特許第6644718号(P6644718)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 中日本建設コンサルタント株式会社の特許一覧 ▶ 森田 弘昭の特許一覧 ▶ 佐藤 克己の特許一覧

<>
  • 特許6644718-下水道管渠変形計測方法及び装置 図000003
  • 特許6644718-下水道管渠変形計測方法及び装置 図000004
  • 特許6644718-下水道管渠変形計測方法及び装置 図000005
  • 特許6644718-下水道管渠変形計測方法及び装置 図000006
  • 特許6644718-下水道管渠変形計測方法及び装置 図000007
  • 特許6644718-下水道管渠変形計測方法及び装置 図000008
  • 特許6644718-下水道管渠変形計測方法及び装置 図000009
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6644718
(24)【登録日】2020年1月10日
(45)【発行日】2020年2月12日
(54)【発明の名称】下水道管渠変形計測方法及び装置
(51)【国際特許分類】
   G01C 7/06 20060101AFI20200130BHJP
   G01C 15/00 20060101ALI20200130BHJP
   E03F 7/00 20060101ALI20200130BHJP
【FI】
   G01C7/06
   G01C15/00 104A
   E03F7/00
【請求項の数】5
【全頁数】11
(21)【出願番号】特願2017-4732(P2017-4732)
(22)【出願日】2017年1月13日
(65)【公開番号】特開2018-112536(P2018-112536A)
(43)【公開日】2018年7月19日
【審査請求日】2018年11月27日
(73)【特許権者】
【識別番号】592100131
【氏名又は名称】中日本建設コンサルタント株式会社
(73)【特許権者】
【識別番号】517015454
【氏名又は名称】森田 弘昭
(73)【特許権者】
【識別番号】517015465
【氏名又は名称】佐藤 克己
(74)【代理人】
【識別番号】100096116
【弁理士】
【氏名又は名称】松原 等
(72)【発明者】
【氏名】早矢仕 芳昭
(72)【発明者】
【氏名】長谷川 孝
(72)【発明者】
【氏名】森田 弘昭
(72)【発明者】
【氏名】佐藤 克己
【審査官】 國田 正久
(56)【参考文献】
【文献】 特開2016−211878(JP,A)
【文献】 特開平01−265110(JP,A)
【文献】 特開昭63−058137(JP,A)
【文献】 登録実用新案第3007108(JP,U)
(58)【調査した分野】(Int.Cl.,DB名)
G01C 7/06
E03F 7/00
G01C 15/00
G01B 11/16
G01B 11/24
G01N 29/04
B25J 1/00−21/02
(57)【特許請求の範囲】
【請求項1】
3つ以上のロータを搭載した回転翼機であって、下水道管渠の内部を飛行する飛行体と、
飛行体の全ロータの回転軌跡外縁よりも外方にある脚の上端部に回転可能に軸着された、下水道管渠の天井を転動する前輪及び後輪と、
飛行体に設けられた、下水道管渠のたるみ及び蛇行を計測するための加速度センサ、及び、下水道管渠のたわみを計測するために下水道管渠の天井までの距離を検出する距離センサとを備えることを特徴とする下水道管渠変形計測装置。
【請求項2】
前記加速度センサは、3軸加速度センサである請求項1記載の下水道管渠変形計測装置。
【請求項3】
前輪及び後輪と3軸加速度センサとが設けられた飛行体を使用し、
前記3軸加速度センサが計測した進行方向の加速度に基づいて飛行体の飛行速度を一定速に制御し、前記3軸加速度センサが計測した断面方向の静止加速度に基づいて飛行体の姿勢を断面方向に傾かないように姿勢制御し、下水道管渠の内部に飛行体を自動操縦で飛行させるとともに、前記前輪及び後輪を管渠の天井に転動させながら、下水道管渠の流水を遮断することなく、該流水に飛行体が触れない状態で、
