(58)【調査した分野】(Int.Cl.,DB名)
【背景技術】
【0002】
本発明に係る移動式漏電探査裝置及び方法に関する従来の技術上の問題点を以下に詳細に説明する。
即ち、例えば、大韓民国特許第10−0778089号(特許文献1)は、特に、複数個の地上変圧器(master device)とその従属変圧器(slave device)並びに検出装置等が含まれている同一の区域内に複数個の変圧器がグループ化されている様な都市部において、地中に埋設されている低圧給電線(LV)の分配システムの磁界形成ネットワーク情報を取得する為の探索システム及びその方法を開示している。
当該複数の地上高圧変圧器は、当該変圧器の内部で相端部(terminal phase)と接地部とに接続されており、それにより、当該給電線に関する、それぞれの変圧器や、相状態及び回路に関する固有識別番号を発信するものであり、一方、当該従属変圧器は、当該送信されたコード情報を読み取るか、サービス窓口で当該給電線の接続点から顧客の施設に送られた、リクエストに対する返答情報を読み取って、電源変圧器、接続相及び回路等に関する情報を取得するものであり、更に、当該検出装置は、給電サービス中に絶縁状態を取り除くことなく、当該給電線の埋設経路の途中にて、当該従属変圧器から送信された信号を収集することにより、当該電源変圧器、相及び顧客情報を取得するものである。
【0003】
一方、大韓民国特許第10−0816101号(特許文献2)は、漏電電圧探査裝置に関するものであり、当該装置は、当該サービス作業を実行する為の送信装置と受信装置を開示している。
一方、当該送信装置は、非対称パルス信号列をパッド搭載型変圧器に引加するに際して、当該変圧器から給電線に向けて供給された出力信号列は、商用電源(AC main)の信号と非対称ACパルス信号が混合された信号となる。
当該受信装置は、地表からの対地電圧信号を収集する為の信号入力部と、当該入力信号から、対称的な商用電源及びノイズを除去するためのフィルタリング部と、当該フィルタリング部からの入力信号のDC信号極性を比較して、当該信号に関して‘+’又は‘−’値を表示する比較回路部及び、特定の期間の間に当該フィルタリング部からの蓄積されたDC信号値に関する値を平均化して、当該比較回路部から得られた極性値情報と共に、それを表示する平均値回路部と、を含んでおり、且つ当該漏電発生部位において、検出可能な複合信号から商用電源電圧波を取り除いた後で、地表からの非対称のパルス信号を取得するものである。
【0004】
更には、大韓民国特許第10−0966759号(特許文献3)は、ユーティリティからの電源線と個々の電柱に対する電力配給システムを含む、問題の多い街路灯電源システムの問題個所の検出と補修を行う為の方法に関するものである。
当該方法は、
抵抗性及び容量性の漏洩電流値が基準値を超えた場合に、当該電柱に対する電力配給システム内で、漏電が発生しているか否かを判断する為に、当該給電線ケーブルを保護する為の保護パイプ内に配置されている電柱から下方に延展されているケーブルが配置されている場所において、無負荷状態と完全負荷状態の下で、当該抵抗性及び容量性の漏洩電流値を測定し、当該電柱からの地下埋設ケーブルを追跡して、漏電部位を検出するステップによって、検出感度を向上させながら、地表上での電磁フラックスを測定し、そして、漏電発生部位とされる位置からの距離をすることにより漏電部位をマーキングすることにより、漏電診断を実行する方法を含んでいる。
【0005】
又、この他にも、非特許文献として韓国のMOKE(Ministry of Knowledge Economy)による電力新技術第56号(hTTp://www.elecTRiciTy.or.kr/nTep/seArch/seArch_view)を參考してもよい。
処で、従来の技術による移動式の漏電探査装置及びそれを使用した漏電探査方法の問題点について、以下に、
図1乃至
図9を参照しながら、詳細に説明する。
【0006】
図1及び
図2は、それぞれ、従来技術に於ける漏電探索手順の一例を示した写真及びフローチャートを示すものである。
図1及び
図2を参照すると、従来の配電用低圧線(給電線・feeder line)絶縁不良漏電点の探査方法は、4工程から構成されており、その第1のステップは、編造線を介して、変圧器捲線中性点(X0)と対地接地(G)の間に流れる電流(編造線電流)Igを測定して、一定値以上(200mA以上)の場合、変圧器に連結された低圧線(給電線)のどれかに、漏電状態が発生したかどうかを判定する段階、第2のステップは、当該低圧線(給電線)の中から、変圧器に連結された編造線電流Igよりも大きなベクトル和電流(vector sum current)を流している低圧線(給電線)を漏電低圧線(給電線)として把握する段階、第3のステップは、前記漏電低圧線(給電線)埋設経路から漏電区間を判定する段階、及び第4のステップは、前記漏電低圧線(給電線)の当該漏電区間内で対地漏電点を探す段階とからなる。
【0007】
前記漏電探査の4段階作業の内で、第2及び3のステップ(段階)に於ける当該漏電低圧線(給電線)及び漏電区間を判断するための操作には、
図1の漏電有無の把握写真に示す様に、単相の場合における2組電線(相線+中性線) の組合わせ、或いは、三相Y結線の場合に於ける4組電線(A、B、C相線+中性線)] の組合わせに流れる電流ベクトルの和(current vector sum、 zero phase sequence current)(Io)を検出する事により実行される。
【0008】
一方、第3ステップとしては、漏電の疑いのある低圧線(給電線)が通過しているマンホールの様な接合部である一つの構造物に於ける電流ベクトル和(current vector sum)(Io)の計測により、当該電流ベクトル和(current vector sum)(Io)が検出されない最初の構造物を見つけ出し、次いで、漏電低圧線の埋設経路に沿って移動し、個々の構造物の区間別に当該電流ベクトル和(current vector sum) (Ion)を測定し、当該電流ベクトル和(current vector sum)(Io)が検出されない最初の構造物と当該漏洩電流である電流ベクトル和(current vector sum)(Io)が検出された最後の構造物との間を漏電区間と判定する。そして第4のステップを実行する際には、当該漏電区間での対地漏電点を探査するために、当該変圧器に於ける当該編造線を分離した後に、送信装置からの非対称パルス信号を、変圧器中性点(X0)と接地(G)との間に存在する端子部に接続させ、最後には、
図4に示す様に、受信裝置による当該非対称パルス信号(DCパルス信号)がピーク値を示す部位を漏電点として結論付けるか、若し、当該電流ベクトル和(current vector sum)(Io)が検出されなかった場合には、当該漏電は、顧客側の施設で発生していると判断するものである。
【0009】
図3に示したように、大韓民国と北米地域等では、配電用変圧器の1次及び2次の巻線センター(中性点X0)は、結合され、当該編造線を介してY−y結線により、直接的に接地されているが、一方、低圧線と顧客の中性線とは非接地にしてある。
そこで、当該給電線(低圧線路)か顧客側の施設の何れかに漏電が発生した場合、漏電(故障)電流(earth fault current)は、SGR(Source Ground Return)接地方式に従って、変圧器のみに歸還されるべきものとされてきていた。
つまり、若し、構造物2と構造物3との間のどこかで、当該低圧線の絶縁が破壊された場合、AC本線(main)の商用電圧は地中に漏れ出し、そして対地抵抗を通じて変圧器に戻ると推定され、それによって、当該編造線(Ig)を介して、当該変圧器の中性点に向けた0.5Aの漏電電流(If)が発生する。
同時に、当該漏電電流(If)と同じ0.5Aの零相電流(zerophase sequence current)(Ion)も当該給電線(低圧線路)に発生する。
当該編造線(Ig)電流は、当該構造物2(Io2L)(If=Ig=Ion=Io1s〜Io2L)の負荷側に迄、延展されるが、当該構造物3(Io3s)の電源側では、電流が消滅して檢出されないので、当該構造物2と当該構造物3との間の部位が、疑わしい漏電部位であると判定されてしまう。
【0010】
図4のマンホ−ル1とマンホ−ル2の間が漏電区間と判定されると、絶縁不良給電線を補修する為の、漏電個所正確追跡作業が実行される。
当該作業は、当該疑わしい漏電区域内で地面を掘削し、変圧器で当該編造線を分離した後に、
図10に示すように先端が尖がった電極を使用した受信裝置を利用して、中性導体線(X0)と地面(G)との間に接続されている送信装置により発生された、最大でDC50Vの非対対称パルス信号を検出することにより実行される。
【0011】
