【課題を解決するための手段】
【0007】
この発明は、高分子固体電解質膜と、前記固体電解質膜に接触している検知極と、前記固体電解質膜に接触しかつ前記検知極とは非接触である対極と、前記固体電解質膜とは反対側の面で前記検知極を被覆すると共に導電性でかつ多孔質のガス拡散層と、フィルタとを有し、水溜を備えない電気化学ガスセンサにおいて、
前記ガス拡散層が親水性であるか、前記フィルタが親水性の活性炭から成ることを特徴とする。
【0008】
最初に、ガス拡散層の親水化を説明する。
図3,
図4に示すように、ガス拡散層を親水化することにより、乾燥雰囲気中への耐久性が向上する。なおガス拡散層は、固体高分子電解質膜、検知極、及び対極に比べ厚い部材であり、これらに比べて多量の水を保持でき、この水が乾燥雰囲気で徐々に蒸発し、あるいは電極と固体高分子電解質膜へ移動することにより、ガス感度を維持できる。この発明の電気化学ガスセンサは、水溜を備えなくても、乾燥雰囲気への耐久性が高い(
図3,
図4)。なお一般に、電気化学ガスセンサは長期間乾燥雰囲気に置かれると感度が低下するが、常湿の雰囲気に戻すと感度は回復する。
【0009】
好ましくは、前記検知極は前記固体電解質膜の一方の面に設けられ、前記対極は前記固体電解質膜の他方の面に設けられている。前記検知極を被覆するガス拡散層を第1のガス拡散層とし、前記固体電解質膜とは反対側の面で前記対極を被覆すると共に導電性でかつ多孔質の第2のガス拡散層を、ガスセンサはさらに有し、前記第1のガス拡散層と前記第2のガス拡散層がいずれも親水化されている。第1のガス拡散層と第2のガス拡散層がいずれも親水性なので、ガス拡散層に多量の水を蓄えることができ、乾燥雰囲気への耐久性が向上する。
【0010】
ガス拡散層は通常、カーボンが有機物バインダにより結着されている。燃料電池用のガス拡散層は水が溜まることを防止するため、PTFE(ポリテトラフルオロエチレン)等の疎水性高分子をバインダとし、ガス拡散層も疎水性である。好ましくは、前記第1のガス拡散層と前記第2のガス拡散層はいずれも、アルカリ金属イオンを含まずかつ水に不溶な親水性高分子である有機物バインダにより親水化されている。このような親水性高分子には、セルロース、PVA(ポリビニルアルコール)、酢酸ビニルポリマー、PVAと酢酸ビニルとのコポリマー、ヘミセルロース、デンプン、ペクチン、アルギン酸、ポリビニルピロリドン、ポリアクリル酸アミド、H
+型のポリアクリル酸、H
+型のポリメタクリル酸、H
+型のポリマレイン酸、スルホン化したビスフェノール類の縮合物、リグニン等がある。これらの親水性高分子は、水酸基、エーテル基、カルボキシル基、ケトン基、アミド基、H
+型のスルホン酸基、スルホニル基、エステル基等の親水性基により親水化されている。そして親水性の程度は主として親水性基の含有量で定まり、親水性基の種類、高分子結晶の安定性、等も影響する。例えば水酸基はエステル基よりも親水性が高い。
【0011】
なお、カルボキシセルロース、酢酸ビニルポリマー、ヘミセルロース、デンプン、ペクチン、アルギン酸、ポリビニルピロリドン、ポリアクリル酸アミド、H
+型のポリアクリル酸、H
+型のポリメタクリル酸、H
+型のポリマレイン酸、スルホン化したビスフェノール類の縮合物、スルホン化あるいはカルボキシル化を進めたリグニン、等には水溶性のものがあるが、架橋等により水に不溶にする。架橋以外に、疎水性の高分子との共重合、疎水性の高分子骨格へのグラフト重合等でも、水に不溶にできる。さらに親水性の水酸基を疎水性のエステル基により置換する、炭素骨格の水素をフッ素などで置換する、などによっても、親水性高分子を水に不溶にできる。またカーボンは、炭素繊維、カーボンブラック、活性炭、黒鉛等である。
【0012】
バインダがアルカリ金属イオンを含むと、結露雰囲気で浸透圧により多量に吸水し、バインダが膨張する可能性がある。例えばNa
