【文献】
松本 佳昭, 他,心拍揺らぎによる精神的ストレス評価法に関する研究,ライフサポート学会誌,日本,ライフサポート学会,2010年,Vol.22 No.3,p.105-111
(58)【調査した分野】(Int.Cl.,DB名)
生物の拍動間隔を示すためのデータを取得するためのインターフェイスと、 拍動間隔のポアンカレプロットの連続する2つのプロットの距離の平均に基づいて、前記生物の精神的状態または肉体的状態を示す情報を取得するためのプロセッサと、を備える、状態取得コンピュータ。
【発明を実施するための形態】
【0023】
以下、図面を参照しつつ、本開示の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
<第1の実施の形態>
<状態取得システムの全体構成>
【0024】
まず、
図1を参照して、本実施の形態にかかる状態取得システム1の全体構成について説明する。
図1は、本実施の形態にかかる状態取得システム1の全体構成を示す図である。なお、以下では、生物を代表して、呼吸性の不整脈を有する犬の状態を判断する場合について説明する。
【0025】
本実施の形態にかかる状態取得システム1は、主に、犬の胸部に取り付けられる心電取得用の電極401,402,403と、心電信号を処理するための信号処理装置500と、信号処理装置500と通信可能な通信端末300とを含む。
【0026】
心電取得用の電極401,402,403は、胸部等において、心臓部を挟むような位置に取り付けることが望ましく、例えば、両前足(または、前足と後ろ足)の肉球部など毛の生えていない場所であってもよい。また、毛を刈った状態であるか、ゲルなどが付着した電極、あるいは、突起状の構造を持ち、毛があっても皮膚と接触する構成であることが望ましい。あるいは、毛がある状態で、非接触で容量性材料を介して心電を誘導する形態が望ましい。それにより、犬等の表皮が毛に覆われた生物であっても心電を取得することが可能となる。本実施の形態においては、3個の電極401,402,403を使用する構成としているが、電極は、2個以上であればよく、さらに、多くの電極を使用する構成としてもよい。
<状態取得システムの機能構成と処理手順>
【0027】
次に、
図2および
図3を参照して、本実施の形態にかかる状態取得システム1の機能構成と処理手順とについて説明する。
図2は、本実施の形態にかかる状態取得システム1の機能構成を示す図である。
図3は、本実施の形態にかかる状態取得システム1の処理手順を示すフローチャートである。
【0028】
まず、状態取得システム1の信号処理装置500の構成について説明する。信号処理装置500は、心電前処理部511と拍動間隔算出部512と送信部560を含む。
【0029】
心電前処理部511は、フィルタや増幅器を含む。心電前処理部511は、電極401,402,403から送られている心電信号を拍動データに変換して、拍動間隔算出部512に受け渡す。
【0030】
より詳細には、心電前処理部511には、ハイパスフィルタ、ローパスフィルタなどのフィルタ装置、オペアンプなどから構成される増幅装置、心電のアナログ信号をデジタル信号に変換するA/D変換装置等が含まれる。尚、フィルタ装置、増幅装置などは、ソフトウェアにより実装される形態であってもよい。また、A/D変換装置においては、拍動間隔のゆらぎ量の差異が判別できる周期と精度でのサンプリングを行うことが望ましい。すなわち、A/D変換の周波数が、25Hz以上の周波数で取得することが望ましい。例えば、本実施の形態においては、100Hzでの心電信号のサンプリングを行っている。サンプリングの周波数を高めることにより、拍動間隔の揺らぎ量を正確に把握することが可能となる。
【0031】
拍動間隔算出部512は、例えばCPU(Central Processing Unit)510がメモリのプログラムを実行することによって実現される。拍動間隔算出部512は、拍動データに基づいて、拍動間隔を逐次算出する。より詳細には、拍動間隔算出部512は、閾値検出などの方法により、心電のピーク信号(R波)を検出し、各心電のピークの間隔(時間)を算出する。拍動間隔の算出方法として、上記の他に、自己相関関数を用いた周期の導出や矩形波相関トリガを用いる方法などで行ってもよい。
【0032】
本実施の形態においては、拍動間隔算出部512は、連続して入力される心電信号に対して連続して拍動間隔の算出を実行する。拍動間隔算出部512は、算出した拍動間隔や拍動データ自体を、送信部560を介して通信端末300に送信する。なお、送信部560は、例えば、アンテナやコネクタなどを含む通信インターフェイスによって実現される。
【0033】
次に、通信端末300の構成について説明する。通信端末300は、受信部361、拍動間隔記憶部321、統計処理部311と、ポアンカレプロット作成部312と、結果出力部313と、ディスプレイ330と、データ記憶部322と、送信部362とを含む。
【0034】
まず、受信部361と送信部362は、例えば、アンテナやコネクタなどを含む通信インターフェイス360によって実現される。受信部361は、信号処理装置500からの拍動間隔を示すデータを受信する(ステップS102)。
【0035】
拍動間隔記憶部321は各種のメモリ320などによって構成され、信号処理装置500から受信したデータを格納する。本実施の形態においては、CPU310が、通信インターフェイス360を介して受信した拍動間隔を拍動間隔テーブルとして逐次メモリ320に蓄積していく(ステップS104)。ただし、これらのデータは、通信端末300のメモリ320に記憶されてもよいし、通信端末300からアクセス可能な他の装置に記憶されてもよい。
【0036】
統計処理部311と、ポアンカレプロット作成部312と、結果出力部313とは、例えばCPU310がメモリ320のプログラムを実行することによって実現される。統計処理部311は、一定時間単位、例えば、1分、10分、1時間など、状態を判定するために必要な時間単位で、拍動間隔記憶部321から拍動間隔データを読み出して、
図4に示すような、拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)との対応関係テーブル321Aを作成する(ステップS106)。拍動間隔は、例えば、図に示すようにmsec(ミリセック)の単位で計算される。
【0037】
統計処理部311は、
図5に示すように、拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)との対応関係テーブルからY=X方向とそれに垂直な方向の軸への変換を行う(ステップS108)。
【0038】
統計処理部311は、軸の変換を行った後のそれぞれの軸を構成する数値列に関する標準偏差を算出する(ステップS110)。なお、統計処理部311は、Y=X軸に関する標準偏差だけを算出してもよいし、Y=Xと垂直な軸に関する標準偏差だけを算出してもよいし、両方を算出してもよい。
図6は、犬の精神状態または肉体的状態毎の、Y=X軸に関する標準偏差と、Y=Xと垂直な軸に関する標準偏差との目安を示す表である。
【0039】
