(58)【調査した分野】(Int.Cl.,DB名)
【発明の概要】
【0006】
本発明は、検体の検出のためのシステムおよび方法を特徴とする。
【0007】
本発明は、液体試料中の検体の存在を検出するための方法を特徴とし、本方法は、(a)溶液と磁性粒子を接触させて、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を含む液体試料を生成すること(該磁性粒子は、150nm〜699nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、または500〜699nm)の平均直径、1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有し、該結合部分は、検体または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する);(b)液体試料をデバイスに入れること(該デバイスは、磁性粒子、多価結合剤、および検体を含む液体試料を保持するウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(c)バイアス磁界およびRFパルスシーケンスに試料を曝露させること;(d)工程(c)に続いて、シグナルを測定すること;および(e)工程(d)の結果に基づいて、検体を検出すること、を含む。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。液体試料は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。例えば、検体は、クレアチニンであることができ、液体試料は、複数のクレアチニンコンジュゲートを有する多価結合剤を含むことができ、かつ、磁性粒子は、クレアチニン抗体で修飾された表面を含むことができる。別の態様においては、検体は、タクロリムスであることができ、液体試料は、複数のタクロリムスコンジュゲートを有する多価結合剤を含むことができ、かつ、磁性粒子は、タクロリムス抗体で修飾された表面を含むことができる。本方法の特定の態様においては、工程(d)は、液体試料のT
2緩和応答を測定することを含み、かつ、液体試料中の凝集作用の増加が、試料の観測されるT
2緩和率の増加を引き起こす。ある態様においては、検体は、標的核酸(例えば、白血球、または病原体から抽出された標的核酸)である。
【0008】
本発明は、液体試料中の検体の存在を検出するための方法を特徴とし、本方法は、(a)溶液と磁性粒子を接触させて、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を含む液体試料を生成すること(該磁性粒子は、700nm〜1200nm(例えば、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、1×10
9〜1×10
12mM
-1s
-1(例えば、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有し、該結合部分は、検体の存在下で、磁性粒子の凝集を変化させるように機能する);(b)液体試料をデバイスに入れること(該デバイスは、磁性粒子、多価結合剤、および検体を含む液体試料を保持するウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(c)バイアス磁界およびRFパルスシーケンスに試料を曝露させること;(d)工程(c)に続いて、シグナルを測定すること;および(e)工程(d)の結果に基づいて、検体の存在または濃度を検出すること、を含む。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。液体試料は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。例えば、検体は、クレアチニンであることができ、液体試料は、複数のクレアチニンコンジュゲートを有する多価結合剤を含むことができ、かつ、磁性粒子は、クレアチニン抗体で修飾された表面を含むことができる。別の態様においては、検体は、タクロリムスであることができ、液体試料は、複数のタクロリムスコンジュゲートを有する多価結合剤を含むことができ、かつ、磁性粒子は、タクロリムス抗体で修飾された表面を含むことができる。本方法の特定の態様においては、工程(d)は、液体試料のT
2緩和応答を測定することを含み、かつ、液体試料中の凝集作用の増加が、試料の観測されるT
2緩和率の増加を引き起こす。ある態様においては、検体は、標的核酸(例えば、白血球、または病原体から抽出された標的核酸)である。
【0009】
本発明は、さらに、全血試料中の病原体の存在を検出するための方法を特徴とし、本方法は、(a)対象から全血試料を提供すること;(b)全血試料と赤血球溶解剤溶液を混合して、破壊した赤血球を生成すること;(c)工程(b)に続いて、試料を遠心分離して上清およびペレットを形成し、上清の一部または全部を廃棄し、かつ、ペレットを再懸濁して抽出物を形成し、場合により、ペレットを再懸濁する前にペレットを洗浄し(例えば、TE緩衝液で)、かつ、場合により、工程(c)を繰り返すこと;(d)抽出物の細胞を溶解し、溶解物を形成すること;(e)工程(d)の溶解物を検出チューブに入れ、かつ、溶解物中の標的核酸を増幅して、標的核酸を含む増幅した溶解物溶液を形成すること(該標的核酸は、検出される病原体に特徴的である);(f)工程(e)に続いて、増幅した溶解物溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を検出チューブに加えること(該磁性粒子は、700nm〜1200nm(例えば、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、およびそれらの表面に結合部分を有し、該結合部分は、標的核酸または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する);(g)検出チューブをデバイスに入れること(該デバイスは、磁性粒子および標的核酸を含む検出チューブを保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(h)バイアス磁界およびRFパルスシーケンスに試料を曝露させること;(i)工程(h)に続いて、検出チューブからのシグナルを測定すること;および(j)工程(i)の結果に基づいて、病原体を検出すること、を含む。ある態様においては、工程(a)〜(i)は、4時間以内(例えば、3.5時間、3.0時間、2.5時間、2時間、1.5時間、または1時間以内)に完了する。別の態様においては、工程(i)は、増幅した溶解物溶液の事前精製なし(すなわち、溶解物溶液は、形成された後に分画されていない)に実施される。特定の態様においては、工程(c)は、ペレットを再懸濁する前にペレットを洗浄して、抽出物を形成することを含む。特定の態様においては、工程(d)は、抽出物とビーズを合わせて混合物を形成し、かつ、混合物を撹拌して溶解物を形成することを含む。磁性粒子は、それらの表面にコンジュゲートした第一のプローブおよび第二のプローブを有する1つまたは複数の集団を含むことができ、第一のプローブは、標的核酸の第一のセグメントに結合するように機能し、かつ、第二のプローブは、標的核酸の第二のセグメントに結合するように機能し、該磁性粒子は、標的核酸の存在下で凝集体を形成する。あるいは、本アッセイは、解離アッセイであることができ、その解離アッセイでは、磁性粒子は、それらの表面に第一の結合部分を有する第一の集団およびそれらの表面に第二の結合部分を有する第二の集団、ならびに第一のプローブおよび第二のプローブを含む多価結合部分を含み、第一のプローブは、第一の結合部分に結合するように機能し、かつ、第二のプローブは、第二の結合部分に結合するように機能し、結合部分および多価結合部分は、標的核酸の存在下で、磁性粒子の凝集を変化させるように機能する。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、溶解物は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。溶解物は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。
【0010】
本発明は、全血試料中の標的核酸の存在を検出するための方法を特徴とし、本方法は、(a)対象からの全血試料から1つまたは複数の細胞を提供すること;(b)細胞を溶解して、溶解物を形成すること;(c)溶解物中の標的核酸を増幅して、標的核酸を含む増幅した溶解物溶液を形成すること;(d)工程(c)に続いて、増幅した溶解物溶液、および増幅した溶解物溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子を検出チューブに加えること(該磁性粒子は、700nm〜1200nmの平均直径およびそれらの表面に結合部分を有し、該結合部分は、標的核酸または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する);(e)検出チューブをデバイスに入れること(該デバイスは、磁性粒子および標的核酸を含む検出チューブを保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(f)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;(h)工程(f)に続いて、検出チューブからのシグナルを測定すること;および(i)工程(h)の結果に基づいて、標的核酸を検出すること、を含む。特定の態様においては、標的核酸は、工程(d)の前に精製される。特定の態様においては、工程(b)は、抽出物とビーズを合わせて混合物を形成し、かつ、その混合物を撹拌して溶解物を形成することを含む。磁性粒子は、それらの表面にコンジュゲートした第一のプローブおよび第二のプローブを有する1つまたは複数の集団を含むことができ、第一のプローブは、標的核酸の第一のセグメントに結合するように機能し、かつ、第二のプローブは、標的核酸の第二のセグメントに結合するように機能し、該磁性粒子は、標的核酸の存在下で凝集体を形成する。あるいは、本アッセイは、解離アッセイであることができ、その解離アッセイでは、磁性粒子は、それらの表面に第一の結合部分を有する第一の集団およびそれらの表面に第二の結合部分を有する第二の集団、ならびに第一のプローブおよび第二のプローブを含む多価結合部分を含み、第一のプローブは、第一の結合部分に結合するように機能し、かつ、第二のプローブは、第二の結合部分に結合するように機能し、結合部分および多価結合部分は、標的核酸の存在下で、磁性粒子の凝集を変化させるように機能する。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、溶解物は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、場合により、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。溶解物は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。
【0011】
本発明は、さらに、全血試料中の標的核酸の存在を検出するための方法を特徴とし、本方法は、(a)対象からの全血試料中の赤血球を溶解することにより生成する抽出物を提供し、試料を遠心分離して上清およびペレットを形成し、上清の一部または全部を廃棄し、かつ、ペレットを再懸濁して抽出物を形成し、場合により、ペレットを再懸濁する前にペレットを洗浄し(例えば、TE緩衝液で)、かつ、場合により、工程(a)の遠心分離、廃棄、および洗浄を繰り返すこと;(b)抽出物中の細胞を溶解して、溶解物を形成すること;(c)工程(b)の溶解物を検出チューブに入れ、かつ、その中の核酸を増幅して、40%(w/w)〜95%(w/w)の標的核酸(例えば、40〜60%、60〜80%、または85〜95%(w/w)の標的核酸)および5%(w/w)〜60%(w/w)の非標的核酸(例えば、5〜20%、20〜40%、または40〜60%(w/w)の非標的核酸)を含む増幅した溶解物溶液を形成すること;(d)工程(c)に続いて、増幅した溶解物溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子を検出チューブに加えること(該磁性粒子は、700nm〜1200nmの平均直径およびそれらの表面に結合部分を有し、該結合部分は、標的核酸または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する);(e)検出チューブをデバイスに入れること(該デバイスは、磁性粒子および標的核酸を含む検出チューブを保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(f)バイアス磁界およびRFパルスシーケンスに試料を曝露させること;(g)工程(f)に続いて、検出チューブからのシグナルを測定すること;および(h)工程(g)の結果に基づいて、標的核酸を検出すること(ここで、工程(g)は、増幅した溶解物溶液の事前精製なしに実施される)、を含む。特定の態様においては、工程(b)は、抽出物とビーズを混ぜ合わせて混合物を形成し、かつ、その混合物を撹拌して溶解物を形成することを含む。磁性粒子は、それらの表面にコンジュゲートした第一のプローブおよび第二のプローブを有する1つまたは複数の集団を含むことができ、第一のプローブは、標的核酸の第一のセグメントに結合するように機能し、かつ、第二のプローブは、標的核酸の第二のセグメントに結合するように機能し、該磁性粒子は、標的核酸の存在下で凝集体を形成する。あるいは、本アッセイは、解離アッセイであることができ、その解離アッセイでは、磁性粒子は、それらの表面に第一の結合部分を有する第一の集団およびそれらの表面に第二の結合部分を有する第二の集団、ならびに第一のプローブおよび第二のプローブを含む多価結合部分を含み、第一のプローブは、第一の結合部分に結合するように機能し、かつ、第二のプローブは、第二の結合部分に結合するように機能し、結合部分および多価結合部分は、標的核酸の存在下で、磁性粒子の凝集を変化させるように機能する。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、溶解物は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。溶解物は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。
【0012】
本発明は、液体試料中のカンジダ(Candida)種の存在を検出するための方法を特徴とし、本方法は、(a)液体試料中のカンジダ細胞を溶解すること;(b)順方向プライマーおよび逆方向プライマー(各々、複数のカンジダ種に共通している)の存在下で、検出される核酸を増幅して、カンジダアンプリコンを含む溶液を形成すること;(c)該溶液と磁性粒子を接触させて、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を含む液体試料を生成すること(該磁性粒子は、700nm〜1200nm(例えば、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、1×10
9〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有し、該結合部分は、カンジダアンプリコンまたは多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する);(d)液体試料をデバイスに入れること(該デバイスは、磁性粒子およびカンジダアンプリコンを含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(e)バイアス磁界およびRFパルスシーケンスに試料を曝露させること;(f)工程(e)に続いて、シグナルを測定すること;および(g)工程(f)の結果に基づいて、カンジダ種が試料中に存在したか否かを決定する、ことを含む。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μ〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。液体試料は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。順方向プライマーは、例えば、配列:
を含むことができる。逆方向プライマーは、例えば、配列:
を含むことができる。ある態様においては、(i)カンジダ種は、カンジダ・アルビカンス(Candida albicans)であり、第一のプローブは、オリゴヌクレオチド配列:
を含み、かつ、第二のプローブは、オリゴヌクレオチド配列:
を含み;(ii)カンジダ種は、カンジダ・クルセイ(Candida krusei)であり、かつ、第一のプローブおよび第二のプローブは、
から選択されるオリゴヌクレオチド配列を含み;(iii)カンジダ種は、カンジダ・グラブラータ(Candida glabrata)であり、第一のプローブは、オリゴヌクレオチド配列:5'-CTA CCA AAC ACA ATG TGT TTG AGA AG-3'(SEQ ID NO. 7)を含み、かつ、第二のプローブは、オリゴヌクレオチド配列:5'-CCT GAT TTG AGG TCA AAC TTA AAG ACG TCT G-3'(SEQ ID NO. 8)を含み;かつ、(iv)カンジダ種は、カンジダ・パラシローシス(Candida parapsilosis)またはカンジダ・トロピカリス(Candida tropicalis)であり、かつ、第一のプローブおよび第二のプローブは、

から選択されるオリゴヌクレオチド配列を含む。ある態様においては、工程(a)〜(h)は、4時間以内(例えば、3.5時間、3.0時間、2.5時間、2時間、1.5時間、または1時間以内)に完了する。特定の態様においては、磁性粒子は、その表面に第一のプローブを有する第一の集団、およびその表面に第二のプローブを有する第二の集団の2つの集団を含む。別の態様においては、磁性粒子は、磁性粒子の表面に第一のプローブおよび第二のプローブの両方を有する単一集団である。磁性粒子は、それらの表面にコンジュゲートした第一のプローブおよび第二のプローブを有する1つまたは複数の集団を含むことができ、第一のプローブは、カンジダアンプリコンの第一のセグメントに結合するように機能し、かつ、第二のプローブは、カンジダアンプリコンの第二のセグメントに結合するように機能し、該磁性粒子は、標的核酸の存在下で凝集体を形成する。あるいは、本アッセイは、解離アッセイであることができ、その解離アッセイでは、磁性粒子は、それらの表面に第一の結合部分を有する第一の集団およびそれらの表面に第二の結合部分を有する第二の集団、ならびに第一のプローブおよび第二のプローブを含む多価結合部分を含み、第一のプローブは、第一の結合部分に結合するように機能し、かつ、第二のプローブは、第二の結合部分に結合するように機能し、結合部分および多価結合部分は、カンジダアンプリコンの存在下で、磁性粒子の凝集を変化させるように機能する。特定の態様においては、本方法は、以下を生成することができる:(i)カンジダ陽性試料において、20%未満のT
2値の変動係数;(ii)5細胞/mL以下で、50人の個々の健康な患者の血液試料にスパイクされた試料において、少なくとも95%の正確な検出;(iii)5細胞/mL以下で、50人の個々の不健康な患者の血液試料にスパイクされた試料において、少なくとも95%の正確な検出;および/または(iv)2mLの血液で開始して、臨床的に陽性の患者試料(すなわち、細胞培養などの別の技術によるカンジダ陽性)における80%以上の正確な検出。
【0013】
本発明は、全血試料中のカンジダ種の存在を検出するための方法を特徴とし、本方法は(a)対象からの全血試料中の赤血球を溶解することにより生成する抽出物を提供すること;(b)試料を遠心分離して上清およびペレットを形成し、上清の一部または全部を廃棄すること;(c)ペレットと緩衝液を混合することによりペレットを洗浄し(例えば、TE緩衝液で)、試料を撹拌し(例えば、ボルテックスすることにより)、試料を遠心分離して上清およびペレットを形成し、上清の一部または全部を廃棄すること;(d)場合により、工程(b)および(c)を繰り返すこと;(e)緩衝液(例えば、TE緩衝液)の存在下で、ペレットをビーズで破砕して、溶解物を形成すること;(f)試料を遠心分離して、溶解物を含有する上清を形成すること;(g)工程(f)の溶解物中の核酸を増幅して、カンジダアンプリコンを形成すること;かつ(h)カンジダアンプリコンの存在を検出することを含み、ここで、本方法は、以下を生じることができる:(i)5細胞/mL以下で、50人の個々の健康な患者の血液試料にスパイクされた試料において、少なくとも95%の正確な検出;(ii)5細胞/mL以下で、50人の個々の不健康な患者の血液試料にスパイクされた試料において、少なくとも95%の正確な検出;および/または(iii)工程(a)で、2mLの血液で開始して、臨床的に陽性の患者試料(すなわち、細胞培養によるカンジダ陽性)における80%以上の正確な検出。
【0014】
本発明は、全血試料中の病原体の存在を検出するための方法を特徴とし、本方法は:(a)0.05〜4.0mLの全血試料(例えば、0.05〜0.25、0.25〜0.5、0.25〜0.75、0.4〜0.8、0.5〜0.75、0.6〜0.9、0.65〜1.25、1.25〜2.5、2.5〜3.5、または3.0〜4.0mLの全血)を提供する工程;(b)工程(a)の試料のアリコートを容器に入れ、かつ、試料中の標的核酸を増幅して、標的核酸を含む増幅した溶液を形成する工程(該標的核酸は、検出される病原体に特徴的である);(c)増幅した液体試料を検出デバイスに入れる工程;(d)工程(c)の結果に基づいて、病原体を検出する工程を含み、ここで、病原体は、細菌および真菌から選択され、かつ、本方法は、全血試料において、10細胞/mL(例えば、1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、または50細胞/mL)の病原体濃度を検出することが可能である。検出デバイスは、増幅した液体試料の光学、蛍光、質量、密度、磁性、クロマトグラフ、および/または電気化学的測定を介して、病原体を検出することができる。ある態様においては、工程(a)〜(d)は、3時間以内(例えば、3.2、2.9、2.7、2.5、2.3、2.2、2.1、2.0、1.9、1.8、1.7、1.6、または1.5時間以内、または1時間以内)に完了する。さらに他の態様においては、工程(c)は、増幅した溶液の事前精製なしに実施され、かつ/または工程(c)の液体試料は、全血タンパク質および非標的オリゴヌクレオチドを含む。ある態様においては、病原体は、細菌および真菌から選択される。病原体は、本明細書に記載の任意の細菌または真菌病原体であることができる。
【0015】