前記3軸加速度センサで縦断方向の静止加速度を検出して傾斜角度に変換することにより下水道管渠のたるみを計測し、前記3軸加速度センサで横方向の加速度を検出して変位に変換することにより下水道管渠の蛇行を計測することを特徴とする下水道管渠変形計測方法。
【請求項4】
前記飛行体は、3つ以上のロータを搭載した回転翼機であり、
前記前輪及び後輪は、飛行体の全ロータの回転軌跡外縁よりも外方にある脚の上端部に回転可能に軸着されており、
前記状態で、飛行体に設けられた距離センサで管渠の天井までの距離を検出することにより管渠のたわみを計測する請求項3記載の下水道管渠変形計測方法。
【請求項5】
ンホールに開口した管渠口の天井に飛行体をセットして飛行開始させる請求項3又は4記載の下水道管渠変形計測方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、下水道管渠(下水管)の変形(例えばたるみ、蛇行、たわみ等の各種変形)を計測する方法及び装置に関するものである。
【背景技術】
【0002】
管渠には、使用により、亀裂、破損、継手ズレ、腐食、油脂付着、土砂堆積、樹木根侵入等が生じる。また、管渠には、外力、地震による液状化、不等沈下等により、たるみ(管渠を管長軸線の上下方向のたるみ)、蛇行(管渠の管長軸線の左右方向の蛇行)、たわみ(管渠の断面形状の上下方向のたわみ(偏平))等の変形も生じる。
【0003】
よって、管渠の維持管理には、まずこれらの調査が必要となる。現状での管渠の調査は、自走式又は牽引式の走行車を管渠の底面上に走行させ、走行車に搭載したテレビカメラで管渠内の状態を撮影してモニタに映し出し、これをオペレータが目視する方法が主流である(特許文献1)。
【0004】
また、特許文献2には、上記主流の方法ではオペレータが関心ある領域を認識しなかった場合には、停止してパン、チルト、ズームする機会が失われるとして、上記走行車に方向検出装置又は位置検出装置と距離測定装置とを備えるプローブを設け、映像と方向と移動距離のデータを処理することにより前方視画像とパイプライン壁面の約360度展開画像とをデジタル化して表示する方法が開示されている。方向検出装置はジャイロスコープまたはジャイロセンサが好ましいとしている。
【0005】
また、特許文献3には、上記主流の方法では管渠の内部状況を目視することはできても数値的なデータとして記録することができないとして、離れた2つの管渠口にレーザ発射装置と管芯測定器をセットし、上記走行車にレーザ受光板を設けて、管渠のたるみ、蛇行、逆勾配を調査するシステムが開示されている。
【0006】
その他、弾性波により管渠の強度、劣化度を評価するものもある。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平5−164698号公報
【特許文献2】特開2004−509321公報
【特許文献3】特開2002−90146公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
上記主流の方法(特許文献1)は、目視によるため、亀裂、破損、継手ズレ、腐食、油脂付着、土砂堆積、樹木根侵入等は把握しやすいが、管渠のたるみ、蛇行、たわみ等の変形は把握しにくい。
また、特許文献2の方法では、関心ある領域で停止してパン、チルト、ズームを行う必要性をなくすことができるが、やはり目視によるため、管渠のたるみ、蛇行、たわみ等の変形を数値化することまでは開示がない。
また、特許文献3の方法では、管渠のたるみ、蛇行、逆勾配を数値化することができるが、レーザ発射装置と管芯測定器を2つの管渠口にセットする必要があるため、調査に時間と手間とコストがかかる。
【0009】
さらに、特許文献1〜3の何れの方法も、走行車を管渠の底面上に走行させるため、次の大きな問題があった。
(ア)下水管等の管渠内には常時流水(汚水)があるため、そのままで走行車を管渠の底面上に走行させることは非常に困難又は不可能である。そこで、基本的には、管渠内の流水を遮断し、さらに油脂、土砂、樹木根等の異物を除去するよう清掃した後に、調査を行う必要があり、その調査開始までの手間が大変であった。