なお、統計処理部311は、主成分分析などの方法により分散が最大になる軸を特定し、当該軸と当該軸に垂直な軸に関する標準偏差を算出してもよい。さらには、統計処理部311は、軸変換を行わずに、X軸とY軸に関する標準偏差を算出するものであってもよい。分散の大きい方向がX軸方向とY軸方向である場合には、軸変換を行わなくとも、X軸とY軸の標準偏差を算出することで、ポアンカレプロットした拍動間隔のばらつき状態を評価できる。この場合、軸変換を行う必要が無いために、計算量を低減することができる。
【0040】
結果出力部313は、例えば、自身の、あるいは外部の、ディスプレイ330やスピーカなどの出力装置に、標準偏差を表示させたり、音声メッセージを出力させたりする(ステップS114)。より詳細には、結果出力部313は、Y=X軸に関する標準偏差だけを出力させてもよいし、Y=Xと垂直な軸に関する標準偏差だけを出力させてもよいし、両方を出力させてもよいし、大きい方だけを出力させてもよいし、小さい方だけを出力させてもよい。
【0041】
標準偏差を計算することにより、拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)とをそれぞれ軸としてポアンカレプロットした拍動間隔のばらつき状態が評価できる。
【0042】
なお、本実施の形態にかかる状態取得システム1は、
図7に示すように通信端末300が通信可能なサーバ100を含む形態であってもよい。その場合、結果出力部313としてのCPU310は、標準偏差や関係テーブルなどデータ記憶部322に蓄積したり、送信部362を利用することによって、インターネットなどを介してサーバ100に送信したりする。これによって、今回の出力結果を観察対象の短期または長期のストレス状態の把握などに利用することができる。
【0043】
本実施の形態においては、ステップS108とは別に、同時にポアンカレプロット作成部312は、
図4の対応関係テーブルから、標準偏差の計算に使用した範囲の拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)とのデータを取得して、
図8〜
図11に示すようなポアンカレプロット図を作成する。
【0044】
そして、結果出力部313は、作成されたポアンカレプロット図を、自身の、または外部の、ディスプレイなどの出力装置に表示させる。なお、ポアンカレプロット作成部312は、ステップS108の結果を利用して、軸変換後のポアンカレプロット図を作成して出力してもよい。
【0045】
ここで、ポアンカレプロット図に関して説明する。
図8は、本実施の形態にかかる犬の興奮状態におけるポアンカレプロット図である。
図9は、本実施の形態にかかる犬の通常状態で呼吸が安定している状態におけるポアンカレプロット図である。
図10は、本実施の形態にかかる犬の通常状態におけるポアンカレプロット図である。
図11は、本実施の形態にかかる犬の安静状態におけるポアンカレプロット図である。
【0046】
まず、例えば犬などの呼吸性の不整脈を有する生物の場合、
図8のような興奮状態においては、心拍数が上昇し(拍動間隔は短くなる)、拍動間隔の揺らぎは小さくなり、プロットの点が一定の場所に集まるような状態になる。
【0047】
そして、
図9のような呼吸が安定している通常の状態においては、心拍数が安静状態ほどは少なくない(プロットの点の広がりが安静状態ほど大きくない)が、プロット点の分布の中心にプロットが少ない(穴の空白)領域が存在する。このような形状になるのは、犬の心拍が呼吸の影響を大きく受けるため、拍動変動が周期的に変化することが原因と考えられる(呼吸性不整脈)。そのため、リラックスした緩やかな拍動ではないが、呼吸が安定して行われているため、空白の存在する状態になると考えられる。
【0048】
そして、
図10のような通常状態においては、拍動に揺らぎがみられ、ばらつきは大きくなる(プロット点が広がる)が、プロット点が散乱している状態となる。
【0049】
そして、
図11の安静状態においては、犬がリラックスしているために拍動の間隔が大きくなり、さらに呼吸性不整脈の影響を大きく受けるために、プロット点の広がりが大きくなると共に、円形や四角形に近い形状や、三角形に近い形状となる。そのいずれの形状においても、安静状態ではポアンカレプロットのプロット点の分布の中心部に空白部分が見られる形状となる。
【0050】
このように、本実施の形態においては、算出結果に基づいて間接的に、ポアンカレプロットのプロット点の分布の広がりの大きさや形状、中心部にプロットが多くみられるか少なくみられるかを予想することができ、その結果、生物の精神的状態または肉体的状態を予想することができる。
<第2の実施の形態>
【0051】
第1の実施の形態においては、通信端末300が、ポアンカレプロットのY=Xの軸に沿った標準偏差またはY=Xと垂直な軸に沿った標準偏差を出力するものであった。しかしながら、本実施の形態においては、それら2つの標準偏差の積を算出するものである。以下では、
図12を参照して、本実施の形態にかかる状態取得システム1の処理手順について説明する。
【0052】
図12は、本実施の形態にかかる状態取得システム1の処理手順を示すフローチャートである。ステップS202〜ステップS208は、第1の実施の形態のステップS102〜ステップS108と同様であるため、ここでは説明を繰り返さない。
【0053】
統計処理部311としてのCPU310は、軸の変換を行った後のそれぞれの軸に関する標準偏差を算出する(ステップS210)。なお、統計処理部311は、分散が最大になる軸を特定し、当該軸と当該軸に垂直な軸に関する標準偏差を算出してもよい。
【0054】
そして、統計処理部311は、それらの2つの標準偏差の積を計算する(ステップS212)。
【0055】
結果出力部313は、例えば、自身の、または外部の、ディスプレイやスピーカなどの出力装置に、標準偏差の積を表示させたり、音声メッセージを出力させたりする(ステップS214)。より詳細には、結果出力部313は、Y=X軸に関する標準偏差と、Y=−Xの軸に関する標準偏差と、両者の積とを出力させてもよい。
【0056】
図13は、犬の精神状態または肉体的状態毎の、Y=X軸に関する標準偏差と、Y=Xと垂直な軸に関する標準偏差と、標準偏差の積と、標準偏差の比との目安を示す表である。
【0057】
標準偏差の積を計算することにより、拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)とをそれぞれ軸としてポアンカレプロットした拍動間隔の分布の広がりの大きさや形状、一様に分散している、中心に空白がある等のばらつき状態が評価できる。また、縦横比が同じで大きさのみ変化している状態や分布の広がり面積が同じで中心部のばらつき状態が異なる場合などに有効にばらつき状態を評価できる。
【0058】
なお、結果出力部313は、標準偏差や標準偏差の積や対応関係テーブルなどデータ記憶部322に蓄積したり、送信部362を利用することによって、インターネットなどを介してサーバ100に送信したりする。これによって、今回の出力結果を観察対象の短期または長期のストレス状態の把握などに利用することができる。
【0059】
本実施の形態においても、ポアンカレプロット作成部312としてのCPU310が、
