特許第6644893号(P6644893)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社仲田コーティングの特許一覧

特許6644893パウダースラッシュ成形機及びパウダースラッシュ成形方法
<>
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000002
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000003
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000004
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000005
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000006
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000007
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000008
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000009
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000010
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000011
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000012
  • 特許6644893-パウダースラッシュ成形機及びパウダースラッシュ成形方法 図000013
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6644893
(24)【登録日】2020年1月10日
(45)【発行日】2020年2月12日
(54)【発明の名称】パウダースラッシュ成形機及びパウダースラッシュ成形方法
(51)【国際特許分類】
   B29C 41/18 20060101AFI20200130BHJP
   B29C 41/46 20060101ALI20200130BHJP
   B29C 41/52 20060101ALI20200130BHJP
   B29C 41/40 20060101ALI20200130BHJP
【FI】
   B29C41/18
   B29C41/46
   B29C41/52
   B29C41/40
【請求項の数】3
【全頁数】24
(21)【出願番号】特願2018-531737(P2018-531737)
(86)(22)【出願日】2017年3月16日
(86)【国際出願番号】JP2017010604
(87)【国際公開番号】WO2018025442
(87)【国際公開日】20180208
【審査請求日】2018年11月8日
(31)【優先権主張番号】特願2016-151792(P2016-151792)
(32)【優先日】2016年8月2日
(33)【優先権主張国】JP
(73)【特許権者】
【識別番号】000150512
【氏名又は名称】株式会社仲田コーティング
(74)【代理人】
【識別番号】100106404
【弁理士】
【氏名又は名称】江森 健二
(72)【発明者】
【氏名】松野 竹己
【審査官】 池ノ谷 秀行
(56)【参考文献】
【文献】 特開平07−088864(JP,A)
【文献】 国際公開第2016/031531(WO,A1)
【文献】 特開平08−039589(JP,A)
【文献】 特開平11−028744(JP,A)
【文献】 国際公開第2004/060630(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B29C 41/00−41/52
(57)【特許請求の範囲】
【請求項1】
金型加熱部と、パウダースラッシュ部と、金型冷却部と、金型加工部と、金型を、前記金型加熱部と、前記パウダースラッシュ部と、前記金型冷却部と、前記金型加工部の間で、相互移動させるための搬送装置と、当該搬送装置の一部に、前記金型を予備加熱処理するための予備加熱装置と、を備えたパウダースラッシュ成形機を用いて、成形樹脂からシート状物を成形するパウダースラッシュ成形方法であって、
前記予備加熱装置を用いて、予備加熱した金型温度(T5)が、80〜200℃の範囲内の値となるように、予備加熱処理をする工程と、
加熱前の金型温度(T1)及び環境温度(T2)を測定する工程と、
前記金型加熱部において、金型を230〜300℃以下の範囲内の値に加熱する工程と、
パウダリング前の金型温度(T4)を測定する工程と、
前記パウダースラッシュ部において、前記成形樹脂をパウダリングしながら吹き付けて、加熱した金型の内表面に、所定厚さのシート状物を成形する工程と、
前記金型冷却部において、前記金型を冷却する工程と、
前記金型加工部において、冷却したシート状物を、前記金型から脱型する工程と、を含み、かつ、
前記金型加熱部での加熱後から前記パウダースラッシュ部における成形前までの金型温度、及び、前記パウダースラッシュ部における成形後から金型冷却部による冷却前までの金型温度、あるいはいずれか一方が一定の値で維持され、
前記金型を加熱する工程において、加熱前の金型温度(T1)及び環境温度(T2)の少なくとも一方の温度情報に基づき、前記金型加熱部に設けてある加熱炉を温度制御手段として、加熱炉の設定温度を制御することで、前記パウダリング前の金型温度(T4)のばらつきを、所定温度の±20%以内の値とすることを特徴とするパウダースラッシュ成形方法。
【請求項2】
前記加熱前の金型温度(T1)及び環境温度(T2)を測定する工程において、前記成形樹脂の成形樹脂温度(T3)をさらに測定するとともに、前記温度制御手段によって、前記成形樹脂温度(T3)の温度情報を考慮して、パウダリング前の金型温度(T4)のばらつきを、所定温度の±15%以内の値とすることを特徴とする請求項に記載のパウダースラッシュ成形方法。
【請求項3】
前記加熱前の金型温度(T1)及びパウダリング前の金型温度(T4)を、前記金型の背面箇所に形成された、熱吸収剤入り塗料及び赤外線吸収剤入り材料、あるいはいずれか一方の塗料を基にした塗装箇所を介して、非接触赤外線温度計、サーモグラフィ温度計、又は接触式熱電対の少なくとも1つを用いて測定することを特徴とする請求項1又は2のいずれか一項に記載のパウダースラッシュ成形方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パウダースラッシュ成形機及びパウダースラッシュ成形方法に関する。特に、金型温度への影響因子を考慮して、それらを測定して制御することにより、所定厚さのシート状物を安定的に形成できるパウダースラッシュ成形機、及びそのようなパウダースラッシュ成形方法に関する。
【背景技術】
【0002】
従来、自動車の内装材等の大型で、複雑形状を有するシート状物を製造するにあたり、パウダースラッシュ部と、金型冷却部と、を備えたパウダースラッシュ成形機を用いて、パウダー(粉末樹脂)をスラッシュ成形するパウダースラッシュ成形方法が広く実施されている。
ここで、パウダーからなる内装材の厚さを均一化するために、各種金型を均一に加熱することが望まれている。
【0003】
そこで、例えば、所定温度に制御された仮加熱工程及び予備加熱工程をそれぞれ備えて、金型を均一に加熱するとともに、金型を使用した後、所定温度の水中に浸漬して徐冷することを特徴とした皮革の形成方法としての、パウダースラッシュ成形方法が開示されている(例えば、特許文献1参照)。
【0004】
また、スラッシュ成形金型を多孔性金型として、該金型の材料投入口に熱風供給用ダクトの開口部を当接させ、該ダクトから熱風を金型内に圧送することを特徴とするスラッシュ成形金型の加熱方法が開示されている(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開平3−202329号公報
【特許文献2】特開平4−191018号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、上述したいずれのスラッシュ成形方法も、基本的に金型温度のみに着目して、パウダースラッシュ成形方法により、シート状物を形成しようとするものであって、夏冬や、朝晩等の温度差に基づく環境温度や、成形樹脂温度によっても、シート状物の厚さがばらつくといった問題が見られた。