(イ)流水を遮断し清掃した後であっても、管渠の底面は異物が残ったり損傷が多かったりすることがあるため、自走車をスムーズに走行させられなかったり姿勢が傾いたりしやすい。
【0010】
そこで、本発明の目的は、管渠の流水遮断や清掃をしなくても、流水、異物、損傷等に影響されずに、管渠のたるみ、蛇行、たわみ等の変形を少ない時間と手間とコストで計測できるようにすることにある。
【課題を解決するための手段】
【0011】
(1)下水道管渠変形計測装置は、
3つ以上のロータを搭載した回転翼機であって、下水道管渠の内部を飛行する飛行体と、
飛行体の全ロータの回転軌跡外縁よりも外方にある脚の上端部に回転可能に軸着された、下水道管渠の天井を転動する前輪及び後輪と、
飛行体に設けられた、下水道管渠のたるみ及び蛇行を計測するための加速度センサ、及び、下水道管渠のたわみを計測するために下水道管渠の天井までの距離を検出する距離センサとを備えることを特徴とする。
【0012】
前記加速度センサは、3軸加速度センサであることが好ましい。
【0013】
(2)下水道管渠変形計測方法は、
前輪及び後輪と3軸加速度センサとが設けられた飛行体を使用し、
前記3軸加速度センサが計測した進行方向の加速度に基づいて飛行体の飛行速度を一定速に制御し、前記3軸加速度センサが計測した断面方向の静止加速度に基づいて飛行体の姿勢を断面方向に傾かないように姿勢制御し、下水道管渠の内部に飛行体を自動操縦で飛行させるとともに、前記前輪及び後輪を管渠の天井に転動させながら、下水道管渠の流水を遮断することなく、該流水に飛行体が触れない状態で、
前記3軸加速度センサで縦断方向の静止加速度を検出して傾斜角度に変換することにより下水道管渠のたるみを計測し、前記3軸加速度センサで横方向の加速度を検出して変位に変換することにより下水道管渠の蛇行を計測することを特徴とする。
【0014】
前記飛行体は、3つ以上のロータを搭載した回転翼機であり、
前記前輪及び後輪は、飛行体の全ロータの回転軌跡外縁よりも外方にある脚の上端部に回転可能に軸着されており、
前記状態で、飛行体に設けられた距離センサで管渠の天井までの距離を検出することにより管渠のたわみを計測することが好ましい。
【0015】
ンホールに開口した管渠口の天井に飛行体をセットして飛行開始させる態様を例示できる。
【0017】
(作用)
飛行体の利点は、管渠の底面上を走行する走行車と異なり、管渠の底面を離れて管渠内の空間を飛行できることであり、よって底面上の流水、異物、損傷等に影響されないから、流水遮断や清掃をしなくても計測を行うことができる。そして、その飛行時に前輪及び後輪を比較的損傷が少ない管渠の天井に転動させることにより(すなわち天井走行を伴う飛行である)、飛行体の姿勢が天井に倣われるとともに、飛行体と天井との位置関係が定まる。これにより、飛行体に設けられた加速度センサ、距離センサ等のセンサにより、管渠のたるみ、蛇行、たわみ等の変形を少ない時間と手間とコストで計測することができる。
【発明の効果】
【0018】
本発明は、管渠の流水遮断や清掃をしなくても、流水、異物、損傷等に影響されずに、管渠のたるみ、蛇行、たわみ等の変形を少ない時間と手間とコストで計測できるという優れた効果を奏する。
【図面の簡単な説明】
【0019】
図1】実施例の管渠変形計測装置の斜視図である。
図2】同装置のブロック図である。
図3】同装置の加速度センサの説明図である。
図4】同装置による管渠(下水道)の変形計測方法を説明する、(a)は概略図、(b)はたるみ計測における傾斜角と変位量のイメージを示すグラフである。
図5】たわみ計測における、(a)はたわみ変形前の断面図、(b)はたわみ変形後の断面図である。
図6】同装置の姿勢の自動復元性を説明する断面図である。
図7】実施例の変更例を示す断面図である。
【発明を実施するための形態】
【0020】
1.飛行体
飛行体は、管渠の内部を飛行できる程度に小型で無人の飛行体(広義のドローン)である。飛行体の飛行原理及び構造は、特に限定されないが、マルチコプタ(3つ以上のロータを搭載した回転翼機、狭義のドローン)を好ましいものとして例示できる。
【0021】
2.前輪及び後輪