しかし、SGR法を採用する利点としては、漏電が前記のような低圧線と顧客施設の何れかで発生しているか否かを、帰還漏電故障電流(Ig)を測定することにより簡単に判断する事が出来るものであるが、一方、漏電点から変圧器までの漏電電流の帰還距離が遠い場合で、大地抵抗が漏電故障電流を放電するには不十分である場合には、公衆に対する感電事故の可能性が高いと言う欠点がある。
【0012】
このような欠点による2005年の大韓民国での感電事故が相次いで発生した後、大韓民国は、IEC国際標準により定義されたと称される新しい接地方式を導入した。当該方式は、電源や変圧器のみならず給電線(低圧配電線)の中性線を対地接地するPEN(ProTecThive EarTh Neutral)としょうされる方式であって、当該方式に於いては、複数のPENが変圧器と給電線(低圧配電線)内に配備され、当該漏洩電流に対して付加的な帰還路を提供するものであり、それによって、漏電電流の帰還距離が短縮され、当該危険電圧が速やかに消滅して、電気ショック事故を防止する事が可能となるものである。
【0013】
しかし、このような新しく導入された当該接地方式の下では、漏電を検出する為の他の新しい方法や装置が見当たらない。
つまり、従来の技術に於いては、当該漏電の判断は、専ら、変圧器の電流(Ig)と給電線(低圧線)の電流(Ion)とに基づいて行われてきている。
接地環境の変化にも拘らず従来の漏電探査技術を新接地環境で使用すると、
図5に例示するように、TNC環境下で、構造物2と構造物3との間の何処かで漏電が発生し、漏電故障電流(If)として1Aの電流が流れたとしても、当該電流は当該変圧器には最早戻ることはなく、最も近いFED PEN2に帰還し、当該編造線に於いて、当該欠陥帰還電流は0Aである判断され、結局、従来技術によって、1Aの漏洩電流を持つ当該給電線(低圧線)は安全であるとの誤判断が行われ、従って、メンテナンス操作は放棄され、それによって、電気ショックの危険性が極めて高い可能性を有して、歩行者に与えられる事になる。
【0014】
図6に示したように、低圧線の多数支点で漏電が発生する場合にも
図5で示したのと同様に、2つの漏電故障電流(If)が変圧器に帰還せず、欠陥電流(Ig)を帰還させるので、変圧器に於いては、零相電流(zero phase sequence current)(Io)が檢出されない。
その結果、変圧器での電流測定による判断は、低圧線における漏電有無に関する真の状態を表示する為には正確ではない。
真の漏電している給電線(低圧線)と漏電区域とを検出する為の唯一の方法は、埋設されている当該給電線(低圧線)に沿って配置されている全ての構造物に於いて、当該零相電流(Io)を測定することである。
これによって、当該給電線(低圧線)内のマンホール1と2の間(Io2)、及びマンホール3と4との間(Io4)で漏電発生区域が決定されることになる。
【0015】
しかし、実際には、アンバランスな相負荷電流が、漏電故障電流(If)の様に中性線を介して電源変圧器に帰還する。
つまり、
図7は、FED PENに於ける帰還負荷電流の給電線のインピーダンスとアンペア容量(ampacity)に基づいて、他の中性導体線の周りを迂回する、有る程度の大きさの帰還負荷電流が存在する事を示している。
【0016】
すなわち、
図8に示すように、150Aのアンバランスな相帰還負荷電流(phase unbalanced return load current)が、中性導体線1(N1)を介して、変圧器1(TR1)に流れ、同時に、70Aの帰還負荷電流が、当該中性導体線2(N2)を介して当該変圧器2(TR2)に流れる際には、当該構造物2に於いては、2つの中性線が非接地の状態にあり、それが個々の変圧器に対する専用の帰還線路として使用されることから当該零相電流(Io)が0Aとして測定され、一方、中性線が接地された構造物1では、接続部N1とN2に於けるバランスを欠く流通電流である中性導線1(N1)からの15Aの電流が、相対的に少ない電流が流れる中性導線2(N2)を介して迂回し、その後、中間電圧(MV)を持つ接地された中性線を通じて変圧器(TR1)と双方の変圧器(TR1、TR2)の編造線に到達する。
この現象が、当該従来技術に於ける漏洩電流(Ig)を意味する事になっている。
当該15Aの迂回された帰還負荷電流は、記漏電探査作業の第3及び4の各ステップを実行した後に当該構造体に於けるバイパス電流として理由付けされることから、帰還故障である可能性が高いとして処理されてしまうので、不必要な予算と労力を浪費している。
【0017】
それに、
図9に示されている様に、当該編造線を流れる電流が、当該構造体1及び2の間に於ける、漏電の疑いのある部位を決定する為の、前記のような従来の方法で検出された、真の接地不良による電流であったとしても、DC50Vの非対称信号は、従来からの送信装置を使用して、連続的に当該の中性導体線に送信され、絶縁不良部位に於いて漏れ出したものと推定される。
然しながら、当該DC電圧は全てのPENで漏れ出し、真の漏洩地点に到達するの前に、当該変圧器の接地部迄戻るので、従って、従来の方法では、当該電流漏れ部位を検出する事が出来ず、その為、当該絶縁不良による中性の位置が常に、欠陥相導体線(faulty phase conductor wires)の位置と同じであるか否かと言う問題を提起させることになり、これは、TNC接地システムの下では、危険な電圧リスク問題を生じさせている。
【0018】
そして、仮に、当該給電線(低圧線)内で、200mAの漏洩電流を持った、真の接地電圧漏洩が発生したと仮定すると、小さな接地欠陥電流は、例え、それが当該編造線に於いて成功裏に検出されたものであったとしも、恐らく、当該15Aの大きな迂回電流によって隠匿されてしまう事になる。
然しながら、従来の方法では、当該大きな電流内に隠匿された小さい電流を区別する事ができないので、当該電流は当該構造体1に於いて迂回電流により発生させられたものと判断され、真の接地電圧漏れを検出する事無く、当該検査を終了してしまうと言う問題が存在していた。
【図面の簡単な説明】
【0026】
【
図1】
図1は従来の技術による漏電探査の順序を説明する写真である。
【
図2】
図2は従来の技術による漏電探査作業の順序図である。
【
図3】
図3は従来の技術で使用されている非接地状中性線からなる地中低圧線LVの漏電の疑いのある区間を探索する探査する図である。
【
図4】
図4は従来の技術で使用された非接地状の中性線である地中低圧線LVケーブルの漏電点を検出する方法を示すダイアグラムである。
【
図5】
図5は従来の技術で使用されている、中性接地状の中性線からなる低圧線LVケーブルの漏電の疑いのある区間を探索する方法を示すダイアグラムである。
【
図6】
図6は従来の技術で使用された、中性接地状の低圧線LVケーブルに於ける、複数個の漏電点部を探索する方法を示すダイアグラムである。
【
図7】
図7は、中性接地された低圧線LVケーブルのPEN点での零相漏電を検出する場合の写真説明図である。(このケースでは、実際に、従来の装置が、中性線上の迂回電流を誤って、電圧漏洩と判断した例である。)
【
図8】
図8は、中性接地された低圧線LVケーブルのPEN点での迂回電流を検出する方法を説明したダイアグラムである。
【
図9】
図9は、従来の技術で使用された、中性線接地された地中低圧線LVの漏電探査方法を説明するダイアグラムである。
【
図10】
図10は、従来の技術で使用された、先端のとがった対地接触電極を有するプロ−ブを表す図面である。
【
図11】
図11は、多数の開閉器及び変圧器の器機裝置が、都市の一つの場所で設置されている様子を示した図面である。
【
図12】
図12は、一つのシステムに於いて、中性線を共有する中圧線MVと低圧線LVとを表示するブロックダイアグラムである。
【
図13】
図13は、中性線に対地接地された低圧線LVケーブルのPEN点での迂回探索電流信号を説明する回路ダイアグラムである。
【
図14】
図14は、探索信号を流す為の、2本の導体線と一本の導体線との間に於ける、磁力関係を説明する図である。
【
図16】
図16は、本発明の一具体例に於ける複数個の磁界センサ−の配置状態を説明する図である。
【
図17】
図17は、2つの反対方向に流れる電流を有する地下埋設ダクトから得られる電磁信号の波形を示す図である。
【
図18】
図18は、1つの極性を持った電流を有する地下埋設ダクトから得られる電磁信号の波形を示す図である
【
図19】
図19は、地下に埋設されている相導体線の埋設経路の方向を決定する為のロジックを説明するフローチャートである。
【
図20】
図20は、本発明の一具体例に於ける、地下に埋設された相導体線と中性導体線とが対となっている経路を探査した結果を示す図である。
【
図21】
図21は、本発明の一具体例に於ける、地下に埋設されている中性導体線の経路を探索した結果を示す図である。
