特許第6644762号(P6644762)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ フォノニック デバイセズ、インクの特許一覧

特許6644762効率を増大させるように熱電モジュールを操作するシステム及び方法
<>
  • 特許6644762-効率を増大させるように熱電モジュールを操作するシステム及び方法 図000002
  • 特許6644762-効率を増大させるように熱電モジュールを操作するシステム及び方法 図000003
  • 特許6644762-効率を増大させるように熱電モジュールを操作するシステム及び方法 図000004
  • 特許6644762-効率を増大させるように熱電モジュールを操作するシステム及び方法 図000005
  • 特許6644762-効率を増大させるように熱電モジュールを操作するシステム及び方法 図000006
  • 特許6644762-効率を増大させるように熱電モジュールを操作するシステム及び方法 図000007
  • 特許6644762-効率を増大させるように熱電モジュールを操作するシステム及び方法 図000008
  • 特許6644762-効率を増大させるように熱電モジュールを操作するシステム及び方法 図000009
  • 特許6644762-効率を増大させるように熱電モジュールを操作するシステム及び方法 図000010
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6644762
(24)【登録日】2020年1月10日
(45)【発行日】2020年2月12日
(54)【発明の名称】効率を増大させるように熱電モジュールを操作するシステム及び方法
(51)【国際特許分類】
   F25B 21/02 20060101AFI20200130BHJP
   F25D 11/00 20060101ALI20200130BHJP
【FI】
   F25B21/02 F
   F25B21/02 D
   F25B21/02 K
   F25D11/00 101W
【請求項の数】14
【全頁数】18
(21)【出願番号】特願2017-503141(P2017-503141)
(86)(22)【出願日】2015年7月21日
(65)【公表番号】特表2017-523373(P2017-523373A)
(43)【公表日】2017年8月17日
(86)【国際出願番号】US2015041388
(87)【国際公開番号】WO2016014574
(87)【国際公開日】20160128
【審査請求日】2018年5月29日
(31)【優先権主張番号】62/027,083
(32)【優先日】2014年7月21日
(33)【優先権主張国】US
(31)【優先権主張番号】62/027,080
(32)【優先日】2014年7月21日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】513217403
【氏名又は名称】フォノニック インコーポレイテッド
(74)【代理人】
【識別番号】110000578
【氏名又は名称】名古屋国際特許業務法人
(72)【発明者】
【氏名】スタンリー マーシャル
(72)【発明者】
【氏名】バルス ダニエル
【審査官】 久島 弘太郎
(56)【参考文献】
【文献】 特開2014−052127(JP,A)
【文献】 特開平02−057880(JP,A)
【文献】 米国特許出願公開第2013/0291557(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 21/02
F25D 11/00
(57)【特許請求の範囲】
【請求項1】
冷却チャンバの温度を低下させるように動作可能な熱電冷凍システム内の熱電モジュールを操作する方法であって、
前記冷却チャンバの外部環境の温度を含む1つ以上のシステムパラメータに基づき前記熱電冷凍システムの性能係数を最大にするはずの第一の電力量を決定すること(100)と、
前記熱電モジュールに前記第一の電力量を供給すること(102)と、
前記1つ以上のシステムパラメータのうちの少なくとも1つが変化したことを決定すること(104)と、
前記1つ以上のシステムパラメータに基づき前記熱電冷凍システムの性能係数を最大にするはずの第二の電力量を決定すること(106)と、
前記熱電モジュールに前記第二の電力量を供給すること(108)と、
前記熱電モジュールの高温側温度が第一閾値の上にあると判断することと、
前記1つ以上のシステムパラメータに基づき前記熱電モジュールの前記性能係数を最大にするはずの電力量未満である電力量を前記熱電モジュールに供給することと、
前記熱電モジュールの前記高温側温度が、前記第一閾値よりも低い第二閾値未満であると判断することと、
前記1つ以上のシステムパラメータに基づき前記熱電モジュールの前記性能係数を最大にするはずの電力量である電力量を前記熱電モジュールに供給することと、
を含む、方法。
【請求項2】
前記熱電モジュールに前記第一の電力量を供給することが、前記熱電モジュールに第一の電流量を供給することを含み、前記熱電モジュールに前記第二の電力量を供給することが、前記熱電モジュールに第二の電流量を供給することを含む、
請求項1に記載の方法。
【請求項3】
前記熱電モジュールに前記第一の電力量を供給することが、前記熱電モジュールに第一の電圧量を印加することを含み、前記熱電モジュールに前記第二の電力量を供給することが、前記熱電モジュールに第二の電圧量を印加することを含む、請求項1に記載の方法。
【請求項4】
前記第一の電力量と前記第二の電力量からなる少なくとも1つの群が、
前記冷却チャンバの温度と、
前記熱電モジュールの高温側の温度と
記熱電モジュールの電気特性と、
からなる少なくとも1つの群に基づき決定される、
請求項1乃至3のいずれかに記載の方法。
【請求項5】
前記熱電モジュールの電気特性は前記熱電モジュールの性能指数である、
請求項4に記載の方法。
【請求項6】
前記第一の電力量を決定することが、前記冷却チャンバの前記外部環境の前記温度に基づき前記熱電モジュールの前記性能係数を最大にするはずの前記第一の電力量を決定することを含み、
前記1つ以上のシステムパラメータのうちの少なくとも1つが変化したと判断することが、前記冷却チャンバの前記外部環境の前記温度が変化したと判断することを含み、かつ、
前記第二の電力量を決定することが、前記冷却チャンバの前記外部環境の前記温度に基づき前記熱電モジュールの前記性能係数を最大にするはずの前記第二の電力量を決定することを含む、
請求項4または5に記載の方法。