図8〜
図11に示すようなポアンカレプロット図を作成してもよいし、作成されたポアンカレプロット図をディスプレイなどの出力装置に表示させたり、サーバ100に送信したりしてもよい。
【0060】
なお、本実施の形態においては、統計処理部311が、2つの軸の標準偏差の積を計算するものであるが、3つ以上の軸の標準偏差の積を計算するものであってもよい。
【0061】
このように、本実施の形態においては、算出結果に基づいて間接的に、ポアンカレプロットの分布の広がりの大きさや形状、中心部にプロットが多くみられるか少なくみられるかを予想することができ、その結果、生物の精神的状態または肉体的状態を予想することができる。
<第3の実施の形態>
【0062】
第1の実施の形態においては、通信端末300が、ポアンカレプロットのY=X軸および/またはY=Xと垂直な軸に関する標準偏差を出力するものであった。しかしながら、本実施の形態においては、軸変換する前のポアンカレプロットのX軸またはY軸に関する標準偏差または標準偏差の積を算出するものである。以下では、
図14を参照して、本実施の形態にかかる状態取得システム1の処理手順について説明する。
【0063】
図14は、本実施の形態にかかる状態取得システム1の処理手順を示すフローチャートである。ステップS302〜ステップS304は、第1の実施の形態のステップS102〜ステップS104それと同様であるため、ここでは説明を繰り返さない。
【0064】
統計処理部311は、一定時間単位、例えば、1分、10分、1時間など状態を判定するために必要な時間単位で、拍動間隔記憶部321から拍動間隔データを読み出して、拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)との関係テーブルを作成する(ステップS306)。
【0065】
統計処理部311は、X軸に関する標準偏差とY軸に関する標準偏差とを算出する(ステップS310)。
【0066】
そして、統計処理部311は、それらの2つの標準偏差の積を計算する(ステップS312)。
【0067】
結果出力部313としてのCPU310は、例えば、ディスプレイやスピーカなどの出力装置に、標準偏差の積を表示させたり、音声メッセージを出力させたりする(ステップS314)。より詳細には、結果出力部313は、X軸に関する標準偏差と、Yの軸に関する標準偏差と、両者の積とを出力させてもよい。
【0068】
標準偏差の積を計算することにより、拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)とをそれぞれ軸としてポアンカレプロットした拍動間隔のばらつき状態が評価できる。
【0069】
なお、本実施の形態においても、結果出力部313としてのCPU310は、標準偏差や標準偏差の積や対応関係テーブルなどデータ記憶部322に蓄積したり、送信部362を利用することによって、インターネットなどを介してサーバ100に送信したりする。これによって、今回の出力結果を観察対象の短期または長期のストレス状態の把握などに使用することができる。
【0070】
本実施の形態においても、ポアンカレプロット作成部312としてのCPU310が、
図8〜
図11に示すようなポアンカレプロット図を作成してもよいし、作成されたポアンカレプロット図をディスプレイなどの出力装置に表示させたり、サーバ100に送信したりしてもよい。
【0071】
なお、第1〜第3の実施の形態における、興奮状態、第1の通常状態(通常状態で呼吸が安定している状態)、第2の通常状態、安静状態は、ストレス状態を表す指標としても、利用することが可能である。拍動間隔のLF/HF解析とも相関がある。
図8の状態では、LF/HF値が大きく、
図9、
図10、
図11と遷移すると共に、LF/HFの数値も小さくなる。すなわち、リラックスしている状態となる。これにより、犬のストレス状態の推移も把握できる。ただし、LF/HFでは、区別できる範囲に限界があり、ポアンカレプロットを利用する方が、より詳細に状態を識別することが可能である。また、ポアンカレプロットを利用することにより、LF/HF解析のように周波解析を行う必要がないため、計算量が少なくなるという利点がある。
【0072】
このように、本実施の形態においては、算出結果に基づいて、ポアンカレプロットの分布の広がりの大きさや形状、中心部にプロットが多くみられるか少なくみられるかを予想することができ、その結果、生物の精神的状態または肉体的状態を予想することができる。
<第4の実施の形態>
【0073】
第1〜3の実施の形態においては、通信端末300が、ポアンカレプロットの標準偏差や標準偏差の積を出力するものであった。しかしながら、本実施の形態においては、ポアンカレプロットの連続する2つのプロット間の距離の平均を算出するものである。以下では、
図15を参照して、本実施の形態にかかる状態取得システム1の処理手順について説明する。
【0074】
図15は、本実施の形態にかかる状態取得システム1の処理手順を示すフローチャートである。ステップS402〜ステップS406は、第1の実施の形態のステップS102〜ステップS106と同様であるため、ここでは説明を繰り返さない。
【0075】
統計処理部311としてのCPU310は、一定期間における、[R−R(n),R−R(n+1)]から次の[R−R(n),R−R(n+1)]までの距離を計算して、
図16に示すような距離テーブル321Bをメモリ320に格納する。CPU310は、当該距離の平均値を算出する(ステップS410)。なお、統計処理部311は、分散が最大になる軸を特定し、当該軸への変換後に距離の平均値を算出してもよい。
【0076】
結果出力部313としてのCPU310は、例えば、ディスプレイやスピーカなどの出力装置に、当該距離の平均値を表示させたり、音声メッセージを出力させたりする(ステップS412)。
【0077】
図17は、本実施の形態にかかる犬の精神的状態または肉体的状態毎の、距離の平均値との目安を示す表である。
【0078】
ポアンカレプロットの分布状態によって各点の間の距離が異なるため、平均値を求めることでポアンカレプロットの形状を反映させることができる。このように、本実施の形態においては、算出結果に基づいて、ポアンカレプロットの分布の広がりの大きさや形状、中心部にプロットが多くみられるか少なくみられるかを予想することができ、その結果、生物の精神的状態または肉体的状態を予想することができる。
<第5の実施の形態>
【0079】
第1〜4の実施の形態においては、通信端末300が、ポアンカレプロット自体や、標準偏差や、標準偏差の積や、距離の平均などを出力するものであった。しかしながら、本実施の形態においては、それらの数値に基づいて、生物の状態の判定まで行うものである。
【0080】
まず、
図18を参照して、本実施の形態にかかる状態取得システム1の機能構成について説明する。
図18は、本実施の形態にかかる状態取得システム1の機能構成を示す図である。
【0081】
通信端末300は、第1〜第4の実施の形態にかかる通信端末300と比較して、状態判定部314を含む。状態判定部314は、例えばCPU310がメモリ320のプログラムを実行することなどによって実現される。