本発明は、また、全血試料中の病原体の存在を検出するための方法を特徴とし、本方法は、以下の工程:(a)対象から全血試料を提供する工程;(b)0.05〜4.0mLの全血試料(例えば、0.05〜0.25、0.25〜0.5、0.25〜0.75、0.4〜0.8、0.5〜0.75、0.6〜0.9、0.65〜1.25、1.25〜2.5、2.5〜3.5、または3.0〜4.0mLの全血)と赤血球溶解剤溶液を混合して、破壊した赤血球を生成する工程;(c)工程(b)に続いて、試料を遠心分離して上清およびペレットを形成し、上清の一部または全部を廃棄し、かつ、ペレットを再懸濁して抽出物を形成し、場合により、ペレットを再懸濁する前にペレットを洗浄し(例えば、TE緩衝液で)、かつ、場合により、工程(c)を繰り返す工程;(d)抽出物の細胞を溶解し、溶解物を形成する工程;(e)工程(d)の溶解物を容器に入れ、かつ、溶解物中の標的核酸を増幅して、標的核酸を含む増幅した溶解物溶液を形成する工程(該標的核酸は、検出される病原体に特徴的である);(f)工程(e)に続いて、増幅した溶解物溶液と、増幅した溶解物溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を混合して、液体試料を形成する工程(該磁性粒子は、150nm〜1200nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、500〜700nm、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有し、該結合部分は、標的核酸または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する);(g)液体試料をデバイスに入れる工程(該デバイスは、磁性粒子および標的核酸を含む検出チューブを保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(h)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;(i)工程(h)に続いて、液体試料からのシグナルを測定する工程;および(j)工程(i)の結果に基づいて、病原体を検出する工程を含み、ここで、病原体は、細菌および真菌から選択され、かつ、本方法は、全血試料において、10細胞/mL(例えば、1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、または50細胞/mL)の病原体濃度を検出することが可能である。ある態様においては、工程(a)〜(i)は、3時間以内(例えば、3.2、2.9、2.7、2.5、2.3、2.2、2.1、2.0、1.9、1.8、1.7、1.6、1.5時間以内、または1時間以内)に完了する。さらに他の態様においては、工程(i)は、増幅した溶解物溶液の事前精製なしに実施され、かつ/または工程(i)の液体試料は、全血タンパク質および非標的オリゴヌクレオチドを含む。ある態様においては、病原体は、細菌および真菌から選択される。病原体は、本明細書に記載の任意の細菌または真菌病原体であることができる。特定の態様においては、本方法は、全血試料において、15%未満の変動係数で、10細胞/mL(例えば、15%、10%、7.5%、または5%未満の変動係数で、10細胞/mL;または15%、10%、7.5%、または5%未満の変動係数で、25細胞/mL;または15%、10%、7.5%、または5%未満の変動係数で、50細胞/mL;または15%、10%、7.5%、または5%未満の変動係数で、100細胞/mL)の病原体濃度を測定することが可能である。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。液体試料は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。モニタリングするための本方法は、本明細書に記載の磁気アシスト型凝集化法のいずれかを含むことができる。磁性粒子は、それらの表面にコンジュゲートした第一のプローブおよび第二のプローブを有する1つまたは複数の集団を含むことができ、第一のプローブは、標的核酸の第一のセグメントに結合するように機能し、かつ、第二のプローブは、標的核酸の第二のセグメントに結合するように機能し、該磁性粒子は、標的核酸の存在下で凝集体を形成する。あるいは、本アッセイは、解離アッセイであることができ、その解離アッセイでは、磁性粒子は、それらの表面に第一の結合部分を有する第一の集団およびそれらの表面に第二の結合部分を有する第二の集団、ならびに第一のプローブおよび第二のプローブを含む多価結合部分を含み、第一のプローブは、第一の結合部分に結合するように機能し、かつ、第二のプローブは、第二の結合部分に結合するように機能し、結合部分および多価結合部分は、標的核酸の存在下で、磁性粒子の凝集を変化させるように機能する。
【0016】
本発明は、さらに、全血試料中のウイルスの存在を検出するための方法を特徴とし、本方法は、以下の工程:(a)対象から血漿試料を提供する工程;(b)0.05〜4.0mLの血漿試料(例えば、0.05〜0.25、0.25〜0.5、0.25〜0.75、0.4〜0.8、0.5〜0.75、0.6〜0.9、0.65〜1.25、1.25〜2.5、2.5〜3.5、または3.0〜4.0mLの全血)と溶解剤を混合して、破壊したウイルスを含む混合物を生成する工程;(c)工程(b)の混合物を容器に入れ、かつ、濾液中の標的核酸を増幅して、標的核酸を含む増幅した濾液溶液を形成する工程(該標的核酸は、検出されるウイルスに特徴的である);(d)工程(c)に続いて、増幅した濾液溶液を、増幅した濾液溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)と混合して、液体試料を形成する工程(該磁性粒子は、150nm〜1200nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、500〜700nm、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有し、該結合部分は、標的核酸または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する);(e)液体試料をデバイスに入れる工程(該デバイスは、磁性粒子および標的核酸を含む検出チューブを保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(f)バイアス磁界およびRFパルスシーケンスに液体試料を曝露させる工程;(g)工程(f)に続いて、液体試料からのシグナルを測定する工程;および(h)工程(g)の結果に基づいて、ウイルスを検出する工程を含み、ここで、本方法は、全血試料において、100個未満(例えば、80、70、60、50、40、30、20、または10コピー未満)のウイルスコピーを検出することが可能である。ある態様においては、工程(a)〜(g)は、3時間以内(例えば、3.2、2.9、2.7、2.5、2.3、2.2、2.1、2.0、1.9、1.8、1.7、1.6、1.5時間以内、または1時間以内)に完了する。ウイルスは、本明細書に記載の任意のウイルス病原体であることができる。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。液体試料は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。モニタリングするための本方法は、本明細書に記載の磁気アシスト型凝集化法のいずれかを含むことができる。磁性粒子は、それらの表面にコンジュゲートした第一のプローブおよび第二のプローブを有する1つまたは複数の集団を含むことができ、第一のプローブは、標的核酸の第一のセグメントに結合するように機能し、かつ、第二のプローブは、標的核酸の第二のセグメントに結合するように機能し、該磁性粒子は、標的核酸の存在下で凝集体を形成する。あるいは、本アッセイは、解離アッセイであることができ、その解離アッセイでは、磁性粒子は、それらの表面に第一の結合部分を有する第一の集団およびそれらの表面に第二の結合部分を有する第二の集団、ならびに第一のプローブおよび第二のプローブを含む多価結合部分を含み、第一のプローブは、第一の結合部分に結合するように機能し、かつ、第二のプローブは、第二の結合部分に結合するように機能し、結合部分および多価結合部分は、標的核酸の存在下で、磁性粒子の凝集を変化させるように機能する。
【0017】
PCR増幅が実施される本発明のシステムおよび方法のいずれかにおいて、PCR法は、試料中に存在する標的核酸の量を定量化するためのリアルタイムPCRであることができる。
【0018】
本発明は、さらに、検出チューブ内の増幅反応混合物中の標的核酸分子を増幅することにより(例えば、PCRまたは等温増幅を使用して)、試料中の標的核酸分子を定量化し、それによって、標的核酸分子に対応するアンプリコンが産生する方法を特徴とする。この方法において、増幅反応混合物は、(1)標的核酸分子、(2)標的核酸分子に特異的な増幅プライマー、および(3)超常磁性粒子を含む。この方法において、増幅はデバイスで実施されるが、該デバイスは、超常磁性粒子および標的核酸分子を含む検出チューブを保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に試料を曝露させることにより生成されるシグナルを検出するように構成されている。この方法の増幅は、以下の工程を含む:
(a)1回または複数回の増幅サイクルを実施する工程;
(b)増幅反応混合物、またはそのアリコートを、超常磁性粒子の凝集または解離を可能にする条件に曝露させる工程;
(c)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;
(d)工程(c)に続いて、検出チューブからのシグナルを測定する工程;
(e)所望の量の増幅が得られるまで、工程(a)〜(d)を繰り返す工程;および
(f)工程(d)の結果に基づいて、対応する増幅サイクルで存在するアンプリコンを定量化する工程。
【0019】
この方法において、試料中の標的核酸分子の初期量は、増幅の各サイクルで決定されるアンプリコンの量に基づいて決定される。
【0020】
標的核酸分子を定量化する前述の方法のいずれかにおいて、検出チューブは、増幅反応を通して密封されたままにすることができる。これらの方法の超常磁性粒子は、100nmより大きいか、または小さい直径(例えば、直径30nm)であることができる。
【0021】
また、標的核酸分子を定量化する前述の方法のいずれかにおいて、本方法は、検出チューブからのシグナルを測定する工程に続いて、検出チューブに磁界を印加し、それによって、検出チューブの側部へ超常磁性粒子を隔離させ、かつ、1回または複数回の追加の増幅サイクルの完了後に磁界を解除する工程をさらに含むことができる。
【0022】
また、標的核酸分子を定量する前述の方法のいずれかにおいて、試料は、例えば、工程(a)の前に単離された核酸分子を含むことができない(例えば、試料は、全血であるか、または工程(a)の前に標的核酸分子を含有することができない)。
【0023】
本発明は、患者における医学的状態の診断、管理、または処置のための、患者由来の液体試料中の1つまたは複数の検体をモニタリングする方法を特徴とし、本方法は、(a)液体試料を、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)と合わせること(該磁性粒子は、150nm〜1200nmの平均直径(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、500〜700nm、700〜850、800〜950、900〜1050、または1000〜1200nm)、および1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能を有し、かつ、該磁性粒子は、それらの表面に結合部分を有し、該結合部分は、1つまたは複数の検体または多価結合剤の存在下で、磁性粒子の特異的な凝集を変化させるように機能する);(b)液体試料をデバイスに入れること(該デバイスは、磁性粒子および1つまたは複数の検体を含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(c)バイアス磁界およびRFパルスシーケンスに試料を曝露させること;(d)工程(c)に続いて、シグナルを測定すること;(e)工程(d)の結果に基づいて、1つまたは複数の検体をモニタリングすること;および(f)工程(e)の結果を使用して、医学的状態を診断、管理、または処置すること、を含む。1つの態様においては、1つまたは複数の検体は、クレアチニンを含む。別の態様においては、患者は、免疫不全であり、かつ、1つまたは複数の検体は、病原体関連検体、抗生剤、抗真菌剤、および抗ウイルス剤から選択される検体を含む(例えば、1つまたは複数の検体は、カンジダ属、タクロリムス、フルコナゾール、および/またはクレアチニンを含むことができる)。さらに別の態様においては、患者は、癌を有し、かつ、1つまたは複数の検体は、抗癌剤、および癌細胞中に存在する遺伝子マーカーから選択される。患者は、感染を有するか、またはそのリスクを有することができ、かつ、1つまたは複数の検体は、病原体関連検体、抗生剤、抗真菌剤、および抗ウイルス剤から選択される検体を含む。患者は、免疫炎症性状態を有することができ、かつ、1つまたは複数の検体は、抗炎症剤およびTNF-αから選択される検体を含む。患者は、心疾患を有することができ、かつ、1つまたは複数の検体は、心臓マーカーを含むことができる。患者は、HIV/AIDSを有することができ、かつ、1つまたは複数の検体は、CD3、ウイルス負荷、およびAZTを含むことができる。ある態様においては、本方法は、患者の肝機能をモニタリングするために使用され、かつ、1つまたは複数の検体は、アルブミン、アスパラギン酸トランスアミナーゼ、アラニントランスアミナーゼ、アルカリホスファターゼ、γ-グルタミルトランスペプチダーゼ、ビリルビン、α-フェトプロテイン、乳酸デヒドロゲナーゼ、ミトコンドリア抗体、およびチトクロームP450から選択される。例えば、1つまたは複数の検体は、チトクロームP450の多型を含み、かつ、患者の薬物代謝能は上昇する。本方法は、患者を不全代謝者、正常代謝者、中間代謝者、または超迅速代謝者として同定することを含むことができる。本方法は、(i)治療薬剤を患者に投与する工程;(ii)工程(i)に続いて、患者から治療薬剤またはその代謝物を含む試料を得ること;(iii)試料と磁性粒子を接触させ、かつ、バイアス磁界およびRFパルスシーケンスに試料を曝露させ、かつ、試料により生成されるシグナルを検出すること;および(iv)工程(iii)の結果に基づいて、治療薬剤またはその代謝物の濃度を決定することにより、患者における治療薬剤の適当用量を決定するために使用することができる。治療薬剤は、抗癌剤、抗生剤、抗真菌剤、または本明細書に記載の任意の治療薬剤であることができる。上記のモニタリング方法のいずれかにおいて、モニタリングは、断続的(例えば、定期的)、または継続的であることができる。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。液体試料は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。モニタリングするための本方法は、本明細書に記載の磁気アシスト型凝集化法のいずれかを含むことができる。
【0024】
本発明は、患者における敗血症を診断する方法を特徴とし、本方法は、(a)患者の血液由来の液体試料を得ること;(b)液体試料の一部を、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)と合わせることにより第一のアッセイ試料を調製すること(該磁性粒子は、150nm〜1200nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、500〜700nm、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、および1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能を有し、かつ、該磁性粒子は、それらの表面に結合部分を有し、該結合部分は、1つまたは複数の病原体関連検体または多価結合剤の存在下で、磁性粒子の特異的な凝集を変化させるように機能する);(c)液体試料の一部を、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)と合わせることにより第二のアッセイ試料を調製すること(該磁性粒子は、150nm〜1200nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、500〜700nm、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、および1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能を有し、かつ、該磁性粒子は、それらの表面に結合部分を有し、結合部分は、GRO-α、高移動度群ボックス1タンパク質(HMBG-1)、IL-1受容体、IL-1受容体アンタゴニスト、IL-1b、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12、IL-13、IL-18、マクロファージ炎症性タンパク質(MIP-1)、マクロファージ遊走阻止因子(MIF)、オステオポンチン、RANTES(regulated on activation, normal T-cell expressed and secreted;またはCCL5)、TNF-α、C-反応性タンパク質(CRP)、CD64、単球走化性タンパク質1(MCP-1)、アデノシンデアミナーゼ結合タンパク質(ABP-26)、誘導性一酸化窒素合成酵素(iNOS)、リポ多糖結合タンパク質、およびプロカルシトニンから選択される敗血症に特徴的な1つまたは複数の検体の存在下で、磁性粒子の特異的な凝集を変化させるように機能する);(d)各アッセイ試料をデバイスに入れること(該デバイスは、磁性粒子および1つまたは複数の検体を含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(e)バイアス磁界およびRFパルスシーケンスに各アッセイ試料を曝露させること;(f)工程(e)に続いて、第一のアッセイ試料から生成されるシグナルおよび第二のアッセイ試料から生成されるシグナルを測定すること;(g)工程(f)の結果に基づいて、第一のアッセイ試料の1つまたは複数の検体をモニタリングし、かつ、第二のアッセイ試料の1つまたは複数の検体をモニタリングすること;および(h)工程(g)の結果を使用して、対象を診断すること、を含む。1つの態様においては、第一のアッセイ試料の1つまたは複数の病原体関連検体は、アシネトバクター・バウマニー(Acinetobacter baumannii)、アスペルギルス・フミガーツス(Aspergillus fumigatis)、バクテロイデス・フラジリス(Bacteroides fragilis)、B.フラジリス(B.fragilis)、blaSHV、バークホルデリア・セパシア(Burkholderia cepacia)、カンピロバクター・ジェジュニ(Campylobacter jejuni)/コリ(coli)、カンジダ・ギリエルモンディ(Candida guilliermondii)、C.アルビカンス(C. albicans)、C.グラブラータ(C.glabrata)、C.クルセイ(C.krusei)、C.ルシタニアエ(C.lusitaniae)、C.パラプシローシス(C.parapsilosis)、C.トロピカリス(C. tropicalis)、ウェルシュ菌(Clostridium pefringens)、コアグラーゼ陰性ブドウ球菌、エンテロバクター・アエロゲネス(Enterobacter aeraogenes)、E.クロアカエ(E.cloacae)、エンテロバクター属(Enterobacteriaceae)、エンテロコッカス・フェカーリス(Enterococcus faecalis)、E.フェシウム(E.faecium)、大腸菌(Escherichia coli)、ヘモフィルス・インフルエンザ(Haemophilus influenzae)、キンゲラ・キンゲ(Kingella Kingae)、クレブシエラ・オキシトカ(Klebsiella oxytoca)、K.ニューモニエ(K.pneumoniae)、リステリア・モノサイトジェネス(Listeria monocytogenes)、MecA遺伝子(MRSA)、モルガネラ・モルガナ(Morganella morgana)、ナイセリア・メニンジティディス(Neisseria meningitidis)、メニンジティディス以外のナイセリア属、プレボテラ・ブカエ(Prevotella buccae)、P.インターメディア(P. intermedia)、P.メラニノゲニカ(P. melaninogenica)、プロピオニバクテリウム・アクネス(Propionibacterium acnes)、プロテウス・ミラビリス(Proteus mirabilis)、P.ブルガリス(P. vulgaris)、緑膿菌(Pseudomonas aeruginosa)、サルモネラ・エンテリカ(Salmonella enterica)、セラチア・マルセセンス(Serratia marcescens)、黄色ブドウ球菌、S.ヘモリチカス(S. haemolyticus)、S.マルトフィリア(S. maltophilia)、S.サプロフィティクス(S. saprophyticus)、ステノトロホモナス・マルトフィリア(Stenotrophomonas maltophilia)、S.マルトフィリア、ストレプトコッカス・アガラクティエ(Streptococcus agalactie)、S.ボビス(S.bovis)、S.ディスガラクティエ(S. dysgalactie)、S.ミティス(S. mitis)、S.ミュータンス(S. mutans)、S.ニューモニエ(S. pneumoniae)、S.ピオゲネス(S. pyogenes)、およびS.サングイス(S. sanguinis)から選択される敗血症に関連する病原体に由来する。1つまたは複数の病原体関連検体は、処置耐性細菌株、例えば、ペニシリン耐性、メチシリン耐性、キノロン耐性、マクロライド耐性、および/またはバンコマイシン耐性細菌株(例えば、メチシリン耐性黄色ブドウ球菌またはバンコマイシン耐性腸球菌)に由来することができる。ある態様においては、第二のアッセイ試料の1つまたは複数の検体は、GRO-α、高移動度群ボックス1タンパク質(HMBG-1)、IL-1受容体、IL-1受容体アンタゴニスト、IL-1b、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12、IL-13、IL-18、マクロファージ炎症性タンパク質(MIP-1)、マクロファージ遊走阻止因子(MIF)、オステオポンチン、RANTES(regulated on activation, normal T-cell expressed and secreted;またはCCL5)、TNF-α、C-反応性タンパク質(CRP)、CD64、および単球走化性タンパク質1(MCP-1)から選択される。特定の態様においては、本方法は、対象の血流を循環する抗ウイルス剤、抗生剤、または抗真菌剤の濃度をモニタリングするための、第三のアッセイ試料を調製する工程をさらに含む。ある態様においては、対象は、免疫不全である対象、または免疫不全になるリスクを有する対象であることができる。上記のモニタリング方法のいずれかにおいて、モニタリングは、断続的(例えば、定期的)、または継続的であることができる。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。液体試料は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。モニタリングするための本方法は、本明細書に記載の磁気アシスト型凝集化法のいずれかを含むことができる。
【0025】