【請求項7】
前記第一の電力量を決定することが、ルックアップ表を用いて前記1つ以上のシステムパラメータに基づき前記熱電モジュールの前記性能係数を最大にするはずの前記第一の電力量を決定することを含み、かつ
前記第二の電力量を決定することが、ルックアップ表を用いて前記1つ以上のシステムパラメータに基づき前記熱電モジュールの前記性能係数を最大にするはずの前記第二の電力量を決定することを含む、
請求項1乃至のいずれかに記載の方法。
【請求項8】
前記熱電モジュールに前記第一の電力量を供給することが2つ以上の熱電モジュールのサブセットのうちの1つのサブセットに前記第一の電力量を供給することをさらに含み、
前記熱電モジュールに前記第二の電力量を供給することが前記2つ以上の熱電モジュールのサブセットのうちの前記1つのサブセットに前記第二の電力量を供給することをさらに含む、
請求項1乃至のいずれかに記載の方法。
【請求項9】
熱電冷凍システムであって、
冷却チャンバと、
熱交換器であって、
低温側ヒートシンクと、
高温側ヒートシンクと、
前記低温側ヒートシンクと前記高温側ヒートシンクとの間に配設された熱電モジュールとを、含む熱交換器と、
コントローラであって、
前記冷却チャンバの外部環境の温度を含む1つ以上のシステムパラメータに基づき前記熱電冷凍システムの性能係数を最大にするはずの第一の電力量を決定し、
前記熱電モジュールに前記第一の電力量を供給し、
前記1つ以上のシステムパラメータのうちの少なくとも1つが変化したと判断し、
1つ以上のシステムパラメータに基づいて前記熱電冷凍システムの性能係数を最大にするはずの第二の電力量を決定し
記熱電モジュールに前記第二の電力量を供給し、
前記熱電モジュールの高温側温度が第一閾値の上にあると判断し、
前記1つ以上のシステムパラメータに基づき前記熱電モジュールの前記性能係数を最大にするはずの電力量未満である電力量を前記熱電モジュールに供給し、
前記熱電モジュールの前記高温側温度が、前記第一閾値よりも低い第二閾値未満であると判断し、
前記1つ以上のシステムパラメータに基づき前記熱電モジュールの前記性能係数を最大にするはずの電力量である電力量を前記熱電モジュールに供給する、
ように構成された、コントローラと、
を含む、熱電冷凍システム。
【請求項10】
冷却チャンバの温度を低下させるように動作可能な熱電冷凍システム内の熱電モジュールを操作するコントローラであって、
前記冷却チャンバの外部環境の温度を含む1つ以上のシステムパラメータに基づき前記熱電冷凍システムの性能係数を最大にするはずの第一の電力量を決定し、
前記第一の電力量を前記熱電モジュールに供給し、
前記1つ以上のシステムパラメータのうちの少なくとも1つが変化したと判断し、
前記1つ以上のシステムパラメータに基づき前記熱電冷凍システムの前記性能係数を最大にするはずの第二の電力量を決定し、
記第二の電力量を前記熱電モジュールに供給し、
前記熱電モジュールの高温側温度が第一閾値の上にあると判断し、
前記1つ以上のシステムパラメータに基づき前記熱電モジュールの前記性能係数を最大にするはずの電力量未満である電力量を前記熱電モジュールに供給し、
前記熱電モジュールの前記高温側温度が、前記第一閾値よりも低い第二閾値未満であると判断し、
前記1つ以上のシステムパラメータに基づき前記熱電モジュールの前記性能係数を最大にするはずの電力量である電力量を前記熱電モジュールに供給する、
ように構成された、コントローラ。
【請求項11】
請求項1乃至のうちのいずれかの方法を行うように構成された請求項1に記載のコントローラ。
【請求項12】
少なくとも1つのプロセッサ上で実行されたときに、前記少なくとも1つのプロセッサに請求項1乃至のうちのいずれかによる方法を行わせる指示を含む、コンピュータプログラム。
【請求項13】
請求項1に記載のコンピュータプログラムを含むキャリアであって、前記キャリアは、電子信号、光信号、無線信号、またはコンピュータ可読記憶媒体のうちの1つである、
キャリア。
【請求項14】
冷却チャンバの温度を低下させるように動作可能な熱電冷凍システム内の熱電モジュールを操作するコントローラであって、
前記冷却チャンバの外部環境の温度を含む1つ以上のシステムパラメータに基づき前記熱電冷凍システムの性能係数を最大にするはずの第一の電力量を決定し、かつ、前記1つ以上のシステムパラメータに基づき前記熱電冷凍システムの性能係数を最大にするはずの第二の電力量を決定するように動作可能な電力決定モジュールと、
前記第一の電力量を前記熱電モジュールに供給し、かつ、前記第二の電力量を前記熱電モジュールに供給するように動作可能な電力供給モジュールと、
前記1つ以上のシステムパラメータのうちの少なくとも1つが変化したと判断するように動作可能なシステムパラメータ判断モジュールと、を含み、前記コントローラは、
前記熱電モジュールの高温側温度が第一閾値の上にあると判断し、
前記1つ以上のシステムパラメータに基づき前記熱電モジュールの前記性能係数を最大にするはずの電力量未満である電力量を前記熱電モジュールに供給し、
前記熱電モジュールの前記高温側温度が、前記第一閾値よりも低い第二閾値未満であると判断し、
前記1つ以上のシステムパラメータに基づき前記熱電モジュールの前記性能係数を最大にするはずの電力量である電力量を前記熱電モジュールに供給する、
ように構成されている、コントローラ。
【発明の詳細な説明】
【発明の詳細な説明】
【0001】
関連出願
本出願は、その開示の全体が本明細書に参照援用される2014年7月21日に出願の米国特許仮出願番号第62/027,080号公報、及びその開示の全体が本明細書に参照援用される2014年7月21に出願の米国特許仮出願番号第62/027,083号公報の利益を主張するものである。
[発明の分野]
【0002】
本開示は熱電モジュールの操作に関する。
[背景技術]
【0003】
今日、多くの冷房装置が蒸気圧縮ベースで、サーモスタットで調節されたデューティ・サイクル制御を利用する。しかし、典型的な蒸気圧縮ベースの冷房装置はプルダウンや回復などの際に、その定常状態及び過度的な要求の両方を満たすほど動的ではない。したがって、蒸気圧縮ベースの冷房装置は、定常状態動作の際に必要な採熱能をはるかに超える過剰な冷却性能を持つ傾向がある。過剰な冷却能によりもたらされる過剰な能力はプルダウン性能の改善をもたらす一方、スタート時に頻発する大きな電流サージにはより大きな能力が必要となり、その結果、負荷を扱うためにより高価なコンポーネントが必要となる。また、大きな電流サージとデューティ・サイクル制御により生じる負荷とによって過剰なコンポーネントが装着され、そのため、早期故障の可能性が生じる。さらに、正にこれらの制御の性質、熱力学限界、及び製品性能の要求によって、蒸気圧縮ベースの冷房装置は最適なものより効率がよくない。