【0082】
通信端末300のメモリ320は、生物の状態毎の、数値範囲やモデルの特徴データなどを記憶する。例えば、メモリ320は、状態毎の標準偏差の数値範囲や閾値を格納する。あるいは、メモリ320は、状態毎の標準偏差の積の数値範囲や閾値を格納する。あるいは、メモリは、状態毎の距離の平均の数値範囲や閾値を格納する。あるいは、メモリ320は、状態毎のポアンカレプロットのモデル形状を格納する。
【0083】
以下では、
図19を参照して、本実施の形態にかかる状態取得システム1の処理手順について説明する。
図19は、本実施の形態にかかる状態取得システム1の処理手順を示すフローチャートである。ステップS502〜ステップS508は、第1の実施の形態のステップS102〜ステップS108と同様であるため、ここでは説明を繰り返さない。
【0084】
統計処理部311は、標準偏差、標準偏差の積、距離の平均などを算出する(ステップS510)。なお、ここで、ポアンカレプロット作成部312が、ポアンカレプロットを作成してもよい。
【0085】
次に、状態判定部314としてのCPU310は、統計処理部311からの標準偏差が、どの状態に対応する数値範囲に収まるかを判定する(ステップS512)。あるいは、状態判定部314は、統計処理部311からの標準偏差の積が、どの状態に対応する数値範囲に収まるかを判定する。あるいは、状態判定部314は、統計処理部311からの距離の平均値が、どの状態に対応する数値範囲に収まるかを判定する。状態判定部314は、統計処理部311またはポアンカレプロット作成部312からのポアンカレプロットの形状が、どの状態のポアンカレプロットのモデル形状に似通っているかを判定する。
【0086】
例えば、データ記憶部322としてのメモリ320は、標準偏差の積の数値範囲として、5.0×10
4未満が興奮状態、5.0×10
4以上1.0×10
5未満が第1の通常状態、1.0×10
5以上1.4×10
5未満が第2の通常状態、
1.40×10
5以上が安静状態、というデータを記憶する。そして、状態判定部314が、当該データに基づいて、状態を判定する。
【0087】
あるいは、データ記憶部322としてのメモリ320は、距離の平均の数値範囲として、4.0×10
2未満が興奮状態、4.0×10
2以上5.0×10
2未満が第1の通常状態、5.0×10
2以上6.0×10
2未満が第2の通常状態、6.0×10
2以上が安静状態、というデータを記憶する。そして、状態判定部314が、統計処理部311からの計算結果が、どの状態に対応する数値範囲に収まるかを判定する。
【0088】
結果出力部313としてのCPU310は、例えば、ディスプレイやスピーカなどの出力装置に、標準偏差、標準偏差の積、距離の平均、ポアンカレプロットのグラフ自体、そして判定結果としての生物の状態を表示させたり、音声メッセージを出力させたりする(ステップS514)。
【0089】
なお、結果出力部313は、計算結果や判定結果などをデータ記憶部322に蓄積したり、送信部362を利用することによって、インターネットなどを介してサーバ100に送信したりする。これによって、今回の出力結果を観察対象の短期または長期のストレス状態の把握などに使用することができる。
【0090】
このように、本実施の形態においては、算出結果に基づいて、ポアンカレプロットの分布の広がりの大きさや形状、中心部にプロットが多くみられるか少なくみられるかを予想することができ、その結果、生物の精神的状態または肉体的状態を予想することができる。すなわち、生物においては、精神的状態(興奮、怒り、喜び、悲しみ、楽しみ、ストレス状態、非ストレス状態)により、拍動間隔のばらつきの状態が変化する。また、肉体的状態(運動、体動、睡眠、安静、疾患、痛みに起因する)の変化においても、拍動間隔のばらつきの状態が変化する。これらの状態の変化を予想することができる。状態の変化を把握することで、生物と人の間の意思の疎通やコミュニケーションの援助、躾、運動負荷の調整などが可能になる。また、病気による精神的な状態や肉体的な状態の変化を検出し、治療や病状の観察に役立てることが可能となる。
<第6の実施の形態>
【0091】
なお
図19において、統計処理部311が、標準偏差、標準偏差の積、距離の平均、ポアンカレプロットのグラフなどのうちの複数の指標を取得してもよい(ステップS510)。そして、状態判定部314が、当該複数の指標に基づいて、生物の状態を判断してもよい(ステップS512)。この場合は、状態判定部314は、より一致度が高い指標に基づいて状態を判定したり、複数の判定結果のうちのもっとも不安定な状態を判定結果にしたりしてもよい。
<第7の実施の形態>
【0092】
第1〜第6の実施の形態においては、主に、ポアンカレプロットを利用して生物の状態を判断するものであった。本実施の形態においては、拍動間隔のヒストグラムを利用して生物の状態を判断するものである。
【0093】
まず、
図20を参照して、本実施の形態にかかる状態取得システム1の機能構成について説明する。
図20は、本実施の形態にかかる状態取得システム1の機能構成を示す図である。
【0094】
通信端末300は、第5の実施の形態の通信端末300と比較して、ポアンカレプロット作成部312の代わりに、ヒストグラム作成部315を含む。ヒストグラム作成部315は、例えばCPU310がメモリ320のプログラムを実行することによって実現される。
【0095】
通信端末300のメモリ320は、生物の状態毎の、ヒストグラムのモデルのデータなどを記憶する。
【0096】
以下では、
図21を参照して、本実施の形態にかかる状態取得システム1の処理手順について説明する。
図21は、本実施の形態にかかる状態取得システム1の処理手順を示すフローチャートである。ステップS702〜ステップS704は、第1の実施の形態のステップS102〜ステップS104と同様であるため、ここでは説明を繰り返さない。
【0097】
統計処理部311としてのCPU310は、一定時間単位、例えば、1分、10分、1時間など状態を判定するために必要な時間単位で、拍動間隔記憶部321から拍動間隔データを読み出して、
図22〜
図25に示すような、拍動間隔とその頻度と関係を示すヒストグラムを作成する(ステップS706)。
【0098】
次に、状態判定部314としてのCPU310は、ヒストグラム作成部315からのヒストグラムの形状が、どの状態のヒストグラムのモデル形状に似通っているかを判定する(ステップS712)。
【0099】
結果出力部313としてのCPU310は、例えば、ディスプレイやスピーカなどの出力装置に、ヒストグラムのグラフ自体、および/あるいは、判定結果としての生物の状態、を表示させたり音声メッセージを出力させたりする(ステップS714)。
【0100】
なお、結果出力部313は、計算結果や判定結果などをデータ記憶部322に蓄積したり、送信部362を利用することによって、インターネットなどを介してサーバ100に送信したりする。これによって、今回の出力結果を観察対象の短期または長期のストレス状態の把握などに使用することができる。
【0101】
例えば、犬の場合、興奮状態では、
図22に示すように、1つの半値幅の狭いピークが現れる。また、第1の通常状態では、