【
図22】
図22は、本発明の一具体例に於ける、移動式対地電位探査裝置に配備されている金属製の車輪状電極を説明する図である。
【
図23】
図23は、本発明の一具体例に於ける、炭素繊維布帛で被覆された湿潤型車輪状電極を説明する図である。
【
図24】
図24は、本発明の一具体例に於ける、車両に搭載されて使用される、対地電位探査裝置の構成を説明するダイアグラムである。
【
図25】
図25は、本発明の一具体例に於ける、移動式対地電位探査裝置を説明するブロックダイアグラムである。
【
図26】
図26は、本発明の一具体例に於ける、移動式対地電位探査裝置のデーターベースの構成を説明する図である。
【
図28】
図28は、本発明の一具体例に於ける、探索した個々の場所に関する対地電位値を色相を使って、マークする為の地図を表示した図である。
【
図29】
図29は、本発明の一具体例に於ける、正確な漏電点を探査する為の装置を説明する為のブロックダイアグラムである。
【
図30】
図30は、本発明の一具体例に於ける、正確な漏電点を探査する為の装置の一例を示す写真図である。
【
図31】
図31は、地上で検出された、中性線で非接地状態の低圧線ケーブルLVからのAC商用電源の接地電圧波形を示す図である。
【
図32】
図32は、地上で検出された、中性線で接地状態の低圧線ケーブルLVからのAC商用電源の接地電位を示す図である。
【
図33】
図33は、中性に接地されたマンホ−ルの近くの場所で漏電を測定する例を示す写真である。
【
図34】
図34は、
図33に示された場所で測定された、AC商用電源の対地電位を示す波形図である。
【
図35】
図35は、探査電圧と電流送信装置とを、中性線に接地された低圧線LV配電線に接続させる接続構造を説明する回路図である。
【
図36】
図36は、本発明の一具体例に於ける、絶縁性ゲート・バイポーラ・トランジスタ(IGBT)の探索電圧信号とゲート電圧との間の関係を説明しているダイアグラムである。
【
図37】
図37は、本発明の一具体例に於ける、DC探索電圧の波形を表す写真である。
【
図39】
図39は、DC対地電圧信号が、相導体線のみに発生している理由を説明するダイアグラムである。
【
図40】
図40は、本発明の一具体例に於ける、絶縁性ゲート・バイポーラ・トランジスタ(IGBT)の探索電流信号とゲート電圧との間の関係を説明しているダイアグラムである。
【
図41】
図41は、本発明の一具体例に於ける、探索電流信号とゲート電圧とを同時に示している写真図である。
【
図42】
図42は、本発明の一具体例に於ける、探査電圧送信装置と探査電流送信装置並びに正確な漏電発生部位探索装置とを含む漏電検出装置を設定する状態を説明するダイアグラムである。
【
図43】
図43は、本発明の一具体例に於ける、
図42に示された漏電発生部位探索装置内の時間同期を説明するフロ−チャ−トである。
【
図44】
図44は、本発明の一具体例に於ける、当該漏電発生部位探索装置内の時間同期を実行する為のプロトコルを説明するダイアグラムである。
【
図45】
図45は、本発明の一具体例に於ける、当該探査電圧送信装置を説明するブロックダイアグラムである。
【
図46】
図46は、本発明の一具体例に於ける、探査電流送信装置を説明する内部回路ダイアグラムである。発生裝置のブロック図である。
【
図47】
図47は、本発明の一具体例に於ける、正確な漏電発生部位探索装置を説明する概略回路ダイアグラムである。
【
図48】
図48は、当該正確な漏電発生部位探索装置が、漏電点前での方向を表示する事例を説明する図である。
【
図49】
図49は、当該正確な漏電発生部位探索装置が、漏電点での方向を表示する事例を説明する図である。
【
図50】
図50は、当該正確な漏電発生部位探索装置が、漏電点を過ぎてしまった場合での方向を表示する事例を説明する図である。
【
図51】
図51は、
図33の場所における、当該DC探索電圧信号の信号波形を示す写真図である。
【
図52】
図52は、
図33の場所におけるAC使用電源の対地電位とDC探索電圧信号の波形とを比較する為に同時に示した写真図である。
【
図53】
図53は、本発明の一具体例に於ける、磁界信号の開始時間Tと実際の測定時間とを知らせる為の、DC探索電圧信号発生時間を説明するダイアグラムである。
【
図54】
図54は、本発明の一具体例に於ける、当該DC探索電圧信号測定用ウインドのオープン時間とその論理値とを説明するダイアグラムである。
【
図55】
図55は、本発明の一具体例に於ける、漏電探査作業を説明するフロ−チャ−トである。
【
図56】
図56は、当該正確な漏電発生部位探索装置の具体例を、探査者側から見た状態を示す面である。
【
図57】
図57は、本発明の一具体例に於ける、埋設線の経路の方向と対地電位の測定結果とを個別に表示する2つのスクリーンを示す図である。
【
図58】
図58は、電力ケーブルの埋設された経路に沿って、当該対地電位測定裝置が移動する方向を決定した結果を表示する表示スクリーンを示す図である。
【
図59】
図59は、本発明の一具体例に於ける、当該正確な漏電発生部位探索装置に設けられている3個の湿潤型の車輪式電極から得られた対地電位値を表示する表示スクリーンを示す図である。
【
図60】
図60は、本発明の一具体例に於ける、当該正確な漏電発生部位探索装置の内部インピーダンスを変更する為のメニュ−を説明するダイアグラムである。
【
図61】
図61は、本発明の一具体例に於ける、当該正確な漏電発生部位探索装置によって、どのようにして電磁信号を再構築するかの手順を説明するフローチャートである。
【
図62】
図62は、本発明の一具体例に於ける、当該正確な漏電発生部位探索装置によって、どのように当該真の時間(true time)Tを見つけ出すかを説明するフローチャートである。
【発明を実施するための形態】
【0027】
以下に、本発明にかかる当該移動式漏電探査装置及び当該動式漏電探査装置を使用した漏電探査方法の具体的な態様について、図面を参照しながら詳細に説明する。
尚、以下、添付の図面を参照して本発明の好ましい具体例を詳細に説明するが、本発明が当該各具体例により制限または限定されるわけではない。なお、当業者に自明と判断されるか、反復する内容は省略した。
【0028】
即ち、
図24は、本発明に係る当該移動式漏電探査(スキャン)装置の一具体例を示すブロック図であって、図中、地表と容量結合される様に構成された多数の電極と、前記電極と対地上に水分を供給する為の多数の水分供給手段と、前記電極から入力される対地電圧値を測定する為の電位測定計とを包含する事を特徴とする移動式対地電圧のスキャン装置が示されている。
【0029】
更に、本発明に於いては、当該移動式対地電圧のスキャン装置に於ける当該電極1は、好ましくは、輪の形態を有してもよく、或いは、当該電位測定計は、好ましくは、電力周波数の成分と調波を抽出するフィルタ−部を包含してもよい。
一方、本発明に於ける、当該移動式対地電圧のスキャン装置は、好ましくは、移動式検出装置の同期した動きに対応してそれぞれの部位に於いて測定した複数個の対地電位値を含むデータ−列を記憶する記録部をさらに包含してもよく、更に好ましくは、本発明による移動式対地電圧スキャン裝置は前記記録部の情報を表示する為に、マップ上の座標面にカラー化された点状体をプロッティングする為のマッピング部を包含してもよい。
【0030】
又、本発明に於ける他の具体的態様である対地電圧測定信号の送信装置は、抵抗と、ダイオ−ドと、任意の場所での3相AC電源の一つのワイヤ(ホット)と接続されている第1の接続線と、同じ場所での当該3相AC電源の一つの中性線と接続されている第2の接続線と、直列状に接続されている当該抵抗とダイオ−ドを介して流れる電流を制御するために、当該ホットワイヤと当該中性線との間に接続されている回路をON/OFFに切り替える切替手段と、当該AC電源に於ける予め決められた相角度に於いて、当該回路をON状態に切り替える為及び当該AC電源に於ける半波消滅相角度(a half wave extinction phase angle)より前に、当該回路をOFF状態に切り替える為の時間制御信号を当該切替手段に供給する事により当該回路の切替時間を制御する為の切替制御手段と、当該切替制御手段を、電流が発生しているかどうかと、当該電流に対応して一連の論理値が発生しているかどうかに関して制御する為のコーディング部とを含んでいる。
【0031】
処で、本発明に於ける上記具体例に於いては、好ましくは、当該対地電圧測定信号送信裝置は、前記スイッチング制御部切替時間を、通信を介して、関連する他の装置と同期させる為のインターフェースをさらに包含してもよく、更に好ましくは、前記AC電源ソ−スの構成が3相の場合、前記切替手段は、3つの切替回路を具備してもよい。