+型のポリアクリル酸は、結露雰囲気で多量の水を吸収して膨張する。そしてバインダが膨張すると、ガス拡散層が膨張し、ガスセンサの特性が変化する可能性がある。さらにバインダが水に可溶であると、結露雰囲気でバインダが水に溶出して移動するおそれがある。そこで有機物バインダは、アルカリ金属イオンを含まずかつ水に不溶な親水性高分子であることが好ましい。バインダがアルカリ金属イオンを含まずかつ水に不溶であると、ガス拡散層が結露雰囲気でも膨潤せず、またバインダが流出しない。なお、H
+型でNa
+等の金属イオンを含まない高分子でも、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸のカルボン酸ポリマー、スルホン化したリグニン、スルホン化したビスフェノール類等のスルホン酸ポリマーは、金属を腐食させる可能性があるので、使用が制限される。またアルカリイオンの代わりにNH
4+を含む高分子バインダも、同様に浸透圧により膨潤し、さらにNH
3を発生させる可能性があるので好ましくない。
【0013】
なおポリメタクリル酸メチル樹脂はエステル基を含むが親水性が不足し、乾燥雰囲気中でガスセンサの感度が低下する(
図9,
図10)。同様に、ポリアミド繊維(6−6ナイロン繊維)はアミド基を含むが、親水性が不十分で、乾燥雰囲気でガスセンサの感度が低下する。
【0014】
特に好ましくは、前記有機物バインダが水酸基あるいはエーテル基を備えている。このような有機物バインダには、例えばセルロース、PVA(ポリビニルアルコール)、ポリオレフィングリコール(ポリエチレングリコール、ポリプロピレングリコール等)、ヘミセルロース、アルギン酸、等がある。なおセルロースは水酸基の一部がエステル化されていても良く、セルロースの種類は任意である。またPVA、ポリエチレングリコール、ポリプロピレングリコール、ヘミセルロース、アルギン酸等は水に可溶なので、架橋等により水に不溶にすることが好ましい。有機物バインダが水に不溶であると、結露雰囲気でもバインダが流出せず、結露雰囲気への耐久性が増す。特に好ましい有機物バインダは、セルロース、及び水に不溶なPVA、ヘミセルロース、アルギン酸である。これらの内でも、セルロースと水に不溶なPVAとが好ましい。なおPVAは酢酸ビニルとのコポリマーでも良い。発明者は、セルロースあるいは水に不溶なPVAをバインダとすると、50℃の結露雰囲気に例えば10週間置いても、センサ特性の変化が小さいことを確認した(
図5)。
【0015】
好ましくは、前記第1のガス拡散層と前記第2のガス拡散層はいずれも、親水性のカーボンにより親水化されている。例えば活性炭を、濃硫酸と酸化剤との混合物、あるいは濃硝酸と酸化剤との混合物により処理すると、低湿領域でシリカゲルと同量以上の水を保持するようになることが知られている(特許文献3 JP2010-241648A)。このような活性炭は電気化学ガスセンサのガス拡散層に用いうる程度の導電性があり、親水化によりガスセンサの乾燥雰囲気中での耐久性を向上させる(表2)。炭素繊維、黒鉛、カーボンブラックも同様の手法で親水化できる。
【0016】
参照極を設ける場合、高分子固体電解質膜の例えば対極と同じ面に設ける。高分子固体電解質膜はプロトン導電性でもアニオン導電性でも良いが、好ましくはプロトン導電性とし、導電性を発現させるキャリアはプロトンでもアルカリイオンでも良い。
【0017】
多くの電気化学ガスセンサでは、雰囲気を、フィルタ、検知極側のガス拡散層、検知極の順に供給する。シロキサン等の検知極の触媒活性を被毒するガスを、フィルタにより除去する。フィルタは例えば活性炭から成り、ガス拡散層に比べて容積が大きな部材である。そして発明者は、親水性の活性炭をフィルタとすることにより、電気化学ガスセンサの乾燥雰囲気への耐久性を向上させ、しかも結露雰囲気でもガス感度が失われないようにすることができることを見出した。
【0018】
図12〜
図14は、活性炭と親水性高分子とからなる親水性の活性炭フィルタを用いた際の、ガスセンサの結露雰囲気(
図12)及び乾燥雰囲気(
図13,