本発明は、さらに、患者における敗血症またはSIRSの診断、管理、または処置のための、患者由来の液体試料中の1つまたは複数の検体をモニタリングする方法を特徴とし、本方法は、(a)液体試料を、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)と合わせること(該磁性粒子は、150nm〜1200nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、500〜700nm、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、および1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
l0〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能を有し、かつ、該磁性粒子は、それらの表面に結合部分を有し、該結合部分は、1つまたは複数の検体または多価結合剤の存在下で、磁性粒子の特異的な凝集を変化させるように機能する);(b)液体試料をデバイスに入れること(該デバイスは、磁性粒子および1つまたは複数の検体を含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(c)バイアス磁界およびRFパルスシーケンスに試料を曝露させること;(d)工程(c)に続いて、シグナルを測定すること;(e)工程(d)の結果に基づいて、1つまたは複数の検体をモニタリングすること;および(f)工程(e)の結果を使用して、敗血症またはSIRSを診断、管理、または処置すること、を含む。本方法は、(i)病原体関連検体をモニタリングし、かつ、(ii)GRO-α、高移動度群ボックス1タンパク質(HMBG-1)、IL-1受容体、IL-1受容体アンタゴニスト、IL-1b、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12、IL-13、IL-18、マクロファージ炎症性タンパク質(MIP-1)、マクロファージ遊走阻止因子(MIF)、オステオポンチン、RANTES(regulated on activation, normal T-cell expressed and secreted;またはCCL5)、TNF-α、C-反応性タンパク質(CRP)、CD64、単球走化性タンパク質1(MCP-1)、アデノシンデアミナーゼ結合タンパク質(ABP-26)、誘導性一酸化窒素合成酵素(iNOS)、リポ多糖結合タンパク質、およびプロカルシトニンから選択される敗血症に特徴的な第二の検体をモニタリングすることを含むことができる。ある態様においては、病原体関連検体は、アシネトバクター・バウマニー、アスペルギルス・フミガーツス、バクテロイデス・フラジリス、B.フラジリス、blaSHV、バークホルデリア・セパシア、カンピロバクター・ジェジュニ/コリ、カンジダ・ギリエルモンディ、C.アルビカンス、C.グラブラータ、C.クルセイ、C.ルシタニアエ、C.パラプシローシス、C.トロピカリス、ウェルシュ菌、コアグラーゼ陰性ブドウ球菌、エンテロバクター・アエロゲネス、E.クロアカエ、エンテロバクター属、エンテロコッカス・フェカーリス、E.フェシウム、大腸菌、ヘモフィルス・インフルエンザ、キンゲラ・キンゲ、クレブシエラ・オキシトカ、K.ニューモニエ、リステリア・モノサイトジェネス、MecA遺伝子(MRSA)、モルガネラ・モルガナ、ナイセリア・メニンジティディス、メニンジティディス以外のナイセリア属、プレボテラ・ブカエ、P.インターメディア、P.メラニノゲニカ、プロピオニバクテリウム・アクネス、プロテウス・ミラビリス、P.ブルガリス、緑膿菌、サルモネラ・エンテリカ、セラチア・マルセセンス、黄色ブドウ球菌、S.ヘモリチカス、S.マルトフィリア、S.サプロフィティクス、ステノトロホモナス・マルトフィリア、S.マルトフィリア、ストレプトコッカス・アガラクティエ、S.ボビス、S.ディスガラクティエ、S.ミティス、S.ミュータンス、S.ニューモニエ、S.ピオゲネス、およびS.サングイスから選択される敗血症に関連する病原体に由来する。病原体関連検体は、処置耐性細菌株、例えば、ペニシリン耐性、メチシリン耐性、キノロン耐性、マクロライド耐性、および/またはバンコマイシン耐性細菌株(例えば、メチシリン耐性黄色ブドウ球菌またはバンコマイシン耐性腸球菌)に由来することができる。特定の態様においては、第二の検体は、GRO-α、高移動度群ボックス1タンパク質(HMBG-1)、IL-1受容体、IL-1受容体アンタゴニスト、IL-1b、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12、IL-13、IL-18、マクロファージ炎症性タンパク質(MlP-1)、マクロファージ遊走阻止因子(MIF)、オステオポンチン、RANTES(regulated on activation, normal T-cell expressed and secreted;またはCCL5)、TNF-α、C-反応性タンパク質(CRP)、CD64、および単球走化性タンパク質1(MCP-1)から選択される。特定の態様においては、本方法は、対象の血流を循環する抗ウイルス剤、抗生剤、または抗真菌剤の濃度をモニタリングするための、第三のアッセイ試料を調製することをさらに含む。ある態様においては、対象は、免疫不全である対象、または免疫不全になるリスクを有する対象であることができる。上記のモニタリング方法のいずれかにおいて、モニタリングは、断続的(例えば、定期的)、または継続的であることができる。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。液体試料は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。モニタリングするための本方法は、本明細書に記載の磁気アシスト型凝集化法のいずれかを含むことができる。
【0026】
本発明は、さらに、1つまたは複数の検体の検出のためのシステムを特徴とし、本システムは、(a)(a1)磁界を画定する永久磁石;(a2)磁性粒子および1つまたは複数の検体を含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体(該RFコイルは、永久磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);および(a3)RFコイルと連通している1つまたは複数の電気素子(該電気素子は、シグナルを増幅、整流、送信、および/または電子化するように構成されている)を含む、第一のユニット;および(b)システム内への挿入およびシステムからの取り外しを容易にするようにサイズ調整された着脱式カートリッジを含む、第二のユニット(該着脱式カートリッジは、(i)1つまたは複数のアッセイ試薬を保持するための試薬モジュール;および(ii)磁性粒子および1つまたは複数の検体を含む液体試料を保持するための検出チャンバーを含む検出モジュールを含む、モジュールカートリッジである)を含み、該試薬モジュールおよび検出モジュールは、使用前にモジュールカートリッジに組み立てることができ、かつ、該検出チャンバーは、モジュールカートリッジから脱着可能である。モジュールカートリッジは、入口モジュールをさらに含むことができ、該入口モジュール、試薬モジュールおよび検出モジュールは、使用前にモジュールカートリッジに組み立てることができ、かつ、該入口モジュールは、滅菌可能である。ある態様においては、本システムは、アッセイプロトコールを実行し、かつ、アッセイデータを保存するためのプロセッサを備えたシステムコンピューターをさらに含み、かつ、着脱式カートリッジは、(i)検出される検体を表示する読み取り可能なラベル、(ii)実行されるアッセイプロトコールを表示する読み取り可能なラベル、(iii)患者の識別番号を表示する読み取り可能なラベル、(iv)カートリッジに含まれるアッセイ試薬の位置を表示する読み取り可能なラベル、または(v)プログラム可能なプロセッサの使用説明書を含む読み取り可能なラベルをさらに含む。本システムは、カートリッジユニット、撹拌ユニット、遠心分離機、または本明細書に記載の任意の他のシステム構成部品を含むことができる。
【0027】
本発明は、さらに、1つまたは複数の検体の検出のためのシステムを特徴とし、本システムは、(a)液体試料を保持するためのウェルを画定し、かつ、ディスポーザブル試料ホルダーの内部に含まれ、かつウェルの周囲に配置されたRFコイルを有する、ディスポーザブル試料ホルダー(該RFコイルは、永久磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されており、該ディスポーザブル試料ホルダーは、1つまたは複数のヒューザブルリンクを含む);および(b)(b1)磁界を画定する永久磁石;(b2)RFパルスシーケンスおよび検出コイル;(b3)RFコイルと連通している1つまたは複数の電気素子(該電気素子は、シグナルを増幅、整流、送信、および/または電子化するように構成されている);および(b4)ヒューザブルリンクと連通し、かつ、ヒューザブルリンクに過電流を印加するように構成されている(リンクを遮断させ、かつ、所定の耐用年数後にコイルを作動不能にする)1つまたは複数の電気素子を含む、MR読み取り装置、を含む。ある態様においては、RFコイルと連通している電気素子は、RFコイルに誘導結合されている。
【0028】
本発明は、クレアチニン、タクロリムス、およびカンジダの検出のためのシステムを特徴とし、本システムは、(a):(a1)磁界を画定する永久磁石;(a2)磁性粒子およびクレアチニン、タクロリムス、およびカンジダを含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体(該RFコイルは、永久磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);および(a3)RFコイルと連通している電気素子(該電気素子は、シグナルを増幅、整流、送信、および/または電子化するように構成されている)を含む、第一のユニット;および(b)システム内への挿入およびシステムからの取り外しを容易にするようにサイズ調整された着脱式カートリッジを含む、第二のユニット(該着脱式カートリッジは、(i)1つまたは複数のアッセイ試薬を保持するための複数の試薬モジュール;および(ii)磁性粒子ならびにクレアチニン、タクロリムス、およびカンジダを含む液体試料を保持するための検出チャンバーを含む複数の検出モジュールを含む、モジュールカートリッジである)を含み、該複数の試薬モジュールは、(i)150nm〜699nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、または500〜699nm)の平均直径、1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびそれらの表面にコンジュゲートしたクレアチニン抗体を有する、磁性粒子の第一の集団;(ii)クレアチニンの非存在下で磁性粒子の第一の集団と凝集体を形成するように設計された、複数のクレアチニンコンジュゲートを有する多価結合剤;(iii)150nm〜699nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、または500〜699nm)の平均直径、1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびそれらの表面にコンジュゲートしたタクロリムス抗体を有する、磁性粒子の第二の集団;(iv)タクロリムスの非存在下で磁性粒子の第二の集団と凝集体を形成するように設計された、複数のタクロリムスコンジュゲートを有する多価結合剤;(v)700nm〜1200nm(例えば、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、1×10
9〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能を有し、かつ、カンジダ核酸の存在下で凝集体を形成するように選択された、それらの表面にコンジュゲートした第一のプローブおよび第二のプローブを有する、磁性粒子の第三の集団(該第一のプローブは、カンジダ核酸の第一のセグメントに結合するように機能し、かつ、該第二のプローブは、カンジダ核酸の第二のセグメントに結合するように機能する)、を含む。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。液体試料は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。別の態様においては、液体試料は、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を含む。
【0029】
本発明は、液体試料中のクレアチニンの濃度を測定するための方法を特徴とし、本方法は、(a)溶液を、(i)液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を含む液体試料を生成するために、磁性粒子と(該磁性粒子は、150nm〜1200nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、500〜700nm、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびそれらの表面にコンジュゲートしたクレアチニン抗体を有する)、および(ii)クレアチニンの非存在下で磁性粒子と凝集体を形成するように設計された、複数のクレアチニンコンジュゲートを有する多価結合剤と接触させること;(b)液体試料をデバイスに入れること(該デバイスは、磁性粒子、多価結合剤、およびクレアチニンを含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(c)バイアス磁界およびRFパルスシーケンスに試料を曝露させること;(d)工程(c)に続いて、シグナルを測定すること;および(e)工程(d)の結果に基づいて、液体試料中のクレアチニンの濃度を決定すること、を含む。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。液体試料は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。
【0030】
本発明は、足場に共有結合した2つ以上のクレアチニン部分を含む多価結合剤を特徴とする。ある態様においては、多価結合剤は、式(I):
(A)
n-(B) (I)
[式中、(A)は、
であり、(B)は、各(A)に共有結合した高分子足場であり、mは、2〜10の整数であり、かつ、nは、2〜50の整数である]
で表される化合物である。
【0031】
本発明は、溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を含む溶液を特徴とし、該磁性粒子は、150nm〜600nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、または500〜600nm)の平均直径、1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびクレアチニンコンジュゲート(A)を有する表面を有し、
(A)は、以下:
から選択され、かつ、mは、2〜10の整数である。
【0032】
本発明は、さらに、溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×l0
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を含む溶液を特徴とし、該磁性粒子は、150nm〜600nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、または500〜600nm)の平均直径、1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびクレアチニンコンジュゲート(例えば、本明細書に記載のクレアチニンコンジュゲート)に親和性を有する抗体を有する表面を有する。
【0033】
本発明は、さらに、液体試料中のタクロリムスの濃度を測定するための方法を特徴とし、本方法は、(a)溶液を、(i)液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を含む液体試料を生成するために、磁性粒子(該磁性粒子は、150nm〜1200nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、500〜700nm、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびそれらの表面にコンジュゲートしたタクロリムス抗体を有する)、および(ii)タクロリムスの非存在下で磁性粒子と凝集体を形成するように設計された、複数のタクロリムスコンジュゲートを有する多価結合剤と接触させること;(b)液体試料をデバイスに入れること(該デバイスは、磁性粒子、多価結合剤、およびタクロリムスを含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている);(c)バイアス磁界およびRFパルスシーケンスに試料を曝露させること;(d)工程(c)に続いて、シグナルを測定すること;および(e)工程(d)の結果に基づいて、液体試料中のタクロリムスの濃度を決定すること、を含む。ある態様においては、磁性粒子は、実質的に単分散であり;検体および多価結合剤の非存在下で非特異的可逆性を示し;かつ/または磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含む。特定の態様においては、液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含む。さらに他の態様においては、磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。液体試料は、高分子足場にコンジュゲートした複数の検体を有する多価結合剤を含むことができる。
【0034】
本発明は、本明細書に記載のタクロリムス代謝産物または抗体が足場に親和性共有結合した構造が類似した化合物を含む、2つ以上のタクロリムス部分を含む多価結合剤を特徴とする。ある態様においては、多価結合剤は、式(II):
(A)
n-(B) (II)
[式中、(A)は、
であり、(B)は、各(A)に共有結合した高分子足場であり、かつ、nは、2〜50の整数である]
で表される化合物である。
【0035】
本発明は、溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子(例えば、1ミリリットルあたり、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を含む溶液を特徴とし、該磁性粒子は、150nm〜600nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、または500〜600nm)の平均直径、1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびタクロリムスコンジュゲート:
[式中、(B)は、高分子足場である]
に親和性を有する抗体を有する表面を有する。
【0036】
上記溶液のいずれかの態様においては、(i)磁性粒子は、実質的に単分散であり;(ii)磁性粒子は、血漿中で非特異的可逆性を示し;(iii)磁性粒子は、アルブミン、魚皮ゼラチン、γ-グロブリン、リゾチーム、カゼイン、ペプチダーゼ、およびアミン含有部分(例えば、アミノポリエチレングリコール、グリシン、エチレンジアミン、またはアミノデキストラン)から選択されるブロッキング剤で修飾された表面をさらに含み;(iv)液体試料は、緩衝液、0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせをさらに含み;かつ/または(iv)磁性粒子は、磁性粒子1ミリグラムあたり、40μg〜100μg(例えば、40μg〜60μg、50μg〜70μg、60μg〜80μg、または80μg〜100μg)の1つまたは複数のタンパク質で修飾された表面を含む。この溶液を、本明細書に記載のシステムまたは方法のいずれかにおいて使用することができる。
【0037】
本発明は、本発明のシステム内への挿入およびシステムからの取り外しを容易にするようにサイズ調整された着脱式カートリッジを特徴とし、該着脱式カートリッジは、1つまたは複数のアッセイ試薬を保持するための複数の試薬モジュールを保持するための1つまたは複数のチャンバーを含み、該試薬モジュールは、(i)100nm〜699nm(例えば、150〜250、200〜350、250〜450、300〜500、450〜650、または500〜699nm)の平均直径、1×10
8〜1×10
12mM
-1s
-1(例えば、1×10
8〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有する、1×10
6〜1×10
13個の磁性粒子(例えば、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を保持するためのチャンバー(該結合部分は、1つまたは複数の検体または多価結合剤の存在下で、磁性粒子の特異的な凝集を変化させるように機能する);および(ii)緩衝液を保持するためのチャンバーを含む。関連する局面においては、本発明は、本発明のシステム内への挿入およびシステムからの取り外しを容易にするようにサイズ調整された着脱式カートリッジを特徴とし、該着脱式カートリッジは、1つまたは複数のアッセイ試薬を保持するための複数の試薬モジュールを保持するための1つまたは複数のチャンバーを含み、該試薬モジュールは、(i)700nm〜1200nm(例えば、700〜850、800〜950、900〜1050、または1000〜1200nm)の平均直径、1×10
9〜1×10
l2mM
-1s
-1(例えば、1×10
9〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
12mM
-1s
-1)の粒子1個あたりのT
2緩和能、およびそれらの表面にオリゴヌクレオチド結合部分を有する、1×10
6〜1×10
13個の磁性粒子(例えば、1×10
6〜1×10
8、1×10
7〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、または1×10
10〜1×10
13個の磁性粒子)を保持するためのチャンバー(該オリゴヌクレオチド結合部分は、1つまたは複数の検体の存在下で、磁性粒子の特異的な凝集を変化させるように機能する);および(ii)緩衝液を保持するためのチャンバーを含む。磁性粒子は、本明細書に記載の任意の検体を検出するために、本明細書に記載の任意の結合部分で修飾された本明細書に記載のいずれかであることができる。着脱式カートリッジの特定の態様においては、磁性粒子および緩衝液は、カートリッジ内の単一チャンバー中に共存する。さらに他の態様においては、緩衝液は、0.1%〜3%(w/w)のアルブミン、0.01%〜0.5%の非イオン界面活性剤、溶解剤、またはそれらの組み合わせを含む。着脱式カートリッジは、細胞を溶解するためのビーズを含むチャンバー;ポリメラーゼを含むチャンバー;および/またはプライマーを含むチャンバーをさらに含むことができる。
【0038】
本発明は、本発明のシステム内への挿入およびシステムからの取り外しを容易にするようにサイズ調整された着脱式カートリッジを特徴とし、該着脱式カートリッジは、1つまたは複数のアッセイ試薬を保持するための複数の試薬モジュールを保持するための1つまたは複数のチャンバーを含み、該試薬モジュールは、(i)100nm〜350nmの平均直径、5×10
8〜1×10
10mM
-1s