特に、金型の大型化や異形化に伴い、湾曲したり、窪んだりした内表面部分の温度のばらつきが大きくなって、シート状物の厚さがばらつきやすいという問題が見られた。
【0007】
そこで、かかる金型の大型化や異形化に対して、高速加熱や均一加熱を意図して、加熱炉のみならず、後加熱炉を設けることも提案されている。
しかしながら、このように後加熱炉を設けた場合、パウダースラッシュ成形機が大型化し、あるいは、シート状物の製造工程時間が過度に長くなりやすく、さらに言えば、環境温度や、成形樹脂温度の影響が、未だ避けられないという問題が見られた。
【0008】
そこで、本発明の発明者は、鋭意検討した結果、複数の温度測定手段、及び、所定の温度制御手段や予備加熱装置等を設けて、加熱前の金型温度(T1)と、環境温度(T2)と、パウダリング前の金型温度(T4)と、を測定し、加熱前の金型温度(T1)及び環境温度(T2)等の温度情報に基づいて、パウダリング前の金型温度(T4)のばらつきを所定範囲内の値とすることによって、得られるシート状物の厚さのばらつきも小さくなることを見出し、本発明を完成させたものである。
すなわち、本発明によれば、複数の温度測定手段等を設けて、パウダリング前の金型温度(T4)のばらつきを制御することにより、ひいては、得られるシート状物の厚さのばらつきが少ないパウダースラッシュ成形機、及び、そのようなシート状物が得られるパウダースラッシュ成形方法を提供することを目的としている。
【課題を解決するための手段】
【0009】
本発明によれば、金型を加熱する金型加熱部と、成形樹脂をパウダリングしながら吹き付けて、加熱した金型の内表面に、所定厚さのシート状物を成形するパウダースラッシュ部と、金型を冷却する金型冷却部と、冷却したシート状物を、金型から脱型する金型加工部と、を備えたパウダースラッシュ成形機である。
そして、加熱前の金型温度(T1)を測定する第1温度測定手段と、環境温度(T2)を測定する第2温度測定手段と、パウダリング前の金型温度(T4)を測定する第3温度測定手段と、を備えており、かつ、加熱前の金型温度(T1)、及び環境温度(T2)の少なくとも一方の温度情報に基づいて、パウダリング前の金型温度(T4)のばらつきを、所定温度の±20%以内の値とするための温度制御手段を有することを特徴とするパウダースラッシュ成形機である。
このように構成することにより、加熱前の金型温度(T1)や環境温度(T2)が、ばらついたような場合であっても、金型加熱部に設けてある温度制御手段、例えば、ガス炉や電熱炉である加熱炉の温度制御機構(風量、ガス温度、電力、ルーバー等)が、パウダリング前の金型温度(T4)のばらつきを制御し、ひいては、所望厚さ及び所定ばらつきを有するシート状物が得られるパウダースラッシュ成形機を提供することができる。
【0010】
なお、加熱前の金型温度(T1)は、金型交換部(D部)において、金型60を搭載した際に、第1温度測定手段として、非接触赤外線温度計等を用いて測定される、金型の表面温度が典型的である。
また、環境温度(T2)は、パウダースラッシュ成形機が設置されている周囲温度であって、同様に、第2温度測定手段として、非接触赤外線温度計等を用いて測定される、周囲温度が典型的である。
さらに、パウダリング前の金型温度(T4)は、金型加熱部における加熱炉の所定温度に相当する。
したがって、パウダースラッシュ直前において、第3温度測定手段として、非接触赤外線温度計等を用いて測定される、金型の表面温度が典型的であり、通常、かかる金型の表面温度(T4相当)としては、220〜300℃の範囲内の値である。
【0011】
また、本発明のパウダースラッシュ成形機を構成するにあたり、成形樹脂の成形樹脂温度(T3)を測定する第4温度測定手段をさらに備えており、温度制御手段が、成形樹脂温度(T3)の温度情報にさらに基づいて、パウダリング前の金型温度(T4)のばらつきを、所定温度の±15%以内の値とすることが好ましい。
このように構成することにより、成形樹脂温度(T3)が、ばらついたような場合であっても、所望の厚さを有するシート状物が安定的に得られるパウダースラッシュ成形機を提供することができる。
なお、成形樹脂温度(T3)は、第4温度測定手段として、温度センサー等を用いて測定される、粉体ボックスに収容されている成形樹脂の表面温度が典型的であり、通常、40〜80℃の範囲内の値である。
【0012】
また、本発明のパウダースラッシュ成形機を構成するにあたり、金型を、金型加熱部と、パウダースラッシュ部と、金型冷却部と、金型加工部の間で、相互移動させるための搬送装置を備えるとともに、当該搬送装置の一部に、金型を加熱するための予備加熱装置が設けてあることが好ましい。
このように構成することにより、金型の移送時間を利用して、金型全体についても、予備加熱処理することができるため、金型の内表面形状(湾曲、窪み、オフセット等)によらず、本加熱の際に、金型全体を、均一かつ高速に、所定温度に加熱することができる。
したがって、加熱前の金型温度(T1)等がばらついたような場合であっても、均一厚さのシート状物を安定的に得ることができる。
その上、所定の予備加熱装置を設けることにより、本加熱炉の加熱条件や、金型表面/裏面の温度差を緩やかにできることから、金型の寿命が延びるとともに、後加熱炉等を排除し、パウダースラッシュ成形機のサイズを、全体として、小型化や省スペース化することができる。
【0013】
また、本発明のパウダースラッシュ成形機を構成するにあたり、加熱前の金型温度(T1)及びパウダリング前の金型温度(T4)の温度情報を測定するために、金型の一部又は全部に、熱吸収性塗料及び赤外線吸収性塗料、あるいはいずれか一方を基にした塗装箇所が形成してあることが好ましい。
このように、カーボン、カーボンブラック、クロム材料、ニッケル材料等の熱吸収剤や赤外線吸収材料を含む、いわゆる熱吸収性塗料や赤外線吸収性塗料を基にした塗装箇所(塗膜)を、金型の背面箇所に形成することにより、非接触赤外線温度計等を用いて、金型の温度測定を、正確かつ迅速に行うことができる。
その上、このような熱吸収性塗料からなる塗装箇所が形成してあることにより、断熱効果が向上し、ひいては、金型に対する予備加熱処理等の効果を著しく向上させることができる。
【0014】
また、本発明の別の態様は、金型加熱部と、パウダースラッシュ部と、金型冷却部と、金型加工部と、を備えたパウダースラッシュ成形機を用いて、成形樹脂からシート状物を成形するパウダースラッシュ成形方法である。
そして、加熱前の金型温度(T1)及び環境温度(T2)を測定する工程と、金型加熱部において、金型を加熱する工程と、パウダリング前の金型温度(T4)を測定する工程と、パウダースラッシュ部において、成形樹脂をパウダリングしながら吹き付けて、加熱した金型の内表面に、所定厚さのシート状物を成形する工程と、金型冷却部において、金型を冷却する工程と、金型加工部において、冷却したシート状物を、金型から脱型する工程と、を含み、かつ、金型を加熱する工程において、加熱前の金型温度(T1)及び環境温度(T2)の少なくとも一方の温度情報に基づき、パウダリング前の金型温度(T4)のばらつきを、温度制御手段によって、所定温度の±20%以内の値とすることを特徴とするパウダースラッシュ成形方法である。
このように実施することにより、加熱前の金型温度(T1)や環境温度(T2)が、ばらついたような場合であっても、パウダリング前の金型温度(T4)のばらつきを制御して、所定厚さの±10%以内のシート状物が得られるパウダースラッシュ成形機を得ることができる。
なお、パウダリング前の金型温度(T4)に相当する所定温度は、上述したように、通常、220〜300℃の範囲内の値である。
【0015】
本発明のパウダースラッシュ成形方法を実施するにあたり、加熱前の金型温度(T1)及び環境温度(T2)を測定する工程において、成形樹脂の成形樹脂温度(T3)をさらに測定するとともに、温度制御手段によって、当該成形樹脂温度(T3)の温度情報を考慮して、パウダリング前の金型温度(T4)のばらつきを、所定温度の±15%以内の値とすることが好ましい。
このように実施することにより、成形樹脂温度(T3)が、ばらついたような場合であっても、パウダリング前の金型温度(T4)のばらつきをさらに制御して、さらに均一厚さのシート状物を安定的に得ることができる。
より具体的には、基本的に、粉体ボックスに収容された成形樹脂は、流動浸漬法の一種として流動床下され、それによってパウダースラッシュ処理(パウダリング化)されて、加熱された金型の内面に、シート状物を形成することになる。