一方、本具体例於いては、好ましくは、当該対地電圧測定信号送信裝置は、前記コ−ディング部に当該電圧送信装置の識別情報を入力し、そして、当該AC電源を単相或いは3相に設定するための入力/設定部をさらに包含してもよい。
【0032】
更に、本発明に於ける他の具体的態様としては、探査電流の発生裝置であって、当該探査電流の発生裝置に於ける一具体例としては、当該装置は、抵抗と、ダイオ−ドと、任意の場所での3相AC電源の一つのワイヤ(ホット)と接続されている第1の接続線と、同じ場所での当該3相AC電源の一つの中性線と接続されている第2の接続線と、直列状に接続されている当該抵抗とダイオ−ドを介して流れる電流を制御するために、当該ホットワイヤと当該中性線との間に接続されている回路をON/OFFに切り替える切替手段と、当該AC電源に於ける予め決められた相角度に於いて、当該回路をON状態に切り替える為及び当該AC電源に於ける半波消滅相角度(a half wave extinction phase angle)より後に、当該回路をOFF状態に切り替える為の時間制御信号を当該切替手段に供給する事により当該回路の切替時間を制御する為の切替制御手段と、当該切替制御手段を、電流が発生しているかどうかと、当該電流に対応して一連の論理値が発生しているかどうかに関して制御する為のコーディング部とを含んでいる。
【0033】
本発明における当該探査電流の送信裝置は、好ましくは、通信を介して、前記スイッチング時間を、他の関連する裝置と同期を合わせる為のインターフェース部をさらに包含してもよい。
【0034】
一方、本発明に於ける更に他の具体的態様としては、正確な漏電部位を探索する装置が提供されるものであって、当該装置は、磁界センサ−と、対地と静電結合した多数の電極と、前記磁界センサ−から入力された信号を分析して、当該探査電流送信裝置の信号開始時間と一致する時間である時間(T)を探して設定する信号タイミング手段(a signal timing unit)と、前記時間(T)から一定間隔で一定時間、当該磁界センサーから受信された磁界信号の大きさと極性とを特定する信号検出部と、前記複数個の電極から入力された対地電圧を測定する電位測定手段とを包含する包含する構成を有しているものである。
【0035】
処で、本発明に於ける上記具体例に於いては、好ましくは、当該電位測定部は、前記時間(T)と同期し、当該時間(T)から一定間隔で一定時間の間、前記複数個の電極から入力された電圧信号の大きさと極性とを特定する様に構成されていてもよく、或いは、好ましくは、前記信号検出部は多数設置された磁界センサ−のそれぞれから入力された磁界信号の大きさと極性とを同時に測定してもよい。
【0036】
一方、上記態様に於ける他の具体例に於いては,更に好ましくは、当該正確な漏電部位探索装置は、複数のインピーダンスを選択し、そしてそれらを、対地電位値と並行して当該インピーダンス値を変更する為の、インピーダンス選択手段を包含してもよく、更には、当該対地電位測定手段は、好ましくは、前記電極から入力された入力信号の論理値列を読む事によって、漏電源情報を表示する様に構成されているものであってもよい。
【0037】
又、本発明に於ける更に別の具体的態様としては、電源の供給を妨害することなしに、電源が供給される給電線(electric wire)に於ける漏電部位を探索する探査方法が提供されるものであって、当該漏電部位の探査方法の一具体例に於いては、水分を介して大地と静電容量結合する様に構成された複数個の電極を移動させて、個々の場所に於ける対地電位を含むデータの列を記録し、そして当該電源の給電線に沿った、当該疑わしい電圧漏洩区域を決定する事を含むものである。
【0038】
その他、本発明に於ける更に異なる具体的態様としては、電力の供給を遮断することなく、電力が供給される給電線の漏電部位を検出する為の別の方法が提供されるものであって、当該漏電部位の探査方法は、好ましくは、当該活線中の漏電部位探査方法の一具体例に於いては、単極性DC探索電圧信号(unipolar DC survay voltage signal)を当該電源の給電線に送信する工程と、当該給電線の周りに発生する電磁波信号の列を送信し、参照時間と同期させて、当該単極性DC電圧信号の対地電位を測定し、当該電磁波による追跡信号を捕捉する工程と、当該参照時間に従って、当該電磁波による追跡信号を解析して当該給電線が埋設されているルートを追跡する工程と、当該参照時間に従って、大地に対する当該単極性DC電圧信号の対地電位を測定する工程と、当該単極性DC電圧信号の極性を特定する事によって、漏電部位を突き止める工程と含んでいる。
【0039】
更に、当該活線漏電点の探査方法に於いては、好ましくは、2つのより強力な反対符号を持つ電磁信号間で検出されたより弱い電磁信号が存在する部位に於いて、当該電磁追跡信号として決定された、当該地面上のある点における対地電位を測定する工程を含んでいるものであっても良く、或いは、当該探索方法に於いては、好ましくは、当該漏電源を特定する為に、前記当該単極性DC電圧信号に含まれている情報を分析する工程を含む様に構成されたものであっても良い。
【0040】
以下に、本発明に於ける当該それぞれの態様に関する個々の具体例について、更に詳細に説明する。
処で、大韓民国に於いては、中圧(MV)用及び低圧用(LV)の給電線は地中に埋設されている反面、
図11に示したように、複数個の開閉器及び変圧器のような器機類は、省スペ−スのために、人口が密集する都市部の地上に於ける一つの場所に集めて設置している。
【0041】
図12は、
図11に示されている様な、地域内に形成されている中圧及び低圧の給電線(MV and LV feeder lines)に関するブロックダイアグラムを示すものであり、図中、3個のパッドマウント式変圧器が、その両端部に於けるスイッチ部SW1とSW2を介して、中圧式ネットワークデータに直列に連結されている。
そして、当該
図12は、中圧給電線(MV)は当該スイッチ部SW1から供給され、そして、それぞれの変圧器は、逐次その電圧を中圧から低圧に段階的に降下させ、接地端子を共有する中圧(MV)給電線と同じ配線構成内に配置されている低圧(LV)給電線を使用している末端顧客に対し、交流電力(AC main)を供給する。
一方、マンホール1は、1本の中圧(MV)給電線と2本の低圧(LV)給電線を含む3本の給電線と、共通的に接地された当該3本の異なる給電線である3本の中性線とを有しているが、それらの配線は、インピーダンスに強く依存して、帰還負荷電流を他の配線通路に迂回させる可能性が高く、その結果、迂回された中性電流が容易に発生する様な当該システムに於ける低圧(LV)給電線のベクトル和電流を測定することによって、接地故障電流として処理されてしまう恐れのある電流ベクトル和(current vector sum)値を、検査すべき対象としてしまうので、そこを流れる電流が、漏電部位を誤って検出してしまう可能性が極めて高い。
【0042】
従って、本発明は従来の技術のように漏電個所の探査のために帰還電流(Ig)と零位相電流(Io)を測定しない革新的な技術に関するものであって、本発明は、当該給電線の相導体線(phase conductors, electric wires)の軌道に沿って移動しながら、地上に於けるAC商用電圧(AC main)とDC探索電圧信号の上昇点を把握し、且つ位置情報と共にその対地電位を記録する方法を提供するものである。
【0043】
先ず、給電線が埋設されている経路を追跡する為の、探索電流信号は、中性線の多重接地(PEN)に於いて、
図13に示されるような当該探索電流信号発信器によって相導体線と中性導体線との間に於ける瞬間的なスイッチングにより発生され、直列状に接続されているダイオ−ドと抵抗を介して流れる探索電流信号が生じた際に、中性電位環境の下で帰還負荷電流が持つと同じような、迂回された帰還電流現象を持つ可能性がある。
しかしながら、当該迂回された電流から放射された電磁信号(EM)の強さは、探索されるべき当該給電線からの電磁信号の強さよりもかなり強いので、それがバイパスされた中性線の線路の経路を当該給電線の経路として誤って決定してしまう主な原因となり、これが正確に探索されるべき電気ショックの危険を持つ事になる。
【0044】
図14は、当該給電線のダクトに関する垂直断面図であり、図中、当該導体線の周りの磁界の方向は、右手の法則に従って、当該探査電流の方向と直角となっており、探索されるべき相導体線でかつ中性導体線が組み合わされている一方のダクトでは、当該それぞれの導体線の周りには、相互に反対方向の2つの電磁力環が形成されそれぞれの導体線環に互いに反発する電磁力が発生する。
一方、迂回された中性導体線を含む他方のダクトでは、当該導体線の周りには、一つの同一方向をもつ電磁力環を有し、隣接する導体線からの反発力は存在しない。
【0045】