図23に示すように、ポアンカレプロットにおいて中心部に空白があることを反映し、2つのピークを持つ比較的半値幅の狭いピークとなる。また、
図24に示すように、第2の通常状態では、ピークが1つではあるが、半値幅が広いピークが現れる。
図25に示すように、安静状態においては、ポアンカレプロットにおいて中心部に空白があることを反映し、ピークが2つ存在する。
【0102】
状態判定部314は、このヒストグラムの形状に近いモデルを判別し、対応する状態を特定することによって、興奮状態、第1の通常状態、第2の通常状態、安静状態などを判断する。例えば、状態判定部314は、ピーク検出により、ピークの個数を検出し、また、半値幅(ピークの裾の広がり)を求めることによって、分布の広がり度合を閾値を用いて判定する。この場合は、メモリ320が、状態毎の、ヒストグラムの分布の広がりを示す数値範囲を記憶する。
【0103】
具体的には、状態判定部314は、ピークが1つで半値幅が狭い場合は、興奮状態であると判定する。状態判定部314は、ピークが1つで半値幅が広い場合には、第2の通常状態と判定する。状態判定部314は、ピークが2個で半値幅が狭い場合には、第1の通常状態と判定する。状態判定部314は、ピークが2個で半値幅が広い場合には、安静状態であると判定する。
【0104】
なお、これらの閾値や数値範囲は、犬の種類や年令によって、異なる可能性があるため、それらの条件に従って設定を変更することが望ましい。例えば、ユーザが犬の種類や性別や年令を入力し、犬の種類や性別や年令に応じた閾値を設定する構成としてもよい。
【0105】
このように、拍動間隔の長さ毎に拍動の個数をカウントすることによってヒストグラムを作成し、その分布により状態を判別することが可能である。状態を判別するまでの計算量を抑えることができる。そして、本実施の形態においては、算出結果に基づいて、ポアンカレプロットの分布の広がりの大きさや形状、中心部にプロットが多くみられるか少なくみられるかを予想することができ、その結果、生物の精神的状態または肉体的状態を予想することができる。
<第8の実施の形態>
【0106】
あるいは、ポアンカレプロットの軌跡を利用して生物の状態を判定してもよい。本実施の形態においては、
図18のポアンカレプロット作成部312としてのCPU310は、対応関係テーブルから、標準偏差の計算に使用した範囲の拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)とのデータを取得して、
図8〜
図11に示すようなポアンカレプロット図を作成する。より詳細には、本実施の形態においては、ポアンカレプロット作成部312は、プロットだけでなく、プロットから次のプロットへの軌跡も取得して認識したり描画したりする。
【0107】
また、通信端末300のメモリ320は、生物の状態毎の、ポアンカレプロットの軌跡のモデルのデータなどを記憶する。
【0108】
以下では、
図26を参照して、本実施の形態にかかる状態取得システム1の処理手順について説明する。
図26は、本実施の形態にかかる状態取得システム1の処理手順を示すフローチャートである。なお、ステップS802〜ステップS806は、第1の実施の形態のステップS102〜ステップS106のそれと同様であるため、ここでは説明を繰り返さない。
【0109】
統計処理部311としてのCPU310は、
図5に示すように、拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)との対応関係テーブル321Aから、プロット間の軌跡を含むポアンカレプロットグラフを描画する(ステップS810)。
【0110】
次に、状態判定部314は、メモリ320を参照して、描画されたポアンカレプロットの軌跡に似通っている軌跡のモデルがあるか否かをパターン認識等の技術により判断する(ステップS812)。描画されたポアンカレプロットの軌跡が、いずれの軌跡のモデルにも似通っていない場合は(ステップS812にてNOである場合)、別のタイミングの拍動間隔の対応関係を読み出して、再度ステップS810からの処理を繰り返す。
【0111】
描画されたポアンカレプロットの軌跡に似通っている軌跡のモデルがある場合(ステップS812にてYESである場合)、結果出力部313としてのCPU310は、例えば、ディスプレイやスピーカなどの出力装置に、ポアンカレプロットの軌跡のグラフ自体、および/または、判定結果としての生物の状態、を表示させたり音声メッセージを出力させたりする(ステップS814)。
【0112】
なお、結果出力部313としてのCPU310は、計算結果や判定結果などをデータ記憶部322に蓄積したり、送信部362を利用することによって、インターネットなどを介してサーバ100に送信したりする。これによって、今回の出力結果を観察対象の短期または長期のストレス状態の把握などに使用することができる。
【0113】
例えば、犬の場合、興奮状態では
図27に示すような軌跡が、第1の通常状態では
図28に示すような軌跡が、第2の通常状態では
図29に示すような軌跡が、安静状態においては
図30に示すような軌跡が描画される。
【0114】
このように、本実施の形態においては、算出結果に基づいて、ポアンカレプロットの分布の広がりの大きさや形状、中心部にプロットが多くみられるか少なくみられるかを予想することができ、その結果、生物の精神的状態または肉体的状態を予想することができる。
<第9の実施の形態>
【0115】
安静状態を判定するために、状態取得システム1は、ポアンカレプロットのグラフにおいて、プロットの中央部分にプロットが少ないエリアが存在しているか否かを判定できればよく、当該判定方法は、第1〜第8の実施の形態のうちの複数の方法を利用したり、第1〜第8の実施の形態とは異なる方法を利用したりしてもよい。換言すれば、状態取得システム1は、ポアンカレプロットのグラフにおいて、プロット全体のうちの中央部分のプロットの量や割合に応じて生物の状態を判定してもよい。
【0116】
例えば、状態判定部314は、ポアンカレプロットのグラフにおいて、2つの軸に関し、全プロットの平均値から、標準偏差の所定倍までの距離以内に、プロットの総数の第1の所定割合未満しかプロットがなければ安静状態である、と判断してもよい。そして、状態判定部314は、ポアンカレプロットのグラフにおいて、2つの軸に関し、全プロットの平均値から、標準偏差の所定倍までの距離以内に、プロットの総数の第1の所定割合以上第2の所定割合未満しかプロットがなければ通常状態である、と判断してもよい。そして、状態判定部314は、ポアンカレプロットのグラフにおいて、2つの軸に関し、全プロットの平均値から、標準偏差の所定倍までの距離以内に、プロットの総数の第2の所定割合以上プロットがあれば興奮状態である、と判断してもよい。
【0117】
具体的には、状態判定部314は、ポアンカレプロットの、2つの軸の各々に関して、全プロットの平均値から、標準偏差の0.5倍までの距離以内に、プロットの総数の1割未満しかプロットがなければ安静状態である、と判断してもよい。そして、状態判定部314は、ポアンカレプロットの、2つの軸の各々に関して、全プロットの平均値から、標準偏差の0.5倍までの距離以内に、プロットの総数の1割以上3割未満しかプロットがなければ通常状態である、と判断してもよい。そして、状態判定部314は、ポアンカレプロットの、2つの軸の各々に関して、全プロットの平均値から、標準偏差の0.5倍までの距離以内に、プロットの総数の3割以上プロットがあれば興奮状態である、と判断してもよい。