そして、パウダースラッシュ処理の回数が増えるにつれ、粉体ボックス内の成形樹脂温度(T3)が高くなることが知られており、成形樹脂の種類や、環境温度等にもよるが、初期的には、20℃以下であったものが、例えば、40〜80℃の範囲内の値となる。
したがって、パウダースラッシュ処理される成形樹脂の温度(T3)を考慮して、温度制御手段によって、パウダリング前の金型温度(T4)のばらつきを、所定範囲に制限することにより、さらに均一厚さのシート状物を安定的に得ることができる。
【0016】
本発明のパウダースラッシュ成形方法を実施するにあたり、金型を、金型加熱部と、パウダースラッシュ部と、金型冷却部と、金型加工部の間で、相互移動させるための搬送装置を備えるとともに、当該搬送装置の一部に、金型を加熱するための予備加熱装置が設けてあって、金型を所定温度に予備加熱処理することが好ましい。
このように実施することにより、金型の移送時間を利用して、金型全体についても、予備加熱処理することができるため、金型の内表面形状(湾曲、窪み、オフセット等)によらず、本加熱の際に、金型全体を、均一かつ高速に、所定温度に加熱することができ、ひいては、本加熱炉の加熱条件を緩やかにして、表面と裏面との間の温度差が小さくなって、金型の寿命等を延ばすことができる。
その上、予備加熱処理によって、後加熱処理(後加熱炉等)を排除できることから、パウダースラッシュ成形機を、全体として、小型化したり、省スペース化したりすることができる。
【0017】
本発明のパウダースラッシュ成形方法を実施するにあたり、加熱前の金型温度(T1)及びパウダリング前の金型温度(T4)を、金型の一部又は全部に形成された、熱吸収剤入り塗料及び赤外線吸収剤入り材料、あるいはいずれか一方の塗料を基にした塗装箇所を介して、非接触赤外線温度計、サーモグラフィ温度計、又は接触式熱電対の少なくとも1つを用いて測定することが好ましい。
このように、カーボンブラックやニッケル等の熱吸収剤や赤外線吸収材料を含む、いわゆる熱吸収性塗料や赤外線吸収性塗料を基にした塗装箇所(塗膜)を、金型の背面箇所に形成することにより、所定温度計を用いて、金型の温度測定を、正確かつ迅速に行うことができる。
その上、このような熱吸収性塗料からなる塗装箇所が形成してあることにより、断熱効果が向上し、ひいては、金型に対する予備加熱処理等の効果を著しく向上させることができる。
【図面の簡単な説明】
【0018】
図1図1は、本発明のパウダースラッシュ成形機を動作させる際のアルゴリズムの一例である。
図2図2は、本発明のパウダースラッシュ成形機の一例を説明するために供する側面図である。
図3図3(a)〜(b)は、本発明の別のパウダースラッシュ成形機を説明するために供する側面図及び平面図である。
図4図4(a)〜(b)は、予備加熱部を備えた搬送装置を説明するために供する平面図及び正面図である。
図5図5は、予備加熱部を備えた搬送装置を説明するために供する側面図である。
図6図6(a)は、予備加熱部の遠赤外線加熱方式のヒータを説明するために供する図(写真)であり、図6(b)は、別の予備加熱部の遠赤外線加熱方式のヒータを説明するために供する概略図である。
図7図7は、金型加熱部の一例を説明するために供する図である。
図8図8(a)〜(b)は、別の金型加熱部を説明するために供する図である。
図9図9(a)〜(c)は、本発明のパウダースラッシュ成形方法を説明するために供する図である(その1)。
図10図10(a)〜(b)は、本発明のパウダースラッシュ成形方法を説明するために供する図である(その2)。
図11図11は、乾燥装置を説明するために供する図である。
図12図12(a)〜(b)は、それぞれ加熱装置を説明するために供する図である。
【発明を実施するための形態】
【0019】
[第1の実施形態]
第1の実施形態は、図1に例示されるアルゴリズムに準じて動作されるパウダースラッシュ成形機10であって、図2等に示される金型60を加熱する金型加熱部(A部)と、成形樹脂をパウダリングしながら吹き付けて、加熱した金型60の内表面に、所定厚さのシート状物を成形するパウダースラッシュ部(B部)と、金型60を冷却する金型冷却部(C部)と、冷却したシート状物を、金型60から脱型する金型加工部(E部)と、を備えたパウダースラッシュ成形機10である。
そして、加熱前の金型温度(T1)を測定する第1温度測定手段(図示せず)と、環境温度(T2)を測定する第2温度測定手段(図示せず)と、パウダリング前の金型温度(T4)を測定する第3温度測定手段(図示せず)と、を備えており、かつ、加熱前の金型温度(T1)、及び環境温度(T2)の少なくとも一方の温度情報に基づいて、パウダリング前の金型温度(T4)のばらつきを、所定温度の±20%以内の値とするための温度制御手段(図示せず)を有することを特徴とするパウダースラッシュ成形機10、10aが提供され、上述した問題点を解決することができる。
以下、図1を適宜参照して、パウダースラッシュ成形機を動作させるためのアルゴリズム例、及び、図2図12を参照して、通常のパウダースラッシュ成形機10及びダウンサイジング型のパウダースラッシュ成形機10aの構成を具体的に説明する。
【0020】
1.アルゴリズム例
(1)図1中、S1で示されるように、第1の実施形態のパウダースラッシュ成形機のスイッチを入れ、制御装置(図示せず)を含めて、これらの動作を開始する。
すなわち、パウダースラッシュ成形機の所定位置にある金型につき、S2で示されるように、予備加熱装置による、当該金型の予備加熱を開始する。
その際、金型の予備加熱温度を、例えば、95℃と設定する。
【0021】
(2)次いで、S3で示されるように、所定の温度測定手段として、非接触赤外線温度計、サーモグラフィ温度計、又は接触式熱電対、あるいは、温度センサー(半導体温度センサー)等を用いることにより、金型温度(T1)、環境温度(T2)、及び、成形樹脂温度(T3)をそれぞれ測定する。
次いで、S4で示されるように、予備加熱された金型の温度(T1)が、90℃未満であると判断した場合には、S5で示されるように、金型の加熱炉本体の所定設定温度(T4)を5℃上げる。
一方、S6で示されるように、予備加熱された金型の温度(T1)が、90℃以上、100℃未満であると判断した場合には、パウダリング前の金型温度(T4)に相当する、金型の加熱炉本体の所定温度(T4相当、以下同様である。)を変えずに、そのまま維持する。
さらに、S7で示されるように、予備加熱された金型の温度(T1)が、100℃以上であると判断した場合には、加熱炉本体の所定設定温度を、加熱炉本体に設けてある温度制御手段によって、5℃下げる。
【0022】
(3)次いで、S8で示されるように、所定の温度測定手段により測定された環境温度(T2)が、15℃未満であると判断した場合には、S9で示されるように、金型の加熱炉本体の所定設定温度を、加熱炉本体に設けてある温度制御手段によって、5℃上げる。
一方、S10で示されるように、環境温度(T2)が、15℃以上、25℃未満であると判断した場合には、金型の加熱炉本体の所定温度を変えることなく、そのまま維持する。
さらに、S11で示されるように、環境温度(T2)が、25℃以上であると判断した場合には、加熱炉本体に設けてある温度制御手段によって、金型の加熱炉本体の所定温度を5℃下げる。
【0023】
(4)次いで、S12で示されるように、所定の温度測定手段、例えば、温度センサーにより測定された成形樹脂温度(T3)が、20℃未満であると判断した場合には、S13で示されるように、加熱炉本体に設けてある温度制御手段によって、金型の加熱炉本体の所定設定温度を5℃上げる。
一方、S14で示されるように、成形樹脂温度(T3)が、20℃以上、30℃未満であると判断した場合には、金型の加熱炉本体の所定温度を変えることなく、そのまま維持する。
さらに、S15で示されるように、成形樹脂温度(T3)が、30℃以上であると判断した場合には、加熱炉本体に設けてある温度制御手段によって、金型の加熱炉本体の所定温度を5℃下げる。
【0024】
(5)次いで、S16で示されるように、加熱金型部(A部)に、金型を搬送し、加熱炉本体の所定設定温度条件下に、所定時間、加熱処理を行う。
【0025】
(6)次いで、S17で示されるように、加熱金型部から、金型を取り出し、パウダースラッシュ部(B部)に搬送して、所定条件にて、パウダースラッシュ処理を行う。
【0026】
(7)次いで、S18で示されるように、パウダースラッシュ部から、金型を取り出し、金型冷却部(C部)に搬送して、所定条件にて、冷却処理を行う。
【0027】
(8)最後に、S19で示されるように、金型冷却部(C部)から、金型加工部(E部)に金型を搬送して、シート状物の脱型処理を行う。