前輪及び後輪は、特に限定されないが、飛行体よりも上方へ延びる部材に回転可能に軸着された車輪を例示できる。
前輪及び後輪は、非駆動輪でよい。
前輪及び後輪は、飛行体の前後方向にのみ転動する固定輪が好ましいが、転向しうる自在輪としてもよい。
前輪及び後輪の数は、特に限定されないが、前輪2つと後輪2つの組み合わせ、前輪1つと後輪2つの組み合わせ、前輪2つと後輪1つの組み合わせ等を例示できる。
【0022】
3.自動操縦
自動操縦は、飛行体に設けられたCPU等を用いた制御装置により行われるものでもよいし、飛行体から離れた箇所から送られる信号により行われるものでもよい。
なお、飛行体の飛行は、自動操縦に限定されず、飛行体から離れた箇所から送られる信号により行われる手動操縦でもよい。
【実施例】
【0025】
(管渠変形計測装置)
図1図3に示す実施例の管渠変形計測装置1は、管渠の内部を飛行する飛行体2と、飛行体2に設けられて管渠の天井を転動する所定の軸間距離をもつ前輪11及び後輪12と、飛行体2に設けられて管渠の変形を計測するセンサ13,14とを備えている。
【0026】
図1に示すように、飛行体2は、一般的なマルチコプタとほぼ同様であり、前後方向に延びる中央の本体ボディ3と、本体ボディ3から横方向へ放射状に延びる4本のアーム4と、アーム4の途中部に設けられた4つのロータ5及びそのモータ6とを備えている。本体ボディ3の例えば前部にはテレビカメラ7が前向きに取り付けられ、テレビカメラ7はレンズ、撮像素子(CCD、CMOS等)等から構成されている。
【0027】
本体ボディ3には、図2に示すように、一般的なマルチコプタと同様、無線モジュール8と制御用CPU9が内蔵されている。遠隔のリモコン17から送信される信号を無線モジュール8が受信し、同信号に基づいて制御用CPU9が4つのモータ6の回転数を制御することにより、飛行体2の上昇・下降・前進・後進・左旋回・右旋回の操縦が行われる。また、テレビカメラ7が撮影した画像の信号を、無線モジュール8が送信する。
【0028】
一般的なマルチコプタでは各モータ6の箇所で終わる4本のアーム4が、本実施例ではモータ6の箇所を超えて延長されている。そして、各アーム4の延長端部から脚10が上方へ延びるように設けられ、前側2つの脚10の上端部に2つの前輪11が回転可能に軸着され、後側2つの脚10の上端部に2つの後輪12が回転可能に軸着されている。もって4つの脚10は、4つのロータ5の回転軌跡外縁よりも外方にあり、ロータ5の回転に干渉しない。また、前輪11及び後輪12は4つのロータ5よりも上方にあり、ロータ5の回転に干渉しない。なお、前輪11及び後輪12の設け方は適宜変更でき、例えば本体ボディ3からアーム4とは別に延ばした部材に軸着してもよい。
【0029】
前輪11及び後輪12は、非駆動輪であるとともに、飛行体2の前後方向にのみ転動する固定輪である。また、前輪11及び後輪12の軸間距離を大きくするために、前側2つの脚10を前へ傾斜させ、後側2つの脚10を後へ傾斜させているが、全ての脚10を垂立させてもよい。
【0030】
一般的なマルチコプタとは異なり、本体ボディ3の例えば上部には、前記センサとしての加速度センサ13と距離センサ14が取り付けられている。本体ボディ3には、図2に示すように、計測用CPU15とメモリカード16が追加内蔵されている。計測用CPU15が、後述する計算等を行いその結果を、無線モジュール8が遠隔のパソコン18に送信するとともに、メモリカード16に記録する。なお、本例のように制御用CPUを追加するのではなく、前記制御用CPU9に制御用CPUの機能を兼ね備えさせることもできる。
【0031】
加速度センサ13は、静的加速度を計測して角度に変換するものである。本実施例では、XYZ軸の3方向の加速度を1デバイスで測定できる3軸加速度センサが用いられている。この加速度センサ13により、次の計測が可能である。
【0032】
(ア)傾斜角度(縦断方向変位)
図3に示すように、重力加速度が1Gである場合、加速度センサ13から出力される静止加速度は次式で表せる。
Axout[G]=1G×sin(θ)
重力加速度の軸にそって加速度センサを回転させた場合、加速度出力はサイン波の関係に従う。従って、静止加速度から傾斜角度θへの変換は次式(逆サイン関数)を使用して行う。
