【実施例】
【0045】
以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されない。
[A.実施例1〜14、比較例1]
[使用材料]
実施例1〜14及び比較例1で使用した材料を以下に示す。
(1)セメント:低熱ポルトランドセメント(太平洋セメント社製)
(2)シリカフュームA:BET比表面積20m
2/g
(3)シリカフュームB:BET比表面積17m
2/g
(4)無機粉末A:珪石粉末、50%体積累積粒径2μm、最大粒径12μm、95%体積累積粒径5.8μm
(5)無機粉末B:珪石粉末、50%体積累積粒径7μm、最大粒径67μm、95%体積累積粒径27μm
(6)骨材A1(細骨材):珪砂(最大粒径1.0mm、0.6mm以下の粒径のもの:98質量%、0.3mm以下の粒径のもの:45質量%、0.15mm以下の粒径のもの:3質量%)
(7)ポリカルボン酸系高性能減水剤:固形分量27.4質量%、フローリック社製、商品名「フローリックSF500U」
(8)消泡剤:BASFジャパン社製、商品名「マスターエア404」
(9)水:水道水
(10)金属繊維:鋼繊維(直径:0.2mm、長さ:15mm)
(11)骨材B(粗骨材):硬質砂岩砕石1005(粒径:5〜10mm)
【0046】
[実施例1]
セメント、シリカフュームA及び無機粉末Aの含有率の合計100体積%中、セメント等の含有率が表2に示す量となるように混合した。得られた混合物と、セメント組成物中の骨材A1の含有率が表2に示す量の骨材A1を、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表2に示す量でオムニミキサに投入して、2分間混練した。
混練後、オムニミキサ内の側壁に付着した混練物を掻き落とし、さらに4分間混練を行った。そして、混練後のセメント組成物の0打ちフロー値を測定した。
【0047】
得られた混練物を、φ50×100mmの円筒形の型枠に打設して、未硬化の成形体を得た。打設後、未硬化の成形体について、20℃で48時間、封緘養生を行い、次いで、脱型して、硬化体を得た。脱型時の圧縮強度は50N/mm
2であった。
この成形体を、表3に示す時間、減圧したデシケーター内で水に浸漬した(表3中、「減圧下」と示す。)。なお、減圧は、アズワン社製の「アスピレーター(AS−01)」を使用して行った。浸漬前後の成形体の質量を測定し、得られた測定値から、吸水率を算出した。
浸漬後、この成形体を90℃で48時間蒸気養生を行い、次いで、20℃まで降温した後、180℃で48時間加熱を行った。
セメント質硬化体(加熱後の成形体)の圧縮強度を、「JIS A 1108(コンクリートの圧縮強度試験方法)」に準じて測定した。
また、前記セメント質硬化体(加熱後の成形体)と同様にして、30×30×6cmの供試体を製造し、「ASTM C779」に準拠して、60分経過後のすりへり深さを測定した。
0打ちフロー値、吸水率、圧縮強度、及びすりへり深さの各値を表3に示す。なお、後述の実施例、比較例における0打ちフロー値、吸水率、圧縮強度、及びすりへり深さの各値も表3に示す。
【0048】
[実施例2]
粉体原料100質量部当たりの水の配合量を、13質量部から15質量部に変更した以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、セメント組成物の0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は45N/mm
2であった。
【0049】
[実施例3]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、沸騰している水(沸騰水)に、表3に示す時間浸漬した後、該成形体を水に浸漬させたまま、水温が25℃となるまで冷却した以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度の測定を行った。
[実施例4]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様に沸騰水への浸漬等を行った以外は、実施例2と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度の測定を行った。
【0050】
[実施例5]