図15は、地上で検出された当該導体線の磁界に関するその特徴を示す水平面断面図である。
即ち、異なる極性を持った導体線間に形成された磁界の零点(a nulling point of magnetism)が、同図のA−A'セクションで示されているように、地上で探索された場合に、当該電磁界の低いピーク点を形成するが、同図のB−B'セクションは、図示の様に、磁界の零点(a nulling point)を形成することなく、当該迂回中性導線に関し、単一極性の方向に、磁界による同心円状の完全ピークが形成されている。
この様な、同じダクト内に於ける当該相導体線と当該中性導体線間の反発は、探査者に、当該迂回中性導体線の経路を、相導体線として誤って判断させてしまう危険がある。
その理由は、当該相導体線からの電磁界が当該迂回中性導体線の電磁界よりも高い事及び当該給電線の探索は、主に、当該給電線の埋設路線の経路を決定する為に、地上での電磁界のピーク強度に依存している事による。
【0046】
以前では、検討してきた従来技術に於いて、地上に於ける磁界の測定結果から得られる最も高いピーク値を示す部位を当該給電線の配列位置とする以外の方法は、当該導体線の埋設位置を探査する為には、使用されていなかった。
何故ならば、探索電流の流れは、当該給電線の専用の相導体線と中性導体線を通じてのみ流れるからである。
然しながら、本発明に於いては、一つのシステムに於ける全ての中性導体線が、他の中性導体線を介して容易に迂回される様に、一つの接地端子に結合された後では、迂回した中性導体線上のいくつかの部位におけるピーク値を検出する代わりに、当該給電線のホットな相導体線(hot(phase)conductor)を正確に探索する為に、2つの要因が考えられる。
その一つの要因は、上記した磁界の零点現象(null phenopenon)の様なより弱い電磁信号空間が、2つのより強力な電磁信号の間で検出されたか否かであり、また他の要因は、当該相導体線と当該中性導体線がその中に配置されているダクトの位置を探索する為に、地表面上の好ましくは20cm離れた部位における、異なる極性信号間の磁界の当該零点(the null)を補足する為に、
図16に示す様に、当該導体線の埋設された経路の配列方向に対して水平面で直交する方向に15cmの間隔を開けて、4個のフェライトコイル磁気センサー15を配置する事によって本発明を実行するに当たり、
図15に示すように、2つの強力な信号が、相反する極性を持っているか否かである。
【0047】
図17は、相導体線と中性導体線とが内蔵されているダクトの直上の部位に於ける当該負荷電流の商用周波数電源を取り除いた後の、探査電流信号送信器によって発生せしめられた3個の電磁信号の波形を示すものである。
此処では、当該複数個の電磁センサーの配列状態は、水平であり、且つ、
図16に示された、当該センサーのそれぞれの位置が、当該波形にリンクされており、此処に於いて、上段の波形は左側のセンサーからの波形であり、中段の波形は、右側のセンサーからの波形であり、最後の最下段の波形は、中央のセンサーからの波形である。
当該左側のセンサーからの、上段にある波形の極性は、+(正)であり、中央と右側の各センサーからの他の2つの波形の極性はともに同じで−(負)である。
当該相導体線と中性導体線を持つ埋設ダクトの埋設位置は、異なる極性を示すセンサー間に存在し、この例の場合は、左側と中央のセンサーの間となる。
一方、
図18は、迂回中性導線を含むダクトに関する3種類の波形を示すものであり、図中、3本の全ての波形が同じ極性である+(正)を有している。
【0048】
図19は、
図16に示された埋設された配管の経路を決定する為に、複数個のセンサーから得られる信号について、極性と振幅とを同時に解析することにより、相導体線の探索を行うための判断を実行するためのフローチャートである。
当該判断の実行に対する最も高い優先事項は、4個の入力の中で、複数個の当該入力信号が相互に反対の極性信号を含んでいるか否かという点と、当該入力された信号が、当該反対方向の極性間で、磁界零点(null)の様な、キャンセル行為により生じた、より弱いレベルを持っている場合には、当該漏電発生部位は、当該相導体線と中性導体線を含むダクトの直上にあると決定すること、及びその後、前方に移動するように指示する上向き方向の矢印を表示する、というものである。
当該入力信号間に磁界零点(null)の様な領域が存在しない、同一の極性と相反する極性とを有する2対の信号に関しては、当該方向に逆らって、右方或いは左方向への移動を表す矢印が示される。
一方、当該領域を有さず、反対方向の極性信号を持つ2対の信号に関しては、より弱い反対方向の極性信号対に向けて水平移動を示す矢印が表示される。
又、入力信号から、反対方向の極性はなく、同一方向の極性からなる信号の場合には、相導体線(迂回経路)無しに、電流の存在位置は、ダクトの上に存在するというメッセージと共に、より強力なセンサーに向けた矢印が表示されることになる。
【0049】
図20は、
図16に示した多数の磁界センサ−から得られる電磁信号の極性を検出する為に、複数個のセンサーと判定ロジックとを使用して得られた結果を表示したものであって、当該判定ロジックは、
図19に示す様に、
図25に示されている様に、反対方向の極性を持つセンサー間における当該磁界のNull点を追跡することにより、地表面上での、埋設された給電線の経路全般に亘って拡開しているそれぞれの地点を決定するものであり、更に、
図21は、追跡する当該相導体線無しに迂回中性或いは水道線を示す、正(+)の単一極性を持った全ての入力電磁信号を示すものである。
【0050】
経路探索装置の一具体例は、当該判定ロジックによって、反対方向の極性を持つ複数の信号間で、当該Null点を検出する事により、埋設されている給電線の経路を追跡する為のマルチセンサー入力部を含んでおり、係るマルチセンサー入力部は、探索者が、漏電源を追跡し、且つそれを取り除くことによって、電気ショックによる事故を防ぐために、零電位の迂回中性導体線を使用する代わりに、危険な電圧を地中に向けて漏洩させるポテンシャルを持った、当該相導体線を正確に探索することを可能とするものである。
一方、本発明は、更に、当該経路探索装置と当該経路探索方法を開示しており、当該経路探索装置と当該経路探索方法を使用して、当該給電線の埋設経路に沿って、移動しつつ、該電線に於ける電気絶縁性が悪化することにより電気の漏れが発生している地対電位が増加している位置を探索することにより、漏電している位置を探索する為の方法と装置を提供するものである。
【0051】
図10は、2つの電極足部を有するA字状フレームを含む従来の移動式対地電位装置を示す。当該電極は、対地電位を測定する毎に、接触抵抗を最小化するために、地上に手動で押しつけられる鋭い先端を備えた端部を有し、その後、探索者は歩きながら給電線に沿って当該電極を移動させなければならず、これが、面倒で時間のかかる戸外作業となっていた。
測定作業を迅速化するため、本発明の1実施形態では、
図22に示す複数の鋳鉄製の金属電極輪が提供され、当該複数個の金属電極輪は、回転しながら移動し、地上に直接接触しつつ、対地電位上昇領域を検出するように構成される。
しかし、上記の実施形態では、土壌の破片やゴミなどの異物が金属輪表面に容易に接着して、地上と金属面間の導電を遮断し、さらに金属輪が十分な接触面積を有することができないために、漏れ電圧を測定する金属電極輪を押しつける新たな方法による利点が、予測したよりも小さかった。
固体金属輪による問題点を今一度改善するため、本発明の別の実施形態では、
図23に示すように、金属導体が弾性車両タイヤの周りに巻き回され、その後、「ベルクロ」(登録商標)フックのような耐久性(durability)をもった炭素繊維布帛が金属導体上に設けられる。さらに、給電線の経路に沿って移動しつつ、水がポンプによって布に噴霧されるため、ポンプで供給される水が当該電極輪のゴミを清浄化し、布全体に均等に対地電位を分布させて交流電源の対地電位を測定する。
【0052】
図24は、広域をスキャンする交流電源漏電探索装置の1例であり、該装置は、水平に広く配置された複数の湿潤式電極輪を備えたトレーラーなどのSUV車に装着され、それによって、当該電極は、交流電源対地電位を探索し、都市圏などの危険な区域を迅速に探査し、探査結果及び移動軌跡(travel trajectory)を、無線通信を介してサーバ内に格納する。
【0053】
図25は、
図24に示すサンプルを作成する広域交流電源漏電探索装置の詳細を示し、給電線の埋設経路に沿って、或いは、電磁感知信号に従って当該車両を運転して、地上接触湿潤式電極輪によって交流電源の電圧値と電流値を測定する。