よって、S20で示されるように、パウダースラッシュ成形機による、シート状物の作成が終了する。
【0028】
2.基本構成
図2に、通常のパウダースラッシュ成形機10の基本構成を示し、図3に、ダウンサイジング型のパウダースラッシュ成形機10aの基本構成を示す。
そして、それぞれのパウダースラッシュ成形機10、10aにおいて、一連のパウダースラッシュ成形を完結するための処理が並行的に行われ、最終的に、樹脂成形品であるシート状物94を迅速かつ安定的に得ることができる。
【0029】
(1)金型加工部
図2あるいは図3に示される金型加工部(E部)は、パウダースラッシュ成形したシート状物94を、金型60から取り出す脱型作業と、任意工程ではあるものの、二色シートを作成するための塗布装置(図示せず)による、金型60に対する塗布作業等を行うための部位である。
そして、移動及び迅速処理を容易にするため、金型60は、フレーム部材61に取りつけられており、当該フレーム部材61とともに、搬送装置(例えば、クレーン)62によって、金型加工部(E部)をスタート地点として、所定部の間を、任意に移動できるように構成されている。
【0030】
なお、図4(b)や、図5に示すように、搬送装置(例えば、クレーン)62の下方には、フック62cが設けてあることから、一つの搬送装置62で、一つの金型60を予備加熱処理等しながら、別の金型60を同時搬送することができる。
言い換えれば、複数の金型60を、同時期に、それぞれ別処理するために、搬送することができる。
したがって、一つの搬送装置62において、一つの金型60を予備加熱処理等しながら、別な金型60を、加熱処理、パウダリング処理、あるいは、冷却処理等のために、所定場所まで同時搬送することができ、ひいては、パウダースラッシュ成形機10、10aにおけるシート状物94の製造時のタクト時間を、大幅に短縮することができる。
【0031】
(2)予備加熱装置
また、図4(a)〜(b)に示す搬送装置62によって、金型60は、金型加工部(E部)から金型加熱部(A部)に移送されるが、その際、搬送装置62の所定場所には、図5に示すように、少なくとも外表面を加熱するための予備加熱装置63が、設けてあることが好ましい。
すなわち、例えば、搬送装置62の上部に設けてなる予備加熱装置63によって、金型60の搬送中の時間を利用して、金型60におけるシート状物94の非形成面である外表面(A面)のみならず、シート状物94の形成面である内表面(B面)についても、所定温度に予備加熱処理することができる。
そのため、金型60の内表面形状(湾曲、窪み、オフセット等)によらず、予備加熱と併せて、本加熱の際に、金型60の全体を、均一かつ高速に、所定温度に加熱することができる。
【0032】
さらに、かかる予備加熱装置63の予備加熱処理によって、金型60の内表面と外表面との温度差が小さくなって、金型60の全体的な金属疲労や、金型60の内表面に対する成形樹脂の焼き付け現象の発生等を効果的に抑制しつつ、金型60の全体あるいは所定箇所を、均一かつ迅速に加熱することができる。
その上、予備加熱装置63によって、金型60を補助的にも加熱できるため、一旦成形したシート状物94をさらに加熱して、硬化させるための後加熱炉等を事実上省略することができる。
したがって、その分、ダウンサイジングが可能であって、全体として、小型化や省スペース化されたパウダースラッシュ成形機を提供することができる。
【0033】
また、予備加熱装置63としては、図6(a)〜(b)に示すような、遠赤外線加熱方式のヒータ(一部送風ファンも含む)63aを備えることが好ましい。
ここで、図6(a)は、一例の遠赤外線加熱方式のヒータ(セラミックヒータ)63aの外観を示す図(写真)であるが、例えば、照射面積が250×250mm2の矩形状のセラミックヒータ63aであって、3相、200V、30Aの定格電源を用いて、1〜6kW/個の発熱が可能である。
したがって、遠赤外線加熱方式のヒータ63a等を、複数枚使用することにより、所定の予備加熱温度(T5)とすることができる。
【0034】
また、図6(b)は、別の遠赤外線加熱方式のヒータ(セラミックヒータ)63aの断面図であるが、後方から、送風機153、ホース154、ホース接続口151a、整流板部材155、通気孔が設けてある排出調整部材158、遠赤外線放射発熱体159、及び、筐体151とから、構成されている。
したがって、遠赤外線放射発熱体159は、例えば、薄い帯状の通電材料を基板として、その表面にセラミックス材料が溶射被覆されており、基板に通電することにより、発熱し、セラミックス材料表面から、前方に向かって遠赤外線160を放射して、所定の予備加熱温度(T5)とすることができる。
【0035】
すなわち、このような遠赤外線加熱方式のヒータ63aのいずれかを用いることによって、金型60の内表面や外表面はもちろんのこと、金型60の任意場所に対して、選択的に遠赤外線(熱線)を浸透させることができる。したがって、金型60の内表面形状によらず、金型60の全体又は所定部分のみを、より均一かつ迅速に予備加熱処理して、所定の予備加熱温度(T5)とすることができる。
また、このような遠赤外線加熱方式のセラミックヒータ63aであれば、比較的軽量かつ薄型であることから、予備加熱装置63としても、軽量化、薄型化、省スペース化等を図ることができる。
なお、かかる予備加熱温度(T5)は、予備加熱されてなる金型の温度を意味することから、広い意味で、本加熱炉による加熱前の金型温度(T1=T5)と同温度を表す場合もあるが、搬送中に、比較的大きく金型温度が変化することから、本加熱炉に入る直前の金型温度を、予備加熱温度(T5)の代表値とすることができる。
【0036】
そして、かかる予備加熱温度(T5)は、第1温度測定手段として、例えば、熱電対、赤外線温度計、サーモグラフィ、温度センサー、消費電力計等の少なくとも一つを用いて、連続的又は断続的に測定することができる。
その際、金型の背面の全部又は一部に、熱吸収剤や赤外線吸収剤(カーボンブラック、クロム材料、ニッケル材料等)を含む熱吸収性塗料を塗布し、所定塗膜を形成してあることが好ましい。
この理由は、このように構成することにより、上述した非接触赤外線温度計等を用いて、より正確かつ迅速に、金型温度を測定することができるためである。
更に言えば、このような熱吸収剤や赤外線吸収剤入りの熱吸収性塗料からなる塗膜や、あるいは、軽量カルシウム板等の遮熱板で金型の背面を被覆したりすることにより、予備加熱処理の効果が著しく向上するためである。
したがって、予備加熱処理する際に、同じ電気容量のセラミックヒータを同条件で用いたとしても、塗膜等を形成しなかった場合と比較して、10〜20℃/分の遅い温度上昇となる傾向が得られた。
なお、所定塗膜を形成する場合、その厚さを、通常、1〜200μmの範囲内の値とすることが好ましく、5〜100μmの範囲内の値とすることがより好ましく、10〜50μmの範囲内の値とすることがさらに好ましい。
更に言えば、遮熱板を用いる場合、その厚さを、通常、0.5〜15mmの範囲内の値とすることが好ましく、1〜10mmの範囲内の値とすることがより好ましく、3〜8mmの範囲内の値とすることがさらに好ましい。
【0037】
(3)金型加熱部
また、図2に示す通常のパウダースラッシュ成形機10の場合、金型加熱部(A部)に関して言えば、図8に示すように、プロパンガス由来の火炎装置等により得られた熱風14を、熱風吹出口16の下方に設けた空気供給ファン46により、配管45や主配管43を通じて、熱風吹出口16から供給する構成であることが好ましい。
すなわち、かかる熱風発生装置40により得られた熱風14と、後述するエネルギ回収部54を通じて炉内から回収され、空気循環ファン42により混合室44に送り込まれた熱風とを、混合室44において適宜混合した後、空気供給ファン46により、所定風速を有する大量の熱風として、主配管43を通じて、熱風吹出口16に供給する構成であることが好ましい。
【0038】
一方、図3に示すダウンサイジング型のパウダースラッシュ成形機10aの場合、金型加熱部(A部)として、図7に示すように、温度制御手段として、縦型の加熱炉58の炉本体を含んでおり、側面に、上下方向に開閉可能なシャッター58aを有する平面長方形の箱状体として形成されていることが好ましい。
より具体的には、図7に示すように、バランサーとしての錘58bが付いたシャッター58aにおいて、錘58bを上げた状態、すなわち、シャッター58aを開いた状態で、金型60(図中、60c、以下同様である。)及びそのフレーム部材61を、炉内に側方より搬入する。
【0039】