シリカフュームAの含有率を10体積%から20体積%に変更し、かつ、無機粉末Aの含有率を30体積%から20体積%に変更した以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は50N/mm
2であった。
【0051】
また、前記セメント質硬化体と同様にして、40×40×160mmの供試体を製造し、「JIS A 1129−2:2010 モルタル及びコンクリートの長さ変化測定方法−第2部:コンタクトゲージ方法」に準拠して、6か月保存した場合における収縮ひずみを測定した。
また、得られたセメント質硬化体の透水係数を、「地盤工学会基準 JGS 0311−2009(土の透水試験方法)」の変水位透水試験方法に準じて測定した。その結果、水の浸透は認められず、透水係数は「0」であった。
また、得られたセメント質硬化体を人工海水に6カ月間浸漬した。なお、人工海水は表1に示す各試薬を、表1に示す量、蒸留水に溶解して調製した。
浸漬後、セメント質硬化体中の塩化物イオンの濃度を、EPMA(日本電子社製)を用いて測定し、塩化物イオンの拡散係数(表3中、「拡散係数」と示す。)を算出した。
さらに、得られたセメント質硬化体に対して、「JIS A 1148(コンクリートの凍結溶解試験方法)」に準拠して測定した値を用いて、「ASTM C666 75」の耐久性指数(300サイクル)を算出した。なお、耐久性指数は、最大値が100であり、最大値に近いほど凍結融解抵抗性に優れている。
さらに、JIS原案「コンクリートの圧縮クリープ試験方法(案)」に準拠して、得られたセメント質硬化体のクリープを測定した。
以上の結果を表3に示す。なお、後述の実施例における収縮ひずみ、透水係数、拡散係数及び耐久性指数も表3に示す。
【0052】
【表1】
【0053】
[実施例6]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様に沸騰水への浸漬等を行った以外は、実施例5と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度の測定を行った。
【0054】
[実施例7]
シリカフュームAの含有率を10体積%から20体積%に変更し、かつ、無機粉末Aの含有率を30体積%から20体積%に変更した以外は、実施例2と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は45N/mm
2であった。
【0055】
[実施例8]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様にして沸騰水への浸漬等を行った以外は、実施例7と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度及びすりへり深さの測定を行った。
また、実施例5と同様にして、収縮ひずみ及び透水係数の測定、並びに、塩化物イオンの拡散係数及び耐久性指数の算出を行った。
【0056】
[実施例9]
セメント、シリカフュームA及び無機粉末Aの含有率の合計100体積%中、セメント等の含有率が表2に示す量となるように混合した。得られた混合物と、セメント組成物中の骨材A1の含有率が表2に示す量の骨材A1を、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表2に示す量でオムニミキサに投入して、2分間混練を行った後、オムニミキサ内の側壁に付着した混練物を掻き落とし、さらに4分間混練を行った。その後、セメント組成物中の金属繊維の含有率が表2に示す量の金属繊維を、オムニミキサに投入して、さらに2分間混練を行った。
得られたセメント組成物について、実施例1と同様にして、0打ちフロー値を測定した。
また、得られたセメント組成物を用いて、実施例1と同様の方法で、セメント質硬化体(成形体)を得た。
得られたセメント質硬化体(成形体)について、実施例1と同様にして、吸水率及び圧縮強度を測定した。
さらに、得られたセメント質硬化体の曲げ強度を、「土木学会基準 JSCE−G 552−2010(鋼繊維補強コンクリートの曲げ強度及び曲げタフネス試験方法)」に準じて測定した。
【0057】
[実施例10]
脱型後の成形体を、減圧したデシケーター内で水に浸漬する代わりに、実施例3と同様に沸騰水への浸漬等を行った以外は、実施例9と同様にして、セメント組成物及びその硬化体を得た。