-1の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分(例えば、抗体、コンジュゲート検体)を有する、1×10
8〜1×10
10個の磁性粒子を保持するためのチャンバー(該結合部分は、1つまたは複数の検体または多価結合剤の存在下で、磁性粒子の特異的な凝集を変化させるように機能する);および(ii)0.1%〜3%(w/w)のアルブミン(例えば、0.1%〜0.5%、0.3%〜0.7%、0.5%〜1%、0.8%〜2%、または1.5%〜3%(w/w)のアルブミン)、0.01%〜0.5%の非イオン界面活性剤(例えば、0.01%〜0.05%、0.05%〜0.1%、0.05%〜0.2%、0.1%〜0.3%、0.2%〜0.4%、または0.3%〜0.5%の非イオン界面活性剤)、またはそれらの組み合わせを含む緩衝液を保持するためのチャンバーを含む。1つの態様においては、磁性粒子および緩衝液は、カートリッジ内の単一チャンバー中に共存する。
【0039】
本発明のシステム、キット、カートリッジ、および方法のいずれかにおいて、液体試料は、100nm〜350nmの平均直径、5×10
8〜1×10
10mM
-1s
-1の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分(例えば、抗体、コンジュゲート検体)を有する、1×10
8〜1×10
10個の磁性粒子を含むことができ、該結合部分は、1つまたは複数の検体または多価結合剤の存在下で、磁性粒子の特異的な凝集を変化させるように機能する。
【0040】
全血試料中の任意の検体の検出のための、本発明のシステム、キット、カートリッジ、および方法のいずれかにおいて、赤血球の破壊は、赤血球溶解剤(すなわち、溶解緩衝液、または非イオン洗剤)を使用して実施することができる。本発明の方法において使用することができる赤血球溶解緩衝液としては、塩化アンモニウムの等張液(場合により、炭酸緩衝液および/またはEDTAを含む)、および低張液が挙げられるが、これらに限定されない。あるいは、赤血球溶解剤は、非イオン洗剤(例えば、ノニルフェノキシポリエトキシエタノール(NP-40)、4-オクチルフェノールポリエトキシレート(Triton-X100)、Brij-58、または関連する非イオン界面活性剤、およびそれらの混合物)の水溶液であることができる。赤血球溶解剤は、少なくとも一部の赤血球を破壊し、それによって、全血の特定の成分(例えば、特定の全血タンパク質)の大部分を、全血試料中に存在する白血球、酵母細胞、および/または細菌細胞から分離することができる(例えば、分離後の上清として)。赤血球溶解および遠心分離に続いて、得られたペレットを再構成して、抽出物を形成する。
【0041】
本発明の方法、キット、カートリッジ、およびシステムは、病原体関連検体の所定のパネルを検出するために構成することができる。例えば、パネルは、カンジダ・ギリエルモンディ、C.アルビカンス、C.グラブラータ、C.クルセイ、C.ルシタニアエ、C.パラプシローシス、およびC.トロピカリスの3つ以上を個別に検出するために構成されたカンジダ真菌パネルであることができる。別の態様においては、パネルは、コアグラーゼ陰性ブドウ球菌、エンテロコッカス・フェカーリス、E.フェシウム、緑膿菌、黄色ブドウ球菌、および大腸菌の3つ以上を個別に検出するために構成された細菌パネルであることができる。特定の態様においては、パネルは、サイトメガロウイルス(CMV)、エプスタイン・バーウイルス、BKウイルス、B型肝炎ウイルス、C型肝炎ウイルス、単純ヘルペスウイルス(HSV)、HSV1、HSV2、呼吸器合胞体ウイルス(RSV)、インフルエンザ;インフルエンザA、インフルエンザA亜型H1、インフルエンザA亜型H3、インフルエンザB、ヒトヘルペスウイルス6型、ヒトヘルペスウイルス8型、ヒトメタ肺炎ウイルス(hMPV)、ライノウイルス、パラインフルエンザ1、パラインフルエンザ2、パラインフルエンザ3、およびアデノウイルスの3つ以上を個別に検出するために構成されたウイルスパネルであることができる。パネルは、大腸菌(E. coli)、CoNS(コアグラーゼ陰性ブドウ球菌)、緑膿菌、S.アウレウス(S. aureus)、E.フェシウム、E.フェカリス(E.faecalis)、およびクレブシエラ・ニューモニエ(Klebsiella pneumonia)の3つ以上を個別に検出するために構成された細菌パネルであることができる。パネルは、A.フミガタス(A. fumigates)、およびA.フラバム(A.flavum)の3つ以上を個別に検出するために構成された細菌パネルであることができる。パネルは、アシネトバクター・バウマニー、エンテロバクター・アエロゲネス、エンテロバクター・クロアカエ(Enterobacter cloacae)、クレブシエラ・オキシトカ、プロテウス・ミラビリス、セラチア・マルセセンス、スタフィロコッカス・ヘモリチカス(Staphylococcus haemolyticus)、ステノトロホモナス・マルトフィリア、ストレプトコッカス・アガラクティエ、ストレプトコッカス・ミチス(Streptococcus mitis)、ストレプトコッカス・ニューモニエ(Streptococcus pneumonia)、およびストレプトコッカス・ピオゲネス(Streptococcus pyogenes)の3つ以上を個別に検出するために構成された細菌パネルであることができる。パネルは、ストレプトコッカス・ニューモニエ、H.インフルエンザ、ナイセリア・メニンジティディス(Neisseria Meningitis)、HSV1、HSV2、エンテロウイルス、リステリア菌、大腸菌、B群連鎖球菌の3つ以上を個別に検出するために構成された髄膜炎菌パネルであることができる。パネルは、N.ゴノロエエ(N. gonnorrhoeae)、S.アウレウス、S.ピオゲネス、CoNS、およびボレリア・ブルグドルフェリ(Borrelia burgdorferi)の3つ以上を個別に検出するために構成することができる。パネルは、C.ディフィシル(C. Difficile)、A毒素、およびB毒素の3つ以上を個別に検出するために構成することができる。パネルは、ストレプトコッカス・ニューモニエ、MRSA、レジオネラ菌(Legionella)、C.ニューモニア(C.pneumonia)、およびマイコプラズマ・ニューモニア(Mycoplasma Pneumonia)の3つ以上を個別に検出するために構成された肺炎菌パネルであることができる。パネルは、mecA、vanA、vanB、NDM-1、KPC、およびVIMから選択される3つ以上の処置耐性突然変異体を個別に検出するために構成することができる。パネルは、H.インフルエンザ、N.ゴノロエエ、H.ピロリ(H. pylori)、カンピロバクター菌(Campylobacter)、ブルセラ菌(Brucella)、レジオネラ菌、およびステノトロホモナス・マルトフィリアの3つ以上を個別に検出するために構成することができる。パネルは、CMV、EBV、BKウイルス、HIV、HBV、およびHCVによる全てのウイルス負荷を検出するために構成することができる。パネルは、真菌負荷および/または細菌負荷を検出するために構成することができる。ウイルス負荷の決定は、標準曲線を使用して、かつ、この標準曲線に対して試料を測定するか、または試料中の病原体の他の定量方法を使用することができる。定量的測定法は、リアルタイムPCR、競合的PCR(2つの競合シグナルの比)または本明細書に挙げた他の方法を含んでもよい。パネルは、PCT、MCP-1、CRP、GRO-α、高移動度群ボックス1タンパク質(HMBG-1)、IL-1受容体、IL-1受容体アンタゴニスト、IL-1b、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12、IL-13、IL-18、マクロファージ炎症性タンパク質(MIP-1)、マクロファージ遊走阻止因子(MIF)、オステオポンチン、RANTES(regulated on activation, normal T-cell expressed and secreted;またはCCL5)、Th1、Th17、および/またはTNF-αをモニタリングすることにより、対象における免疫応答を検出するために構成することができる。パネルは、エールリヒア属(Ehrlichea)、マイコバクテリウム属(Mycobacterium)、ジフィリス属(Syphillis)、ボレリア・ブルグドルフェリ、クリプトコッカス属(Cryptococcus)、ヒストプラスマ(Histoplasma)、およびブラストミセス属(Blastomyces)の3つ以上を個別に検出するために構成することができる。パネルは、インフルエンザA、インフルエンザB、RSV、パラインフルエンザ、メタ肺炎ウイルス、ライノウイルス、およびアデノウイルスの3つ以上を個別に検出するために構成されたインフルエンザパネルであることができる。
【0042】
本発明の方法、キット、カートリッジ、およびシステムは、ハイブリダイゼーションの前後に磁気共鳴シグナルを決定することにより、試料間変動を減少させるように構成することができる。クラスター化を増強する方法の前に誘導体化ナノ粒子を試料に加えることで、ベースラインである内部T
2シグナルを得てもよく、これを、減算するかまたは検体誘導体化粒子の結合およびクラスター化の後のT
2シグナルを修正するよう使用することができる。本方法は、また、カートリッジ間の変動性を決定または管理するために使用することができる。
【0043】
用語「凝集」、「凝集作用」、および「クラスター化」は、本明細書に記載の磁性粒子の内容において互換的に使用され、かつ、2つ以上の磁性粒子が、例えば、多価検体、検体の多量体、抗体、核酸分子、または他の結合分子もしくは実体を介して、互いに結合することを意味する。ある場合では、磁性粒子の凝集作用は可逆的である。
【0044】
「検体」とは、分析される試料の物質または構成成分を意味する。例示的な検体としては、以下の1つまたは複数の1つまたは複数の種が挙げられる:タンパク質、ペプチド、ポリペプチド、アミノ酸、核酸、オリゴヌクレオチド、RNA、DNA、抗体、糖質、多糖、グルコース、脂質、気体(例えば、酸素または二酸化炭素)、電解質(例えば、ナトリウム、カリウム、塩化物、重炭酸塩、BUN、マグネシウム、リン酸塩、カルシウム、アンモニア、乳酸塩)、リポタンパク質、コレステロール、脂肪酸、糖タンパク質、プロテオグリカン、リポ多糖、細胞表面マーカー(例えば、CD3、CD4、CD8、IL2R、またはCD35)、細胞質マーカー(例えば、CD4/CD8またはCD4/ウイルス負荷)、治療薬剤、治療薬剤の代謝物、兵器(例えば、化学または生物学兵器)の検出用のマーカー、微生物、病原体、病原体副生成物、寄生生物(例えば、原生動物または蠕虫)、原生生物、真菌(例えば、酵母またはカビ)、細菌、放線菌、細胞(例えば、全細胞、腫瘍細胞、幹細胞、白血球、T細胞(例えば、CD3、CD4、CD8、IL2R、CD35、または他の表面マーカーを提示する)、または1つまたは複数の特異的マーカーにより同定された別の細胞)、ウイルス、プリオン、植物成分、植物副生成物、藻類、藻類副生成物、植物成長ホルモン、殺虫剤、人工毒素、環境毒素、油成分、およびそれらに由来する成分。本明細書において使用されるように、用語「小分子」は、ヒトへの治療用途に考慮される薬物、医薬、薬剤、または他の化学的に合成された化合物を指す。本明細書において使用されるように、用語「生物製剤」は、合成されていない生物学的起源に由来し、かつ、ヒトへの治療用途に考慮される物質を指す。「バイオマーカー」は、生物の特定の病態または特定の生理学的状態の指標として使用することができる生物学的物質であり、一般的に、バイオマーカーは、体液中の測定されるタンパク質または他の天然の化合物であり(その濃度は、病態または機能障害の存在または重症度または病期を反映する)、疾患または障害または機能障害の処置の治療進行をモニタリングするために使用することができ、あるいは、臨床転帰または臨床的進展の代替手段として使用することができる。本明細書において使用されるように、用語「代謝バイオマーカー」は、合成物であるか、または生物学的由来の物質、分子、または化合物を示し、患者または対象の肝機能または腎機能の状態を決定するために使用される。本明細書において使用されるように、用語「遺伝子型決定」は、特定の遺伝子の表現型に影響を及ぼすか、または及ぼさなくてもよい、特異的遺伝子の遺伝的差異を決定する能力を示す。本明細書において使用されるように、用語「表現型」は、遺伝子型により決められたタンパク質の、結果として生じた生物学的な表現(代謝的または生理学的)を示す。本明細書において使用されるように、用語「遺伝子発現プロファイリング」は、時間または空間的手法で、特定の組織における遺伝子産物の産生の速度もしくは量、または遺伝子転写の活性を決定する能力を示す。本明細書において使用されるように、用語「プロテオーム解析」は、正常組織と疾患組織におけるタンパク質またはペプチドの決定的な相違を特定するためのタンパク質パターンまたはアレイを示す。さらなる典型的な検体は、本明細書に記載されている。用語「検体」は、核酸増幅反応の産物などの、初期の標的検体の増幅の生化学的手段の直接産物である試料の成分をさらに含む。
【0045】
「単離された」核酸分子とは、その天然環境から除去される核酸分子を意味する。例えば、細胞のゲノム中に存在する、または遺伝子バンクの一部として存在する天然の核酸分子は単離されたものではないが、例えば、クローニングイベント、増幅、または濃縮の結果として、ゲノムの残りの部分から分離された同じ分子は「単離」されたものである。典型的には、単離された核酸分子は、天然に生じるゲノムにおいて5'または3'末端で直接連続している核酸領域(例えば、コード領域)を含有しない。そのような単離された核酸分子は、ベクターまたは組成物の一部であることができ、かつ、そのようなベクターまたは組成物がその天然環境の一部ではないという点でも単離されていると言える。
【0046】
本明細書において使用されるように、「連結された」は、共有結合、非共有結合により接続または結合されていること、ならびに/またはファン・デル・ワールス力、水素結合、および/もしくは他の分子間力を介して連結されていることを意味する。
【0047】
用語「磁性粒子」は、常磁性化合物、超常磁性化合物、およびマグネタイトなどの高い正の磁化率の材料、γ-酸化鉄、または金属鉄を含む粒子を示す。
【0048】
本明細書において使用されるように、「非特異的可逆性」は、液体試料中の非特異的凝集に対する磁性粒子のコロイド安定性およびロバスト性を指し、かつ、粒子を、特異的なクラスター化部分(すなわち、検体または凝集因子(agglomerator))の非存在下で、目的としたアッセイ条件に付すことにより決定することができる。例えば、非特異的可逆性は、均一磁界(<5000ppmとして定義される)中、0.45T、37℃で3分間のインキュベートの前後に、磁性粒子の溶液のT
2値を測定することにより決定することができる。磁性粒子を目的としたアッセイ条件に付す前後のT
2値の差が、10%未満変化(例えば、9%、8%、6%、4%、3%、2%、または1%未満変化)した場合、その磁性粒子は、非特異的可逆性を有すると見なされる。その差が10%超である場合、その粒子は、試験される緩衝液、希釈剤、およびマトリクス中で不可逆性を示し、かつ、粒子が非特異的可逆性を有するシステムを生成するために、粒子およびマトリクス特性の操作(例えば、コーティングおよび緩衝液調合)が必要となり得る。別の例では、この試験を、1Gauss/mm〜10000Gauss/mmの勾配磁界でのインキュベーションの前後に磁性粒子の溶液のT
2値を測定することにより応用することができる。
【0049】
本明細書において使用されるように、用語「NMR緩和率」は、試料中で、T
1、T
2、T
1/T
2混成(hybrid)、T
1rho、T
2rho、およびT
2*のいずれかを測定することを指す。本発明のシステムおよび方法は、検体が液体試料中に存在するか否かによって特徴的なNMR緩和率を生成するように設計される。いくつか場合では、NMR緩和率は、液体試料中に存在する検体の量に特徴的である。
【0050】
本明細書において使用されるように、用語「T
1/T
2混成」は、T
1とT
2測定を組み合わせた任意の検出方法を指す。例えば、T
1/T
2混成値は、2つ以上の異なるT
1とT
2測定の組み合わせ、比、または差から得られた複合シグナルであることができる。T
1/T
2混成は、例えば、T
1およびT
2が代替的に測定または交互に取得される、パルスシーケンスを使用することにより得ることができる。また、T
1/T
2混成シグナルは、T
1およびT
2の両方の緩和率またはメカニズムからなる緩和率を測定するパルスシーケンスを用いて取得することができる。
【0051】
「病原体」は、その宿主に疾患または病気を引き起こす作用因子(例えば、別の生物に疾患を引き起こすことが可能な生物または感染性粒子)を意味し、かつ、病原体としては、細菌、ウイルス、原生動物、プリオン、酵母および真菌または病原体副生成物が挙げられるが、これらに限定されない。「病原体副生成物」は、宿主に有害であるか、または過剰な宿主免疫応答を刺激することができる病原体から生じる生物学的物質、例えば、病原体抗原、代謝物質、酵素、生物学的物質、または毒素である。
【0052】
「病原体関連検体」とは、試料中に病原体(例えば、細菌、真菌、またはウイルス)が存在することを特徴とする検体を意味する。病原体関連検体は、病原体に由来する特定の物質(例えば、病原体により産生されるタンパク質、核酸、脂質、多糖、または任意の他の材料)、または病原体に由来する混合物(例えば、全細胞、または全ウイルス)であることができる。ある場合では、病原体関連検体は、検出される病原体の属、種、または特定の株に特徴的に選択される。あるいは、病原体関連検体は、特定の治療に耐性であるなどの、病原体の特性を確認するために選択される。例えば、病原体関連検体は、多数の異なる細菌種において、バンコマイシン耐性を特徴とするVanA遺伝子またはVanB遺伝子などの遺伝子であることができる。
【0053】
「パルスシーケンス」または「RFパルスシーケンス」とは、試料に印加され、かつ、例えば、スピンエコー系列などの特定のNMR緩和率を測定するように設計された、1つまたは複数の高周波パルスを意味する。パルスシーケンスは、また、ノイズを最小限にし、かつ、得られたシグナル値の精度を改善するために、1つまたは複数のパルスに続くシグナルの取得を含んでもよい。
【0054】
本明細書において使用されるように、用語「シグナル」は、NMR緩和率、周波数シフト、感受性測定値、拡散測定値、または相関測定値を指す。
【0055】
本明細書において使用されるように、磁性粒子の「サイズ」についての言及は、顕微鏡法、光散乱法、または他の方法により決定されるような、磁性粒子の混合物の平均直径を指す。
【0056】
本明細書において使用されるように、用語「実質的に単分散」は、光散乱測定において粒子サイズの分布曲線の形状により決定される、多分散性の粒度分布を有する磁性粒子の混合物を指す。粒子の分布曲線のFWHM(full width half max)がピーク位置の25%未満である場合、実質的に単分散であると考えられる。また、光散乱実験では1つのピークのみが観測されるものとし、かつ、そのピーク位置は、公知の単分散粒子の集団の1標準偏差以内とする。
【0057】
「粒子1個あたりのT
2緩和能」とは、磁性粒子の1つの集団における粒子1個あたりの平均T
2緩和能を意味する。
【0058】
本明細書において使用されるように、「分画されていない」は、試験される試料の成分が、磁性粒子を試料に加えた後、およびNMR緩和測定の前に除去されていないアッセイを指す。
【0059】
特許請求された発明のユニット、システム、方法、およびプロセスが、本明細書に記載の態様からの情報を使用して開発された変形および適応を包含することが企図される。本明細書を通して、ユニットおよびシステムが、特定の要素を有する、含む、または含むものとして記載される場合、またはプロセスおよび方法が、特定の工程を有する、含む、または含むものとして記載される場合、追加的に、その列挙された要素から本質的に構成される、または構成される本発明のユニットおよびシステム、ならびに、その列挙されたプロセス工程から本質的に構成される、または構成される本発明のプロセスおよび方法が考慮される。本発明が操作可能である以上は、工程の順序または特定の行為を実施する順序は特に指定しない限り重要でないことを理解すべきである。さらに、多くの場合で、2つ以上の工程または行為を同時に実施してもよい。
【0060】
[本発明1001]
液体試料中の検体の存在を検出するための方法であって、
(a)溶液と磁性粒子を接触させて、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子を含む液体試料を生成する工程であって、該磁性粒子は、150nm〜699nmの平均直径、1×10
8〜1×10
12mM
-1s
-1の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有し、該結合部分は、検体または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する、工程;
(b)液体試料をデバイスに入れる工程であって、該デバイスは、磁性粒子、多価結合剤、および検体を含む液体試料を保持するウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、工程;
(c)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;
(d)工程(c)に続いて、シグナルを測定する工程;および
(e)工程(d)の結果に基づいて、検体を検出する工程、を含む方法。
[本発明1002]
液体試料中の検体の存在を検出するための方法であって、
(a)溶液と磁性粒子を接触させて、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子を含む液体試料を生成する工程であって、該磁性粒子は、700nm〜1200nmの平均直径、1×10
9〜1×10
12mM
-1s
-1の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有し、該結合部分は、検体の存在下で、磁性粒子の凝集を変化させるように機能する、工程;
(b)液体試料をデバイスに入れる工程であって、該デバイスは、磁性粒子、多価結合剤、および検体を含む液体試料を保持するウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、工程;
(c)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;
(d)工程(c)に続いて、シグナルを測定する工程;および
(e)工程(d)の結果に基づいて、検体の存在または濃度を検出する工程、を含む方法。
[本発明1003]
磁性粒子が、実質的に単分散である、本発明1001または1002の方法。
[本発明1004]
磁性粒子が、検体および多価結合剤の非存在下で非特異的可逆性を示す、本発明1001または1002の方法。
[本発明1005]
工程(d)が、液体試料のT
2緩和応答を測定することを含み、かつ、液体試料中の凝集作用の増加が、試料の観測されるT
2緩和率の増加を引き起こす、本発明1001または1002の方法。
[本発明1006]
検体が、標的核酸である、本発明1001または1002の方法。
[本発明1007]
前記標的核酸が、白血球から抽出される、本発明1006の方法。
[本発明1008]
前記標的核酸が、病原体から抽出される、本発明1006の方法。
[本発明1009]
全血試料中の病原体の存在を検出するための方法であって、
(a)対象から全血試料を提供する工程;
