下で4日間成長させ、ここで1日目のウシ胎児血清(FBS)濃度は0%であり、2日目のFBS濃度は0.2%であり、3〜4日のFBS濃度は2%であった。5日目に始まり、10日目に終了する胚体内胚葉の形成後に、0.2%FBS含有RPMI中での個々のプレートにおいて維持される細胞集団を、20ng/mlでのWnt3B、5ng/mlでのFGF2又は100ng/mlでのFGF2のうちの1つで処理した。アルブミン、PROX1及びTITF1に関するマーカー遺伝子産物の発現を、Q−PCRを使用して定量した。
【0311】
図51Aは、アルブミン遺伝子産物(肝臓前駆体及び肝細胞に関するマーカー)の発現が、5ng/mlでのFGF2に応答して、この分化因子で処理する前の4日目の胚体内胚葉細胞における発現と比較して9日目及び10日目で実質的に増大したことを示す。アルブミン遺伝子産物の発現はまた、20ng/mlのWnt3Bに応答して、未処理の胚体内胚葉細胞における発現と比較して9日目及び10日目で増大されたが、増大は、5ng/mlのFGF2処理で観察される増大ほど大きくなかった。アルブミン遺伝子産物の発現が、100ng/mlでのFGF2に応答して、4日目の胚体内胚葉細胞の発現と比較して9日目及び10日目で増大されなかったという観察は特に重要である。同様の結果が、
図51Bに示されるように、PROX1マーカー(肝臓前駆体及び肝細胞に関する第2のマーカー)で観察された。
図51Cは、100ng/mlのFGF2を供給した細胞集団では、TITF1マーカー遺伝子の発現が、この分化因子で処理する前の4日目の胚体内胚葉細胞における発現と比較して、7日目、9日目及び10日目に実質的に増大したが、5ng/mlでのFGF2は、未処理の胚体内胚葉と比較して、この遺伝子産物の発現に対してほとんど影響しなかったことを示す。総括すると、
図51A〜
図51Cに示される結果は、候補分化因子が細胞集団に供給される濃度が、in vitroでの胚体内胚
葉細胞の分化最終形に影響を及ぼし得ることを示す。
【0312】
[実施例26]
候補分化因子に応答したマーカーアップレギュレーション及びダウンレギュレーション
本明細書中に記載する分化因子スクリーニング方法をさらに例証するために、ヒト胚体内
胚葉細胞の集団を、実施例25に記載される手順に類似した手順を使用して候補分化因子を用いてスクリーニングした。
【0313】
ヒト胚体内胚葉細胞は、上述の実施例に記載されるように産生した。簡潔に述べると、hESC細胞は、低血清RPMI培地中で100ng/mlのアクチビンAの存在下で4日間成長させ、ここで1日目のウシ胎児血清(FBS)濃度は0%であり、2日目のFBS濃度は0.2%であり、3〜4日のFBS濃度は2%であった。5日目に始まり、10日目に終了する胚体内胚葉の形成後に、0.2%FBS含有RPMI中での個々のプレートにおいて維持される細胞集団を、20〜50ng/mlでのWnt3A、5ng/mlでのFGF2又は100ng/mlでのFGF2のうちの1つで処理した。胚体内胚葉形成後の5日目に(hESCからの分化の開始の9日後)、BMP4を50ng/mlで培養物すべてに添加した。αフェトプロテイン(AFP)、シトクロムP450 7A(CY
P7A)、チロシンアミノトランスフェラーゼ(TAT)、肝細胞核因子4a(HNF4a)、CXC型ケモカイン受容体4(CXCR4)、フォンウィルブランド因子(VWF)、血管細胞接着分子−1(VACM1)、アポリポタンパク質A1(APOA1)、グルコーストランスポーター−2(GLUT2)、α−1−アンチトリプシン(AAT)、グルコキナーゼ(GLUKO)及びヒト造血発現ホメオボックス(hHEX)に関するマーカー遺伝子産物(mRNA)の発現を、Q−PCRを使用して定量した。
【0314】
図52A及び
図52Bは、AFP遺伝子産物(肝前駆体及び肝細胞に関するマーカー)及びAATの発現が、5ng/mlでのFGF2及び50ng/mlでのBMP4に応答して、4日目の胚体内胚葉細胞の発現と比較して、9日目及び10日目で実質的に増大したことを示す。AFP及びAATのmRNAの発現は、BMP4の存在下でさえ、より高濃度のFGF2(100ng/ml)により実質的に増大されなかった(
図51A及び
図51Bの9日目及び10日目)。上記の結果と対照的に、GLUKO、hHEX及びTATのmRNAの発現は、4日目の胚体内胚葉細胞の発現と比較して、9日目及び10日目に100ng/mlでのFGF2及び50ng/mlでのBMP4の存在下で実質的にアップレギュレートされた。GLUKOの場合、BMP4有り又は無しで、5ng/mlでのWnt3AもFGF2も、このマーカーの発現の増大を引き起こさなかった(