セメント組成物及びその硬化体について、実施例9と同様にして、各種物性を測定した。
また、実施例5と同様にして、透水係数の測定、塩化物イオンの拡散係数、及び耐久性指数の算出を行った。
【0058】
[実施例11]
粉体原料100質量部当たりの水の配合量を、13質量部から11質量部に変更し、骨材A1の含有率を35.5体積%から30.0体積%に変更し、高性能減水剤の配合量を0.69質量部から0.76質量部に変更し、かつ、成形体を水に浸漬しなかった以外は、実施例1と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、セメント組成物の0打ちフロー値の測定等を行った。なお、脱型時の圧縮強度は54N/mm
2であった。
【0059】
[実施例12]
脱型後の成形体を、沸騰している水(沸騰水)に、表3に示す時間浸漬した後、該成形体を水に浸漬させたまま、水温が25℃となるまで冷却した以外は、実施例11と同様にして、セメント組成物及びセメント質硬化体を得た。
実施例1と同様にして、吸水率の算出、及び、セメント質硬化体の圧縮強度等の測定を行った。
また、実施例5と同様にして、塩化物イオンの拡散係数と耐久性指数の算出、収縮ひずみ、透水係数、及びクリープの測定を行った。
【0060】
[実施例13]
骨材A1の含有率を、30.0体積%から24.0体積%に変更し、セメント組成物中の骨材Bの含有率が6.0体積%となる量の骨材Bを使用した以外は実施例11のセメント組成物と同様の配合で、セメント組成物を製造した。
セメント組成物の製造は、実施例1と同様にして、各材料(粉体原料、骨材A1、水、ポリカルボン酸系高性能減水剤、及び消泡剤)を混練した後、さらに骨材Bをオムニミキサに投入して、1分間混練することにより行った。
得られたセメント組成物(混練物)を、φ100×200mmの円筒形の型枠に打設し、かつ、成形体を水に浸漬しなかった以外は実施例1と同様にして、セメント質硬化体を得た。
実施例1と同様にして、セメント質硬化体の圧縮強度を測定した。なお、脱型時の圧縮強度は43N/mm
2であった。
【0061】
[実施例14]
骨材A1の含有率を、35.5体積%から28.5体積%に変更し、セメント組成物中の骨材Bの含有率が7.0体積%となる量の骨材Bを使用した以外は実施例8のセメント組成物と同様の配合で、セメント組成物を製造した。
セメント組成物の製造は、実施例1と同様にして、各材料(粉体原料、骨材A1、水、ポリカルボン酸系高性能減水剤、及び消泡剤)を混練した後、さらに、骨材Bをオムニミキサに投入して、1分間混練することにより行った。
得られたセメント組成物(混練物)を、φ100×200mmの円筒形の型枠に打設する以外は実施例8と同様にして、セメント質硬化体を得た。
実施例1と同様にして、吸水率の算出及びセメント質硬化体の圧縮強度の測定を行った。なお、脱型時の圧縮強度は37N/mm
2であった。
また、実施例5と同様にして、透水係数の測定、塩化物イオンの拡散係数、及び耐久性指数の算出を行った。
【0062】
[比較例1]
セメント、シリカフュームB及び無機粉末Bを、粉体原料(セメント、シリカフューム、及び無機粉末)の含有率の合計100体積%中、セメント等の含有率が表2に示す量となるように混合した。得られた混合物と、セメント組成物中の骨材A1の含有率が表2に示す量の骨材A1を、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表2に示す量でオムニミキサに投入して、2分間混練した。
混練後、オムニミキサ内の側壁に付着した混練物を掻き落とし、さらに4分間混練を行った。
得られた混練物を用いて、実施例1と同様にして、セメント質硬化体を得た。
得られた混練物(セメント組成物)及びその硬化体について、実施例1と同様にして、各種物性を測定した。
【0063】
【表2】
【0064】
【表3】
【0065】
[B.実施例15〜26、比較例2〜4]
[使用材料]
実施例15〜26及び比較例2〜4で使用した材料を以下に示す。
(1)中庸熱ポルトランドセメント:太平洋セメント社製
(2)低熱ポルトランドセメント:太平洋セメント社製
(3)シリカフュームC:BET比表面積14m
2/g
(4)シリカフュームD:BET比表面積20m
2/g