θ=sin-1(Axout[g]/1g)
θの単位はラジアンであり、度(°)に変換する場合は上式の結果に(180/π)を掛ける。
加速度センサを1軸で使用する場合、傾きの感度は、水平軸とセンサの軸がなす角度が大きくなるほど減少し、角度が±90°に近づくと感度は0に近づく。逆に0°近くで最高の分解能が得られる。従って、使用するセンサ軸は管軸方向に水平に近いセンサ軸を使用する。
なお、アナログ式MEMSセンサの分解能は16bit程度を期待でき、傾斜角度の分解能を0.01度程度まで計測できる。勾配にすると約0.02%(50mで10mm)になる。
【0033】
(イ)飛行速度(速度制御に利用可)
加速度センサ13は、Y軸(進行方向)の加速度を計測する。計測用CPU15はこの加速度を積分して計算した飛行速度を制御用CPU9にわたし、制御用CPU9は飛行速度を一定速に制御する(これにより自動操縦が可能になる)。計算した飛行速度は、無線モジュール8からパソコン18に送信される。
【0034】
(ウ)断面方向(姿勢制御に利用可)
加速度センサ13は、X軸(断面方向)の静止加速度を計測する。計測用CPU15はこの静止加速度から計算した断面方向の傾斜角を制御用CPU9にわたし、制御用CPU9は飛行体2の姿勢を断面方向に傾かないように姿勢制御する(これにより自動操縦が可能になる)。なお、飛行体2の姿勢は、後述(図6)するように、推力の反力で生じる復元力によっても自然に制御される。
【0035】
次に、距離センサ14には、赤外線距離センサが用いられている。図5に示すように、2つの前輪11が管材21の内面上部に当接する点の間隔をL、距離センサ14からこの点までの高さをh、距離センサ14が計測する管材21の天井頂部までの距離をD、D−h=d、管厚をtとすると、同図(a)に示す変形前の真円の管厚中心の半径がrであるのに対し、図5(b)に示す変形後の管厚中心の曲率半径r’は次式で計算できる。本実施例では、この原理を応用して、計測用CPU15がたわみを計測する。
【数1】
【0036】
<計測例1:鉄筋コンクリート管による管路のたるみの計測>
さて、図4(a)に示す管渠20を計測対象例とする。この管渠20は、下水道であり、所定の距離をおく2つのマンホール25,26の間に、複数の管材21をそれらの端部が内外に重なる継手部22で連結して構成されている。23は管渠20の流水を示している。管材21の種類は様々であり、多く使用されているのは鉄筋コンクリート管や硬質塩化ビニル管である。そこで、同例では、管材21が内径300mm・有効管長2000mmの鉄筋コンクリート管であり、この管材21が2つのマンホール25,26間(1スパン)で15本連結されて、1スパンの管渠長が30000mm(30m)であるとする。
【0037】
外力、地震による液状化、不等沈下等により、隣り合う管材21と管材21とが継手部22でずれて相対的に傾き、管渠の管長軸線にたるみ又は蛇行が生じる。たるみにより継手部22に生じる隙間から、地下水や木根が侵入すると、下水の流下能力が低下する。
【0038】
この管渠20のたるみは、上記のように構成された管渠変形計測装置1を使用して、次の方法で計測できる。管渠20の流水23は基本的に遮断しなくてもよい。
(i)図4(a)の例えば左側のマンホール25において、作業者は、同マンホール25に開口する管渠20の管渠口の天井に管渠変形計測装置1を進行方向に向けて(同例では右向きに)セットする。右側のマンホール26においては、別の作業者が受信機としてのパソコン18を持って待機する。
【0039】
(ii)管渠変形計測装置1の飛行を開始し、飛行中は前輪11及び後輪12を管渠20の天井に転動(天井走行)させることにより、飛行体2の姿勢を管渠20の天井に倣わせる。天井は比較的付着物が少なく、走行、勾配計測に支障が少ない。また、管渠変形計測装置1は流水23に触れない。飛行速度は一定の例えば50mm/秒とする。1本の管材21の調査時間は40秒、1スパンの管渠20の調査時間は600秒(10分)となる。飛行は、リモコン17からの手動操縦でもよいが、前述した計測用CPU15と制御用CPU9による自動操縦とすることが好ましい。