【0004】
蒸気圧縮ベース冷房装置のこの準最適効率の欠点は、冷却チャンバ内温度の正確な制御に関係する。一般的に、冷却チャンバ内の温度がある値を超える場合は、蒸気圧縮ベース冷房装置は動作を開始し冷却チャンバ内の温度がその値未満になるまで動作し続ける。冷却チャンバがその値未満の温度に到達すると、蒸気圧縮ベース冷房装置は停止する。それでもなお、上記した過剰な装着に加えて、このタイプの制御方式は、エネルギー消費を最小にし、様々な環境条件での動作を可能にする努力において一般的に制御バンドが比較的大きく内部温度成層が比較的大きい。この方式は、絞りまたは容量変化は蒸気圧縮サイクルに実装するのに難しく高価となるので最も頻繁に使用され、また、体積効率が落ちるにつれて有効性が制限される。
【0005】
従って、冷却チャンバからの採熱に使用されるコンポーネントの効率が最大になる場合、冷却チャンバ内の温度を正確に制御する装置及び方法が必要となる。また、冷却チャンバから採熱するのに使用されるコンポーネントの遮熱限界を緩和する装置及び方法も必要となる。
【発明の概要】
【0006】
効率を増大させるように熱電モジュールを操作する装置及び方法が開示される。いくつかの実施形態では、熱電モジュールを操作する方法は、1つまたは複数のシステムパラメータに基づき熱電モジュールの性能係数を最大にする第一の電力量を決定することと、該熱電モジュールに第一の電力量を供給することとを含む。また、該方法は、1つまたは複数のシステムパラメータの少なくとも1つが変化したと判断することと、1つまたは複数のシステムパラメータに基づき熱電モジュールの性能係数を最大にする第二の電力量を決定することと、該熱電モジュールに第二の電力量を供給することとも含む。いくつかの実施形態では、1つまたは複数のシステムパラメータに基づき供給される電力量を調節することによって熱電モジュールの効率が増大される。
【0007】
いくつかの実施形態では、熱電モジュールに第一の電力量を供給することは熱電モジュールに第一の電流量を供給することを含み、熱電モジュールに第二の電力量を供給することは熱電モジュールに第二の電流量を供給することを含む。いくつかの実施形態では、熱電モジュールに第一の電力量を供給することは熱電モジュールに第一の電圧量を供給することを含み、熱電モジュールに第二の電力量を供給することは熱電モジュールに第二の電圧量を供給することを含む。
【0008】
いくつかの実施形態では、熱電モジュールは冷却チャンバの温度を下げるように動作可能であり、第一の電力量及び第二の電力量は、熱電モジュールの高温側の温度、冷却チャンバの外部環境の温度、及び/または、性能数などの熱電モジュールの電気特性に基づいて決定される。
【0009】
いくつかの実施形態では、第一の電力量を決定することは冷却チャンバの外部環境の温度に基づいて熱電モジュールの性能係数を最大にする第一の電力量を決定することを含み、1つ以上のシステムパラメータの少なくとも1つが変わったと判断することは冷却チャンバの外部環境の温度が変わったと判断することを含み、第二の電力量を決定することは冷却チャンバの外部環境の温度に基づいて熱電モジュールの性能係数を最大にする第二の電力量を決定することを含む。
【0010】
いくつかの実施形態では、第一の電力量を決定することは、ルックアップ表を使用して1つ以上のシステムパラメータに基づいて熱電モジュールの性能係数を最大にする第一の電力量を決定することを含み、第二の電力量を決定することはルックアップ表を使用して1つ以上のシステムパラメータに基づき熱電モジュールの性能係数を最大にする第二の電力量を決定することを含む。
【0011】
いくつかの実施形態では、熱電モジュールに第一の電力量を供給することは熱電モジュールの1つを超えるサブセットのうちの1つのサブセットに第一の電力量を供給することも含み、熱電モジュールに第二の電力量を供給することは熱電モジュールの1つを超えるサブセットのうちの1つのサブセットに第二の電力量を供給することも含む。
【0012】
いくつかの実施形態では、該方法はまた、熱電モジュールの高温側の温度が第一の閾値を超えていると判断すること、及び1つ以上のシステムパラメータに基づき熱電モジュールの性能係数を最大にする電力量未満の電力量を熱電モジュールに供給することも含む。
【0013】
いくつかの実施形態では、該方法はまた、熱電モジュールの高温側の温度が第二の閾値未満であることを判断すること、及び1つ以上のシステムパラメータに基づき熱電モジュールの性能係数を最大にする電力量である電力量を熱電モジュールに供給することも含む。
【0014】
いくつかの実施形態では、熱電冷凍システムは、冷却チャンバ、熱交換器及びコントローラを含む。熱交換器は、低温側ヒートシンク、高温側ヒートシンク及び低温側ヒートシンクと高温側ヒートシンクとの間に配設された熱電モジュールを含む。コントローラは1つ以上のシステムパラメータに基づき熱電モジュールの性能係数を最大にする第一の電力量を決定し、熱電モジュールに該第一の電力量を供給するように構成される。コントローラはまた、1つ以上のシステムパラメータのうちの少なくとも1つが変化したと判断し、1つ以上のシステムパラメータに基づき熱電モジュールの性能係数を最大にする第二の電力量を決定し、熱電モジュールに該第二の電力量を供給するようにも構成される。
【0015】
いくつかの実施形態では、熱電モジュールを操作するコントローラは1つ以上のシステムパラメータに基づき熱電モジュールの性能係数を最大にする第一の電力量を決定し、熱電モジュールに該第一の電力量を供給し、1つ以上のシステムパラメータの少なくとも1つが変化したと判断し、1つ以上のシステムパラメータに基づき熱電モジュールの性能係数を最大にする第二の電力量を決定し、該第二の電力量を熱電モジュールに供給するように構成される。いくつかの実施形態では、コントローラは、本明細書に開示された任意の方法を実施するように構成される。
【0016】
いくつかの実施形態では、コンピュータプログラムは、少なくとも1台のプロセッサ上で実行された時に少なくとも1台のプロセッサに本明細書に開示された任意の方法を実行させる指示を含む。いくつかの実施形態では、電子信号、光信号、無線信号またはコンピュータ読取り可能な記憶媒体のうちの1つであるキャリヤが該コンピュータプログラムを含む。
【0017】