(5)無機粉末:珪石粉末、50%体積累積粒径2μm、最大粒径12μm、95%体積累積粒径5.8μm(実施例1〜14で用いた無機粉末Aと同じもの)
(6)骨材A1(細骨材):珪砂、最大粒径1.0mm、0.6mm以下の粒径のもの:98質量%、0.3mm以下の粒径のもの:45質量%、0.15mm以下の粒径のもの:3質量%(実施例1〜14で用いた骨材A1と同じもの)
(7)骨材A2(細骨材):掛川産山砂、最大粒径5.0mm
(8)ポリカルボン酸系高性能減水剤:固形分量27.4質量%;フローリック社製、商品名「フローリックSF500U」
(9)消泡剤:BASFジャパン社製、商品名「マスターエア404」
(10)水:上水道水
(11)金属繊維:鋼繊維(直径:0.2mm、長さ:15mm)
(12)骨材B(粗骨材):硬質砂岩砕石1005(粒径:5〜10mm)
【0066】
[中庸熱ポルトランドセメント及び低熱ポルトランドセメントの各研磨処理物の製造]
中庸熱ポルトランドセメント又は低熱ポルトランドセメントを、高速気流撹拌装置(奈良機械製作所社製、商品名「ハイブリタイザーNHS−3型」)を用いて、回転速度4000rpmの条件で、30分間研磨処理した。なお、研磨処理において、中庸熱ポルトランドセメント又は低熱ポルトランドセメントの仕込み量は、1バッチあたり800gとした。中庸熱ポルトランドセメント又は低熱ポルトランドセメント、及び、中庸熱ポルトランドセメント又は低熱ポルトランドセメントの研磨処理物の、50%体積累積粒径及びブレーン比表面積を測定した。結果を表4に示す。
また、走査型電子顕微鏡を用いて、研磨処理物の二次電子像を観察したところ、研磨処理物の粗粒子(粒径20μm以上の粒子)は、中庸熱ポルトランドセメント又は低熱ポルトランドセメントの粒子(研磨処理前のもの)と比べて、角張った表面部分が少なく、表面部分が丸みを帯びた形状に変形していた。また、粗粒子と粗粒子の間の空隙には、微粒子(粒径20μm未満の粒子)が存在している様子が見られた。
【0067】
【表4】
【0068】
[実施例15]
低熱ポルトランドセメントの研磨処理物、シリカフュームD、無機粉末、及び骨材A1を、低熱ポルトランドセメントの研磨処理物等の含有率が表5に示す量となるように、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表5に示す量でオムニミキサに投入して、2分間混練した。なお、消泡剤の配合量は、粉体原料100質量部に対して0.02質量部とした。
混練後、オムニミキサの側面に付着した混練物を掻き落とし、さらに4分間混練を行った。混練後のセメント組成物の0打ちフロー値を測定した。
また、混練後のセメント組成物を、φ50×100mmの円筒形の型枠に打設して、未硬化の成形体を得た。打設後、未硬化の成形体について、20℃で72時間静置した。次いで、脱型して硬化体を得た。該成形体の脱型時の圧縮強度は52N/mm
2であった。
さらに、前記成形体を90℃で48時間蒸気養生を行い、次いで、20℃になるまで降温させた後、さらに、乾燥炉を用いて180℃で48時間加熱した。
セメント質硬化体(加熱後の成形体)の圧縮強度を、「JIS A 1108(コンクリートの圧縮強度試験方法)」に準じて測定した。なお、圧縮強度は、島津製作所社製の100t万能試験機(油圧式)を使用して測定した。
【0069】
[実施例16]
低熱ポルトランドセメントの研磨処理物の代わりに中庸熱ポルトランドセメントの研磨処理物を使用した以外は、実施例15と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。該成形体の脱型時の圧縮強度は55N/mm
2であった。
実施例15と同様にして、セメント組成物の0打ちフロー値等を測定した。
[実施例17]
粉体原料100質量部当たりの水の量を、12質量部から15質量部に変更した以外は、実施例16と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。該成形体の脱型時の圧縮強度は50N/mm
2であった。
実施例15と同様にして、セメント組成物の0打ちフロー値等を測定した。
【0070】
[実施例18]