【0040】
図6に示すように、飛行時に飛行体2の姿勢が断面方向に傾いたときには、推力の反力に生じる水平分力の成分によって、飛行体2の姿勢が傾きを減じる方向に自然に制御される。さらに、前述したように計測用CPU15と制御用CPU9により、飛行体2の姿勢が断面方向に傾かないように姿勢制御される。
そして、加速度センサ13により飛行中の加速度を計測し、加速度から飛行速度と移動距離を計算する。
【0041】
(iii)上記天井走行を伴う飛行をさせながら、通過する管材21の1本毎に、加速度センサ13により静的加速度を800Hzでサンプリングして、前述の原理により傾斜角度に変換する。1本の管材21のサンプリング数は、40秒×800Hz=32000サンプルとなる。管材21の端は、継手部22の目地を前輪11が通過する時の振動を検知して判定する。図4(b)に、計測される傾斜角度のイメージを示すように、継手部22の目地でノイズが現れる。また、図4(b)には、傾斜角度と飛行速度から計算されるたるみの変位量のイメージも示す。
【0042】
そして、計測用CPU15は1本の管材21の平均傾斜角度を計算し、計算した平均傾斜角度は無線モジュール8からパソコン18に送信されるとともに、メモリカード16に記録される。
【0043】
なお、管渠変形計測装置1の加減速時には動的な加速度が発生するため、加減速時に取得した加速度は傾斜角度の演算には利用できない。この問題を解決するためには、加減速時の途中で停止させて静止加速度を計測するか、一定速走行時(動的加速度の影響が無い)のデータのみ取得するか、加速度が変化する時刻のデータを排除するかの、いずかの方法を採ることができる。
【0044】
<計測例2:鉄筋コンクリート管による管路の蛇行の計測>
上記たるみの計測と同時に、加速度センサに13より得られた横方向の加速度を、計測用CPU15が変位に変換することにより蛇行量を計測することもできる。蛇行量は、別途水平に装備した距離センサ(図示略)により管材21の側部に対する飛行体2の左右ずれを検知し、その左右ずれを除外するように補正することが好ましい。
【0045】
<計測例3:硬質塩化ビニル管による管路のたわみの計測方法>
上記鉄筋コンクリート管による管渠は、たわみが実質的に生じないため、たわみを計測する必要はない。しかし、硬質塩化ビニル管による管渠は、5%程度のたわみが当初から許容されており、経年変化、道路載荷重、地震応力等により、たわみは増加するため、たわみを計測する必要がある。
【0046】
そこで、硬質塩化ビニル管による管渠の場合は、上記たるみの計測と同時に、図5に示すように、距離センサ14により管材21の天井頂部までの距離Dを計測し、前述した原理を応用して、計測用CPU15により管材21のたわみを計算する。
例えば、管材21のたわみ変形前の内径が300mm、距離Dが123.6mmであり、たわみ変形後の上下の内径(短径)が285mm、距離Dが119mmであった場合、管材21の偏平率95%、距離Dの変化率96%、変化量4.6mmである。
【0047】
以上詳述した本実施例によれば、管渠20の流水遮断や清掃をしなくても、流水、異物、損傷等に影響されずに、管渠20のたるみ、蛇行及びたわみを少ない時間と手間とコストで計測することができる。
【0048】
なお、本発明は前記実施例に限定されるものではなく、例えば次のように、発明の趣旨から逸脱しない範囲で適宜変更して具体化することができる。
(1)図7に示すように、左右の脚10を上側ほど間が広がるように傾斜させ、左右の前輪11の距離を大きくするとともに、前輪11を管材21に極力直角に近く当接させること。後輪12についても同様である。
【符号の説明】
【0049】
1 管渠変形計測装置
2 飛行体
3 本体ボディ
4 アーム
5 ロータ
6 モータ
7 テレビカメラ
8 無線モジュール
9 制御用CPU
10 脚
11 前輪
12 後輪
13 加速度センサ
14 距離センサ
15 計測用CPU
16 メモリカード
17 リモコン
18 パソコン
20 管渠
21 管材
22 継手部
23 流水
25 マンホール
26 マンホール
図1
図2
図3
図4
図5
図6
図7