図26は、記憶され且つ管理されるべきサンプルデータベースの内容を示しており、当該データベースは、8つの注水型湿式電極輪間の交流電源の電圧値および電流値、位置データ、天候情報を含んでおり、移動しながら電圧と電流を同時にモニターすることが、上昇する電位を判断するために、より簡単でより迅速な方法であるとする理由は、正に、内部抵抗を変更する事によって、対地電位を確認する操作を停止する事の無しに、交流電源の漏電から正しい漏電状態を示しているからである。
【0054】
図27に示される車両の移動のGPS軌跡を示す別のデータベースが示されており、当該データベースは、
図26に示されている個別の測定値とリンクされている位置データを示すものである。
【0055】
図28は、
図27および
図28に示されている測定値データと座標移動データの両データベースを用いて、地図上に色区画分けされた軌跡を示す点をプロッティングしたサンプルである。
当該地図の座標面上にプロットされている各点の色は、測定地点における湿潤式電極輪で測定された対地電位値と電流値を表す。
【0056】
絶縁不良の給電線からなる埋設導体線によって、恐らく生じたと思われる、交流電源の疑わしい対地漏電部位を追跡する為に、広域交流電源漏電探索装置による対地電位上昇領域の高速スキャン操作を行った後に、疑わしい漏電部位の領域に於いて、精密な漏電点探査を行って、故障導体線を補修する為に穴掘りすると云う様な保全作業を実行する。
【0057】
図29は、3つの湿式電極輪と水分供給手段を備えた手押し車を用いて、対地漏電点の部位を正確に特定する為の、精密漏電点探査装置の1実施形態を示す。
図28に示す広域交流電源漏電探索装置によって、対地電位の上昇領域を高速でスキャンした結果を取得した後、
図44に示す時間始動プロトコルまたは
図61のフローチャートに記載される「01010000」のような非反復信号列が、探査電流信号発信器により、真時間「T]として生成された場合に、対地漏電点精密探査は、当該漏電が疑われる部位において、手押し式精密漏電探索装置により引き継がれる事になる。
此処で、当該時間「T」を取得するとすぐに、精密漏電点探査装置はタイマをリセットし、信号創生時間と、探索電流発信器と精密な漏電探索装置間のリーディング時間とを同期させ、それによって、所定の区切られた時間と、その間の時間間隔が発生され、その結果、2つの対向極性間のNull現象と、3つの湿潤式電極輪間の交流電源の対地電位上昇電圧を検出することによって、地上で両電磁信号を捕捉する。
【0058】
図44に示すように、電極から入力される電圧信号は濾波されて、交流電源電圧を完全にカバーすることのできる30〜300Hzの周波数を通過する。
次に、濾波された信号は、若し、入力電位がインピーダンスロジックの最高値に関連する閾値よりも高いとき、インピーダンスロジックを介して電圧計(ADC)に到達し、当該上昇した電位が、当該3ステップに於けるインピーダンス値が低下した後であっても、当該電圧値が直、安定している場合に、交流電源からの真の漏電であるか否かを検証し、当該交流電源における最も高い電位上昇点を、
図48ないし
図51に示す3つの電極検出ジョブフロー図を用いて追跡を行い、最後に、導体線に注入されたDC探査電圧を用いて、且つ、当該論理値が1の場合に、当該DC極性の方向を比較することによって、交流電源の最高電位上昇点の位置を特定し、次いで、穴を掘ることなしに、DC探査電圧信号に於けるエンコードされた情報を読み出すことによって、当該交流電源の漏電源を発見する。
【0059】
要約すると、対地漏電点の追跡作業は、広域交流電源探索装置によって、或いは、事前のスキャンなしで、検出された疑わしい対地漏れ領域内で遂行される以下の4つのステップで構成されている。
即ち、(1)地上での電磁信号の極性と大きさを収集する事によって、相導体線の埋設経路を追跡する工程と、
(2)相導体線の埋設経路を追跡しつつ、対地電位上昇点の部位を探索する工程と、
(3)交流電源の漏電源から漏れDC探査電圧を捕捉することによって、対地漏電点を特定する工程、及び
(4)地上面に於ける漏れDC探査電圧のコードを解析することによって、漏電源を見つけ出す工程、である。
【0060】
広域交流電源漏電探索装置は、導体線の埋設経路を追跡せずに当該領域をスキャンすることができるが、対地漏電が発生しているかもしれない、疑わしい地域を把握できるように十分な広さを持った水平面内に配置された複数の電極を用いて、対地電圧および電流を同時にスキャンする為に、当該マップに従って、当該装置を予測埋設経路に沿って迅速に移動させることが出来る。
疑わしい対地漏電部位の発見後、精密対地漏電点探査装置が使用され、それによって、相導体線の埋設経路に沿って歩きつつ、交流電源の漏電源の部位を正確に特定することができる。
【0061】
対地漏電が交流電源から発生している正確な点を追跡するために、探査者は、地上面をNull信号点に沿って歩き、複数個の湿潤式電極輪間の交流電源の対地電位を測定し、対地電位が警告レベルを超過している場所では、動きを停止して、その後、入力電位が、実際に交流電源から漏れているものであるか否かを検証し、対地電位上昇点が、インピーダンスが低下している間、安定した電位測定値を保っている場合、DC探査電圧が同じピークを示すとき、その点が交流電源の漏電点であると特定し、DC探査電圧コードを解析することによって交流電源情報を特定して、穴掘り等の土木工事を行わずに、対地漏電源を除去する。
探査精度を向上させるため、本発明では、精密対地漏電点探査装置とDC探査電圧、及びDC電流発信装置との間の時間同期を採用する。
【0062】
図30は、上述した精密対地漏電点探査装置の1例を示す図である。
当該車両は、電極として、ゴムタイヤの外周に螺旋状に巻き回されて、タイヤの荷重によって接触し、地上の対地電位をスキャンする導電金属線と、電極表面上の異物を除去し、電極周囲の対地電位を均等に分布する、水流ポンプで駆動される給水スプレーノズルとを含む。
当該車両は、対地電位上昇点を検出するタスクを実行する間に、各測定位置で、地上に向かって手動で押しつけられる鋭い先端を有する従来の電極よりもずっと高速に移動することができる。
さらに、当該車両は、対地電位および電流情報を個々の位置データと共に、管理および解析目的でサーバに記憶することができる。
【0063】
このように、サーバに記憶されるデータベースは、対地漏電検出点における対地電位上昇の傾向を見出す為の解析を実行する際に使用されても良い。
図31は、中性導体線が接地していない対地漏電点近傍の交流電源の対地電位上昇レベルを示しており、従って、単独ピーク点辺りの部位を発見するためには複雑ではない交流電源の漏れ電圧のみが検討される。
然しながら、当該中性導体線が接地している対地電位上昇レベルと当該対地電位の複数のピークとがPEN周囲に広がり、交流電源(相導体線)の漏電点と別の中性帰還点(中性導体線)とが、
図32に示す漏れ電流と負荷電流の複数の帰還路のために相互に混合しており、その結果、交流電源のピークレベルを追跡することが容易ではない。
【0064】
図33は、マンホール近傍の対地漏電点とを示し、中性導体線に接合されるマンホールカバーと対地漏電点との間で補足された対地電位の波形が
図34に示されている。
純交流電源の波形は、複数のピークの波形に隠されるため、交流電源のピークレベルを精密に検出する為に、ゼロ交差時間を捕捉することが困難である。
【0065】
図34に示す歪み波形から生じる交流電源の対地漏電点を追跡する際の、このような課題を克服するため、本発明の1実施形態では、相導体線を通じてDC衝撃探索電圧信号を送信し、対地電圧漏電点を追跡する為の探索の精度を向上させることが好ましい。
図35は、
図36に示す衝撃電圧信号を生成することができるDC探索電圧信号発信器の回路図である。
このDC探索電圧信号発信器は、
図13に示すDC探索電流信号発信器と共に探索されるべき給電線に追加される。
当該DC探索電圧のピーク値を検出しながら、対地漏電点の部位を追跡することで、交流電源ピークの追跡に対する正確性を向上させることができる。
【0066】
位相導体線と中性導体線との間で、半波DC電圧信号を生成するように構成されるDC探索電圧発信器が、給電線の源または負荷側に関係なく、漏電点に近いところであれば何処にでも取り付けることが可能であり、且つ、単相または3相構造の何れにも調節可能である。
図36は、半波DC探索電圧信号を生成するタイムチャートである。
時間Tgの間、電圧発信器のスイッチをオンにすることによってIGBT(絶縁ゲート双極トランジスタ)のゲートにターンオン電圧を印加した後、スイッチを瞬時にオフにすることによってIGBTのゲートに対する印加電圧を取り除き、位相導体線と中性導体線間に大衝撃電流(Ti)を生成させる。
上述したように、IGBTのゲート電圧を取り除くことによって、流れる電流を急激に切断すると、電流の流れる同じ導体線間で単極過渡電圧(Vp)が発生する。
【0067】