図52C)。しかしながら、5ng/mlでのFGF2は、BMPの存在下での100ng/mlでのFGF2により引き起こされる増大を上回るか、或いはそれに等しい程度に、BMPの存在下でhHEXの発現の増大を引き起こした(
図52D)。胚体内胚葉細胞における発現と比較する場合の9日目及び10日目のTATの発現は、試験される因子それぞれにより増大された(
図52E)。さらに、或る特定の細胞マーカーは、Wnt3Aの存在下では胚体内胚葉細胞と比較して増大レベルで発現されたが、FGF/BMPの組合せに応答して発現されなかった。特に、hNF4aのmRNAの発現は、Wnt3A及びBMP4の組合せに応答して9日目及び10日目で有意に増大された(
図52F)。さらに、CYP7Aは、10日目にWnt3A/BMP4に応答してわずかな増大を示した(
図52G)。
【0315】
多数の異なる細胞型で発現されることが既知であるいくつかのマーカーも観察した。具体的には、マーカーAPOA1、GLUT2、VCAM1、VWF及びCXCR4を検査した。すでに、これらのマーカーそれぞれの発現が、以下に記載するように特定の細胞型と相関している:マーカーAPOA1及びGLUT2は、肝臓では高度に発現されて、十二指腸及び小腸では中程度に発現される。マーカーVCAM1は、肝臓では高レベルで発現され、胃、十二指腸及び小腸では中程度のレベルで発現され、肺及び膵臓ではより低レベルであるが、有意なレベルで発現される。対比して、マーカーVWF及びCXCR4は、肺では高レベルで発現されるが、肝臓ではほんの低レベルで発現される。VWF及びCXCR4の両方はまた、胃、膵臓、十二指腸及び小腸では中程度〜高レベルで発現される。
【0316】
上述のマーカーそれぞれの発現は、Wnt3、FGF2及びBMP4の組合せと接触させた胚体内胚葉細胞培養物においてモニタリングされた。上記の結果と一致して、
図52H〜
図52Jは、GLUT2、APOA1及びVCAM1 mRNA発現が、胚体内胚葉に
おける発現と比較して、9日目及び10日目に5ng/mlでのFGF2及びBMP4の組合せに応答して増大されたことを示す。これらのマーカーに関するmRNA発現は、100ng/mlでのFGF2及びBMP4の組合せに応答して実質的に増大されなかった。APOA1及びVCAM1マーカーmRNAの場合、9日目及び10日目の発現の最大の増大は、Wnt3A及びBMP4の組合せにより媒介された(
図52I及び
図52J)。
【0317】
上述の事項に加えて、或る特定のmRNAの発現は、胚体内胚葉における発現と比較して減少された。例えば、胚体内胚葉における発現と比較した場合、VWF及びCXCR4mRNA発現はともに、BMP4の存在下及び非存在下でのWnt3Aとの接触後に、並びにBMP4の存在下及び非存在下での5ng/mlでのFGF2との接触後に減少された(
図52K及び
図52L)。BMP4の非存在下及び存在下の両方における100ng/mlでのFGF2との接触は、これらの2つのマーカーの減少速度を大きく低減させた(
図52K及び
図52L)。実際に、CXCR4の発現は、10日目であっても実質的に維持された(
図52L)。
【0318】
本明細書中に記載される方法、組成物及び装置は、目下、好ましい実施形態を代表するものであり、例示であって、本発明の範囲を限定するものではない。その変更及びその他の使用は当業者に思い付かれ、これらは本発明の精神に包含され、そして開示の範囲により明確にされる。したがって本発明の範囲及び精神を逸脱することなく、本明細書に開示される発明に種々の置換及び修正がなされ得るということは、当業者には明らかである。
【0319】
特許請求の範囲及び本開示全体を通して用いられる場合、「本質的に〜から成る」という語句は、当該語句の後ろに列挙される任意の要素を含むことを意味し、列挙した要素に関する開示において特定される活性又は作用を妨害しないか又は関与しない他の要素に限定される。したがって「本質的に〜から成る」という語句は、列挙した要素が必要とされるか又は必須であるが、しかし他の要素は任意であり、それらが列挙した要素の活性又は作用に影響を及ぼすか否かによって、存在することもあり、しないこともあり得る、ということを示す。
【0320】
[参考文献]
多数の文献及び特許参考文献を、本特許出願中で引用してきた。
【0321】
いくつかの参考文献に関しては、全引用が文書の本文中に存在する。他の参考文献に関しては、文書の本文中における引用は著者及び年で示しているが、全引用を以下に示す:
【表3-1】
【表3-2】
【表3-3】
【表3-4】
【表3-5】
【表3-6】