脱型後の成形体を、沸騰している水(沸騰水)に30分間浸漬した後、該成形体を水に浸漬させたまま水温が25℃となるまで冷却した(表6中「沸騰水」と示す。)後に蒸気養生を行った以外は、実施例15と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例15と同様にして、セメント組成物の0打ちフロー値等を測定した。なお、硬化体の圧縮強度は、測定装置の測定限界(511N/mm
2)を超えていた。
また、浸漬前後の成形体の質量を測定し、得られた測定値から、吸水率を算出した。
さらに、実施例5と同様にして、すりへり深さ及び透水係数の測定、並びに、塩化物イオンの拡散係数及び耐久性指数の算出を行った。
【0071】
[実施例19]
脱型後の成形体を、減圧したデシケーター内で30分間水に浸漬した(表6中、「減圧下」と示す。)後に蒸気養生を行った以外は、実施例15と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例15と同様にして、セメント組成物の0打ちフロー値等を測定した。なお、硬化体の圧縮強度は、測定装置の測定限界(511N/mm
2)を超えていた。
【0072】
[実施例20]
シリカフュームDの含有率を10体積%から20体積%に変更し、かつ、無機粉末の含有率を30体積%から20体積%に変更した以外は、実施例15と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。該成形体の脱型時の圧縮強度は51N/mm
2であった。
実施例15と同様にして、セメント組成物の0打ちフロー値等を測定した。
[実施例21]
脱型後の成形体を、減圧したデシケーター内で30分間水に浸漬した後に蒸気養生を行った以外は、実施例20と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例15と同様にして、セメント組成物の0打ちフロー値等を測定した。なお、硬化体の圧縮強度は、測定装置の測定限界(511N/mm
2)を超えていた。
また、前記セメント質硬化体と同様にして40×40×160mmの供試体を製造し、「JIS A 1129−2:2010 モルタル及びコンクリートの長さ変化測定方法−第2部:コンタクトゲージ方法」に準拠して、6か月保存した場合における収縮ひずみを測定した。
【0073】
[実施例22]
脱型後の成形体を、減圧したデシケーター内で30分間水に浸漬した後に蒸気養生を行った以外は、実施例17と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
実施例15と同様にして、セメント組成物の0打ちフロー値等を測定した。
【0074】
[実施例23]
低熱ポルトランドセメントの研磨処理物、シリカフュームD、無機粉末、及び骨材A1を、低熱ポルトランドセメントの研磨処理物等の含有率が表5に示す量となるように、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表5に示す量でオムニミキサに投入して、2分間混練した。なお、消泡剤の配合量は、粉体原料100質量部に対して0.02質量部とした。
混練後、オムニミキサの側面に付着した混練物を掻き落とし、さらに4分間混練を行った。その後、セメント組成物中の金属繊維の含有率が表5に示す量の金属繊維を、オムニミキサに投入して、さらに2分間混練を行った。
得られたセメント組成物について、実施例15と同様にして0打ちフロー値を測定した。
また、得られたセメント組成物を用いて、実施例18と同様の方法で、セメント質硬化体(成形体)を得た。
得られたセメント質硬化体(成形体)について、実施例18と同様にして、吸水率及び圧縮強度を測定した。なお、硬化体の圧縮強度は、測定装置の測定限界(511N/mm
2)を超えていた。
また、得られたセメント質硬化体の曲げ強度を、「土木学会基準 JSCE−G 552−2010(鋼繊維補強コンクリートの曲げ強度及び曲げタフネス試験方法)」に準じて測定した。
【0075】
[実施例24]
脱型後の成形体を、沸騰している水に30分間浸漬する代わりに、減圧したデシケーター内で30分間水に浸漬した後に蒸気養生を行った以外は、実施例23と同様にして、セメント組成物及びセメント質硬化体(加熱後の成形体)を得た。
セメント組成物及びセメント質硬化体(加熱後の成形体)について、実施例23と同様にして、各種物性を測定した。なお、硬化体の圧縮強度は、測定装置の測定限界(511N/mm
2)を超えていた。
【0076】
[実施例25]