(b)全血試料と赤血球溶解剤を混合して、破壊した赤血球を生成する工程;
(c)工程(b)に続いて、試料を遠心分離して上清およびペレットを形成し、上清の一部または全部を廃棄し、かつ、ペレットを再懸濁して抽出物を形成し、任意で、ペレットを再懸濁する前にペレットを洗浄し、かつ、任意で、工程(c)を繰り返す工程;
(d)抽出物の細胞を溶解し、溶解物を形成する工程;
(e)工程(d)の溶解物を検出チューブに入れ、かつ、溶解物中の標的核酸を増幅して、標的核酸を含む増幅した溶解物溶液を形成する工程であって、該標的核酸は、検出される病原体に特徴的である、工程;
(f)工程(e)に続いて、増幅した溶解物溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子を検出チューブに加える工程であって、該磁性粒子は、700nm〜1200nmの平均直径およびそれらの表面に結合部分を有し、該結合部分は、標的核酸または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する、工程;
(g)検出チューブをデバイスに入れる工程であって、該デバイスは、磁性粒子および標的核酸を含む検出チューブを保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、工程;
(h)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;
(i)工程(h)に続いて、検出チューブからのシグナルを測定する工程;および
(j)工程(i)の結果に基づいて、病原体を検出する工程、を含む方法。
[本発明1010]
工程(a)〜(i)が、3時間以内に完了する、本発明1009の方法。
[本発明1011]
工程(i)が、前記増幅した溶解物溶液の事前精製なしに実施される、本発明1009の方法。
[本発明1012]
全血試料中の標的核酸の存在を検出するための方法であって、
(a)対象からの全血試料から1つまたは複数の細胞を提供する工程;
(b)前記細胞を溶解して、溶解物を形成する工程;
(c)溶解物中の標的核酸を増幅して、標的核酸を含む増幅した溶解物溶液を形成する工程;
(d)工程(c)に続いて、増幅した溶解物溶液、および増幅した溶解物溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子を検出チューブに加える工程であって、該磁性粒子は、700nm〜1200nmの平均直径およびそれらの表面に結合部分を有し、該結合部分は、標的核酸または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する、工程;
(e)検出チューブをデバイスに入れる工程であって、該デバイスは、磁性粒子および標的核酸を含む検出チューブを保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、工程;
(f)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;
(h)工程(f)に続いて、検出チューブからのシグナルを測定する工程;および
(i)工程(h)の結果に基づいて、標的核酸を検出する工程、を含む方法。
[本発明1013]
前記標的核酸が、工程(d)の前に精製される、本発明1012の方法。
[本発明1014]
全血試料中の標的核酸の存在を検出するための方法であって、
(a)対象からの全血試料中の赤血球を溶解することにより生成する抽出物を提供し、試料を遠心分離して上清およびペレットを形成し、上清の一部または全部を廃棄し、かつ、ペレットを再懸濁して抽出物を形成し、任意で、ペレットを再懸濁する前にペレットを洗浄し、かつ、任意で、遠心分離、廃棄、および再懸濁のステップを繰り返す工程;
(b)抽出物中の細胞を溶解して、溶解物を形成する工程;
(c)工程(b)の溶解物を検出チューブに入れ、かつ、その中の核酸を増幅して、40%(w/w)〜95%(w/w)の標的核酸および5%(w/w)〜60%(w/w)の非標的核酸を含む増幅した溶解物溶液を形成する工程;
(d)工程(c)に続いて、増幅した溶解物溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子を検出チューブに加える工程であって、該磁性粒子は、700nm〜1200nmの平均直径およびそれらの表面に結合部分を有し、該結合部分は、標的核酸または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する、工程;
(e)検出チューブをデバイスに入れる工程であって、該デバイスは、磁性粒子および標的核酸を含む検出チューブを保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、工程;
(f)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;
(g)工程(f)に続いて、検出チューブからのシグナルを測定する工程;および
(h)工程(g)の結果に基づいて、標的核酸を検出する工程であって、該工程(g)は、増幅した溶解物溶液の事前精製なしに実施される、工程を含む方法。
[本発明1015]
工程(b)が、抽出物とビーズを混ぜ合わせて混合物を形成し、かつ、混合物を撹拌して溶解物を形成することを含む、本発明1009、1012または1014の方法。
[本発明1016]
前記磁性粒子が、それらの表面にコンジュゲートした第一のプローブおよび第二のプローブを有する1つまたは複数の集団を含み、第一のプローブが、標的核酸の第一のセグメントに結合するように機能し、かつ、第二のプローブが、標的核酸の第二のセグメントに結合するように機能し、該磁性粒子が、標的核酸の存在下で凝集体を形成する、本発明1009〜1015のいずれかの方法。
[本発明1017]
前記磁性粒子が、それらの表面に第一の結合部分を有する第一の集団およびそれらの表面に第二の結合部分を有する第二の集団、ならびに第一のプローブおよび第二のプローブを含む前記多価結合部分を含み、第一のプローブが、前記第一の結合部分に結合するように機能し、かつ、第二のプローブが、第二の結合部分に結合するように機能し、結合部分および多価結合部分が、標的核酸の存在下で、磁性粒子の凝集を変化させるように機能する、本発明1009〜1015のいずれかの方法。
[本発明1018]
液体試料中のカンジダ(Candida)種の存在を検出するための方法であって、
(a)液体試料中のカンジダ細胞を溶解する工程;
(b)各々、複数のカンジダ種に共通している順方向プライマーおよび逆方向プライマーの存在下で、検出される核酸を増幅して、カンジダアンプリコンを含む溶液を形成する工程;
(c)該溶液と磁性粒子を接触させて、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子を含む液体試料を生成する工程であって、該磁性粒子は、700nm〜1200nmの平均直径、1×10
9〜1×10
12mM
-1s
-1の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有し、該結合部分は、カンジダアンプリコンまたは多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する、工程;
(d)液体試料をデバイスに入れる工程であって、該デバイスは、磁性粒子およびカンジダアンプリコンを含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、工程;
(e)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;
(f)工程(e)に続いて、シグナルを測定する工程;および
(g)工程(f)の結果に基づいて、カンジダ種が試料中に存在したか否かを決定する工程、を含む方法。
[本発明1019]
順方向プライマーが、オリゴヌクレオチド配列:
を含む、本発明1018の方法。
[本発明1020]
逆方向プライマーが、オリゴヌクレオチド配列:
を含む、本発明1018の方法。
[本発明1021]
カンジダ種が、カンジダ・アルビカンス(Candida albicans)であり、かつ、第一のプローブが、オリゴヌクレオチド配列:
を含み、かつ、第二のプローブが、オリゴヌクレオチド配列:
を含む、本発明1018の方法。
[本発明1022]
カンジダ種が、カンジダ・クルセイ(Candida krusei)であり、かつ、第一のプローブおよび第二のプローブが、以下:
から選択されるオリゴヌクレオチド配列を含む、本発明1018の方法。
[本発明1023]
カンジダ種が、カンジダ・グラブラータ(Candida glabrata)であり、かつ、第一のプローブが、オリゴヌクレオチド配列:
を含み、かつ、第二のプローブが、オリゴヌクレオチド配列:
を含む、本発明1018の方法。
[本発明1024]
カンジダ種が、カンジダ・パラシローシス(Candida parapsilosis)またはカンジダ・トロピカリス(Candida tropicalis)であり、かつ、第一のプローブおよび第二のプローブが、以下:
から選択されるオリゴヌクレオチド配列を含む、本発明1018の方法。
[本発明1025]
工程(a)〜(h)が、3時間以内に完了する、本発明1018〜1024のいずれかの方法。
[本発明1026]
磁性粒子が、その表面に第一のプローブを有する第一の集団、およびその表面に第二のプローブを有する第二の集団の2つの集団を含む、本発明1018〜1024のいずれかの方法。
[本発明1027]
前記磁性粒子が、それらの表面にコンジュゲートした第一のプローブおよび第二のプローブを有する1つまたは複数の集団を含み、第一のプローブが、カンジダアンプリコンの第一のセグメントに結合するように機能し、かつ、第二のプローブが、カンジダアンプリコンの第二のセグメントに結合するように機能し、該磁性粒子が、カンジダアンプリコンの存在下で、凝集体を形成する、本発明1018〜1024のいずれかの方法。
[本発明1028]
前記磁性粒子が、それらの表面に第一の結合部分を有する第一の集団およびそれらの表面に第二の結合部分を有する第二の集団、ならびに第一のプローブおよび第二のプローブを含む前記多価結合部分を含み、第一のプローブが、前記第一の結合部分に結合するように機能し、かつ、第二のプローブが、第二の結合部分に結合するように機能し、結合部分および多価結合部分が、カンジダアンプリコンの存在下で、磁性粒子の凝集を変化させるように機能する、本発明1018〜1024のいずれかの方法。
[本発明1029]
全血試料中の病原体の存在を検出するための方法であって、
(a)対象から0.05〜4.0mLの全血試料を提供する工程;
(b)工程(a)の試料のアリコートを容器に入れ、かつ、試料中の標的核酸を増幅して、標的核酸を含む増幅した溶液を形成する工程であって、該標的核酸は、検出される病原体に特徴的である、工程;
(c)増幅した液体試料を検出デバイスに入れる工程;および
(d)工程(c)の結果に基づいて、病原体を検出する工程を含み、
該病原体は、細菌および真菌から選択され、かつ、前記方法は、全血試料において、10細胞/mLの病原体濃度を検出することが可能である、方法。
[本発明1030]
前記検出デバイスが、増幅した液体試料の光学、蛍光、質量、密度、磁性、クロマトグラフ、および/または電気化学的測定を介して病原体を検出する、本発明1029の方法。
[本発明1031]
工程(a)〜(d)が、3時間以内に完了する、本発明1029の方法。
[本発明1032]
工程(b)または(c)が、増幅した溶液の事前精製なしに実施される、本発明1029の方法。
[本発明1033]
工程(c)の液体試料が、全血タンパク質および非標的オリゴヌクレオチドを含む、本発明1029の方法。
[本発明1034]
前記病原体が、細菌および真菌から選択される、本発明1029の方法。
[本発明1035]
全血試料中の病原体の存在を検出するための方法であって、
(a)対象から全血試料を提供する工程;
(b)0.05〜4.0mLの全血試料と赤血球溶解剤を混合して、破壊した赤血球を生成する工程;
(c)工程(b)に続いて、試料を遠心分離して上清およびペレットを形成し、上清の一部または全部を廃棄し、かつ、ペレットを再懸濁して抽出物を形成し、任意で、ペレットを再懸濁する前にペレットを洗浄し、かつ、任意で、工程(c)を繰り返す工程;
(d)抽出物の細胞を溶解し、溶解物を形成する工程;
(e)工程(d)の溶解物を容器に入れ、かつ、溶解物中の標的核酸を増幅して、標的核酸を含む増幅した溶解物溶液を形成する工程であって、該標的核酸は、検出される病原体に特徴的である、工程;
(f)工程(e)に続いて、増幅した溶解物溶液と、増幅した溶解物溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子を混合して、液体試料を形成する工程であって、該磁性粒子は、150nm〜1200nmの平均直径、1×10
8〜1×10
12mM
-1s
-1の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有し、該結合部分は、標的核酸または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する、工程;
(g)液体試料をデバイスに入れる工程であって、該デバイスは、磁性粒子および標的核酸を含む検出チューブを保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、工程;
(h)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;
(i)工程(h)に続いて、液体試料からのシグナルを測定する工程;および
(j)工程(i)の結果に基づいて、病原体を検出する工程を含み、
該病原体は、細菌および真菌から選択され、かつ、前記方法は、全血試料において、10細胞/mLの病原体濃度を検出することが可能である、方法。
[本発明1036]
工程(a)〜(i)が、3時間以内に完了する、本発明1035の方法。
[本発明1037]
工程(i)が、前記増幅した溶解物溶液の事前精製なしに実施される、本発明1035の方法。
[本発明1038]
工程(i)の前記液体試料が、全血タンパク質および非標的オリゴヌクレオチドを含む、本発明1035の方法。
[本発明1039]
前記病原体が、細菌および真菌から選択される、本発明1035の方法。
[本発明1040]
前記全血試料において、15%未満の変動係数で、10細胞/mLの病原体濃度を測定することが可能である、本発明1035の方法。
[本発明1041]
全血試料中のウイルスの存在を検出するための方法であって、
(a)対象から血漿試料を提供する工程;
(b)0.05〜4.0mLの血漿試料と溶解剤を混合して、破壊したウイルスを含む混合物を生成する工程;
(c)混合物(b)を容器に入れ、かつ、濾液中の標的核酸を増幅して、標的核酸を含む増幅した濾液溶液を形成する工程であって、該標的核酸は、検出されるウイルスに特徴的である、工程;
(d)工程(c)に続いて、増幅した濾液溶液を、増幅した濾液溶液1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子と混合して、液体試料を形成する工程であって、該磁性粒子は、150nm〜1200nmの平均直径、1×10
8〜1×10
12mM
-1s
-1の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有し、該結合部分は、標的核酸または多価結合剤の存在下で、磁性粒子の凝集を変化させるように機能する、工程;
(e)液体試料をデバイスに入れる工程であって、該デバイスは、磁性粒子および標的核酸を含む検出チューブを保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、工程;
(f)バイアス磁界およびRFパルスシーケンスに液体試料を曝露させる工程;
(g)工程(f)に続いて、液体試料からのシグナルを測定する工程;および
(h)工程(g)の結果に基づいて、ウイルスを検出する工程を含み、
ここで、全血試料において、100個未満のウイルスコピーを検出することが可能である、方法。
[本発明1042]
工程(a)〜(g)が、3時間以内に完了する、本発明1041の方法。
[本発明1043]
前記磁性粒子が、それらの表面にコンジュゲートした第一のプローブおよび第二のプローブを有する1つまたは複数の集団を含み、第一のプローブが、標的核酸の第一のセグメントに結合するように機能し、かつ、第二のプローブが、標的核酸の第二のセグメントに結合するように機能し、該磁性粒子が、標的核酸の存在下で凝集体を形成する、本発明1035〜1042のいずれかの方法。
[本発明1044]
前記磁性粒子が、それらの表面に第一の結合部分を有する第一の集団およびそれらの表面に第二の結合部分を有する第二の集団、ならびに第一のプローブおよび第二のプローブを含む前記多価結合部分を含み、第一のプローブが、前記第一の結合部分に結合するように機能し、かつ、第二のプローブが、第二の結合部分に結合するように機能し、結合部分および多価結合部分が、標的核酸の存在下で、磁性粒子の凝集を変化させるように機能する、本発明1035〜1042のいずれかの方法。
[本発明1045]
患者における医学的状態の診断、管理、または処置のための、患者由来の液体試料中の1つまたは複数の検体をモニタリングする方法であって、
(a)液体試料を、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子と混ぜ合わせる工程であって、該磁性粒子は、150nm〜1200nmの平均直径および1×10
8〜1×10
12mM
-1s
-1の粒子1個あたりのT
2緩和能を有し、かつ、該磁性粒子は、それらの表面に結合部分を有し、該結合部分は、1つまたは複数の検体または多価結合剤の存在下で、磁性粒子の特異的な凝集を変化させるように機能する、工程;
(b)液体試料をデバイスに入れる工程であって、該デバイスは、磁性粒子および1つまたは複数の検体を含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、工程;
(c)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;
(d)工程(c)に続いて、シグナルを測定する工程;
(e)工程(d)の結果に基づいて、1つまたは複数の検体をモニタリングする工程;および
(f)工程(e)の結果を使用して、医学的状態を診断、管理、または処置する工程、を含む方法。
[本発明1046]
前記患者が、免疫不全であり、かつ、前記1つまたは複数の検体が、病原体関連検体、抗生剤、抗真菌剤、および抗ウイルス剤から選択される検体を含む、本発明1045の方法。
[本発明1047]
前記1つまたは複数の検体が、カンジダ属、タクロリムス、フルコナゾール、およびクレアチニンを含む、本発明1046の方法。
[本発明1048]
前記患者が、癌を有し、かつ、前記1つまたは複数の検体が、抗癌剤、および癌細胞中に存在する遺伝子マーカーから選択される、本発明1045の方法。
[本発明1049]
前記患者が、感染を有するか、またはそのリスクを有し、かつ、前記1つまたは複数の検体が、病原体関連検体、抗生剤、抗真菌剤、および抗ウイルス剤から選択される検体を含む、本発明1045の方法。
[本発明1050]
前記患者が、免疫炎症性状態を有し、かつ、前記1つまたは複数の検体が、抗炎症剤およびTNF-αから選択される検体を含む、本発明1045の方法。
[本発明1051]
前記患者が、心疾患を有し、かつ、前記1つまたは複数の検体が、心臓マーカーを含む、本発明1045の方法。
[本発明1052]
前記患者の肝機能をモニタリングするために使用され、かつ、前記1つまたは複数の検体が、アルブミン、アスパラギン酸トランスアミナーゼ、アラニントランスアミナーゼ、アルカリホスファターゼ、γ-グルタミルトランスペプチターゼ、ビリルビン、α-フェトプロテイン、乳酸デヒドロゲナーゼ、ミトコンドリア抗体、およびチトクロームP450から選択される、本発明1045の方法。
[本発明1053]
患者における治療薬剤の適当用量を決定するために使用される、本発明1045の方法であって、
(i)治療薬剤を患者に投与する工程;
(ii)工程(i)に続いて、患者から治療薬剤またはその代謝物を含む試料を得る工程;
(iii)試料と磁性粒子を接触させ、かつ、バイアス磁界およびRFパルスシーケンスに試料を曝露させ、かつ、試料により生成されるシグナルを検出する工程;および
(iv)工程(iii)の結果に基づいて、治療薬剤またはその代謝物の濃度を決定する工程、を含む方法。
[本発明1054]
前記治療薬剤が、抗癌剤、抗生剤、または抗真菌剤である、本発明1053の方法。
[本発明1055]
モニタリングが、断続的である、本発明1045または1053の方法。
[本発明1056]
モニタリングが、継続的である、本発明1045または1053の方法。
[本発明1057]
対象における敗血症を診断する方法であって、
(a)患者の血液由来の液体試料を得る工程;
(b)液体試料の一部を、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子と混ぜ合わせることにより第一のアッセイ試料を調製する工程であって、該磁性粒子は、150nm〜1200nmの平均直径および1×10
8〜1×10
12mM
-1s
-1の粒子1個あたりのT
2緩和能を有し、かつ、該磁性粒子は、それらの表面に結合部分を有し、該結合部分は、1つまたは複数の病原体関連検体または多価結合剤の存在下で、磁性粒子の特異的な凝集を変化させるように機能する、工程;
(c)液体試料の一部を、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子と混ぜ合わせることにより第二のアッセイ試料を調製する工程であって、該磁性粒子は、150nm〜1200nmの平均直径および1×10
8〜1×10
12mM
-1s
-1の粒子1個あたりのT
2緩和能を有し、かつ、該磁性粒子は、それらの表面に結合部分を有し、該結合部分は、GRO-α、高移動度群ボックス1タンパク質(HMBG-1)、IL-1受容体、IL-1受容体アンタゴニスト、IL-1b、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12、1L-13、IL-18、マクロファージ炎症性タンパク質(MIP-1)、マクロファージ遊走阻止因子(MIF)、オステオポンチン、RANTES(regulated on activation, normal T-cell expressed and secreted;またはCCL5)、TNF-α、C-反応性タンパク質(CRP)、CD64、単球走化性タンパク質1(MCP-1)、アデノシンデアミナーゼ結合タンパク質(ABP-26)、誘導性一酸化窒素合成酵素(iNOS)、リポ多糖結合タンパク質、およびプロカルシトニンから選択される敗血症に特徴的な1つまたは複数の検体の存在下で、磁性粒子の特異的な凝集を変化させるように機能する、工程;
(d)各アッセイ試料をデバイスに入れる工程であって、該デバイスは、磁性粒子および1つまたは複数の検体を含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、工程;
(e)バイアス磁界およびRFパルスシーケンスに各アッセイ試料を曝露させる工程;
(f)工程(e)に続いて、第一のアッセイ試料から生成されるシグナルおよび第二のアッセイ試料から生成されるシグナルを測定する工程;
(g)工程(f)の結果に基づいて、第一のアッセイ試料の1つまたは複数の検体をモニタリングし、かつ、第二のアッセイ試料の1つまたは複数の検体をモニタリングする工程;および
(h)工程(g)の結果を使用して、対象を診断する工程、を含む方法.