次いで、金型60及びそのフレーム部材61を、加熱炉58の搬入箇所の上方の所定箇所に固定配置した後、錘58bを下げた状態にして、シャッター58aを閉じる。
次いで、ガス炉や電熱炉等の熱風発生装置58c、58dによって、加熱炉58において発生させた所定温度の熱風を、下方から、左右に首を振るルーバー58fを介して吹き込む。
そして、金型60の上方に設けてあるルーバー58eによって、熱風を循環させながら、金型60を、均一かつ迅速に加熱できるように構成されている。
すなわち、図3に示すダウンサイジング型のパウダースラッシュ成形機10aの場合、金型加熱部(A部)を、このように構成することにより、金型60等の、加熱炉58の内部への搬入が容易になる。
そればかりか、加熱炉の吹出口58c´からの熱エネルギの供給が容易になり、ひいては、省スペース化や熱エネルギの効率的回収についても容易になる。
よって、加熱炉58の温度制御手段の主要素としては、かかる熱風発生装置58c、58dと言える。
【0040】
また、図2に示す通常のパウダースラッシュ成形機10の場合も、図3に示すダウンサイジング型のパウダースラッシュ成形機10aの場合も、金型加熱部(A部)において、図7に示す加熱炉58、58´を用いて、金型温度(T4相当)を、通常、所定温度として、220〜300℃の範囲内の値とすることが好ましい。
例えば、金型60として、厚さ3.5mmのニッケル鋳造合金製金型を加熱する際に、当該の内表面温度である金型温度(T4相当)を、所定温度とすることが好ましい。
この理由は、かかる金型温度(T4相当)が、220℃未満の値になると、パウダースラッシュ成形に使用可能な成形樹脂の種類が過度に制限される場合があるためである。
一方、かかる金型温度が300℃を超えると、成形樹脂の焼き付け現象に起因したグロス現象が頻繁に生じたり、金型の金属疲労により、冷却時に金型にクラックが生じたりする場合があるためである。
したがって、パウダリング前の、加熱した段階の金型温度(T4相当、平均値)を、例えば、230〜280℃の範囲内の値とすることがより好ましく、240〜260℃の範囲内の値とすることがさらに好ましい。
そして、金型温度のばらつきを、所定温度の±20%以内の値とするといった場合、例えば、加熱炉における金型の所定温度(平均温度)が230℃とすれば、ばらつきを考慮して、パウダリング前の金型温度(T4相当)を184〜276℃の範囲内の値とすることを意味する。
【0041】
また、第1の実施形態で詳述したように、いずれのパウダースラッシュ成形機10、10aにおいても、パウダリング前の金型温度(T4)を、加熱前の金型温度(T1)及び環境温度(T2)等、あるいは、パウダースラッシュ部における成形樹脂温度(T3)をもとに、金型加熱部における温度制御手段や、搬送装置62に取り付けられた予備加熱装置63等によって、併せて制御することにより、所定厚さのシート状物94が安定的に得られることが判明している。
すなわち、何もしなければ、加熱前の金型温度(T1)や環境温度(T2)等に起因して、パウダリング前の金型温度(T4)がばらつき、ひいては、シート状物の厚さがばらつくような場合がある。
しかしながら、本発明によれば、パウダリング前の金型温度(T4)のばらつきが所定温度の±20%以内の値に制御されることから、シート状物の厚さのばらつきに関しても、所定厚さの±10%以内の値を安定的に得ることができる。
【0042】
より具体的には、パウダリング前の金型温度(T4)のばらつきが、所定温度(例えば、230℃)の±20%以内の値であれば、シート状物の所定厚さ(例えば、1.2mm)の±10%以内の値に制御することができる。
また、パウダリング前の金型温度(T4)のばらつきが、所定温度(例えば、230℃)の±15%以内の値であれば、シート状物の所定厚さ(例えば、1.2mm)のばらつきを±8%以内の値に制御することができる。
さらに、パウダリング前の金型温度(T4)のばらつきが、所定温度(例えば、230℃)の±10%以内の値であれば、シート状物の所定厚さ(例えば、1.2mm)のばらつきを±5%以内の値に制御することができる。
その上、パウダリング前の金型温度(T4)のばらつきが、所定温度(例えば、230℃)の±6%以内の値であれば、シート状物の所定厚さ(例えば、1.2mm)のばらつきを±2%以内の値に制御することができる。
【0043】
(3)パウダースラッシュ部
また、パウダースラッシュ部(B部)は、加熱された金型に対して、流動状態の成形樹脂92を吹き付け、当該成形樹脂を溶融させて被膜を形成し、所定のシート状物とするための部位である。
すなわち、図2に示す、通常のパウダースラッシュ成形機10を用いた場合、図9(a)に示すように、加熱炉における熱風14によって、金型60を所定温度に加熱、特に、金型内表面に対して熱風14を吹き付けて、所定温度に加熱することになる。
次いで、図9(b)に示すように、金型60を、リザーバタンク88の上方に位置合わせした上で、載置する。
次いで、図9(c)に示すように、金型60を、リザーバタンク88と一緒に、回転させる。
【0044】
そして、これらを回転させる際に、リザーバタンク88の内部に収容された成形樹脂92の分散性を向上させ、均一な厚さのシート状物94を形成するために、リザーバタンク88の下方に設けた攪拌室88aに空気を導入して、パウダー状の成形樹脂92を流動状態とすることが好ましい。
すなわち、攪拌室88aの上方は、穴開き部材、例えば、メッシュ部材から構成してあり、導入された空気によって、成形樹脂92を巻き上げる構造であることが好ましい。
さらに、回転させる際に、成形樹脂92の流動状態を活性化させ、均一な厚さのシート状物94ができるように、図9(c)に示すように、フレーム部材61に設けてある振動部材を、ハンマー108の先端部108aで繰り返し叩くことが好ましい。
【0045】
次いで、図10(a)に示すように、所定時間静置して、成形樹脂92を所定個所に沈降させる。その際、成形樹脂92が早期に非流動状態となるように、空気を脱気して、減圧操作を行うことが好ましい。
そして、最後に、図10(b)に示すように、冷却装置(冷却ブース)55を用いて、金型の内表面Aに形成されたシート状物94とともに、金型60の背面側の外表面Bに対して、シャワー等を吹きつけて冷却する構成であることが好ましい。
【0046】
なお、図3に示す、ダウンサイジング型のパウダースラッシュ成形機10aの場合には、パウダースラッシュ部(B部)と、金型冷却部(C部)とが一体化しており、兼用部として、パウダースラッシュ部/金型冷却部(B/C部)を構成しているという特徴がある。
すなわち、かかるダウンサイジング型のパウダースラッシュ成形機10aの場合、パウダースラッシュした後に、金型を冷却するため、同一場所において、パウダースラッシュ装置が退却するとともに、そこに、冷却装置等が移動してくることになる。
よって、パウダースラッシュ部/金型冷却部(B/C部)の場合、金型冷却部(C部)が、パウダースラッシュ部(B部)と兼用されているとともに、金型冷却部(C部)等が移動式であることが特徴である。
【0047】
(4)金型冷却部
金型冷却部(C部)は、図2に示す、通常のパウダースラッシュ成形機10の場合、図10(b)に示すように、冷却装置55からなる構成部位である。
より具体的には、フレーム部材61を含む、水冷あるいは空冷等の冷却装置55により、例えば、50℃程度まで冷却させるための冷却装置55である。
すなわち、かかる冷却装置55により、シート状物94を形成した、金型60の外表面(B面)に対して、冷却水をシャワー又は冷却ミストを吹き付けることにより、所定温度まで冷却することになる。
【0048】
一方、図3(a)に示す、ダウンサイジング型のパウダースラッシュ成形機10aの場合、金型冷却部が、パウダースラッシュ部と兼用されているため、金型冷却部等が移動式であることが好ましい。
すなわち、図3(b)に示すように、金型60(60b)を冷却する際には、パウダースラッシュ終了後の粉体ボックス64が、矢印Cに示すように、パウダースラッシュ部/金型冷却部(B/C部)からボックス交換位置(D部)に、水平的に移動する。
【0049】
より具体的には、パウダースラッシュ成形後、回転装置89と係合した状態の金型60(60b)と、粉体ボックス64とが、矢印Eで示されるように、上下方向に、分離移動する。
したがって、回転装置89と係合した状態の金型60(60b)のみが上昇するとともに、分離後の粉体ボックス64は、パウダースラッシュ部/金型冷却部(B/C部)からボックス交換位置(D)に向かって、水平的に移動する。
すなわち、図3(b)中、金型60(60b)は、矢印Cに沿って、上方に水平移動し、その後、適宜、矢印Dに沿って、右横方向、あるいは、場合によっては、左横方向に水平移動する。