低熱ポルトランドセメントの研磨処理物、シリカフュームD、無機粉末、及び骨材A1を、低熱ポルトランドセメントの研磨処理物等の含有率が表5に示す量となるように、オムニミキサに投入して、15秒間空練りを行った。
次いで、水、ポリカルボン酸系高性能減水剤、及び消泡剤を、表5に示す量でオムニミキサに投入して、2分間混練した。なお、消泡剤の配合量は、粉体原料100質量部に対して0.02質量部とした。
混練後、オムニミキサの側面に付着した混練物を掻き落とし、さらに4分間混練を行った。その後、骨材Bを、その含有率が表5に示す量となるように、オムニミキサに投入して、さらに1分間混練を行った。
混練後のセメント組成物を、φ100×200mmの円筒形の型枠に打設して、未硬化の成形体を得た。打設後、未硬化の成形体について、20℃で72時間静置した。次いで、脱型して、硬化体を得た。該成形体の脱型時の圧縮強度は41N/mm
2であった。
さらに、前記成形体を90℃で48時間蒸気養生を行い、次いで、20℃になるまで降温させた後、さらに、乾燥炉を用いて180℃で48時間加熱した。
得られたセメント質硬化体(加熱後の成形体)について、実施例15と同様にして圧縮強度を測定した。
【0077】
[実施例26]
低熱ポルトランドセメントの研磨処理物の代わりに、中庸熱ポルトランドセメントの研磨処理物を使用し、脱型後の成形体を、減圧したデシケーター内で30分間水に浸漬した後に蒸気養生を行った以外は、実施例25と同様にして、セメント質硬化体(加熱後の成形体)を得た。
セメント質硬化体について、実施例18と同様にして、吸水率及び圧縮強度を測定した。
【0078】
[比較例2]
中庸熱ポルトランドセメントの研磨処理物、シリカフュームC、骨材A2、高性能減水剤、水を、表5に示す量となるように、一括してホバートミキサに投入した後、低速で12分間混練して、セメント組成物を調製した以外は、実施例15と同様にして、セメント組成物の硬化体を得た。実施例15と同様にして、セメント組成物の0打ちフロー値等を測定した。
[比較例3]
中庸熱ポルトランドセメントの研磨処理物と、骨材A2と、高性能減水剤と、水を、表5に示す量となるように、一括してホバートミキサに投入して、セメント組成物を調製しようとしたが混練できなかった。
[比較例4]
中庸熱ポルトランドセメントと、シリカフュームCと、骨材A2と、高性能減水剤と、水を、表5に示す配合で一括してホバートミキサに投入して、セメント組成物を調製しようとしたが混練できなかった。
以上の結果を表6に示す。
【0079】
【表5】
【0080】
【表6】
【0081】
表3及び表6から、骨材Aを含むが骨材B(粗骨材)は含まない実施例1〜12及び実施例15〜24のセメント質硬化体の圧縮強度は350N/mm
2以上と高い。特に、研磨処理したセメントを用いた、実施例15〜24のセメント質硬化体の圧縮強度は420N/mm
2以上と非常に高い。また、実施例9〜10及び実施例23〜24(セメント組成物が金属繊維を含むもの)は、得られたセメント質硬化体について、圧縮強度が445N/mm
2以上であり、著しく高く、かつ、曲げ強度が40N/mm
2以上である。
また、骨材Bを含む場合(実施例13〜14、実施例25〜26)であっても、セメント質硬化体の圧縮強度は333N/mm
2以上と高い。
また、実施例1〜2、5、8、10、12、14、18のセメント質硬化体のすりへり深さは0.37mm以下と小さい。
また、実施例5、8、12、21のセメント質硬化体の収縮ひずみは5×10
−6以下と小さい。
さらに、実施例5、8、10、12、14、18のセメント質硬化体の透水係数、塩化物イオンの拡散係数、耐久性指数から、得られたセメント質硬化体が遮水性、遮塩性、及び凍結融解抵抗性に優れている。また、実施例5,12のクリープ係数は0.15以下と小さい。
これらの結果から、本発明の高速度交通システム構造物用コンクリート部材は、高強度で硬化体の組織が緻密なため、クリープが低減し、寸法安定性が高いほか、コンクリートの遮塩性、耐摩耗性、遮水性、及び凍結融解抵抗性等の耐久性に優れていることがわかる。
一方、比較例1〜2のセメント質硬化体の圧縮強度は290N/mm
2であり、実施例1〜26と比べて低い。また、比較例1のセメント質硬化体のすりへり深さは0.57mmであり、実施例に比べて大きい。また、比較例3〜4のセメント組成物は混練できなかった。