【0118】
このように、本実施の形態においては、算出結果に基づいて、ポアンカレプロットの分布の広がりの大きさや形状、中心部にプロットが多くみられるか少なくみられるかを予想することができ、その結果、生物の精神的状態または肉体的状態を予想することができる。
<第10の実施の形態>
【0119】
あるいは、第1〜第9の実施の形態のうちの複数の方法を利用したり、第1〜第9の実施の形態とは異なる方法を利用したりして、対象の生物の状態を判定してもよい。例えば、
図31に示すように、状態判定部314は、取得したヒストグラムと、それぞれの状態毎のヒストグラムのモデルとの一致度を算出し、状態毎に重みづけをした一致度の合計に基づいて、状態を判断してもよい。
【0120】
あるいは、
図31に示すように、状態判定部314は、取得したポアンカレプロットの軌跡と、それぞれの状態毎のポアンカレプロットの軌跡のモデルとの一致度を算出し、状態毎に重みづけをした一致度の合計に基づいて、状態を判断してもよい。
【0121】
あるいは、
図31に示すように、状態判定部314は、取得したヒストグラムとポアンカレプロットの軌跡と、それぞれの状態毎のヒストグラムのモデルとポアンカレプロットの軌跡のモデルとの一致度を算出し、状態毎に重みづけをした一致度の合計に基づいて、状態を判断してもよい。
【0122】
このように、本実施の形態においては、算出結果に基づいて、ポアンカレプロットの分布の広がりの大きさや形状、中心部にプロットが多くみられるか少なくみられるかを予想することができ、その結果、生物の精神的状態または肉体的状態を予想することができる。
<第11の実施の形態>
【0123】
さらに、実際の現在の生物の状態をユーザが入力することで、状態を判定するための数値範囲や閾値を新たなデータで修正していくことが好ましい。換言すれば、犬の個体差による状態に関して、ユーザに正解を入力してもらうことにより、CPU310は、判定のための閾値を調整し、ユーザにとって違和感のない出力ができるように精度を高めることができる。
【0124】
以下では、
図32を参照して、本実施の形態にかかる状態取得システム1の機能構成について説明する。
図32は、本実施の形態にかかる状態取得システム1の機能構成を示す図である。
【0125】
本実施の形態にかかる通信端末300は、第5の実施の形態の通信端末300と比較して、状態判定基準作成部316と状態入力部340とを含む。状態判定基準作成部316は、例えばCPU310がメモリ320のプログラムを実行することなどによって実現される。状態入力部340は、スイッチやキーボードやタッチパネルなどによって実現され、ユーザからの操作命令をCPU310の状態判定基準作成部316などに受け渡す。
【0126】
ユーザが、対象となる生物の現在の状態を状態入力部340に入力すると、状態判定基準作成部316が、ユーザから入力された生物の状態と、状態判定部314の判定結果とが一致するか否かを判断する。ユーザから入力された生物の状態と状態判定部314の判定結果とが一致しない場合に、状態判定基準作成部316が、状態判定部314の判定結果が入力された状態に近づくように、状態を判定するための数値範囲または閾値を修正する。
【0127】
これによって、本実施の形態にかかる状態取得システム1は、状態判定の精度を高めることが可能になる。
<第12の実施の形態>
【0128】
第1〜第11の実施の形態においては、心電取得用の電極401,402,403を用いて拍動間隔を算出しているが、このような形態には限られない。例えば、光電脈波方式の脈波計やパルスオキシメータによって脈波信号を取得し、脈波信号から拍動間隔を算出してもよい。この場合は、脈波の測定部位は、舌、耳などをはじめとした皮膚が露出した部位であることが好ましい。また、電子聴診器などにより心音信号を取得し、心音信号か拍動間隔を算出してもよい。これらこの場合、電極を使用しない方法での測定が可能となる。マイクロ波ドップラーセンサ等の脈波取得センサを利用して、脈波信号を取得し、脈波信号から拍動間隔を算出してもよい。たとえば、マイクロ波発信装置が天井等に設置されており、非接触で犬などの生物からの脈波を取得する形態が考えられる。この場合には、非接触での測定が可能となり、被験体への負荷をより軽減する効果がある。
<第13の実施の形態>
【0129】
第1〜第12の実施の形態にかかる状態取得システム1は、電極401,402,403からの心電信号に基づいて信号処理装置500が拍動間隔を取得し、通信端末300が拍動間隔から生物の状態を判断するための情報または生物の状態の判定結果の情報を算出して出力するものであった。しかしながら、それらの1つの装置の全部または一部の役割が、別の装置によって担われてもよいし、複数の装置によって分担されてもよい。逆に、それら複数の装置の全部または一部の役割を、1つの装置が担ってもよいし、別の装置が担ってもよい。
【0130】
例えば、
図33に示すように、通信端末300の役割をサーバ100が担ってもよい。この場合は、サーバ100が、第1〜第12の実施の形態の通信端末300の機能を搭載することになる。例えば、通信端末300が信号処理装置500からの拍動間隔などの必要な情報をルータやキャリア網やインターネットなどを介してサーバ100に送信する。サーバ100が生物の状態を判断するための情報または生物の状態の判定結果を示す情報を算出し、当該情報を通信端末300に送信する。通信端末300が最終的な結果の情報をディスプレイやスピーカに出力することが考えられる。
【0131】
なお、この場合は、当然に、サーバ100の受信部161や送信部162は、サーバ100の通信インターフェイス160によって実現される。そして、拍動間隔記憶部121やデータ記憶部122は、サーバ100のメモリ120またはサーバ100からアクセス可能な他の装置などによって実現される。統計処理部111やポアンカレプロット作成部112や結果出力部113は、CPU110がメモリ120のプログラムを実行することによって実現される。
【0132】
あるいは、
図34に示すように、信号処理装置500が拍動間隔などの必要な情報をルータやキャリア網やインターネットなどを介してサーバ100に送信する。サーバ100が生物の状態を判断するための情報または生物の状態の判定結果の情報を算出して、当該情報をインターネットやキャリア網やルータなどを介して通信端末300に送信する。通信端末300が最終的な結果の情報をディスプレイやスピーカに出力する。この場合は、信号処理装置500と通信端末300とは無線LANまたは
有線LANで接続されていなくてもよい。
【0133】
なお、この場合も、当然に、サーバ100の受信部161や送信部162は、サーバ100の通信インターフェイス160によって実現される。そして、拍動間隔記憶部121やデータ記憶部122は、サーバ100のメモリ120またはサーバ100からアクセス可能な他の装置などによって実現される。統計処理部111やポアンカレプロット作成部112や結果出力部113は、CPU110がメモリ120のプログラムを実行することによって実現される。