なお、ボックス交換位置(D部)の配置場所については、特に制限されるものではないが、事実上、水平移動のみで足りることから、図3(b)に示すように、パウダースラッシュ部/金型冷却部(B/C部)に隣接した外側領域(図面上、左側)に設けてあることが好ましい。
【0050】
次いで、図3(a)〜(b)に示すように、金型冷却部(C部)に設けてある冷却装置(例えば、冷却ブース)55が、矢印Aに示されるように、パウダースラッシュ部(B部)の回転装置89の直下に水平移動し、金型60(60b)を把持するフレーム部材(図示せず。)と係合する。
より具体的には、パウダースラッシュ部/金型冷却部(B/C部)に設けてある冷却装置55が、駆動レール55aに沿って移動し、回転装置89と係合した状態の金型60(60b)の直下に移動する。
【0051】
それに対応して、回転装置89によって、金型60(60b)は、反転されて、シート状物が形成された金型60(60b)の内表面(A面)を上側に開放した状態となり、冷却装置55と、金型60(60b)の外表面(B面)とが向き合う状態で、両者が、係合する。
そして、かかる冷却装置55により、金型60(60b)の外表面(B面)に対して、冷却水をシャワー又は冷却ミストを吹き付け、所定温度に冷却することができる。
【0052】
その他、図2に示す、通常のパウダースラッシュ成形機10の場合、及び、図3(a)に示す、ダウンサイジング型のパウダースラッシュ成形機10aの場合の、それぞれにおいて、金型60の背面(B面)を所定温度に冷却した後、図11に示すように、乾燥装置99を用いて、金型60やシート状物94等に対して、乾燥空気を吹き付けることも好ましい。
【0053】
より具体的には、二点鎖線で記載された想定円に沿って、矢印Aの方向に、金型60が回転し、シート成形面であるB面が下方を向く。
次いで、形成したシート状物94及び金型60等に、乾燥空気を吹き付けて、これらの温度をさらに冷却するとともに、シート状物94の表面等に付着した水分等を除去することが好ましい。
したがって、かかる乾燥処理を行うことによって、冷却装置55の駆動時間を短縮化することができるとともに、シート状物94の吸水率を制御して、より高品質のシート状物94とすることができる。
【0054】
なお、かかる乾燥装置99は、複数の吹出口99a及び送風機99bから主として構成されており、これら吹出口99aの先端部が、全体として、約180°の範囲で、吹き付け角度を変えるための首振り機構が設けてある。
より具体的には、乾燥装置99の下方壁に沿って設けてある、複数の吹出口99aと、形成したシート状物等を直接的に乾燥させるべく、金型の直下に位置する複数の吹出口99a´とが、それぞれ設けてあることが好ましい。
そして、例えば、1〜100m/秒の空気等を、吹き付け角度を左右に変えながら、あるいは、一定角度に固定して、シート状物94等に対して吹き付けることができる。
【0055】
その上、図2に示す、通常のパウダースラッシュ成形機10の金型冷却部(C部)、あるいは、図3(a)に示す、ダウンサイジング型のパウダースラッシュ成形機10aのパウダースラッシュ部/金型冷却部(B/C部)において、金型60の所定温度に冷却した後、あるいは、金型60を冷却する前に、図12(a)〜(b)に示すように、加熱装置100、100´を用いて、形成したシート状物94及びを所定温度に加熱することも好ましい。
すなわち、金型冷却部(C部)等における冷却装置や乾燥装置にかえて、あるいは、乾燥装置とともに、加熱装置100、100´を備え、遠赤外線方式のセラミックヒータ等によって、形成したシート状物94を加熱することが好ましい。
【0056】
したがって、図12(a)に示す加熱装置100の場合、一部のフレーム部材100aの上方に、形成したシート状物94を備えた状態とし、下方から加熱処理することになる。よって、シート状物94において、溶融が不十分だった樹脂成分等をより均一に溶融させたり、シート状物94の乾燥を速めたりすることができる。
【0057】
一方、図12(b)に示す加熱装置100´の場合、遠赤外線方式のセラミックヒータ63a等の下方に、形成したシート状物94を備えた状態の金型60を、所定フレーム100bの上に載置し、上方から加熱処理することになる。
これによっても、シート状物94において、溶融が不十分だった樹脂成分を溶融させたり、シート状物94の乾燥を速めたりすることができる。
【0058】
(5)金型交換部
また、いずれのパウダースラッシュ成形機10、10aにおいても、それぞれ金型交換部(D部)をさらに備えることが好ましい。
すなわち、かかる金型交換部(D部)を利用して、パウダースラッシュ成形の途中で、種類の異なる二色成形されたシート状物を成形するための金型に変更したり、パウダースラッシュ成形中に、金型損傷が生じたりする場合に対応するためである。
より具体的には、そのような場合であっても、パウダースラッシュ成形機を動作させたまま、金型を交換できるためである。
【0059】
一方、かかる金型交換部(D部)が、図3(a)に示す、ダウンサイジング型のパウダースラッシュ成形機10aにおいて、金型冷却部(C部)が移動式であって、かつ、パウダリングしている最中には、冷却装置(例えば、冷却ブース)55を一時的に載置する箇所(仮台)ともなる。
したがって、図2に示すように、かかる金型交換部(D部)には、金型60を載置するための支持台66を備えるとともに、支持台66の位置が、外部制御によって、移動可能であることが好ましい。
【0060】
さらに言えば、図3(b)に示す、ダウンサイジング型のパウダースラッシュ成形機10aの場合、かかる金型交換部(D部)には、冷却装置55が設けてあり、パウダースラッシュ成形後に、当該冷却装置55が、移動する構成であることも好ましい。
そして、かかる冷却装置55や、金型60自体を交換する場合には、図3(b)に示す金型交換部(D部)を含む所定領域(D1)を利用して、これら等を適宜水平移動させ、新規の冷却装置55や、金型60と交換することができる。
すなわち、図3(b)中、矢印Bに沿って、金型60等は、図面上、上方方向に水平移動し、その後、適宜、矢印Dに沿って、右横方向、あるいは、場合によっては、左横方向に水平移動する。
【0061】
(6)シート状物
いずれのパウダースラッシュ成形機10、10aにおいて、パウダースラッシュ成形して得られるシート状物94の形態に関し、所定厚さ(平均値)を、通常、1.1〜1.6mmの範囲内の値とし、より好ましくは、1.2〜1.4mmの範囲内の値とすることが好ましい。
この理由は、このような厚さに制御することにより、例えば、所定厚さの±10%以下の値を有するシート状物94を、比較的容易に製造できるためである。
逆に、厚さのばらつきが、所定厚さの±10%を超えると、シート状物94の使用用途が極めて制限され、例えば、エアバッグドア部を有する自動車内装材として、使用することが事実上、困難となる場合がある。
なお、シート状物の構成材料は特に制限されるものでないが、例えば、エポキシ樹脂、塩化ビニル樹脂、アクリル樹脂、オレフィン樹脂(熱可塑性オレフィン樹脂を含む。)、ウレタン樹脂(熱可塑性ウレタン樹脂を含む。)、ポリカーボネート樹脂、又はポリエステル樹脂(熱可塑性ポリエステル樹脂を含む。)の少なくとも一つの樹脂から構成してあることが好ましい。
【0062】
[第2の実施形態]
第2の実施形態は、図3(a)〜(b)に例示されるように、金型加熱部(A部)と、パウダースラッシュ部/金型冷却部(B/C部)と、金型加工部(E部)と、を備えたパウダースラッシュ成形機10aを用いて、成形樹脂からシート状物を成形するパウダースラッシュ成形方法であって、下記工程を含んでいる。
(1)加熱前の金型温度(T1)及び環境温度(T2)を測定する工程
(2)金型加熱部(A部)において、金型を加熱する工程
(3)パウダリング前の金型温度(T4)を測定する工程
(4)パウダースラッシュ部/金型冷却部(B/C部)のパウダースラッシュ部(B部)において、成形樹脂をパウダリングしながら吹き付けて、加熱した金型の内表面に、所定厚さのシート状物を成形する工程
(5)パウダースラッシュ部/金型冷却部(B/C部)の金型冷却部(C部)において、金型を冷却する工程
(6)金型加工部(E部)において、冷却したシート状物を、金型から脱型する工程
(7)金型を加熱する工程において、加熱前の金型温度(T1)及び環境温度(T2)の少なくとも一方の温度情報に基づき、パウダリング前の金型温度(T4)のばらつきを、温度制御手段によって、所定温度の±20%以内の値とする工程