いくつかの実施形態では、熱電モジュールを操作するコントローラは、電力決定モジュール、電力供給モジュール及びシステムパラメータ判断モジュールを含む。電力決定モジュールは、1つ以上のシステムパラメータに基づき熱電モジュールの性能係数を最大にする第一の電力量を決定し、1つ以上のシステムパラメータに基づき熱電モジュールの性能係数を最大にする第二の電力量を決定する働きをする。電力供給モジュールは、第一の電力量を熱電モジュールに供給し、第二の電力量を熱電モジュールに供給する働きをする。システムパラメータ判断モジュールは1つ以上のシステムパラメータの少なくとも1つが変化したと判断する働きをする。
【0018】
当業者なら、添付の図面と共に以下の好ましい実施形態の詳細な説明を読めば、本開示の範囲を理解し、その追加的な態様を実現するであろう。
【0019】
本明細書に組み込まれその一部をなす添付の図面は、本開示の数個の態様を示し、明細書の記述と共に本開示の原理を説明する働きをする。
【図面の簡単な説明】
【0020】
図1】冷却チャンバと、低温側ヒートシンクと高温側ヒートシンクとの間に配設された少なくとも1つの熱電モジュール(TEM)を含む熱交換器と、本開示のいくつかの実施形態によるTEMを制御するコントローラとを有する熱電冷凍システムを示す。
図2】本開示のいくつかの実施形態による、TEMの性能係数と様々な周囲温度につきTEMに供給された電力量との関係を示す。
図3】本開示のいくつかの実施形態による、TEMの効率を増大させるようにTEMを操作する方法を示す。
図4】本開示のいくつかの実施形態による、電源が投入された時またはプルダウン動作の際に熱電冷凍システムを操作する方法を示す。
図5】本開示のいくつかの実施形態による、定常状態動作近傍で熱電冷凍システムを操作する方法を示す
図6】本開示のいくつかの実施形態による、TEMの高温側の温度を低下させるようにTEMを操作する方法を示す。
図7】本開示のいくつかの実施形態による、図6の方法の1つの可能な実装形態を示す。
図8】本開示のいくつかの実施形態による、モジュールを含むTEMを操作するコントローラ、のダイアグラムである。
図9】本開示のいくつかの実施形態による、モジュールを含むTEMを操作するコントローラ、の別のダイアグラムである
【発明を実施するための形態】
【0021】
下記の実施形態は、当業者が実施形態を実行できるようにする必要な情報を提供し、実施形態を実行する最良の方法を示す。当業者なら、添付図面を参照しつつ以下の説明を読めば、開示された概念を理解し本明細書で具体的に取り扱われないこれらの概念の適用を認識するであろう。これらの概念と適用が本開示及び添付の特許請求の範囲内に該当することを理解すべきである。
【0022】
第一、第二、などの用語が様々な要素を記述するために本明細書で使用される場合があるが、これらの要素はこれらの用語によって制限されるべきではないことは理解されるであろう。これらの用語は一つの要素を他の要素と区別するためだけに使用される。例えば、第一の要素を本開示の範囲から逸脱することなく第二の要素と称することができ、同様に第二の要素を第一の要素と称することができるはずである。用語「及び/または」は、本明細書で使用されるとき、1つ以上の関連するリスト項目の任意及び全ての組み合わせを含む。
【0023】
本明細書において、「下に」または「上に」、あるいは、「より上の」または「より下の」、あるいは、「水平の」または「垂直の」などの相対的な用語は、図面で示したような一つの要素、層、または領域を他の要素、層、または領域を区別するために使用される場合がある。これらの及び上記で論じた用語は、図面に示された向きに加えてデバイスの異なる向きも包含する意図があることが理解されるであろう。
【0024】
本明細書で使用される専門用語は、特別な実施形態を説明するためだけに使用されており、本開示を制限する意図はない。本明細書で使用されるとき、単数形「a」、「an」、「the」は、文脈でそうではないと明示されない場合は複数形も含むことが意図されている。さらに、本明細書で使用されるとき、用語「comprises」、「comprising」、「includes」、及び/または、「including」は、述べられた特徴、整数、ステップ、操作、要素、及び/またはコンポーネントの存在を特定するが、他の特徴、整数、ステップ、操作、要素、コンポーネント、及び/または、それらの組み合わせの存在を妨げない。
【0025】
特に定義されない限り、本明細書で使用されるすべての用語(技術的及び科学的用語を含む)は、本開示が属する技術分野の当業者によって一般に理解されるものと同じ意味である。さらに、本明細書で使用される用語は本明細書及び関連技術分野の文脈でのそれらの意味と一致した意味を有すると解釈すべきであり、本明細書で明示的に定義されない限り、理想化された意味または過度に形式的な意味に解釈されないであろう。
【0026】
図1は、冷却チャンバ12、低温側ヒートシンク20と高温側ヒートシンク18との間に配設された少なくとも1つの熱電モジュール(TEM)22(本明細書では、単数でTEM22、複数でもTEM22と称される)を含む熱交換器14、及び、本開示のいくつかの実施形態によりTEM22を制御するコントローラ16を有した熱電冷凍システム10を示す。TEM22が冷却を提供するために使用される場合は、しばしば、それは熱電クーラ(TEC)22と呼ばれる場合がある。
【0027】
TEM22は、好ましくは、薄膜デバイスである。1つ以上のTEM22がコントローラ16により活性化されるとき、活性化されたTEM22は、高温側ヒートシンク18を加熱しかつ低温側ヒートシンク20を冷却し、それによって、熱伝達を促進して冷却チャンバ12から採熱する。より具体的には、本開示のいくつかの実施形態によれは、1つ以上のTEM22が活性化されるとき、高温側ヒートシンク18が加熱され、それによりエバポレータが作られ、低温側ヒートシンク20が冷却されてコンデンサが作られる。
【0028】
低温側ヒートシンク20は、コンデンサとして作用して、低温側ヒートシンク20に結合したアクセプト・ループ24を介して冷却チャンバ12からの採熱を促進させる。アクセプト・ループ24は、熱電冷凍システム10の内壁26に熱結合される。内壁26は冷却チャンバ12を画定する。一実施形態では、アクセプト・ループ24は、内壁26内に一体化されるか、または内壁26の表面上に直接一体化される。アクセプト・ループ24は、冷媒(例えば、2相クーラント)がアクセプト・ループ24を通って流れるかまたは通過することができるようにする任意のタイプの配管で形成される。アクセプト・ループ24と内壁26との熱結合により、冷媒はアクセプト・ループ24を通って流れるときに冷却チャンバ12から採熱する。アクセプト・ループ24は、例えば、銅管、プラスチック管、ステンレス鋼管、アルミニウム管などから形成される場合がある。