[本発明1058]
前記第一のアッセイ試料の1つまたは複数の病原体関連検体が、アシネトバクター・バウマニー(Acinetobacter baumannii)、アスペルギルス・フミガーツス(Aspergillus fumigatis)、バクテロイデス・フラジリス(Bacteroides fragilis)、B.フラジリス(B.fragilis)、blaSHV、バークホルデリア・セパシア(Burkholderia cepacia)、カンピロバクター・ジェジュニ(Campylobacter jejuni)/コリ(coli)、カンジダ・ギリエルモンディ(Candida guilliermondii)、C.アルビカンス(C. albicans)、C.グラブラータ(C.glabrata)、C.クルセイ(C.krusei)、C.ルシタニアエ(C.lusitaniae)、C.パラプシローシス(C.parapsilosis)、C.トロピカリス(C. tropicalis)、ウェルシュ菌(Clostridium pefringens)、コアグラーゼ陰性ブドウ球菌、エンテロバクター・アエロゲネス(Enterobacter aeraogenes)、E.クロアカエ(E.cloacae)、エンテロバクター属(Enterobacteriaceae)、エンテロコッカス・フェカーリス(Enterococcus faecalis)、E.フェシウム(E.faecium)、大腸菌(Escherichia coli)、ヘモフィルス・インフルエンザ(Haemophilus influenzae)、キンゲラ・キンゲ(Kingella Kingae)、クレブシエラ・オキシトカ(Klebsiella oxytoca)、K.ニューモニエ(K.pneumoniae)、リステリア・モノサイトジェネス(Listeria monocytogenes)、MecA遺伝子(MRSA)、モルガネラ・モルガナ(Morganella morgana)、ナイセリア・メニンジティディス(Neisseria meningitidis)、メニンジティディス以外のナイセリア属、プレボテラ・ブカエ(Prevotella buccae)、P.インターメディア(P. intermedia)、P.メラニノゲニカ(P. melaninogenica)、プロピオニバクテリウム・アクネス(Propionibacterium acnes)、プロテウス・ミラビリス(Proteus mirabilis)、P.ブルガリス(P. vulgaris)、緑膿菌(Pseudomonas aeruginosa)、サルモネラ・エンテリカ(Salmonella enterica)、セラチア・マルセセンス(Serratia marcescens)、黄色ブドウ球菌、S.ヘモリチカス(S. haemolyticus)、S.マルトフィリア(S. maltophilia)、S.サプロフィティクス(S. saprophyticus)、ステノトロホモナス・マルトフィリア(Stenotrophomonas maltophilia)、S.マルトフィリア、ストレプトコッカス・アガラクティエ(Streptococcus agalactie)、S.ボビス(S.bovis)、S.ディスガラクティエ(S. dysgalactie)、S.ミティス(S. mitis)、S.ミュータンス(S. mutans)、S.ニューモニエ(S. pneumoniae)、S.ピオゲネス(S. pyogenes)、およびS.サングイス(S. sanguinis)から選択される敗血症に関連する病原体に由来する、本発明1057の方法。
[本発明1059]
前記第一のアッセイ試料の1つまたは複数の病原体関連検体が、処置耐性細菌株に由来する、本発明1057の方法。
[本発明1060]
前記1つまたは複数の病原体関連検体が、ペニシリン耐性、メチシリン耐性、キノロン耐性、マクロライド耐性、および/またはバンコマイシン耐性細菌株に由来する、本発明1059の方法。
[本発明1061]
前記1つまたは複数の病原体関連検体が、メチシリン耐性黄色ブドウ球菌またはバンコマイシン耐性腸球菌に由来する、本発明1060の方法。
[本発明1062]
前記第二のアッセイ試料の1つまたは複数の検体が、GRO-α、高移動度群ボックス1タンパク質(HMBG-1)、IL-1受容体、IL-1受容体アンタゴニスト、IL-1b、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12、IL-13、IL-18、マクロファージ炎症性タンパク質(MIP-1)、マクロファージ遊走阻止因子(MIF)、オステオポンチン、RANTES(regulated on activation, normal T-cell expressed and secreted;またはCCL5)、TNF-α、C-反応性タンパク質(CRP)、CD64、および単球走化性タンパク質1(MCP-1)から選択される、本発明1057〜1061のいずれかの方法。
[本発明1063]
前記対象の血流を循環する抗ウイルス剤、抗生剤、または抗真菌剤の濃度をモニタリングするための、第三のアッセイ試料を調製する工程をさらに含む、本発明1057の方法。
[本発明1064]
前記患者が、免疫不全である、本発明1057の方法。
[本発明1065]
患者における敗血症またはSIRSの診断、管理、または処置のための、患者由来の液体試料中の1つまたは複数の検体をモニタリングする方法であって、
(a)液体試料を、液体試料1ミリリットルあたり、1×10
6〜1×10
13個の磁性粒子と混ぜ合わせる工程であって、該磁性粒子は、150nm〜1200nmの平均直径および1×10
8〜1×10
12mM
-1s
-1の粒子1個あたりのT
2緩和能を有し、かつ、該磁性粒子は、それらの表面に結合部分を有し、該結合部分は、1つまたは複数の検体または多価結合剤の存在下で、磁性粒子の特異的な凝集を変化させるように機能する、工程;
(b)液体試料をデバイスに入れる工程であって、該デバイスは、磁性粒子および1つまたは複数の検体を含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体を含み、該RFコイルは、1つまたは複数の磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、工程;
(c)バイアス磁界およびRFパルスシーケンスに試料を曝露させる工程;
(d)工程(c)に続いて、シグナルを測定する工程;
(e)工程(d)の結果に基づいて、1つまたは複数の検体をモニタリングする工程;および
(f)工程(e)の結果を使用して、敗血症またはSIRSを診断、管理、または処置する工程、を含む方法。
[本発明1066]
(i)病原体関連検体をモニタリングする工程、および(ii)GRO-α、高移動度群ボックス1タンパク質(HMBG-1)、IL-1受容体、IL-1受容体アンタゴニスト、IL-1b、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12、IL-13、IL-18、マクロファージ炎症性タンパク質(MIP-1)、マクロファージ遊走阻止因子(MIF)、オステオポンチン、RANTES(regulated on activation, normal T-cell expressed and secreted;またはCCL5)、TNF-α、C-反応性タンパク質(CRP)、CD64、単球走化性タンパク質1(MCP-1)、アデノシンデアミナーゼ結合タンパク質(ABP-26)、誘導性一酸化窒素合成酵素(iNOS)、リポ多糖結合タンパク質、およびプロカルシトニンから選択される敗血症に特徴的な第二の検体をモニタリングする工程を含む、本発明1065の方法。
[本発明1067]
前記病原体関連検体が、アシネトバクター・バウマニー(Acinetobacter baumannii)、アスペルギルス・フミガーツス(Aspergillus fumigatis)、バクテロイデス・フラジリス(Bacteroides fragilis)、B.フラジリス(B.fragilis)、blaSHV、バークホルデリア・セパシア(Burkholderia cepacia)、カンピロバクター・ジェジュニ(Campylobacter jejuni)/コリ(coli)、カンジダ・ギリエルモンディ(Candida guilliermondii)、C.アルビカンス(C. albicans)、C.グラブラータ(C.glabrata)、C.クルセイ(C.krusei)、C.ルシタニアエ(C.lusitaniae)、C.パラプシローシス(C.parapsilosis)、C.トロピカリス(C. tropicalis)、ウェルシュ菌(Clostridium pefringens)、コアグラーゼ陰性ブドウ球菌、エンテロバクター・アエロゲネス(Enterobacter aeraogenes)、E.クロアカエ(E.cloacae)、エンテロバクター属(Enterobacteriaceae)、エンテロコッカス・フェカーリス(Enterococcus faecalis)、E.フェシウム(E.faecium)、大腸菌(Escherichia coli)、ヘモフィルス・インフルエンザ(Haemophilus influenzae)、キンゲラ・キンゲ(Kingella Kingae)、クレブシエラ・オキシトカ(Klebsiella oxytoca)、K.ニューモニエ(K.pneumoniae)、リステリア・モノサイトジェネス(Listeria monocytogenes)、MecA遺伝子(MRSA)、モルガネラ・モルガナ(Morganella morgana)、ナイセリア・メニンジティディス(Neisseria meningitidis)、メニンジティディス以外のナイセリア属、プレボテラ・ブカエ(Prevotella buccae)、P.インターメディア(P. intermedia)、P.メラニノゲニカ(P. melaninogenica)、プロピオニバクテリウム・アクネス(Propionibacterium acnes)、プロテウス・ミラビリス(Proteus mirabilis)、P.ブルガリス(P. vulgaris)、緑膿菌(Pseudomonas aeruginosa)、サルモネラ・エンテリカ(Salmonella enterica)、セラチア・マルセセンス(Serratia marcescens)、黄色ブドウ球菌、S.ヘモリチカス(S. haemolyticus)、S.マルトフィリア(S. maltophilia)、S.サプロフィティクス(S. saprophyticus)、ステノトロホモナス・マルトフィリア(Stenotrophomonas maltophilia)、S.マルトフィリア、ストレプトコッカス・アガラクティエ(Streptococcus agalactie)、S.ボビス(S.bovis)、S.ディスガラクティエ(S. dysgalactie)、S.ミティス(S. mitis)、S.ミュータンス(S. mutans)、S.ニューモニエ(S. pneumoniae)、S.ピオゲネス(S. pyogenes)、およびS.サングイス(S. sanguinis)から選択される敗血症に関連する病原体に由来する、本発明1066の方法。
[本発明1068]
前記病原体関連検体が、処置耐性細菌株に由来する、本発明1066の方法。
[本発明1069]
前記病原体関連検体が、ペニシリン耐性、メチシリン耐性、キノロン耐性、マクロライド耐性、および/またはバンコマイシン耐性細菌株に由来する、本発明1071の方法。
[本発明1070]
病原体関連検体が、メチシリン耐性黄色ブドウ球菌またはバンコマイシン耐性腸球菌に由来する、本発明1072の方法。
[本発明1071]
前記第二の検体が、GRO-α、高移動度群ボックス1タンパク質(HMBG-1)、IL-1受容体、IL-1受容体アンタゴニスト、IL-1b、IL-2、IL-4、IL-6、IL-8、IL-10、IL-12、IL-13、IL-18、マクロファージ炎症性タンパク質(MIP-1)、マクロファージ遊走阻止因子(MIF)、オステオポンチン、RANTES(regulated on activation, normal T-cell expressed and secreted;またはCCL5)、TNF-α、C-反応性タンパク質(CRP)、CD64、単球走化性タンパク質1(MCP-1)から選択される、本発明1066〜1070のいずれかの方法。
[本発明1072]
対象の血流を循環する抗ウイルス剤、抗生剤、または抗真菌剤の濃度をモニタリングすることをさらに含む、本発明1066の方法。
[本発明1073]
前記患者が、免疫不全である、本発明1065の方法。
[本発明1074]
1つまたは複数の検体の検出のためのシステムであって:
(a)(a1)磁界を画定する永久磁石;(a2)磁性粒子および1つまたは複数の検体を含む液体試料を保持するためのウェルを画定し、かつ、ウェルの周囲に配置されたRFコイルを有する、支持体であって、該RFコイルは、永久磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されている、支持体;および(a3)RFコイルと連通している1つまたは複数の電気素子であって、シグナルを増幅、整流、送信、および/または電子化するように構成されている、電気素子を含む、第一のユニット;ならびに
(b)システム内への挿入およびシステムからの取り外しを容易にするようにサイズ調整された着脱式カートリッジを含む、第二のユニットであって、該着脱式カートリッジは、(i)1つまたは複数のアッセイ試薬を保持するための試薬モジュール;および(ii)磁性粒子および1つまたは複数の検体を含む液体試料を保持するための検出チャンバーを含む検出モジュールを含む、モジュールカートリッジである、第二のユニットを含み、
ここで、試薬モジュールおよび検出モジュールは、使用前にモジュールカートリッジに組み立てることができ、かつ、検出チャンバーが、モジュールカートリッジから脱着可能である、システム。
[本発明1075]
前記モジュールカートリッジが、入口モジュールをさらに含み、該入口モジュール、試薬モジュールおよび検出モジュールは、使用前にモジュールカートリッジに組み立てることができ、かつ、該入口モジュールが、滅菌可能である、本発明1074のシステム。
[本発明1076]
アッセイプロトコールを実行し、かつ、アッセイデータを保存するためのプロセッサを備えたシステムコンピューターをさらに含み、かつ、前記着脱式カートリッジが、(i)検出される検体を表示する読み取り可能なラベル、(ii)実行されるアッセイプロトコールを表示する読み取り可能なラベル、(iii)患者の識別番号を表示する読み取り可能なラベル、(iv)カートリッジに含まれるアッセイ試薬の位置を表示する読み取り可能なラベル、または(v)プログラム可能なプロセッサの使用説明書を含む読み取り可能なラベルをさらに含む、本発明1074のシステム。
[本発明1077]
1つまたは複数の検体の検出のためのシステムであって、以下を含むシステム:
(a)液体試料を保持するためのウェルを画定し、かつ、ディスポーザブル試料ホルダーの内部に含まれかつウェルの周囲に配置されたRFコイルを有する、ディスポーザブル試料ホルダーであって、該RFコイルは、永久磁石およびRFパルスシーケンスを使用して生じたバイアス磁界に液体試料を曝露させることにより生成されるシグナルを検出するように構成されており、該ディスポーザブル試料ホルダーは、1つまたは複数のヒューザブルリンクを含む、ディスポーザブル試料ホルダー;ならびに
(b)(b1)磁界を画定する永久磁石;(b2)RFパルスシーケンスおよび検出コイル;(b3)RFコイルと連通している1つまたは複数の電気素子であって、シグナルを増幅、整流、送信、および/または電子化するように構成されている、電気素子;および(b4)ヒューザブルリンクと連通し、かつ、ヒューザブルリンクに過電流を印加するように構成されている1つまたは複数の電気素子であって、リンクを遮断させ、かつ、所定の耐用期間後にコイルを作動不能にする、電気素子を含む、MR読み取り装置。
[本発明1078]
前記RFコイルと連通している電気素子が、RFコイルに誘導結合されている、本発明1077のシステム。
[本発明1079]
本発明のシステム内への挿入およびシステムからの取り外しを容易にするようにサイズ調整された着脱式カートリッジであって、該着脱式カートリッジが、1つまたは複数のアッセイ試薬を保持するための複数の試薬モジュールを保持するための1つまたは複数のチャンバーを含み、該試薬モジュールが、(i)100nm〜699nmの平均直径、1×10
8〜1×10
12mM
-1s
-1の粒子1個あたりのT
2緩和能、およびそれらの表面に結合部分を有する、1×10
6〜1×10
13個の磁性粒子を保持するためのチャンバーであって、該結合部分は、1つまたは複数の検体または多価結合剤の存在下で、磁性粒子の特異的な凝集を変化させるように機能する、チャンバー;および(ii)緩衝液を保持するためのチャンバーを含む、着脱式カートリッジ。
[本発明1080]
本発明のシステム内への挿入およびシステムからの取り外しを容易にするようにサイズ調整された着脱式カートリッジであって、該着脱式カートリッジが、1つまたは複数のアッセイ試薬を保持するための複数の試薬モジュールを保持するための1つまたは複数のチャンバーを含み、該試薬モジュールが、(i)700nm〜1200nmの平均直径、1×10
9〜1×10
12mM
-1s
-1の粒子1個あたりのT
2緩和能、およびそれらの表面にオリゴヌクレオチド結合部分を有する、1×10
6〜1×10
13個の磁性粒子を保持するためのチャンバーであって、該オリゴヌクレオチド結合部分は、1つまたは複数の検体の存在下で、磁性粒子の特異的な凝集を変化させるように機能する、チャンバー;および(ii)緩衝液を保持するためのチャンバーを含む、着脱式カートリッジ。
[本発明1081]
磁性粒子および緩衝液が、カートリッジ内の単一チャンバー中に共存する、本発明1079または1080の着脱式カートリッジ。
[本発明1082]
前記緩衝液が、0.1%〜3%(w/w)のアルブミン、0.01%〜0.5%の非イオン界面活性剤、溶解剤、またはそれらの組み合わせを含む、本発明1079または1080の着脱式カートリッジ。
[本発明1083]
細胞を溶解するためのビーズを含むチャンバーをさらに含む、本発明1079または1080の着脱式カートリッジ。
[本発明1084]
ポリメラーゼを含むチャンバーをさらに含む、本発明1079または1080の着脱式カートリッジ。
[本発明1085]
1種または複数種のプライマーを含むチャンバーをさらに含む、本発明1079または1080の着脱式カートリッジ。
本発明の他の特徴および利点は、下記の詳細な説明、図面、および特許請求の範囲から明らかであろう。
【発明を実施するための形態】
【0062】
詳細な説明
本発明は、試料中の検体の迅速検出または検体濃度の決定のためのシステム、デバイス、および方法を特徴とする。本発明のシステムおよび方法は、磁性粒子、NMRユニット、任意で異なる温度での1つまたは複数のインキュベーションステーション、任意で1つまたは複数のボルテックスミキサー、任意で1つまたは複数の遠心分離機、任意で流体操作ステーション、任意でロボットシステム、および任意で1つまたは複数のモジュールカートリッジを用いる。本発明のシステム、デバイス、および方法は、生物試料(とりわけ、例えば、血液、汗、涙、尿、唾液、精液、血清、血漿、脳脊髄液(CSF)、糞、膣液もしくは組織、痰、鼻咽頭吸引物もしくはスワブ、涙液、粘膜、または上皮スワブ(口腔スワブ)、組織、器官、骨、歯、または腫瘍)をアッセイするために使用することができる。あるいは、本発明のシステム、デバイス、および方法は、バイオレメディエーションプログラムの一部として、植物または動物を飼育する際に使用するための、あるいは環境危険要因を同定するために、環境条件(例えば、植物成長ホルモン、殺虫剤、人工または環境毒素、虫害抵抗性/感受性に重要な核酸配列、藻類および藻類副生成物)をモニタリングするために使用される。同様に、本発明のシステム、デバイス、および方法は、例えば、リシン、サルモネラ・チフィリウム(Salmonella typhimurium)、ボツリヌス毒素、アフラトキシン、マイコトキシン、野兎病菌(Francisella tularesis)、天然痘、炭疽菌または他のような細菌兵器剤または生物兵器剤を検出およびモニタリングするために使用される。