図37は、DC探索電圧(過渡電圧)の波形を示し、当該波形は、調節によって、電圧が320V未満に維持される電圧発信器の出力端子における、単極で最大電圧である。
韓国では、交流電源の電圧範囲は220±13Vであり、交流電源の最大許容ピーク電圧は329V未満(233rmsACV*1.414)でなければならない。
図38は、
図37のDC探索電圧の拡大波形を示す。
ゲートがオンとなる時間Tgは電流の流れる時間(Ti)と略同じであって、約40マイクロ秒であり、最大約320VのDC過渡電圧を生成する。
【0068】
図39は、DC探索電圧発信器が、中性導体線に連結された時、単極DC探索電圧信号を逆に送信するケースを示す。
対地漏電追跡装置を搭載した当該車両内のレシーバは、交流電源の正傾斜ゼロ交差とIGBTの始動時間との間の特定の時間経過後、DC探索電圧信号の測定ウィンドウを開放する。
図39の上側は、発信器と対地電位ロケータ(レシーバ)との間の論理値「10」に合致するジャストインタイムの交流電源の電圧波形とDC探索電圧パルスを示す。
しかし、
図39の下側は、180度反転した電圧波形を示しており、そこでは、発信器が、ゼロ交差から180度遅延した時刻と同じ経過時間、DC探索電圧を生成しても、電圧パルス生成時間はレシーバの測定時間に合致せず、最終的に対地漏電ロケータ(レシーバ)は、発信器によって生成される信号パルスを恐らく捕捉できないであろう。
エラーなしに、当該DC探索電圧信号を確実にレシーバに送信する事を保証するため、発信器とレシーバ間に交流電源のゼロ交差のような別の時間基準を設定して、DC探索電圧ピークの位置を追跡し、交流電源の漏電源を特定することが必要である。
【0069】
図40は、
図35の左側に示すDC探索電流発信器によって生成されるDC探索電流信号を発生させ、発信器とレシーバ間の送信および測定時間を同期し、測定エラーを最小化する為のタイムチャートである。
図36に示すDC探索電圧のタイムチャートと類似するが、例外点として、IGBTのスイッチオフ時間が、カットオフサージ電圧を最小化する為に、電流の負極性がダイオードによってカットされる事を意味する、負傾斜ゼロ交差以降であるということである。
時間Tgの間、IGBTのゲートにターンオン電圧を印加する際、負傾斜ゼロ交差時間後の時間(Ti)までスイッチはオンである。
図36に示す電圧発信器との違いは、カット電圧(Vp)がダイオードのように殆ど0Vであるために、カットオフ過渡電圧が恐らく生成されず、ターンオンゲート時間(Tg)および電流の流れる時間(Ti)が
図36の電圧発信器と同じでない点である。
探索電流と電圧信号の特性は、相互に妨害しないように異なる。
【0070】
図41は、下記の環境下の1例としてDC探索電流信号の波形を示す。
当該環境下では、
図35に示すように、交流電源のピーク電圧が320V(226V*1.414)であり、且つ、直列状に2.5Ωの限流抵抗が含まれ、負傾斜ゼロ交差時間の前に1.5msの間、IGBTが始動され、そして、交流電源の測定電圧が174Vp−pであり、始動時の探索信号として瞬時ピーク電流が65Ap−p[174V/2.67Ω(2.5+0.17導体抵抗)]となり、そして、0Aまで低下し、
図41に示すように1.5msec後に消滅する。
【0072】
限流抵抗が2.0Ωである場合、電流は、恐らく、瞬時に147Ap−pまで上昇するであろう。
当該電圧(Vt)が、Vt=174Vのとき、電流信号瞬時値は約65A(0.17Ωの導体抵抗を含む)である。
若し、2.0Ωの抵抗値を有する抵抗が電流信号の生成に使用される場合、約147Aの瞬時電流信号が生成される。
【0073】
若し、IGBTがオンとなり、固定電流(65A)を流した後、消滅時間が、
図36に示すようなDC探索電圧のような過渡サージ電圧を生成する前に、IGBTは、流れる電流を切断するが、消滅時間後にIGBTをオフにすることで、
図40に示すような電圧なしで、DC探索電流のみを生成する。
しかし、漏電点から収集される交流電源の波形は、
図32または
図34に示すように、歪んでいるため、発信器とレシーバ(ロケータ)間の信号生成および受信(測定)時間とを同期させる為に使用されるゼロ交差時間を抽出することは容易でない。
送信時間と受信時間が
図39に示すように相互に一致しない場合、ロケータはDC探索電圧信号を全く検出できない。
【0074】
交流電源の波形が、ゼロ交差などの様なものを測定する為の、参照時間を提供できないように歪んでいる場合でも、DC探索電圧信号を正確に検出するという課題を解決するため、
図43に示すような交流電源に依存せずに、発信器とロケータ(レシーバ)間の送受信時間を同期することが好ましい。
地上でDC探索電圧を検出する操作は、いずれも探索される給電線に連結される(1)探索されるべき給電線に接続されているDC探索電圧発信器、(2)探索されるべき給電線に接続されているDC探索電流発信器、(3)DC探索電流の流れる相導体線と中性導体線の経路に沿って移動しつつ、反対方向間での一連の電磁信号Null感知点を追跡することによって、湿潤式電極輪から当該交流電源に於ける、対地電位上昇位置を検出するように構成される精密対地漏電点探索装置、を含む
図42に示す3つの装置を必要とする。
この手順は、以下のステップを含む。
(1)DC探索電圧とDC探索電流の発信器間で、DC探索電圧信号の始動時間を交換する工程と、
(2)DC探索電流発信器から、得られた電磁信号の形態で、精密対地漏電点探索装置に測定時間を通知する工程と、
(3)電磁信号を収集することによって新たな測定時間を設定した後、精密対地漏電点探索装置により地上でDC探索電圧信号の対地電位を検出する工程と、
(4)当該漏電点の検出に加えて、精密対地漏電点探索装置が対地漏電源情報を把握して、掘削作業を行わずに感電事故を防止する。
【0075】
図44は、時間を同期させ、信号を生成し且つそれを検出するための時間を合致させる為に、DC探索電圧発信器、DC探索電流発信器及び精密対地漏電点探索装置間のプロトコル交換プロセスを示す。
当該DC探索電圧発信器は、順次、各位相に開始コードを送信し、DC探索電流発信器からの応答を待って、どの位相が連結されているかを知る。
例えば、DC探索電流発信器は位相Bで応答する。
位相Bから応答を得た後、DC探索電圧信号発信器は、相導体Bを介して継続的な測定信号を送信して、精密対地漏電点探索装置によってDC探索電圧信号の位置を追跡し、相導体を追跡する為に、電磁信号を取得し、測定時間を同期させて、DC探索電圧信号を担持する相導体の経路を追跡しつつ、地上でDC探索電圧信号を検出する。
【0076】
図45は、生成されたDC探索電圧信号の時間を,DC探索電流発信器と交換する為の連携部(インターフェース部)と、単相または3相を選択する位相選択部と、精密対地漏電点探索装置の自己IDを設定する入力部と、時間特性として電流パルスを生成し、120度毎に順次
図36に示すような、過渡電圧を生成するDC探索電圧生成部と、意味のある値(論理値)をDC電圧パルスに割り当てるコーディング部と、を有するDC探索電圧発信器のブロック図である。
DC探索電圧信号による移動エネルギーの量は、
図36に示すようにゲートを流れる電流量に比例するため、ゲート電圧の位相角を、最大電圧に対応するサイン曲線の頂部に近くなるように調節することができ、電流が瞬間的に切断されるとき、探索電圧発信器はより高い探索電圧を生成することができる。
【0077】
図46は、DC探索電流信号を生成して、追跡されるべき電磁信号を送信し、精密対地漏電点探索装置の測定時間と同期させるために、当該発信器を当該交流電源に連結する電力ケーブル連携部(インターフェース部)と、入力交流電源を半波単極電圧に整流して、
図36に示すような時間特性を有する電流パルスを生成するダイオードと、を有するDC探索電流発信器のブロック図である。
この装置は、DC探索電圧発信器と精密対地漏電点探索装置との間で信号を調整して、交流電源のゼロ交差時間に依存せずに探索精度を向上させるように構成される。
【0078】
図47は、交流電源の対地電位検出機能、DC探索電圧の対地電位検出機能及び電磁信号の検出による埋設経路追跡機能、の3つの主機能を有する精密対地漏電点探索装置のブロック図である。
第1に、交流電源の対地電位検出機能は、地上を移動しながら、相導体線の埋設経路を追跡する際に、地上に接触して、交流電源の対地電位を走査し電位上昇位置を探索する、ポンプ式給水ノズルを備えた湿潤式電極輪からの3つの入力を必要とする。
電極からの3つの入力は、入力選択スイッチを通過し、交流電源の周波数内の40〜300Hzの範囲でBPFによって濾波されて、スイッチを選択する内部インピーダンスを介してADCに到達し、対地電位の入力が実際に交流電源の電位漏れであることを確認する。
内部インピーダンスの最高値を無限に設定し、移動して、電位が50mV超である部位で停止し、インピーダンスが低い値に変化しても電位読み出し値が安定レベルで維持するように確保することが好ましい。