【0029】
高温側ヒートシンク18は、エバポレータとして作用して高温側ヒートシンク18に結合したリジェクト・ループ28を介して冷却チャンバ12の外部環境に対する遮熱を促進する。リジェクト・ループ28は、熱電冷凍システム10の外壁30または外皮に熱結合される。
【0030】
冷却チャンバ12から熱を取り除く熱的及び機械的プロセスは、これ以上議論されない。また、図1に示された熱電冷凍システム10はTEM22の使用及び制御の特別な一実施形態に過ぎないことに留意すべきである。本明細書で論じたすべての実施形態は、熱電冷凍システム10だけでなくTEM22の他の任意の用途に適用されることを理解すべきである。
【0031】
図1に示した実施形態例を用いて続けると、コントローラ16は冷却チャンバ12内を所望の設定温度を維持するために動作してTEM22を制御する。一般に、コントローラ16は、TEM22を選択的に活性化/不活性化させ、TEM22に供給される電力量を選択的に制御し、かつ/または、TEM22のデューティ・サイクルを選択的に制御して所望の設定温度に維持するように動作する。さらに、好ましい実施形態では、コントローラ16は、1つ以上(いくつかの実施形態では2つ以上)のTEM22のサブセット(各サブセットは1つ以上の異なるTEM22を含む)を別々にまたは独立して制御可能となる。それ故、例えば、4つのTEM22がある場合、コントローラ16は、第一の個別TEM22、第二の個別TEM22、及び、2つ一組のTEM22を別個に制御可能となり得る。この方法によれば、コントローラ16は、例えば、要求の指示のとおりに最大の効率で、1つ、2つ、3つ、または4つのTEM22を独立して選択的に活性化させることができる。
【0032】
熱電冷凍システム10が唯一の実装形態例ではないこと、並びに、本明細書で開示されたシステム及び方法が他のシステムに同様に適用可能なことに留意すべきである。また、本明細書でコントローラ16に対して具体的な言及がなされたが、コントローラ16に帰する任意の機能は他の任意のコントローラまたは機構によって実装できることを理解すべきである。
【0033】
先に進む前に、冷却能対TEM22に供給される電力量、効率対TEM22に供給される電力量の簡潔な議論が有益となる。この点に関して、図2は、TECの冷却能力(Q)及び冷却効率対TECの入力電流の関係を示すグラフである。冷却効率は性能係数(COP)でより具体的に表わされる。図2は、本開示のいくつかの実施形態による、TEM22の性能係数(COP)と様々な周囲温度に対してTEM22に供給される電力量との間の関係を示す。TEM22に供給される電力量は、TEM22に供給される電流量、及び/または、TEM22に印加される電圧量として表現される場合がある。TEM22に供給される電力量が増加するにつれて、TEM22の冷却能力も増大する。TEM22に対する最大電力量または最大電力量の近傍の電力量は、Qmaxで表示される。すなわち、TEM22がQmaxで作動している場合は、TEM22は可能な最大熱量を除去する。図2は、TEM22のCOPをTEM22に供給される電力量の関数として示す。冷却用途の場合、TEM22のCOPは、熱除去のためにTEM22に入力された仕事量を超えて除去された熱の割合である。TEM22のCOPが最大になる熱量または容量(Q)は、QCOPmaxで表示される。したがって、TEM22の効率またはCOPは、TEM22に供給される電力量がTEM22のCOPが最大になるポイントまたはその近傍である場合に最大になる。
【0034】
TEM22に対するCOP曲線の形状は、動作環境温度(冷却チャンバ12の外部環境の温度、または、TEM22が作動している環境の温度)、遮断された熱量、TEM22の低温側温度(しばしば、TEM22が冷却チャンバ12を冷却するのに動作可能な場合に冷却チャンバ12の温度とも呼ばれる)、TEM22の高温側温度、TEM22の電気特性(性能数などの)、及び、TEM22に与えられた電力量、などの変数に応じて変わる。これらのシステムパラメータのうちの1つが変わる場合、TEM22のCOP曲線は変わり得、それゆえ、1つ以上のシステムパラメータに基づいてTEM22のCOPを最大にする電力量も変わり得る。図2はこのことの一例を示す。摂氏18度(℃)と25℃の周囲温度でのTEM22に対する2つのCOP曲線が示される。簡単にするために、周囲温度のみが変化する一方で他のシステムパラメータは固定される。この例では、周囲温度が18℃から25℃に変化する場合に、TEM22の全体的なCOPは減少する。注目すべきことに、TEM22のCOPを最大にする電力量も増加する。傾向線は、それが周囲温度とTEM22のCOPを最大にする電力量との間の関係の線形近似を与えることを示している。この傾向線は単なる一例であり、該関係をモデリングまたは挿入(または外挿)する他の手段も使用できるはずである。
【0035】
TEM22のCOPを最大にする正確な電力量は変化し得る多くの因子に基づいているので、TEM22のCOPを最大にする電力量を中心とした許容できる電力量の範囲が決定される。この範囲はバンドと呼ばれ、一般的に、このバンド内のどの電力量もTEM22のCOPを最大にする電力量であると考えられる。いくつかの実施形態では、バンドはTEM22のCOPを最大にする電力量のプラス10%またはマイナス10%であるが、この実装形態は特殊であり、TEM22のCOPを最大にする電力量、及び/または、COP曲線の形状の決定精度に応じて変わり得る。
【0036】
TEM22を操作する最も効率的な方法はTEM22のCOPを最大にする電力量を与えることであるので、コントローラ16またはTEM22を制御する他のいくつかの手段は、1つ以上のシステムパラメータに基づきTEM22のCOPを最大にする電力量を決定することを追求すべきである。このように、図3は、本発明のいくつかの実施形態による、TEM22を操作してTEM22の効率を増大させる方法を示す。コントローラ16は、1つ以上のシステムパラメータに基づきTEM22のCOPを最大にする第一の電力量を決定する(ステップ100)。上記で論じたように、この決定は多くの異なるパラメータに基づき得る。いくつかの実施形態では、他のパラメータは一定であるかまたは無視できると仮定して、電力量が周囲温度などのただ一つのパラメータに基づき決定される。いくつかの実施形態では、電力量は、ルックアップ表を参照することにより決定され得る。次いで、コントローラ16は第一の電力量をTEM22に供給する(ステップ102)。このように、TEM22はシステムパラメータの現在値に対して最も効率的な方法で作動する。