【0063】
磁性粒子は、検体または多価結合剤の存在下で凝集体が形成されるように、結合部分(すなわち、抗体、オリゴヌクレオチド、アプタマーなど)でコーティングすることができる。凝集は、溶媒のT
2シグナルを崩壊させる極微磁気的不均一性から試料の一部を失わせ、T
2緩和の増加をもたらす(
図3を参照)。
【0064】
T
2測定は、典型的には、1〜10秒間測定を続ける、集合体中の全てのスピンの単一尺度であり、それは、溶媒が、液体試料中の極微不均一性に対して数百ミクロンの長距離を移動することを可能にする。各溶媒分子は、液体試料中のある容量をサンプリングし、かつ、T
2シグナルは、試料中の溶媒分子の全て(核スピン)の平均(正味の総シグナル)であり;言い換えれば、T
2測定は、溶媒分子により受ける環境全体の正味の測定であり、かつ、試料中の全ての極微不均一性の平均測定である。
【0065】
液体試料中の溶媒分子について観測されるT
2緩和率は、磁性粒子により支配されており、それは、磁界の存在下で高い磁気双極子モーメントを形成する。磁性粒子の非存在下で、液体試料について観測されるT
2緩和率は、典型的には長い(すなわち、T
2(水)=約2000ミリ秒、T
2(血液)=約1500ミリ秒)。粒子の濃度が増加するにつれて、試料中の極微不均一性が増加し、かつ、これらの極微不均一性による溶媒の拡散が、スピンデコヒーレンスの増加およびT
2値の低下をもたらす。観測されるT
2値は、粒子の濃度に非線形的に、かつ、粒子パラメーターあたりの緩和能に依存する。
【0066】
本発明の凝集アッセイにおいて、磁性粒子数、および存在する場合、凝集粒子数は、アッセイの間一定のままである。粒子がクラスター化したとき、粒子の空間分布が変化する。クラスター内への粒子の局在が、より一定の粒子分布よりも促進されるため、凝集は溶媒分子の平均的な「経験」を変化させる。凝集の程度が高いと、多くの溶媒分子が、磁性粒子により生じる極微不均一性を経験せず、かつ、T
2は、溶媒のそれに近づく。凝集した磁性粒子の画分が液体試料中で増加するため、観測されるT
2は、凝集および単一(非凝集)磁性粒子の非均一な懸濁の平均である。本発明のアッセイは、検体の存在および検体濃度の差に対してアッセイの感度を増加させるために、凝集によるT
2の変化を最大にするように設計される。
【0067】
粒子のクラスター化のために2つの計画があり、かつ、T
2は、粒子サイズに基づいて影響を受ける(
図3Bを参照、限度は、典型的には、約100nmの直径の粒子である)。液体試料の任意のアッセイについて、250nmにサイズ調整した磁性粒子の粒子計数は、約1×10
7個の粒子であることができ、30nmにサイズ調整した磁性粒子は、約1×10
13個であることができる。これは、より小さい粒子が、より低い粒子1個あたりの緩和能を有するためであり(材料の種類が同じ場合)、結果として固有の感度の不利益をもたらす。本発明の典型的なアッセイでは、磁性粒子は、凝集粒子の画分の増加に伴ってT
2が増加するように選択される。
【0068】
本発明のアッセイは、検体の存在下で、T
2の配向を変化させるように設計することができる(
図4A〜4C参照)。例えば、本アッセイは、磁性粒子の2つの集団が検体の異なるエピトープに結合する、凝集作用サンドイッチイムノアッセイ(
図4Aを参照);検体が多価結合剤と競合して磁性粒子の凝集を阻害する、競合アッセイ(
図4Bを参照);または磁性粒子の2つの集団がオリゴヌクレオチドの第一および第二の部分に結合する、ハイブリダイゼーション介在凝集作用(
図4Cを参照)であることができる。追加の競合的フォーマットは、2つの粒子結合部分が凝集因子なしで結合する場合を含むであろう(例えば、DNAオリゴヌクレオチドは、2つのナノ粒子が2つの異なるオリゴを有し、かつ、これらが一緒にアニーリングすることができるように設計され、かつ、加熱されたとき、検体またはアンプリコンまたは標的DNAは、npアニーリングを競合または破壊する)。
【0069】
例えば、以下のような本発明のアッセイを行うための他のフォーマットを使用することができる:(i)標的試料を、標的検体に特異的な結合部分で修飾した磁性粒子および多価結合剤の存在下でインキュベートすることができ、阻害アッセイにおいて、検体の磁性粒子への結合により、磁性粒子と多価結合剤の凝集作用がブロッキングされる;(ii)標的試料を、標的検体に特異的な結合部分で修飾した磁性粒子および多価結合剤の存在下でインキュベートすることができ、解離アッセイにおいて、検体は、多価結合剤および磁性粒子の前形成凝集体に曝露され、かつ、検体は多価結合剤と置き換わって液体試料中の凝集を減少させる;または(iii)標的試料を、標的検体に特異的な結合部分で修飾した磁性粒子および標的検体自体の存在下でインキュベートして、磁性粒子の自己集合性の単一集団を形成することができ、阻害アッセイまたは解離アッセイにおいて、検体の磁性粒子への結合が存在すると、磁性粒子の自己凝集作用がブロッキングされる;または(iv)標的試料を、可溶性凝集化剤および検体もしくは検体の類似体で修飾された磁性粒子の存在下でインキュベートすることができ、阻害アッセイにおいて、検体が存在すると、可溶性凝集化剤と結合して粒子の凝集作用がブロッキングされる。
【0070】
多価結合剤(凝集因子)が用いられる場合、多検体を担体(例えば、単純な合成足場、またはより大きい担体タンパク質もしくは多糖、例えば、BSA、トランスフェリン、またはデキストラン)に連結させる。
【0071】
磁性粒子
本明細書に記載の磁性粒子としては、各々、参照により本明細書に組み入れられる、例えば、米国特許第7,564,245号および米国特許出願公報第2003-0092029号に記載されるものが挙げられる。磁性粒子は、一般的に、コンジュゲート、すなわち、磁性粒子と1つまたは複数の結合部分(例えば、オリゴヌクレオチド、核酸、ポリペプチド、または多糖)が連結した形態である。結合部分は、標的検体と特異的相互作用を引き起こす。結合部分は、選択された標的検体、例えば、核酸、ポリペプチド、または多糖に特異的に結合する。場合により、結合はコンジュゲートの凝集を引き起こし、結果として、水溶液中の隣接する水プロトン(または非水溶性溶媒中のプロトン)のスピン-スピン緩和時間(T
2)の変化、例えば、減少(例えば、より小さい磁性粒子の場合)または増加(例えば、より大きい磁性粒子の場合)をもたらす。あるいは、検体は、競合的解離アッセイにおいて、前形成凝集体と結合する(例えば、多価結合剤および磁性粒子から形成された凝集体)、または阻害アッセイにおいて、磁性粒子上の結合部分に対して多価結合剤と競合する(すなわち、凝集体の形成は検体の存在下で阻害される)。
【0072】
コンジュゲートは、それらの鉄、金属酸化物、または他のフェロもしくはフェリ磁性ナノ材料の超常磁性のために高い緩和能を有する。鉄、コバルト、およびニッケル化合物ならびにそれらの合金、ガドリニウムなどの希土類元素、ならびに金およびバナジウムなどの特定の金属間化合物は、超常磁性粒子を生成するために使用することができる強磁性体である。磁性粒子は、単分散(磁性粒子1個あたり、磁性材料、例えば、超常磁性酸化鉄などの金属酸化物の単結晶)または多分散(例えば、磁性粒子1個あたり、複数の結晶)であることができる。磁性金属酸化物としては、また、コバルト、マグネシウム、亜鉛、またはこれらの金属と鉄との混合物を挙げることができる。コンジュゲートを生成するために有用な磁性粒子の重要な特徴および要素としては、以下が挙げられる:(i)高い緩和能、すなわち、水(または他の溶媒)緩和に及ぼす強い効果、(ii)結合部分が共有結合することができる官能基、(iii)相互作用部分の磁性粒子への低い非特異的結合、および/または(iv)溶液中の安定性、すなわち、磁性粒子が溶液中に懸濁されたままであり、沈殿せず、かつ/またはnpは、記載の方法に用いられるそれらの能力を保持する(すなわち、npは、ある寿命を有する)。
【0073】
磁性粒子は、結合部分に官能基を介して連結してもよい。いくつかの態様においては、磁性粒子は、部分的に、磁性粒子の非特異的可逆性を増強するために、選択された官能基を含む高分子と会合することができる。高分子は、非限定的に、ポリエチレングリコールもしくはシランなどの合成高分子、天然高分子、または合成もしくは天然高分子の誘導体、またはこれらの組み合わせであることができる。高分子は、親水性であってもよい。いくつかの態様においては、高分子「コーティング」は、磁性金属酸化物の周りの連続皮膜ではなく、しかし金属酸化物に接着し、かつこれを取り囲んだ「メッシュ状」または「雲状」の伸長高分子鎖である。高分子は、デキストラン、プラナン(pullanan)、カルボキシデキストラン、カルボキシメチルデキストラン、および/または還元カルボキシメチルデキストランを含む、多糖および誘導体であることができる。金属酸化物は、互いに接触しているか、または高分子により個別に捕捉または包囲されている、1つまたは複数の結晶の集合体であることができる。
【0074】
あるいは、磁性粒子は、非高分子官能基組成物と会合することができる。高分子と会合しない安定化された官能化磁性粒子を合成する方法は、例えば、Halbreich et al., Biochimie, 80:379 (1998)に記載されている。
【0075】
磁性粒子は、典型的には、1結晶あたり、約1〜25nm、例えば、約3〜10nm、または約5nmの直径を有する金属酸化物の単結晶および多結晶を含む。磁性粒子は、また、例えば、約5〜20nm以上の厚さの核および/またはコーティングの形態の高分子成分を含むことができる。磁性粒子の全体のサイズは、例えば、20〜50nm、50〜200nm、100〜300nm、250〜500nm、400〜600nm、500〜750nm、700〜1,200nm、1000〜1,500nm、または1,500〜2,000nmであることができる。
【0076】
磁性粒子は、様々な方法で調製してもよい。磁性粒子が、磁性粒子を結合部分に連結させる官能基を有することが好ましい。カルボキシ官能化磁性粒子は、例えば、Gorman(PCT公報第WO00/61191号を参照)の方法に従って製造することができる。本方法において、還元カルボキシメチル(CM)デキストランが市販のデキストランから合成される。CMデキストランと鉄塩を一緒に混合して、かつ次に、水酸化アンモニウムで中和する。得られたカルボキシ官能化磁性粒子は、アミノ官能化オリゴヌクレオチドとカップリングするために使用することができる。カルボキシ官能化磁性粒子は、また、多糖コーティング磁性粒子から、強塩基中、ブロモまたはクロロ酢酸と反応させて、カルボキシル基に接着させることにより製造することができる。加えて、カルボキシ官能化粒子は、アミノ官能化磁性粒子から、無水コハク酸または無水マレイン酸などの試薬を使用して、アミノ基をカルボキシ基に変換することにより製造することができる。
【0077】
磁性粒子のサイズは、反応条件を調整することにより、例えば、米国特許第5,262,176号に記載のように、鉄塩を塩基で中和する間、低温を使用することにより制御することができる。均一な粒子サイズの材料は、また、例えば、米国特許第5,492,814号に記載のように、遠心分離、限外濾過、またはゲル濾過を使用して、粒子を分画することにより製造することができる。
【0078】
磁性粒子は、また、Molday(Molday, R. S. and D. MacKenzie, "Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells", J. Immunol. Methods, 52:353 (1982))の方法に従って合成することができ、かつ過ヨウ素酸で処理して、アルデヒド基を形成することができる。次に、アルデヒド含有磁性粒子を、ジアミン(例えば、エチレンジアミンまたはヘキサンジアミン)と反応させて、シッフ(Schiff)塩基を形成し、次いで、水素化ホウ素ナトリウムまたはシアノ水素化ホウ素ナトリウムを用いて還元することができる。
【0079】
デキストランコーティング磁性粒子を製造し、エピクロルヒドリンと架橋させることができる。アンモニアを加えるとエポキシ基と反応して、アミノ基を生成し、Hogemann, D., et al., Improvement of MRI probes to allow efficient detection of gene expression Bioconjug. Chem., 11:941 (2000)、およびJosephson et al., "High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates", Bioconjug. Chem., 10: 186 (1999)を参照のこと。この材料は、架橋酸化鉄または「CLIO」として公知であり、かつ、アミンで官能化した場合、アミン-CLIOまたはNH
2-CLIOと呼ばれる。カルボキシ官能化磁性粒子は、水溶性カルボジイミドおよびジアミン、例えば、エチレンジアミンまたはヘキサンジアミンを使用することにより、アミノ官能化磁性粒子に変換することができる。
【0080】
磁性粒子は、磁性流体(すなわち、磁性粒子の安定なコロイド懸濁液)から形成することができる。例えば、磁性粒子は、数十ナノメートルサイズのオーダーの多金属酸化物結晶を含み、かつ、粒子上に吸着してそれらを安定化させる界面活性剤を含有する流体中に分散された、または沈殿により、金属イオンの溶液の塩基性媒体中に分散された、複合体であることができる。適切な磁性流体は、Liquids Research Ltd.社から下記の参照番号で購入することができる:WHKS1S9(A、BまたはC)(10nmの直径の粒子を有するマグネタイト(Fe
3O
4)を含む、水系磁性流体である);WHJS1(A、BまたはC)(10nmの直径のマグネタイト(Fe
3O
4)粒子を含む、イソパラフィン系磁性流体である);およびBKS25デキストラン(9nmの直径のマグネタイト(Fe
3O
4)粒子を含む、デキストランで安定化された水系磁性流体である)。本発明のシステムおよび方法において使用するための他の適切な磁性流体は、Ademtechから入手可能なオレイン酸安定化磁性流体である(約70重量%のα-Fe
2O
3粒子(約10nmの直径)、15重量%のオクタン、および15重量%のオレイン酸を含む)。
【0081】
磁性粒子は、典型的には、多金属酸化物結晶および有機マトリクスを含み、かつ、磁性粒子の表面へ結合部分を連結させるための官能基(すなわち、アミン基またはカルボキシ基)で修飾された表面を有する、複合物である。例えば、本発明の方法において有用な磁性粒子としては、Dynal、Seradyn、Kisker、Miltenyi Biotec、Chemicell、Anvil、Biopal、Estapor、Genovis、Thermo Fisher Scientific、JSR micro、Invitrogen、およびAdemtechから市販されているもの、ならびに、各々、参照により本明細書に組み入れられる、米国特許第4,101,435号;第4,452,773号;第5,204,457号;第5,262,176号;第5,424,419号;第6,165,378号;第6,866,838号;第7,001,589号;および第7,217,457号に記載のものを含む。
【0082】
アビジンまたはストレプトアビジンは、オリゴヌクレオチドまたはポリペプチドなどのビオチン化結合部分と共に使用するために、磁性粒子に接着させることができる(例えば、Shen et al., "Magnetically labeled secretin retains receptor affinity to pancreas acinar cells," Bioconjug. Chem., 7:31 1 (1996)を参照)。同様に、ビオチンは、アビジン標識結合部分と共に使用するために、磁性粒子に接着させることができる。あるいは、結合部分は、磁性粒子の表面に共有結合させる;粒子は、IgG分子で修飾してもよく;粒子は、抗his抗体で修飾してもよく;または粒子は、hisタグ化FAbで修飾してもよい。
【0083】
低分子量材料は、使用前に、限外濾過、透析、磁気分離、または他の手段により磁性粒子から分離することができる。例えば、未反応の結合部分および連結剤は、磁気分離またはサイズ排除クロマトグラフィーにより磁性粒子コンジュゲートから分離することができる。ある場合では、磁性粒子は、サイズにより分画して、特定のサイズ範囲および平均直径を有する粒子の混合物を生成することができる。
【0084】
高い感度を必要とする特定のアッセイのために、T
2緩和アッセイを使用した検体検出は、十分に感受性の検体誘導凝集作用が可能な適当な粒子を選択する必要があり得る。より高い感度は、単一のより大きい高分子マトリクスまたは磁性流体集合体(100nm〜1200nmの全直径、例えば、100nm、200nm、250nm、300nm、500nm、800nm、または1000nmの平均直径を有する粒子)内に多超常磁性酸化鉄核(5〜15nmの直径)を含有する粒子を使用して、あるいはより高い磁気モーメント材料またはより高い密度を有する粒子、および/またはより高い鉄含量を有する粒子を使用することにより達成することができる。理論によって制限されるものではないが、これらのタイプの粒子は、粒子1個あたりの鉄原子数が非常に多いため、100×を超える感度の利得を提供したと仮定されるが、これは、アッセイ溶液中に存在する粒子数が減少したため、かつ、おそらくは、各クラスター化イベントにより影響を受ける超常磁性鉄の量がより多いために感度の増加をもたらすと考えられる。
【0085】
粒子1個および粒子サイズあたりの緩和能は、高感度アッセイのための最適な粒子を選択するための有用な用語の1つである。理想的には、この用語は、可能な限り重要であると考えられる。粒子1個あたりの緩和能は、測定されたT
2値に対する各粒子の効果の尺度である。この数値が大きいほど、所与のT
2応答を引き起こすために必要な粒子数が少なくなる。さらに、反応溶液中の粒子の濃度を減少させることで、アッセイの分析感度を改善することができる。粒子を製造するために使用される成分に応じて、磁性粒子間で鉄密度および緩和能が変動できるということから、粒子1個あたりの緩和能はより有用なパラメーターであることができる(表1を参照)。粒子1個あたりの緩和能は、超常磁性材料の飽和磁化に比例する。
【0087】
本発明のシステムおよび方法において使用するための基本粒子は、表2において分類される市販の粒子のいずれかであることができる。
【0089】
本発明のシステムおよび方法において使用するための磁性粒子は、10nm〜1200nmの流体力学直径を有し、かつ、粒子1個あたり平均8×10
2〜1×10
10個の金属原子を含有し、かつ、1×10
4〜1×10
13mM
-1s
-1の粒子1個あたりの緩和能を有することができる。本発明のシステムおよび方法において使用される磁性粒子は、上述した設計、複合体、または販売元のいずれかであることができ、かつ、本明細書に記載のように磁気共鳴スイッチとして使用するためにさらに修飾することができる。
【0090】
粒子1個あたりの緩和能の他に、高分析感度アッセイのための磁性粒子の選択および設計において、いくつかの他の実用上の問題に取り組まなければならない。
【0091】
例えば、大きい粒子(すなわち、1000nm以上)の使用は、粒子1個あたりの鉄含量および緩和能を最大化するために望ましいであろう。しかし、本発明者らは、このサイズの粒子が溶液から急速に沈殿する傾向があることを観察した。本発明者らは、磁性粒子のサイズを500nm未満に維持した場合に、典型的には、粒子の沈殿がアッセイを妨げないことを観察した。記載のアッセイにおいて500nmを超える粒子または高い密度を有するより小さい粒子を使用したときに、沈殿がモニタリングされ、かつ、T