【0134】
あるいは、
図35に示すように、信号処理装置500が通信端末300の全部または一部の機能を搭載するものであってもよい。この場合は、電極401,402,403からの心電信号に基づいて、信号処理装置500が拍動間隔や生物の状態を判断するための情報または生物の状態の判定結果の情報を算出する。そして、信号処理装置500が最終的な結果の情報をディスプレイやスピーカに出力する。
【0135】
あるいは、
図36に示すように、通信端末300が信号処理装置500の全部または一部の機能を搭載するものであってもよい。この場合は、通信端末300は、簡易信号処理装置501から、電極401,402,403からの心電信号を無線通信によって取得する。電極からの心電信号は、最低限のフィルタ装置、増幅装置及びA/D変換装置を含む簡易心電前処理部570によりデジタル信号に変換され、送信部560から送信される。通信端末300は、心電信号から拍動間隔や生物の状態を判断するための情報または生物の状態の判定結果の情報を算出する。そして、通信端末300が最終的な結果の情報をディスプレイやスピーカに出力する。
<第14の実施の形態>
【0136】
第1〜第13の実施の形態の状態取得システム1の機能に加えて、状態取得システム1にさらに以下のような機能を搭載してもよい。たとえば、
図37に示すように、軸変換後のポアンカレプロットの標準偏差の積の時系列のグラフを出力することも有効である。なお、
図37は、犬に薬剤の投与を行った際の1分毎の標準偏差の積の値の変化を示す。ここでは、プロプラノロール(交感神経遮断薬:0.05mg/kg BW)とアトロピン(副交感神経遮断薬:0.1mg/kg BW)を投与し、心臓の拍動に対する神経作用を遮断し、標準偏差の積の変化を見ている。
【0137】
また、
図38に示すように、軸変換後のポアンカレプロットの標準偏差の積の平均値やバラツキ(標準偏差)を示すグラフを出力することも有効である。なお、
図38は、上記薬剤の投与前20分間の標準偏差の積の平均値やバラツキを示すグラフである。
【0138】
より詳細には、本実施の形態においては、第1〜13の実施の形態の統計処理部311や結果出力部313などを実現するCPU310が、
図39に示す処理を実行する。なお、
図39の処理は、第13の実施の形態において説明した通り、その一部または全部の処理が、通信端末300で実行されてもよいし、サーバ100で実行されてもよいし、信号処理装置500で実行されてもよいし、さらに他の装置で実行されてもよい。そして、
図38や
図39などのグラフや数値などの情報が出力される端末も限定されるものではない。
【0139】
また、本実施の形態にかかる状態取得システム1は、
図2に示すポアンカレプロット作成部312を有してもよいし、有していなくてもよい。
【0140】
図39を参照して、受信部361は、信号処理装置500からの拍動間隔を示すデータを受信する(ステップS1102)。
【0141】
拍動間隔記憶部321は各種のメモリ320などによって構成され、信号処理装置500から受信したデータを格納する。本実施の形態においては、CPU310が、通信インターフェイス360を介して受信した拍動間隔を拍動間隔テーブルとして逐次メモリ320に蓄積していく(ステップS1104)。ただし、これらのデータは、通信端末300のメモリ320に記憶されてもよいし、通信端末300からアクセス可能な他の装置に記憶されてもよい。
【0142】
統計処理部311と、結果出力部313とは、例えばCPU310がメモリ320のプログラムを実行することによって実現される。統計処理部311は、一定時間単位で、拍動間隔記憶部321から拍動間隔データを読み出して、
図4に示すような、拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)との対応関係テーブル321Aを作成する(ステップS1106)。
【0143】
統計処理部311は、第1の所定時間、たとえば1分間や10分など、経過すると(ステップS1107にてYESである場合)、
図5に示すように、拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)との対応関係テーブルからY=X方向とそれに垂直な方向の軸への変換を行う(ステップS1108)。
【0144】
統計処理部311は、軸の変換を行った後のそれぞれの軸を構成する数値列に関する標準偏差とその積を算出する(ステップS1110)。なお、統計処理部311は、Y=X軸に関する標準偏差だけを算出してもよいし、Y=Xと垂直な軸に関する標準偏差だけを算出してもよいし、両方を算出してもよい。
【0145】
統計処理部311は、今回の軸変換後の標準偏差の積を記憶部322に蓄積する(ステップS1112)。統計処理部311は、第2の所定時間、たとえば20分や24時間など、が経過していない場合(ステップS1118にてNOである場合)は、ステップS1102からの処理を繰り返す。
【0146】
統計処理部311は、第2の所定時間が経過した場合(ステップS1118にてYESである場合)は、第2の所定時間範囲の標準偏差の積の平均値や標準偏差の積のバラツキ(標準偏差)を計算する(ステップS1120)。
【0147】
結果出力部313は、例えば、自身の、あるいは外部の、ディスプレイ330やスピーカなどの出力装置に、結果の画像やテキストや音声メッセージを出力させる(ステップS1122)。より詳細には、結果出力部313は、ステップS1112で蓄積したデータに基づいて、
図37のような軸変換後のポアンカレプロットの標準偏差の積の時系列のグラフを出力したり更新したりする。また、結果出力部313は、ステップS1120の計算結果に基づいて、
図38に示すような標準偏差の積の平均値やバラツキを示すグラフを出力したり更新したりする。
【0148】
なお、
図40に示すように、ステップS1112の後、すなわち第1の所定時間毎に、
図37のような軸変換後のポアンカレプロットの標準偏差の積の時系列のグラフを出力したり更新したりしてもよい(ステップS1114)。
<第15の実施の形態>
【0149】
あるいは、CPU310は、
図41に示すような処理を実行してもよい。すなわち、受信部361が、信号処理装置500からの拍動間隔を示すデータを受信する(ステップS1202)。
【0150】
拍動間隔記憶部321は各種のメモリ320などによって構成され、信号処理装置500から受信したデータを格納する。本実施の形態においては、第1の所定時間、たとえば20分や1時間や24時間など、が経過すると(ステップS1204にてYESである場合)、CPU310が、それまでに通信インターフェイス360を介して受信した拍動間隔を拍動間隔テーブルとして逐次メモリ320に蓄積していく(ステップS1206)。ただし、これらのデータは、通信端末300のメモリ320に記憶されてもよいし、通信端末300からアクセス可能な他の装置に記憶されてもよい。
【0151】