【0037】
コントローラ16は、次に、システムパラメータの少なくとも1つが変わったかどうかを判断する(ステップ104)。いくつかの実施形態では、その後、チェックが周期的におこなわれ得るが、他の実施形態では、変化の判断がほとんど即時になされ得る。また、コントローラ16が全ではないシステムパラメータを用いて電力量を決定した場合は、コントローラ16は、その後、未使用のシステムパラメータの任意のものがいつ変化したかを判断する必要はないであろう。システムパラメータの少なくとも1つが変わったとの判断に応じて、コントローラ16は、1つ以上のシステムパラメータに基づきTEM22のCOPを最大にする第二の電力量を決定する(ステップ106)。次いで、コントローラ16はTEM22に第二の電力量を供給する(ステップ108)。このようにして、コントローラ16は、TEM22に供給される電力量を更新してTEM22の作動効率を増大させることができる。いくつかの実施形態では、任意選択で手続きがステップ104に戻り、システムパラメータの1つ以上が変化している場合は、コントローラ16はTEM22のCOPを最大にする電力量を再度決定する。
【0038】
いくつかの実施形態では、更新された電力量は、定期的に、またはそうでなければ、システムパラメータの1つ以上が変化したことの明白な判断なしで計算され得ることに留意されたい。また、第二の電力量は、システムパラメータの変化に応じて第一の電力量と同じかほぼ同じであり得る。
【0039】
図3はTEM22の効率を増大させるようにTEM22を操作する方法を示す一方、図4及び図5図1に示された例に関して上記で論じたような1つ以上のTEM22を含むことがある熱電冷凍システム10を操作する方法を示す。具体的には、図4は、本開示のいくつかの実施形態による、電源が入れられた時またはプルダウン動作中の熱電冷凍システム10を操作する方法を示す。
【0040】
本明細書で使用されるとき、プルダウン動作は冷却チャンバ12内の温度が許容温度より高く、コントローラ16が作動して許容範囲まで温度を下げる状況を指す。冷却チャンバ12にとって望ましい温度は設定点温度と呼ばれる。定常状態動作は冷却チャンバ12内の温度が設定点温度を含む範囲内にある状況を指す。この範囲は一種のヒステレシスを提供して動作状態間の急激なふれを回避する。いくつかの実施形態では、設定点温度は4℃でよく、また、定常状態範囲は3℃〜5℃でよい。より高い精度で設定点温度を維持することが望まれる場合は、定常状態範囲がより小さくなる。動作状態間のふれ速度の低下が望まれる場合は、定常状態範囲がより小さくなる。
【0041】
いくつかの実施形態によれば、図4は熱電冷凍システム10の電源投入またはリセットから開始される(ステップ200)。熱電冷凍システム10は、この電源投入状態またはプルダウン動作中のリセット状態からスタートする。なぜなら、温度が定常状態範囲の上になっており電源が切られているからである。コントローラ16は、おそらく熱電冷凍システム10の正面のユーザ・インターフェースまたは装置のグラフィック・ユーザ・インターフェース(GUI)から設定点レジスタを読んで設定点温度を決定する(ステップ202)。次いで、コントローラ16は、少なくとも1つのTEM22の温度制御及びΔTを測定する(ステップ204)。TEM22のΔTはTEM22の高温側温度とTEM22の低温側温度との間の差を指す。コントローラ16は周囲温度も測定する(ステップ206)。コントローラ16は、実装形態に応じて、他の任意の必要なシステムパラメータも決定することができる。
【0042】
次いで、いくつかの実施形態によれば、コントローラ16は少数の安全点検を行なう。コントローラ16は、周囲温度が4℃以上であるかどうかをチェックする(ステップ208)。周囲温度が4℃未満の場合は、手続きがステップ204に戻って様々なシステムパラメータを再度測定する。周囲温度が少なくとも4℃の場合は、コントローラ16は、次に熱交換機の温度が最大限界以上かどうかを判断する(ステップ210)。
【0043】
いくつかの実施形態では、この温度は、TEM22の高温側温度と同じである。また、いくつかの実施形態では、単一の最大値を有する代わりに、温度が第一閾値の上にあるかどうかのテストがあり、次いで、TEM22の高温側温度が低くなると、温度が第二閾値の下にあるかどうかのテストがある。このようにして、ヒステレシスを任意選択で過熱条件に組み込むことができる。
【0044】
いくつかの実施形態では、第一閾値は、TEM22の高温側が飽和状態であり、追加の熱を受け入れることができないことを示す。また、第一閾値は、第一閾値の上の温度で操作されることによってTEM22が損傷する場合があることも示すかもしれない。このような高温は、冷却チャンバ12から大量の熱が取り除かれる場合、またはTEM22が低効率で操作されている場合に生じるかもしれない。TEM22の高温側での蓄熱は、熱交換器の遮熱側が、熱が発生する速度より速い速度で熱を除去するのに不十分な場合にも生じ得る。この状況は、TEM22の高温側が受け身で冷却される場合に生じ得る。
【0045】
過熱条件が検出された場合は、コントローラ16はアラームを設定する(ステップ212)。このアラームは実施形態に応じて多くの形態をとることができる。いくつかの場合では、アラームは単なる内部状態であり、他方、他の場合では、情報がディスプレイ上に提示されてよく、または、その他の方法でユーザがアラームを知らされてもよい。次いで、コントローラ16は、TEM22への出力が可能であるかどうかを判断する(ステップ214)。出力が可能でない場合は、コントローラ16は、TEM22の操作によって熱が加えられないので、TEM22の高温側の温度を下げるどんな方法も有し得ない。この場合、手続きがステップ204に戻って様々なシステムパラメータを再度測定する。他の実施形態では、コントローラ16は、ファンなどの能動的な装置を使用することなどによってTEM22の高温側の温度を下げる追加の選択肢を有し得る。
【0046】
出力が可能である場合は、コントローラ16はTEM22に供給されている電力量が最小の電力レベルかどうかを判断する(ステップ216)。それが最小の電力レベルでない場合は、コントローラ16は出力を下げることによってTEM22に供給される電力量を低下させる(ステップ218)。供給された現在の電力量が最少の電力レベルである場合は、コントローラ16は出力の電源を切ってリセットを発令する(ステップ220)。どちらの方法でも手続きがステップ204に戻って様々なシステムパラメータを再度測定する。