図14)での挙動を示す。活性炭フィルタが親水性でも、結露によりフィルタが目詰まりしてガス感度が失われることはない(
図12)。また70℃の乾燥雰囲気でも、10週間ガスを安定して検出できる(
図14)。
【0019】
図15〜
図17は、酸化により親水化されている活性炭をフィルタとした際の挙動を示す。結露雰囲気でも安定してガスを検出でき(
図15)、70℃の乾燥雰囲気でも10週間ガスを安定して検出できる(
図17)。
【0020】
図18、
図19は、通常の活性炭をフィルタとした際の挙動を示し、50℃(
図18)及び70℃(
図19)の乾燥雰囲気中で徐々にガス感度が低下する。
【0021】
これらのデータは、親水性の活性炭フィルタにより高温の乾燥雰囲気への耐久性が増すこと、及び、親水性の活性炭フィルタでも結露雰囲気でガス感度を維持できることを示している。高温の乾燥雰囲気への耐久性が増す原因は、親水性の活性炭フィルタが保持している水にあると考えられる。結露雰囲気でガス感度が低下しない原因は不明であるが、このことは、親水性高分子を含む活性炭フィルタでも、活性炭自体を親水性にしたフィルタでも生じる。これらのため、水溜無しで乾燥雰囲気での電気化学ガスセンサの信頼性を向上させることができ、しかも結露雰囲気でも感度が失われない。
【0022】
特に好ましくは、活性炭フィルタでは活性炭が親水性高分子をバインダとして成形されている。成形された活性炭フィルタは扱いやすく、また粉末状活性炭を用いても活性炭粉末により周囲を汚染することがない。
【0023】
好ましくは、活性炭フィルタは、親水性あるいは疎水性の活性炭と、親水性高分子とから成る。親水性高分子は、セルロース、PVA(ポリビニルアルコール)、酢酸ビニルポリマー、PVAと酢酸ビニルとのコポリマー、ヘミセルロース、デンプン、ペクチン、アルギン酸、ポリビニルピロリドン、ポリアクリル酸アミド、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、スルホン化したビスフェノール類の縮合物、リグニン等である。これらの親水性高分子は、水酸基、エーテル基、カルボキシル基、ケトン基、アミド基、スルホン酸基、スルホニル基、エステル基等の親水性基を有し、親水性の程度は主として親水性基の含有量で定まり、親水性基の種類、高分子結晶の安定性、等も影響する。例えば水酸基はエステル基よりも親水性が高い。
【0024】
親水性高分子は、特に好ましくは、セルロース、PVA(ポリビニルアルコール)、酢酸ビニルポリマー、PVAと酢酸ビニルとのコポリマー、ヘミセルロース、デンプン、ペクチン、アルギン酸、ポリビニルピロリドン、ポリアクリル酸アミドとする。これらの高分子は弱塩基性〜弱酸性で扱いやすく、
図2〜
図4に示したように、乾燥雰囲気への耐久性を向上させ、かつ結露雰囲気でも感度を維持できる。
【0025】
活性炭と親水性高分子との割合は、好ましくは質量比で活性炭が90〜50mass%、親水性高分子が10〜50mass%とする。活性炭は繊維状、粉末状、あるいは塊状を問わない。
【0026】
好ましくは、活性炭フィルタは、酸化されて親水性の活性炭を有する。酸化されて親水性の活性炭は、硫酸根、硝酸根、リン酸根、炭酸根等の酸基を含む点と、乾燥領域で保持する水の量が多い点で、他の活性炭から区別できる。活性炭を、濃硫酸と酸化剤との混合物、あるいは濃硝酸と酸化剤との混合物により酸化すると、低湿領域でシリカゲルと同量以上の水を保持するようになることが知られている(特許文献3 JP2010-241648A)。この明細書では、酸と酸化剤の混合物等により酸化された活性炭を、酸化により親水化した活性炭という。さらに強酸で処理した活性炭は、シロキサン化合物を吸着することが知られている(特許文献4 JP2007-503992)。
【0027】
このため、酸化されて親水性の活性炭を用いると、乾燥雰囲気で保持する水のため乾燥へのガスセンサの耐久性が増し、また酸化時に酸を用いるとシロキサンにより検知極が被毒されることをより確実に防止できる。