統計処理部311は、一定時間単位で、拍動間隔記憶部321から拍動間隔データを読み出して、
図4に示すような、拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)との対応関係テーブル321Aを作成する(ステップS1208)。
【0152】
統計処理部311は、第2の所定時間、たとえば1分間や10分など、毎に、
図5に示すように、拍動間隔R−R(n)とその次の拍動間隔R−R(n+1)との対応関係テーブルからY=X方向とそれに垂直な方向の軸への変換を行う(ステップS1210)。
【0153】
統計処理部311は、軸の変換を行った後のそれぞれの軸を構成する数値列に関する標準偏差とその積を算出する(ステップS1212)。統計処理部311は、今回の軸変換後の標準偏差の積を記憶部322に蓄積する(ステップS1214)。
【0154】
統計処理部311は、第1の所定時間範囲における標準偏差の積の平均値や標準偏差の積のバラツキ(標準偏差)を計算する(ステップS1220)。
【0155】
結果出力部313は、例えば、自身の、あるいは外部の、ディスプレイ330やスピーカなどの出力装置に、結果の画像やテキストや音声メッセージを出力させる(ステップS1222)。より詳細には、結果出力部313は、ステップS1112で蓄積したデータに基づいて、
図37のような、軸変換後のポアンカレプロットの標準偏差の積の時系列のグラフを出力したり更新したりする。また、結果出力部313は、ステップS1120の計算結果に基づいて、
図38に示すような、標準偏差の積の平均値やバラツキを示すグラフを出力したり更新したりする。
<第16の実施の形態>
【0156】
さらに、統計処理部311は、ステップS1120やステップS1220の後に、
図42に示すような処理を実行してもよい。
図42を参照して、統計処理部311は、比較する時刻Aと時刻Bとの設定を、たとえばサーバ100やスマートフォンなどから受け付ける(ステップS1302)。統計処理部311は、ステップS1120やステップS1220などで計算された、時刻Aと時刻Bとにおける所定時間の標準偏差の積の平均値を読み出す(ステップS1304)。
【0157】
結果出力部313は、例えば、自身の、あるいは外部の、ディスプレイ330やスピーカなどの出力装置に、結果の画像やテキストや音声メッセージを出力させる(ステップS1308)。たとえば、結果出力部313は、
図43に示すように、薬剤の投与前と投与後とにおける、1分毎の標準偏差の積の20分間分の蓄積データの平均値や標準偏差の積のバラツキ(標準偏差)のグラフを出力する。
【0158】
図43は、
図37に示すように投与前と投与後の前後5分間を除いた(薬剤投与の前後5分は投与のために変動が生じるため)それぞれの20分間において平均値を算出した結果を示すものである。投与前と比較すると、投与後では、薬剤により、拍動間隔のばらつきが抑制され、標準偏差の積も小さくなっている。標準偏差のばらつきを、平均化することで、拍動間隔のばらつきの時系列変化の大きさを比較しやすくなる。
【0159】
ここでは、比較の対象としてある特定の時刻を指定することを例として示したが、それに限るものではない。例えば、1週間分の朝8時のデータの平均値と夜8時のデータの平均値を比較する、ある1ヶ月のデータの平均値と別の1ヶ月のデータの平均値を比較するなど、任意の期間に任意の時間間隔で取得したデータを平均化して比較してもよい。また、比較対象は2つの期間に限られるものではなく、所定の時間毎、例えば、2時間毎に所定の時間の平均値を計算し、その推移をグラフとして出力してもよい。
<第17の実施の形態>
【0160】
さらに、統計処理部311は、ステップS1120やステップS1220の後に、
図44に示すような処理を実行してもよい。
図44を参照して、統計処理部311は、ステップS1304の後に、時刻Aと時刻Bとにおける所定時間の標準偏差の積の平均値を、時刻Aの所定時間の標準偏差の積の平均値によって正規化してもよい(ステップS1306)。そして、結果出力部313は、
図45に示すように、薬剤の投与前と投与後とにおける、拍動間隔の標準偏差の積の正規化後のグラフを出力することが好ましい(ステップS1308)。
【0161】
これにより、個体差や時間によるばらつきを抑え、所定の時間前後の数値の変化率を比較することができる。
<第14〜第17の実施の形態の補足>
【0162】
第14〜第17の実施の形態においては、
図37に示す通り、軸変換後のポアンカレプロットの標準偏差の積を対象としたものである。しかしながら、対象とする数値はそれに限られるものではなく、軸変換無しのポアンカレプロットの標準偏差の積であってもよいし、単にいずれかの標準偏差であってもよいし、2つのポアンカレプロット間の距離などであってもよい。
<用語について>
【0163】
上記の説明においては、「ポアンカレプロット」を行う処理や「ポアンカレプロット処理後の軸変換」を行う処理について述べられているが、当該処理は、通信端末300・サーバ100・信号処理装置500のCPUが実際に紙媒体やディスプレイにポアンカレプロットの画像を印刷したり表示したりすることに限定されるべきではない。当該処理は、たとえば、CPUが、メモリに、実質的にポアンカレプロットを示すデータを格納したり展開したりする処理をも含む概念である。また、「ポアンカレプロット」は「ローレンツプロット」とも表現されるものであるが、任意の時間nの点とその次の時間n+1の点をそれぞれの軸として、直行する2軸上にプロットするものを指し、かならずしも「ポアンカレプロット」という用語に縛られるものではない。
<その他の応用例>
【0164】
本開示は、システム或いは装置にプログラムを供給することによって達成される場合にも適用できることはいうまでもない。そして、本開示を達成するためのソフトウェアによって表されるプログラムを格納した記憶媒体(あるいはメモリ)を、システム或いは装置に供給し、そのシステム或いは装置のコンピュータ(又はCPUやMPU)が記憶媒体に格納されたプログラムコードを読出し実行することによっても、本開示の効果を享受することが可能となる。
【0165】
この場合、記憶媒体から読出されたプログラムコード自体が前述した実施の形態の機能を実現することになり、そのプログラムコードを記憶した記憶媒体は本開示を構成することになる。
【0166】
また、コンピュータが読出したプログラムコードを実行することにより、前述した実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼動しているOS(オペレーティングシステム)などが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。
【0167】
さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わる他の記憶媒体に書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施の形態の機能が実現される場合も含まれることは言うまでもない。
【0168】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。