【0047】
TEM22の高温側が過熱されない場合は、コントローラ16は設定され得るいかなるアラームも解除する(ステップ222)。例えば、アラームが現在は解決した過熱状況の理由で以前に設定されていた場合は、アラームはすぐに解除されるであろう。コントローラ16は、すぐに、冷却チャンバ12の温度が安定状態の上限より大きいかどうかを判断する(ステップ224)。温度が安定状態の上限より上の場合は、熱電冷凍システム10は運転のプルダウン・モードにあると考えられる。
【0048】
冷却チャンバ12の温度が上側管理限界以上であると判断された場合は(ステップ226)、コントローラ16は出力を100%に設定し、TEM22に対する最大電力量またはその近傍の電力量をTEM22に与える(ステップ228)。いくつかの実施形態によれば、かかる方法により、熱電冷凍システム10は最速の速さで冷却チャンバ12の温度をプルダウンすることができる。冷却チャンバ12の温度が上側管理限界未満であると判断された場合は、コントローラ16は出力を比例モードに設定する(ステップ230)。比例モードでは、冷却チャンバ12の温度をより緩やかにより効率的なやり方で減少させることができる。どちらの方法でも手続きがステップ204に戻って様々なシステムパラメータを再度測定する。
【0049】
コントローラ16が、冷却チャンバ12の温度が定常状態の上限値未満であると判断する場合は、コントローラ16は出力が可能になるかどうかを判断する(ステップ232)。出力が可能にならない場合は、手続きがステップ204に戻って様々なシステムパラメータを再度測定する。出力が可能になる場合は、熱電冷凍システム10は定常状態モードで動作していると考えられる。また、手続きは、本開示のいくつかの実施形態による、熱電冷凍システム10を定常状態動作の近傍で操作する方法を示す図5に続く。
【0050】
図5に示すように、コントローラ16は少なくとも1つのTEM22の温度制御及びΔTを測定する(ステップ300)。コントローラ16は、実装形態に応じて、周囲温度などの他の必要な任意のシステムパラメータも決定する。再度、コントローラ16は、熱交換器の温度が最大値以上であるかどうかを判断する(ステップ302)。TEM22に供給される電力量が最小の電力レベルでない場合は(ステップ304)、コントローラ16は出力を下げることによってTEM22に供給される電力量を低下させる(ステップ306)。供給された現在の電力量が最少の電力レベルである場合は、コントローラ16は出力の電源を切ってリセットを発令する(ステップ308)。どちらの方法でも手続きがステップ300に戻って様々なシステムパラメータを再度測定する。
【0051】
TEM22の高温側が過熱されない場合は、コントローラ16は冷却チャンバ12の温度が設定点温度より高いかどうかをチェックする(ステップ310)。冷却チャンバ12の温度が設定点温度未満である場合は、コントローラ16は、すぐに、冷却チャンバ12の温度が定常状態限界以下かどうか、出力の電源が投入されているかどうか、ΔTが現在のバンド内かどうかを判断する(ステップ312)。これらがすべて真実の場合は、コントローラ16はTEM22の電源を切り、出力を0.xボルトに低下させ、この値を新たな定常状態出力値内に格納し、以前の値を旧定常状態出力値内に格納する(ステップ314)。これらの条件のすべてが真実でない場合は、手続きがステップ304に戻ってTEM22に与えられる電力量を低下させようと試みる。
【0052】
冷却チャンバ12の温度が設定点温度より高い場合は、コントローラ16は冷却チャンバ12の温度がまた定常状態限界以上であるかどうかを判断する(ステップ316)。チャンバ温度が定常状態限界未満である場合は、コントローラはタイマー間隔が設定されたかどうかを判断する(ステップ318)。それが設定されていた場合は、コントローラ16は出力を旧定常状態出力に設定する(ステップ320)。この後、または、出力が設定されていない場合は、手続きがステップ300に戻って様々なシステムパラメータを再度測定する。
【0053】
冷却チャンバ12の温度が定常状態限界値以上である場合は、コントローラ16はチャンバの温度が管理限界上限値以上であるかどうかを判断する(ステップ322)。チャンバが管理限界上限値以上である場合は、コントローラ16は出力を100%に設定し、TEM22に対する最大電力量またはその近傍の電力量をTEM22に供給する(ステップ324)。これは、熱電冷凍システム10が動作のプルダウン・モードにあると考えられることを示し、手続きが図4のステップ204に戻って様々なシステムパラメータを再度測定する。
【0054】
チャンバが管理限界上限未満にある場合は、コントローラ16は冷却チャンバ12の温度がヒステリシス値以上であるかどうかを判断する(ステップ326)。チャンバがそうでない場合は、コントローラ16は出力を新たな定常状態出力値に増大させ(ステップ328)、手続きがステップ300に戻り様々なシステムパラメータを再度測定する。いくつかの実施形態によれば、この新たな定常状態出力値は、1つ以上のシステムパラメータに基づきTEM22のCOPを最大にする電力量でよい。冷却チャンバ12の温度がヒステリシス値以上である場合は、これは熱電冷凍システム10が動作のプルダウン・モードにあると考えられることを再度示し、手続きが図4のステップ204に戻り様々なシステムパラメータを再度測定する。
【0055】
上記で論じたように、TEM22または熱交換器の過熱は望まない動作を生じさせるかまたはTEM22に対して危険な場合がある。そのため、図4のステップ210と図5のステップ302の両ステップはかかる過熱条件をチェックする。図4及び図5は、電力を低下させること及びTEM22の電源を切ることによってTEM22の温度を低下させることを試みているが、いくつかの状況では、これは望ましくないかまたは非効率な場合がある。そのため、図6は、本開示のいくつかの実施形態による、TEM22の高温側温度を低下させるようにTEM22を操作する方法を示す。
【0056】
コントローラ16は、先ず、TEM22に第一の電力量を供給する(ステップ400)。コントローラ16は、その後、TEM22の高温側温度が第一閾値の上にあるかどうかを判断する(ステップ402)。先に論じたように、いくつかの実施形態では、第一閾値は、TEM22の高温側が飽和されて追加の熱を受け入れることができないことを示す。また、第一閾値は、第一閾値より上の温度で操作されることによってTEM22が損傷する場合があることを示すかもしれない。温度が第一閾値より上でない場合は、コントローラ16は、過熱することを含まない他の任意の制御方式によって、第一の電力量を供給し続けるかまたは操作し続ける。TEM22の高温側温度が第一閾値より上の場合は、コントローラ16は、第一の電力量未満の第二の電力量をTEM22に供給する(ステップ404)。いくつかの実施形態では、この低下した電力によって、TEM22を操作し続けながらTEM22の高温側温度を低下させることができる。