【0079】
湿潤式電極輪又はAフレーム先端電極のうちの一方を使用することによって、交流電源の対地電位のピーク位置を発見した後、交流電源のピークを示す部位の周囲の地上で、DC探索電圧の対地電位のより精密なピークを精密に検出することができる。
測定時間および経路追跡信号は、DC探索電流信号発信器から送信される空中の電磁信号の形態を取る。
DC探索電圧の入力信号は、例えば10MΩの固定内部インピーダンスを介して15kHzの高域フィルタを通過して、ADCに供給される。
DC探索電圧信号の信号レベルを変更する必要があるとき、IGBT(Tg)の始動時間は、
図36に示すようにシフトされるべきである。
DC探索電圧信号は、又、DC探索電流発信器によって送信される対地漏電源の情報を有し、それは、緊急状況において、掘削なしに対地漏電源を隔離するのに有効である。
【0080】
さらに、精密対地漏電点探索装置は、IMU、GPS、車輪回転カウンタなどの走行距離計等から地理空間データを取得する機能と、通信媒体を介して、サーバに取得データを記憶する通信部とを有する。
【0081】
図48は、3つの湿潤式電極輪から得られた交流電源の、対地電位レベルを示す図であって、V2(V2=|V2−V3|)がV1(V1=|V1−V2|)およびV3(V3=|V3−V1|)よりも低い場合には、漏電点に到達する様に、当該漏電点に向けて前方に移動する様に指示する上向き矢印を表示する。
図49は、対地漏電点上で直接検出される交流電源の対地電位レベルを示し、V1、V2、V3の3つすべての値が同じ最低値を取る場合では、当該装置が当該漏電点の真上にいることを示す、円を表示する。
【0082】
図50は、
図49の漏電点の通過後の部位で検出される対地電位を示し、その時のV2の値がV1およびV3の値よりも高くなっており、そして、漏電点が現在のいる場所よりも後側部にあることを示唆する下向き矢印を示す。
3つの湿潤式電極輪間の交流電源の対地電位が、対地漏電点の前後で電位の値が急増または急減するが、対地漏電点では、その値は3つすべての電極において最も低い、と云う方法で比較され且つ解析され、それによって、すなわち、最低電位値を有する点は漏電点と判定する。
【0083】
図51は、
図33に示す対地漏電点で受信されるDC探索電圧信号の波形を示し、
図52は、
図34の対地電位電圧と
図51のDC探索電圧の両方を示し、交流電源とDC探索電圧の波形を比較するものである。
40〜300Hzの範囲の交流電源の対地電位と15kHz超のDC探索電圧信号の波形は、交流電源の低周波数と他の帰還路によって生成される電位の混合により、DC探索信号の波形と比べて歪み(時間シフト)が大きいため、ピークのタイミングと振幅がうまく合致していない。
したがって、交流電源の接地電圧のピーク検出を行った後のみで、対地漏電点を確定する場合には、エラーの多い結果を生む可能性がある。
【0084】
図53は、交流電源の1/3サイクルである、DC探索電圧の対地電位を検出する為の、DC探索電流発信器から精密対地漏電点探索装置までの通知時間と、実際の測定時間との間の時間間隔の1実施例を示している。
若し、DC探索電流発信器が、電磁信号の形態で精密対地漏電点探索装置に通知を送信した場合、当該通知信号を無事受信後、精密対地漏電点探索装置は、論理値が「1」である時点から1/3サイクル時間遅れて、DC探索電圧の測定を行う。
【0085】
DC探索電流発信器からの通知時間信号の取得後、精密対地漏電点探索装置は、地上のDC探索電圧の電位を測定する為の、測定ウィンドウを自動的に開いて、プログラムされている様に、交流電源から1/3サイクル遅れて、地上での、DC探索電圧の対地電位を測定する。
【0086】
図54は、測定ウィンドウの開放時間と、論理値「00110」を伴ったDC探索電圧信号の対地電位を示す。
精密対地漏電点探索装置は、当該測定ウィンドウ開放時間内でDC探索パルスの対地電位を測定して、信号と雑音とを区別し、対地電位信号が測定ウィンドウ開放時間内に存在すれば、論理値を「1」と設定し、さもなければ「0」に設定する。
【0087】
図55は、対地電位漏電点の位置を追跡するフローチャートを示す。
図42のケースに示すように、探索電流および探索電圧発信器は、検査対象のLVケーブルに連結される。
対地漏電点の精密探索を実行するため、精密対地漏電点探索装置を用いて、相導体線の埋設経路に沿って追跡する。
もしくは、当該装置を、予測される埋設ケーブル経路に沿って運転して、複数の湿潤式電極輪を備えた交流電源漏電探索装置を用いることによって、当該給電線が、地中に分散して埋設されている特定の広域における対地電位上昇(危険)領域を大まかにスキャンし、そして、その後、対地漏電の精密部位を正確に特定し、前記対地電位上昇(危険)場所内の漏電ケーブル情報を取得する。
【0088】
図56および
図57は、手押し位置とから見た精密対地漏電点探索装置の1例を示し、2つのスクリーンは、1人のオペレータが、埋設された相導体線の経路を追跡する事と、接地電位上昇点の測定操作とを同時に実行する事を可能とするものであり、当該装置は、接地電位を測定する複数の湿潤式電極輪、水分供給手段、複数の磁界信号センサ、水タンクおよび継続的に給水して電極と地上間の接触抵抗を軽減する水ホースとを備える。
【0089】
図58は、
図29に示す電磁センサから受信される極性とその大きさを持った4つの入力電磁信号を示し、Null点(零に近い大きさを有する)が、対向極性(+が一番左側から2番目、−が一番右側)の間の左から3番目の位置にあるため、Null点の部位に対応する場所は、追跡される相導体線および中性導体線を含む配管経路の直上であると判定され、したがって、探索者が前方へ移動するように指示する矢印が表示される。
【0090】
図59は、湿潤式電極輪から入力された3つの接地電位値V1、V2、V3を表すスクリーンディスプレイを示す。
図60は、異なる内部インピーダンスを
図47に示す測定回路に接続することによって、接地電位が閾値レベルを超過する警告位置において、誘起された誤った電圧から区別される真の接地電位漏れを判定するスクリーンを示す。
【0091】
図61は、精密対地漏電点探索装置が、どのようにして、電磁信号を測定するかの手順を示すフローチャートである。
負荷電流の影響を最小化するため、当該負荷電流を、600Hzのフィルタの負荷電流通路(pass)を通過させ、且つ、当該電流をデジタル化するように構成される。
さらに、ある期間およびシーケンスにおいて、当該探索電流信号と類似するサンプル信号を再構成し、それを、
図62に示す信号の真偽を判定する、信号信憑性ロジック(authenticity logic)を介して通過させる。
その後、起動時間Tが信号信憑性ロジックによって判定されると、真の時間「T」が電磁信号の極性と大きさを測定する同期時間として使用される。
【0092】
図62を参照すると、電磁センサからの未知の入力に基づく真の時間「T」を特定するロジックは、16個のサンプル信号の平均を含んでおり、それから、同じ個別期間を有する信号を再構成し、次いで、それらを、電力周波数1サイクル間隔(60Hzの場合16.7msec)毎のシーケンス内に挿入して、「0」の反復論理値ではない回収信号列と、真の時間T’として判定される次の追加の「1000」論理値とから、一連の論理値を検出することと、測定時間と等しい
図61の時間「T」をリセットすることと、を含む。
【0093】
本発明にかかる当該広域交流電源漏電探索装置の具体的な構成例に関しては図示されてはいないが、当該広域交流電源漏電スキャン装置は記録部を有し、当該記憶部は、例えば、電極輪からのGPS、IMU(慣性測定部)、走行距離計等から集められたデータを結合させ、測定値と共に、地図上に精密点を特定することができる。
4つのEMFセンサからの入力信号を、中心周波数600Hzを有するフィルタに送信し、追跡されるべき電力ケーブルを流れる負荷電流からの影響を最小化するように、特定の電力周波数範囲の電磁信号を排除することが好ましく、その後、濾波された信号はサンプル19200Hzレートによってデジタル化される。探索電流信号と同じ個別期間(1.5msec)を有するように信号を変換し、16サンプル(0.8msec)の平均を取るか、あるいは最大値を選び、探索電流信号の開始コードと同じ値を有する回収電磁信号の論理値チェーンを発見して、同期基準時間として真時間「T」を判定し、電磁信号の極性と大きさを比較して電線埋設点を発見し、時間に応じて対地電位を測定し、衛星からの位置データと共に測定データを、精密対地漏電点探索装置の記録部に記録する。
【0094】
本発明の好適な実施形態を例示のために開示したが、当業者であれば、後述の請求項に開示される発明の範囲と精神を逸脱せずに様々な変更、追加、置換が可能であることを理解するであろう。