以下、図3に示す、予備加熱装置63を含む搬送装置62を備えてなる、ダウンサイジング型のパウダースラッシュ成形機10aを想定して、第2の実施形態のパウダースラッシュ成形方法について具体的に説明する。
但し、言うまでもなく、図2に示す、通常のパウダースラッシュ成形機10においても、あるいは、それ以外のパウダースラッシュ成形機の態様においても、所定のアルゴリズムに沿って、パウダリング前の金型温度(T4)のばらつきを、温度制御しながら、成形樹脂からシート状物を成形することができる。
【0063】
1.加熱前の金型温度(T1)及び環境温度(T2)等の測定工程
加熱前の金型温度(T1)及び環境温度(T2)等の測定工程は、所定の温度測定手段により、加熱前の金型温度(T1)、環境温度(T2)、さらには、パウダースラッシュ部における成形樹脂温度(T3)をそれぞれ測定する工程である。
すなわち、これらの温度(T1〜T2)、さらには成形樹脂温度(T3)を測定して、それらの少なくとも一つに基づき、パウダリング前の金型温度(T4)を制御することにより、加熱前の金型温度(T1)や環境温度(T2)等がばらついたような場合であっても、厚さのばらつきに関し、所定厚さの±10%以内のシート状物を得ることができる。
なお、所定の温度測定手段としては、上述したように、非接触赤外線温度計、サーモグラフィ温度計、又は接触式熱電対、あるいは、温度センサー(半導体温度センサー)等が挙げられる。
【0064】
2.金型準備工程
金型準備工程は、図3に示される金型加工部(E部)において、パウダースラッシュ成形したシート状物94を、金型60から取り出す脱型作業を行って、次工程のために、金型60を準備する工程である。
そして、金型準備工程の一部として、金型60に対して、予備加熱工程を実施することが好ましい。
すなわち、金型加工部(E部)において搭載した金型60を、搬送装置(クレーン等)62の一部に備えてなる予備加熱装置63を用いて、例えば、予備加熱した金型温度(T5)が、80〜200℃の範囲内の値(例えば、外表面温度)となるように、予備加熱処理をする工程(以下、予備加熱工程と称する場合がある。)である。
よって、かかる予備加熱工程は、任意工程ではあるが、金型加工部(E部)から金型加熱部(A部)に移動させる途中に、金型の温度が所定温度(T5)となるように、予備的に加熱処理して、本加熱炉における加熱温度のばらつきや温度上昇時間等を調整することができる。
その上、金型60の金属疲労や、成形樹脂の内表面に対する焼き付け現象の発生を効果的に抑制したり、パウダースラッシュ成形機のダウンサイジング化に寄与したりすることができる。
【0065】
また、予備加熱工程において、搬送装置62が、金型60を把持すると同時に、予備加熱装置63にスイッチが入って、金型60を予備加熱処理することが好ましい。
この理由は、このように金型60の把持動作と同期して、金型60を予備加熱処理することにより、金型60の搬送時間を十分に有効利用できるためである。
但し、金型60を把持すると同時に、予備加熱装置63にスイッチが入ると言っても、必ずしも0秒後である必要はなく、パウダースラッシュ成形の状況等に応じて、0.1秒後や1秒後であっても良い。
【0066】
その他、予備加熱工程において、金型60の搬送時の温度低下を防止すべく、別の金型に対する加熱処理の間に、さらに別の金型60を搬送装置62にクランプしながら、予備加熱処理を施すことも好ましい。
この理由は、所定の予備加熱処理によって、パウダースラッシュ部/金型冷却部(B/C部)の一体箇所において、加熱処理された金型60に対するシート状物94の形成を、より迅速かつ安定的に行うことができ、ひいては、シート状物一つ当たりの成形時間(タクトタイム)をより短期化できるためである。
【0067】
なお、図3(a)に示される、加熱炉58における金型60(60c)の温度が、例えば、260℃になるまで、加熱炉58の熱風を循環利用して、加熱処理した後、加熱炉58から金型60(60c)が取り出される、さらには、パウダースラッシュ部/金型冷却部(B/C部)に移送されることになる。
その際、かかる金型60(60c)をパウダースラッシュ部/金型冷却部(B/C部)に移送するまでの間も、予備加熱装置63によって、温度維持のための加熱として、金型60(60c)の温度を、所望温度範囲の値に維持することができる。
すなわち、予備加熱装置63によって、金型60(60c)の温度を、加熱炉58の温度と同等に維持することもできるので、パウダースラッシュ部/金型冷却部(B/C部)において、シート状物94をさらに安定的に成形することができる。
【0068】
3.加熱工程
次いで、加熱工程は、金型加熱部(A部)において、例えば、220〜300℃、より好ましくは、230〜270℃の金型温度(T4相当)となるように、加熱する工程(以下、加熱工程と称する場合がある。)である。
したがって、所定の金型60を金型加熱部(A部)に移動させて、図3(a)に示される加熱炉58内に搬入し、そこで、金型60の温度が所定温度となるように、迅速に加熱することが好ましい。
なお、上述したように、加熱工程を実施するに際して、後工程であるパウダースラッシュ工程で均一な厚さのシート状物94を成形できるように、金型60(60c)の温度が所定の均一温度になるように、熱風による対流加熱を行うことが好ましい。
【0069】
また、図3(a)に示される、加熱炉58中で金型60(60c)を加熱する工程において、加熱前の金型温度(T1)、環境温度(T2)、及び成形樹脂温度(T3)等の温度情報に基づき、パウダリング前の金型温度(T4)を、金型の加熱炉における温度制御手段、さらには、予備加熱装置63によって、併せて制御することが好ましい。
すなわち、図1に示すアルゴリズム等にしたがって、均一な厚さのシート状物94を安定的に成形することができる。
【0070】
4.パウダースラッシュ工程
次いで、パウダースラッシュ工程は、図3に示すように、パウダースラッシュ部/金型冷却部(B/C部)において、金型60に対して、所定のシート状物94を成形する工程(以下、単に、スラッシュ工程と称する場合がある。)である。
すなわち、加熱状態の金型60(60c)を、金型加熱部(A部)から、パウダースラッシュ部/金型冷却部(B/C部)に移動させ、そこで、図9(c)に示すように、成形樹脂92からなるシート状物94を形成する工程であり、さらには、かかるパウダリング前の金型温度(T4)を測定する工程を含んでいる。
なお、一部上述したように、図1に示すアルゴリズム例にしたがって、加熱前の金型温度(T1)及び環境温度(T2)のみならず、パウダースラッシュ工程における成形樹脂温度(T3)等の温度情報に基づき、パウダリング前の金型温度(T4)等を調整することにより、シート状物の厚さを、所定値の±10%以内の値とできることが判明している。
【0071】
5.金型冷却工程
次いで、金型冷却工程は、シート状物94を形成した金型60を、所定温度まで冷却する工程(以下、金型冷却工程と称する場合がある。)である。
すなわち、図3(a)に示すパウダースラッシュ成形機10aの場合、パウダースラッシュ部/金型冷却部(B/C部)に、冷却装置55を移動させた後、それにより、シート状物94を成形した状態の金型60を、少なくとも第1のエアブロー、ミスト/シャワー、及び第2のエアブローの組み合わせによる三段階ステップで、通常、40〜50℃に冷却する工程である。
【0072】
ここで、一部上述したように、図3(a)に示すパウダースラッシュ成形機10aの場合には、ダウンサイジング化等のために、パウダースラッシュ部(B部)と、金型冷却部(C部)とが一体化(B/C部)されていることから、同一箇所で、パウダースラッシュ成形と、金型冷却を行うという特徴がある。
すなわち、金型60を冷却する際には、パウダースラッシュ終了後の粉体ボックス(図示せず)が、パウダースラッシュ部からボックス交換位置に移動するとともに、金型冷却部に設けてある冷却装置が、パウダースラッシュ部の回転装置の直下に移動する。
次いで、金型60を把持するフレーム部材61等と係合し、金型60の内表面を外部に解放した状態で、金型60の外表面に対して、冷却水をシャワー又は冷却ミストを吹き付けることになる。
【0073】
6.脱型工程
最後に、脱型工程は、金型加工部(E部)において、形成したシート状物を、金型から脱型する工程(以下、脱型工程と称する場合がある。)である。
すなわち、冷却工程を経て、約40〜60℃に低下したシート状物94を、金型60から脱型する工程である。
なお、かかる脱型工程は、ロボットを用いて自動的に行うこともできるし、あるいは人的作業として、シート状物を脱型することもできる。
【0074】
7.動作例1