【0057】
いくつかの実施形態では、その後、コントローラ16は、TEM22の高温側の温度が第二閾値未満かどうかを判断する(ステップ406)。これは、TEM22が十分に冷えておりもはや飽和されないことを示す。いくつかの実施形態では、コントローラ16は、その後、第一の電力量と同じでよいが必ずしも同じではない第三の電力量をTEM22に供給する。図6は、手続きがステップ400に戻り第一の電力量を再度供給する実施形態を示す。TEM22に供給する電力を増大させることによって追加の熱を伝達させることができる。
【0058】
いくつかの実施形態では、TEM22に供給される第一の電力量は、TEM22にとっての最大電力量またはその近傍である。これはおそらく熱電冷凍システム10が設定点温度に到達するために熱をできるだけ速く除去しようとしている時の動作のプルダウン・モードにおける場合である。いくつかの実施形態では、TEM22に供給される第一の電力量は、TEM22のCOPが最大になるポイントまたはそのポイントの近傍にある。これはおそらく熱電冷凍システム10が熱を最も効率的に除去しようとしている時の動作の定常状態モードにおける場合である。
【0059】
いくつかの実施形態では、TEM22に供給される第二の電力量は、TEM22のCOPが最大にされるポイントまたはそのポイントの近傍にある。いくつかの実施形態では、TEM22に供給される第二の電力量は少なくとも冷却チャンバ12の温度が上昇しないような電力量である。先に論じたように、いくつかの実施形態では、特にTEM22の高温側が受け身で冷却される場合に、これはTEM22の熱遮熱限界を緩和する。
【0060】
図7は、本開示のいくつかの実施形態による図6の方法の1つの可能な実装形態を示す。図7は3本の線を含む。上部は、TEM22の遮熱側(高温側)の温度をプロットする。下の線は、TEM22の低温側の温度をプロットする。中央の線は、TEM22に電圧が印加された時にTEM22に供給される電力をプロットする。プロットの初期には、TEM22の高温側の温度と低温側の温度は近似している。このことは、熱電冷凍システム10の電源が投入されたばかりであるか、または、十分に長期間開いたままにされるなどの他のいくつかの理由で熱電冷凍システム10がプルダウン・モードにあることを示す場合がある。
【0061】
最初に、コントローラ16はTEM22に第一の電圧を印加する。この例では、TEM22の高温側温度が増大し、一方、TEM22の低温側温度が低下する。この例では、TEM22の高温側温度の第一閾値は50℃である。コントローラ16がTEM22の高温側温度が50℃に到達したと判断した場合は、コントローラ16は電力を低下させ、第一の量未満の第二の電力量をTEM22に供給する。このために、TEM22の高温側に送り出される熱がより少なくなり高温側が冷え始める。また、TEM22の低温側温度の低下が緩やかになり、あるいは、僅かに上昇する場合さえある。この電力量は、コントローラ16がTEM22の高温側温度が十分に冷えたと判断するまでTEM22に供給される。
【0062】
コントローラ16がTEM22の高温側温度が第二の閾値未満であると判断した場合は、コントローラ16はTEM22の第一の電力量を再度供給する。これによって、TEM22の高温側が再度過熱されるが、TEM22の低温側は今やTEM22の高温側が最後に飽和した時の温度より冷えている。コントローラ16は2つの電力量間を移動するこのアクションを継続してTEM22の遮熱限界を緩和しつつ冷却チャンバ12の温度を迅速にプルダウンさせることができる。これは、TEM22の高温側が受け身で冷却される場合に特に役立つことができる。この例では、ただ2つの異なる電力量を示しているが、本方法はそれに限定されない。いくつかの実施形態では、より大きな電力量またはより小さな電力量のどちらか一方がTEM22のCOPが最大になるポイントまたはそのポイント近傍になり得、この値はシステムパラメータに基づいて毎回再計算され得る。
【0063】
換言すれば、これが熱サイホン・ベースのシステムである場合は、低温側温度は絶縁されたチャンバ(例えば、冷却チャンバ12)に結び付けられる。高温側の熱放散が飽和し低温側温度のさらなる低下が失速するポイントで、TEM22への電力は、低温側温度のいかなる上昇も緩和するが高温側温度を低下させ得るレベルに戻される。これによって、低温側の絶縁及び高温側に勝る向上した熱安定性が引き出される。電力は、高温側温度がより多くの遮熱を可能にすることができるポイントまで低下するまで低く保たれる。このポイントに到達した場合は、TEM22の電力は増大され、高温側または熱放散は再度飽和に向かって増大する。しかし、高温側温度がより低いポイントで始まっているので、この時間中低温側温度は低下する。この電力と温度のサイクルを何回も繰り返して極めて僅かな送り出し効果を生み出して高温側の周りの自然対流を増大させ、その結果、全体の熱のより多くが放散可能になり、低温側がその設定点温度を下げることができるようになる。
【0064】
図8は、本開示のいくつかの実施形態による、電力決定モジュール32、電力供給モジュール34、及びシステムパラメータ判断モジュール36を含むTEM22を操作するコントローラ16のダイアグラムである。電力決定モジュール32、電力供給モジュール34、及びシステムパラメータ判断モジュール36はそれぞれ、コントローラ16のプロセッサによって実行された時、本明細書に記載された実施形態のうちの1つによりコントローラ16を動作させるソフトウェア内に実装される。
【0065】
図9は、本開示のいくつかの実施形態による、電力供給モジュール38及び温度決定モジュール40を含むTEM22を操作するコントローラ16の別のダイアグラムである。電力供給モジュール38及び温度決定モジュール40はそれぞれ、コントローラ16のプロセッサによって実行された時、本明細書に記載された実施形態のうちの1つによりコントローラ16を作動させるソフトウェア内に実装される。
【0066】
当業者なら、本開示の好ましい実施形態への改良及び修正を認識するであろう。かかる改良及び修正の全ては本明細書及びそれに続く特許請求の範囲の概念の範疇にあると考えられる。
図1
図2
図3
図4
図5
図6
図7
図8
図9