このパウダースラッシュ成形に関する一連の所定処理を実施するにあたり、複数の金型である金型60a、金型60b、金型60c、及び別の金型60を同時使用した動作例を説明する。
すなわち、それぞれの金型60a〜60c等につき、同時並行して所定処理が行うことによって、シート状物94の一つ当たりのタクトタイムを、150秒以下、より好ましくは、120秒以下と、従来装置の場合のタクトタイム(例えば、240秒)と比較して、極めて短くすることができる。
以下、図3(a)〜(b)に示すパウダースラッシュ成形機10aを参照しながら、3個の金型60a〜60c、及び別の金型60を同時使用して、タクトタイムが短くなる動作例を説明する。
【0075】
まずは、予備加熱装置63を備えた搬送装置62が、金型60aをクランプして、所定場所まで上昇し、予備加熱装置63によって、所定時間にわたる金型60aの予備加熱を開始する。
次いで、金型60aの予備加熱をしながら搬送装置62が、所定位置から下降し、金型加工部(E部)から、パウダースラッシュ部/冷却部(B/C部)に移動する。
【0076】
次いで、パウダースラッシュ成形/冷却処理が既に終了した金型60bを、搬送装置62が、パウダースラッシュ/冷却部(B/C部)から、金型加工部(E部)に搬送し、脱型処理を行う。
この脱型処理の間に、搬送装置62が、金型加工部(E部)から、金型加熱部(A部)に、同時搬送している金型60aを移送するとともに、金型加熱部(A部)の加熱炉58の所定場所に載置し、所定条件の加熱処理を行う。
また、金型加熱部(A部)において、金型60aに対する加熱処理の間に、搬送装置62が、脱型が終了した金型60bをクランプして、予備加熱を開始する。
【0077】
次いで、搬送装置62が、加熱処理が完了した金型60aを、金型加熱部(A部)から取り出し、パウダースラッシュ/冷却部の一体箇所(B/C部)に搬送した後、パウダースラッシュ成形/冷却処理が順次行われる。
そして、加熱処理した金型60aを冷却する際には、パウダースラッシュ終了後の粉体ボックスが、パウダースラッシュ部からボックス交換位置に移動するとともに、金型冷却部に設けてある冷却装置が、パウダースラッシュ部の回転装置の直下に移動する。
次いで、加熱処理した金型60aを把持するフレーム部材61と係合し、内表面を外部に解放した状態で、外表面に対して、冷却水をシャワー又は冷却ミストを吹き付ける。
【0078】
そして、このパウダースラッシュ成形/冷却処理の間に、搬送装置62が、別の金型60をクランプして予備加熱を行うとともに、金型加熱部(A部)に移動させ、加熱処理を開始する。
すなわち、搬送装置62が、パウダースラッシュ部/冷却部(B/C部)から、金型加熱部(A部)に、別の金型60を搬送して、所定時間の加熱処理を行うことが好ましい。
【0079】
最後に、搬送装置62が、パウダースラッシュ部/冷却部(B/C部)が終了した金型60を、そこから金型加工部(E部)に搬送し、得られたシート部材94の脱型処理を行う。
以上の説明の通り、図3(a)〜(b)に示すパウダースラッシュ成形機10aにおいて、金型60a〜60c等を用いた場合、所定動作例によれば、予備加熱処理を含めて、それぞれ独立した処理を同時並行で行うことができる。
【0080】
また、各工程において、必ずしも処理時間が一定とならない場合や、物理的に同時処理ができない場合があるが、そのような場合には、搬送装置62が、所定場所、例えば、加熱炉58の上方で待機しつつ、搬送装置62に備えた予備加熱装置63によって、金型60を予備加熱すればよい。
その他、動作例1の場合、右から左に向かって、金型加熱部(A部)、パウダースラッシュ/冷却部(B/C部)、金型交換部(D部)及び金型加工部(E部)の順に、配置してあるパウダースラッシュ成形機10aを想定したが、右から左に向かって、金型加熱部(A部)、金型交換部(D部)、パウダースラッシュ/冷却部(B/C部)、及び金型加工部(E部)の順に、配置してあるパウダースラッシュ成形機10aであっても良い。
【0081】
8.動作例2
動作例2では、図2に示す、通常のパウダースラッシュ成形機10、すなわち、パウダースラッシュ部(B部)と、金型冷却部(C部)とが独立的に設けてあり、かつ、パウダースラッシュ成形及び冷却処理を別々な箇所で、それぞれ別個に行うパウダースラッシュ成形機10を想定して、複数個の金型60に対して、各種処理を説明することができる。
【0082】
すなわち、動作例2では、例えば、一つの金型60を、搬送装置62によって、金型加熱部(A部)から取り出し、パウダースラッシュ部(B部)に搬送した後、所定時間のパウダースラッシュ成形を行う。
そして、かかる動作例2では、例えば、一つの金型60に対して、パウダースラッシュ部(B部)において、所定時間のパウダースラッシュ成形を行っている最中に、別の金型60に対して、別の処理を行うことができる。
したがって、一つの金型60に対して、パウダースラッシュ成形を行っている最中に、搬送装置62を用いて、別の金型60(パウダースラッシュ処理済)を、金型冷却部(C部)に移動させて、そこで同時期に冷却処理を行うことができる。
【0083】
一方、かかる動作例2では、一つの金型60に対して、パウダースラッシュ部(B部)において、所定時間のパウダースラッシュ成形を行った後、搬送装置62を用いて、金型冷却部(C部)に移動させて、そこで冷却処理を行うことも可能である。
したがって、かかる動作例2では、パウダースラッシュ成形/冷却処理が一体箇所(B/C部)で行われる装置を前提とした動作例1と比較して、金型60に対して、パウダースラッシュ成形を行っている際の次工程への待ち時間や、あるいは、パウダースラッシュ部(B部)への冷却装置の移動等の時間を、省略することができる。
よって、最大100秒以下のタクトタイムで、一つのシート状物を成形することができる。
なお、動作例2においても、予備加熱装置付き搬送装置を用いることや、一つの搬送装置で、下方に設けたフック62c等を利用して、複数の金型60を同時搬送できる点は、動作例1と同様である。
【産業上の利用可能性】
【0084】
本発明のパウダースラッシュ成形機及びパウダースラッシュ成形方法によれば、パウダリング前の金型温度(T4)への影響因子として、加熱前の金型温度(T1)や環境温度(T2)、さらには、成形樹脂温度(T3)等を考慮し、パウダリング前の金型温度(T4)の温度を所定範囲に制御する温度制御手段等を設けることにより、所望厚さのシート状物を安定的に形成できるようになった。
【0085】
また、本来、金型の内表面を主として加熱する加熱炉のほかに、搬送中の金型を加熱するための予備加熱装置を、搬送装置の一部に設けたことにより、本加熱炉において、金型を所定温度に加熱するまでの時間等を著しく短縮化かつ均一化できるようになった。
また、金型の予備加熱によって、金型内部の温度分布も小さくなり、金型の金属疲労(クラック発生)の発生を有効に防止できるようになった。
【0086】
その上、金型の背面の全部又は一部に、熱吸収剤や赤外線吸収剤(カーボン、カーボンブラック、クロム材料、ニッケル材料等)を含む熱吸収性塗料を塗布し、所定塗膜を形成することにより、非接触赤外線温度計等を用いて、より正確かつ迅速に、金型温度を測定することができるようになった。
更に言えば、このような熱吸収剤や赤外線吸収剤入りの熱吸収性塗料からなる塗膜等で金型の背面を被覆したりすることにより、金型の冷却処理を妨げることなく、予備加熱処理の効果が著しく向上する傾向が得られた。
【0087】
よって、本発明のパウダースラッシュ成形機及びパウダースラッシュ成形方法によって得られたシート状物は、パウダースラッシュ成形品として、厚さの均一性が極めて厳しく要求される自動車の内装材(特に、ティアラインを形成するエアバッグドア部の表皮用内装材)やバンパー等として、好適に使用されることが期待される。
【符号の説明】
【0088】
10、10a:パウダースラッシュ成形機、14:熱風、16:熱風吹出口、40:熱風発生装置、43:主配管、54:エネルギ回収部、55:冷却装置、58:加熱炉、58a:シャッター、58b:錘、58c:熱風発生装置、58d:回収装置、58e、58f:撹拌装置、60、60a、60b、60c:金型、61:金型のフレーム部材、62:搬送装置、62c:フック、63:予備加熱装置、63a:遠赤外線加熱方式のヒータ(セラミックヒータ)、63d:被覆部材、64:粉体ボックス、88:リザーバタンク、88a:攪拌室、92:成形樹脂、94:シート状物、99:乾燥装置、99a、99a´:吹出口、99b:送風機、100、100´:加熱装置

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12