2測定に対する効果が決定される。本発明者らは、約100〜300nm粒子の磁性粒子のサイズが、官能化後であっても沈殿に関する安定性について理想的であり(およそ50nmごとに流体力学直径が300nmに増加)、かつ、粒子1個あたりの高い緩和能によって可能となる高い感度を与えることを見出した。粒子密度が、浮力にある役割を担っているのは確かである。そのため、溶液および粒子の相対密度は、粒子の沈殿に重要な役割を担っている。従って、この問題に対する可能な解決方法は、浮遊性の磁性粒子(すなわち、中空粒子、または低密度マトリクスおよび高密度金属酸化物の両方を含有する粒子)を使用することである。沈殿がT
2検出に影響を及ぼし得るため、粒子と溶液の密度の比を変化させるために溶液添加物を用いてもよい。超常磁性材料が測定された液体容量の大部分を占める場合、T
2検出は沈殿により影響を受け得る。沈殿は、410nmでのUV-可視吸光度が、0.6〜0.8の間の吸光度単位になるような濃度に粒子を希釈して、かつ次に、90分間吸光度をモニタリングすることにより評価することができる。沈殿が起こった場合、初期吸光度で割った初期吸光度と最終吸光度の差は5%を超えるであろう。沈殿%が5%を超えるのであれば、その粒子は、典型的には、高い分析感度を必要とするアッセイでの使用に適さない。本発明のアッセイにおいて使用される磁性粒子は、非限定的に、非沈殿磁性粒子であることができる。高度な沈殿は取扱いが難しく、かつ、再現性の問題を生じる恐れがあり得る。
【0092】
100nm以上のオーダーの磁性粒子の場合、典型的に、その粒子核を含む多超常磁性酸化鉄結晶は、外部磁界の存在下にあるとき正味の双極子モーメントをもたらす、すなわち、双極子モーメントはブラウン運動を克服する十分な力である。非特異的可逆性は、非特異的凝集に対するコロイド安定性およびロバスト性の尺度である。非特異的可逆性は、均一磁界(<5000ppmとして定義される)中でのインキュベーションの前後に粒子の溶液のT
2値を測定することにより評価される。T
2値は、典型的には、0.01mMのFeの鉄濃度を有する粒子では200ミリ秒から開始する。均一磁界中でのインキュベーションの前後のT
2値の差が20ミリ秒未満である場合、試料は可逆的であると見なされる。さらに、10%は、アッセイの粒子濃度を反映するT
2測定を開始することができる閾値である。その差が10%より大きい場合、粒子は、試験される緩衝液、希釈剤、およびマトリクス中で不可逆性を示す。磁性粒子の非特異的可逆性は、本明細書に記載のように変化することができる。例えば、非特異的凝集に対するコロイド安定性およびロバスト性は、粒子の表面特性、結合部分、アッセイ緩衝液、マトリクスおよびアッセイプロセス条件により影響を受けることができる。非特異的結合に対するコロイド安定性および抵抗性の維持は、共役化学、ブロッキング方法、緩衝液改良、および/またはアッセイプロセス条件の変化により変更することができる。
【0093】
本発明者らは、ロバスト性および再現性のあるアッセイへの非常に重要な寄与が、使用される磁性粒子の粒度分布の単分散性、つまり、コーティング後の多分散粒子とコーティング前の単分散粒子で観察される差異であることを認めた。磁性粒子の多分散バッチは、再現性を欠き、かつ、感度を落とす恐れがある。多分散試料は、また、均一のコーティングを達成する際に問題を生じる恐れがある。特定のより高い感度のアッセイのためには、磁性粒子が粒度分布において実質的に単分散であることが望ましい(すなわち、約0.8〜0.9未満の多分散性指数を有する)。あるいは、本発明のアッセイを、多分散磁性粒子の使用に適合するように設計することができる。
【0094】
本発明のアッセイが、凝集作用アッセイのクラスター化状態のシフトをモニタリングすることを必要とし、かつ、クラスター化の変化の測定に、かなりの量のクラスター化粒子が必要となる可能性がある(例えば、>1〜10%と考えられる)とすれば、アッセイ中の全粒子数は、最高の感度を可能にするために最小にするべきである。しかし、T
2検出ダイナミックレンジの利用を可能にするために、十分な粒子数が存在する必要がある。本発明者らは、磁性粒子の数(またはモル当量)が、検出される検体の数(またはモル当量)および用いられる多価結合剤(すなわち、阻害アッセイにおいて)の数(またはモル当量)とほぼ同じ桁であるとき、最高の感度が観測されることを見出した。
【0095】
タンパク性試料の場合、また、磁性粒子の表面を修飾して、バックグラウンドタンパク質の磁性粒子への非特異的結合を減少させることが必要となり得る。バックグラウンドタンパク質の粒子への非特異的結合は、粒子のクラスター化を誘導または妨害して、誤ったシグナルおよび/またはシグナルの誤った消失をもたらし得る。例えば、いくつかの場合では、磁性粒子の表面は、バックグラウンドタンパク質の非特異的結合を減少させる、磁性粒子の表面に共有結合したブロッキング剤を含むことができる。所望の効果を達成するために使用することができる様々な薬剤があり、かつ場合によっては、薬剤の組み合わせが最も有利である(表3を参照;典型的な粒子、コーティング、および結合部分)。
【0097】
従って、本発明者らは、非タンパク性緩衝液試料での結果に相当する、アッセイ活性および感度を達成するために、特に、タンパク性試料(例えば、血漿試料または全血試料)において、タンパク質ブロッキングが必要となり得ることを見出した。提供された調製物において使用し得る、共通して使用されるいくつかのタンパク質ブロッキング剤としては、例えば、ウシ血清アルブミン(BSA)、魚皮ゼラチン(FSG)、ウシγ-グロブリン(BGG)、リゾチーム、カゼイン、ペプチダーゼ、またはスキムミルクが挙げられる。ある態様においては、磁性粒子コーティングは、BSAまたはFSGを含む。他の態様においては、コーティングの組み合わせは、表3に列挙されるこれらの典型的なコーティングの組み合わせである。
【0098】
さらに、非特異的結合は、生物試料中の脂質または他の非タンパク性分子に起因し得る。非タンパク性物質が介在する非特異的結合の場合、pHおよび緩衝液のイオン強度の変化を、粒子反発力を増強させるように選択し得るが、しかし目的とした相互作用の結果を制限するには十分ではない。
【0099】
アッセイ試薬
本発明のアッセイは、磁性粒子への非特異的結合を減少させるための試薬を含むことができる。例えば、本アッセイは、1つまたは複数のタンパク質(例えば、アルブミン(例えば、ヒトまたはウシのアルブミン)、魚皮ゼラチン、リゾチーム、またはトランスフェリン);低分子量(<500ダルトン)アミン(例えば、アミノ酸、グリシン、エチルアミン、またはメルカプトエタノールアミン);および/または水溶性非イオン界面活性剤(例えば、ポリエチレングリコール、Tween(登録商標)20、Tween(登録商標)80、Pluronic(登録商標)、またはIgepal(登録商標))を含むことができる。
【0100】
界面活性剤は、一般的に、IGEPALという商品名でGAF社から市販されている界面活性剤を含む、広範囲の可溶性非イオン界面活性剤から選択してもよい。IGEPAL液体非イオン界面活性剤は、ポリエチレングリコールp-イソオクチルフェニルエーテル化合物であり、かつ、様々な分子量の指定により、例えば、IGEPAL CA720、IGEPAL CA630、およびIGEPAL CA890で入手可能である。他の適切な非イオン界面活性剤としては、TETRONIC 909という商品名でBASF Wyandotte Corporationから入手可能なものが挙げられる。この材料は、第一級ヒドロキシル基を末端に有する四官能性ブロック共重合体界面活性剤である。適切な非イオン界面活性剤は、また、VISTA ALPHONICという商品名でVista Chemical Companyから入手可能であり、かつ、そのような材料は、様々な分子量の直鎖第一級アルコールブレンドから誘導される非イオン生分解性物のエトキシレートである。界面活性剤は、また、ポロキサマー、例えば、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体、例えば、Synperonic PEシリーズ(ICI)、Pluronic(登録商標)シリーズ(BASF)、Supronic、Monolan、Pluracare、およびPlurodacという商品名で入手可能なもの、ポリソルベート界面活性剤、例えば、Tween(登録商標)20(PEG-20ソルビタンモノラウレート)、およびグリコール、例えば、エチレングリコールおよびプロピレングリコールから選択してもよい。
【0101】
そのような非イオン界面活性剤は、アッセイ反応において、有害効果を有することなくアッセイに適度な洗浄力を与えるために選択してもよい。特に、界面活性剤は、本発明の凝集アッセイの様々な成分の間の非特異的相互作用を抑制する目的で、反応混合物中に含有してもよい。非イオン界面活性剤は、典型的には、0.01%(w/w)〜5%(w/w)の量で液体試料に事前に加えられる。
【0102】
非イオン界面活性剤は、同じく、0.01%(w/w)〜5%(w/w)の量で液体試料に事前に加えられた、1つまたは複数のタンパク質(例えば、アルブミン、魚皮ゼラチン、リゾチーム、またはトランスフェリン)と組み合わせて使用してもよい。
【0103】
さらに、本発明のアッセイ、方法、およびカートリッジユニットは、追加の適切な緩衝液成分(例えば、反応環境中で約7.8〜8.2のpHを与えるために選択される、トリス塩基);およびカチオンを捕捉するためのキレート剤(例えば、EDTA二ナトリウム、エチレンジアミン四酢酸(EDTA)、クエン酸、酒石酸、グルクロン酸、糖酸またはそれらの適切な塩)を含むことができる。
【0104】
結合部分
一般的に、結合部分は、標的分子、または別の結合部分(または、ある態様においては、凝集誘導分子)に、特異的に結合もしくは連結、例えば、共有結合または非共有結合するか、あるいはハイブリダイズする、合成または天然の分子である。例えば、結合部分は、抗原または任意のタンパク質-タンパク質相互作用に対する、抗体であることができる。あるいは、結合部分は、特異的な相補核酸標的にハイブリダイズする対応する標的または合成オリゴヌクレオチドに結合する、多糖であることができる。ある態様においては、結合部分は、別の結合部分に結合したとき、溶液中で酵素などの標的分子に対する基質として作用するように設計または選択することができる。
【0105】
結合部分としては、例えば、オリゴヌクレオチド結合部分(DNA、RNA、または置換もしくは誘導体化ヌクレオチド置換体)、ポリペプチド結合部分、抗体結合部分、アプタマー、および多糖結合部分が挙げられる。
【0106】
オリゴヌクレオチド結合部分
ある態様においては、結合部分は、任意の様々な化学を使用して、例えば、3'または5'末端で、磁性粒子上の官能基への単結合、例えば、共有結合により、磁性粒子に接着/連結したオリゴヌクレオチドである。そのような結合部分は、突然変異を検出(例えば、SNP、転座、大規模な欠失、小規模な欠失、挿入、置換)、あるいは遺伝子発現をモニタリング(例えば、発現の存在、または遺伝子発現レベルの変化、RNA転写のモニタリング)、または病原体の存在、病態、または疾患の進行を特徴とするCHP分析のために、本発明のシステム、デバイス、および方法において使用することができる。
【0107】
オリゴヌクレオチド結合部分は、化学合成を使用して構築することができる。二本鎖DNA結合部分は、当技術分野において公知の手順を使用して、酵素的ライゲーション反応により構築することができる。例えば、核酸(例えば、オリゴヌクレオチド)は、天然のヌクレオチド、あるいは、分子の生物学的安定性を増加または相補鎖間で形成される二本鎖の物理的安定性を増加させるように設計された様々な修飾ヌクレオチドを使用して化学合成することができ、例えば、ホスホロチオエート誘導体およびアクリジン置換ヌクレオチドを使用することができる。核酸は、また、核酸がサブクローニングされた発現ベクターを使用して、生物学的に生成することができる。
【0108】
1つの方法は、オリゴヌクレオチド磁性粒子の少なくとも2つの集団(各々、水(または他の溶媒)緩和に強い効果を及ぼす)を使用する。オリゴヌクレオチド−磁性粒子コンジュゲートが標的オリゴヌクレオチドと反応したとき、これらは、凝集体(例えば、磁性粒子のクラスター)を形成する。室温で、長時間、例えば、一晩放置すると、凝集体は、大きなクラスター(ミクロンサイズのクラスター)を形成する。本発明の方法を使用して、複数サイクルの磁性促進凝集作用を用いることにより、大きなクラスターの形成をより迅速に達成することができる。磁気共鳴は、磁性オリゴヌクレオチド磁性粒子の混合物が標的核酸と反応して、凝集体を形成するときに変化する溶媒の緩和特性を決定するために使用される。
【0109】
ある態様は、少なくとも2つのタイプの磁性金属酸化物磁性粒子(各々が、オリゴヌクレオチドの特異的配列を有し、かつ、各々が、磁性粒子1個あたり、例えば、2つ以上の共有結合したオリゴヌクレオチドのコピーを有する)の混合物を用いる。例えば、アッセイプロトコールは、オリゴヌクレオチド−磁性粒子コンジュゲートの集団の混合物を調製して、かつその混合物と標的核酸を反応させることを包含してもよい。あるいは、オリゴヌクレオチド−磁性粒子コンジュゲートは、標的と連続的に反応することができる。ある態様は、オリゴヌクレオチド−磁性粒子コンジュゲートと標的核酸の反応を検出するために、磁気共鳴の使用を特徴とする。標的が存在すると、分散したコンジュゲートが自己集合して、小さな凝集体を形成する。
【0110】
例えば、オリゴヌクレオチド結合部分は、官能化高分子への共有結合を介して金属酸化物に、または非重合性の表面官能化金属酸化物に連結することができる。後者の方法では、磁性粒子は、Albrecht et al., Biochimie, 80:379 (1998)の方法に従って合成することができる。ジメルカプトコハク酸は、酸化鉄にカップリングして、かつカルボキシル官能基を与える。
【0111】
ある態様においては、オリゴヌクレオチドは、金属酸化物と会合した官能化高分子を介して磁性粒子に接着させる。いくつかの態様においては、高分子は親水性である。ある態様においては、コンジュゲートは、末端アミノ、スルフヒドリル、またはリン酸基を有するオリゴヌクレオチド、および親水性高分子上にアミノまたはカルボキシ基を有する超常磁性酸化鉄磁性粒子を使用して製造される。カルボキシおよびアミノ誘導体化磁性粒子を合成するための方法がいくつかある。
【0112】
1つの態様においては、オリゴヌクレオチドは、ビオチン-ストレプトアビジンなどのリガンド-タンパク質結合相互作用を介して粒子に接着され、ここで、リガンドはオリゴヌクレオチドに、タンパク質は粒子に共有結合し、または逆の場合もある。このアプローチにより、より迅速な試薬の調製が可能になる。
【0113】
他の形態のオリゴヌクレオチドを使用してもよい。例えば、アプタマーは、15〜60塩基長の一本鎖RNAまたはDNAオリゴヌクレオチドであり、溶液中で、直鎖核酸分子を三次元複合体に折りたたむ分子内相互作用を形成して、特異的な分子標的に高親和性で;しばしば、いくつかのモノクローナル抗体-抗原相互作用と同様の1pM〜1nMの範囲の平衡定数で結合することができる。アプタマーは、他の核酸分子、タンパク質、有機小分子化合物、小分子、および細胞(微生物または病原体)に特異的に結合することができる。
【0114】
ポリペプチド結合部分
ある態様においては、結合部分は、ポリペプチドの生物学的活性に影響を与えないように、任意の様々な化学を使用して、単一の共有結合により接着したポリペプチド(すなわち、タンパク質、ポリペプチド、またはペプチド)である。1つの態様においては、接着は、その修飾がポリペプチドの生物学的活性に影響を与えないように位置している、単一の反応性システイン残基のチオール基を介して行われる。これに関して、C末端またはN末端にシステインを有する直鎖ポリペプチドの使用は、アルカンチオールがオリゴヌクレオチドの3'または5'末端にチオール基を供給するのと同様にして、単一のチオールを与える。例えば、SPDP、および磁性粒子のアミノ基およびポリペプチドのチオール基と反応する、類似の二官能性コンジュゲート試薬を、任意のチオール含有結合部分と使用することができる。結合部分として使用されるポリペプチドのタイプは、抗体、抗体フラグメント、ならびに天然および合成ポリペプチド配列であることができる。ペプチド結合部分は、結合パートナー、すなわち、これらが選択的に結合する分子を有する。
【0115】
結合部分としてのペプチドの使用は、いくつかの利点を提供する。例えば、ポリペプチドは、磁性粒子への接着のために、生物学的活性のために必要な残基から遠位に独自に反応する残基を有するように改変することができる。反応性残基は、システインチオール、N末端アミノ基、C末端カルボキシル基またはアスパラギン酸またはグルタミン酸のカルボキシル基などであることができる。ペプチド上の単一の反応性残基は、接着の固有の部位を保護するために使用される。これらの設計原理は、化学合成されたペプチドまたは生物学的に生成されたポリペプチドに従うことができる。
【0116】
結合部分は、また、天然(野生型)ポリペプチドまたはタンパク質由来のアミノ酸配列を含有することができる。例えば、天然ポリペプチドは、ホルモン(例えば、サイトカイン、成長因子)、血清タンパク質、ウイルスタンパク質(例えば、血球凝集素)、細胞外マトリクスタンパク質、レクチン、または細胞表面タンパク質の細胞外ドメインであってもよい。別の例は、ビオチンと結合するストレプトアビジンまたはアビジンなどのリガンド結合タンパク質である。一般的に、得られた結合部分-磁性粒子は、結合部分と反応する試験媒体中の検体の存在を測定するために使用される。
【0117】
加えて、ポリペプチド結合部分は、汎用試薬の構成において使用することができ、ここで、結合部分の標的(例えば、小分子、リガンドまたは結合パートナー)は、標的検体に事前に接着して、ポリペプチド修飾粒子の存在下で、クラスター化を誘導する標識検体を生成する。
【0118】
結合部分として利用することができるタンパク質ホルモンの例としては、PDGF受容体と結合する血小板由来成長因子(PDGF);Igf受容体と結合するインスリン様成長因子-Iおよび-II(Igf);NGF受容体と結合する神経成長因子(NGF);FGF受容体と結合する線維芽細胞成長因子(FGF)(例えば、aFGFおよびbFGF);EGF受容体と結合する上皮細胞成長因子(EGF);TGF受容体と結合する形質転換成長因子(TGF、例えば、TGF-αおよびTGF-β);エリスロポエチン受容体と結合するエリスロポエチン;成長ホルモン受容体と結合する成長ホルモン(例えば、ヒト成長ホルモン);ならびにプロインスリン、インスリン、A鎖インスリン、およびB鎖インスリン(全てインスリン受容体に結合する)が挙げられるが、これらに限定されない。
【0119】
受容体結合部分は、細胞表面の受容体のクラスター化を検出およびイメージングするために有用である。有用な細胞外ドメインは、Notchタンパク質、Deltaタンパク質、インテグリン、カドヘリン、および他の細胞接着分子の細胞外ドメインを含む。
【0120】
抗体結合部分
他のポリペプチド結合部分は、少なくとも1つの免疫グロブリンドメイン、典型的には、少なくとも2つのそのようなドメインを含む、免疫グロブリン結合部分を含む。「免疫グロブリンドメイン」は、抗体分子のドメイン、例えば、可変または定常ドメインを指す。「免疫グロブリンスーパーファミリードメイン」は、免疫グロブリンドメインと関連する三次元構造を有するが、しかし非免疫グロブリン分子に由来するドメインを指す。免疫グロブリンドメインおよび免疫グロブリンスーパーファミリードメインは、典型的には、約7つのβ鎖から形成された2つのβシート、および保存されたジスルフィド結合を含む(例えば、Williams and Barclay Ann. Rev Immunol., 6:381 (1988)を参照)。Igスーパーファミリードメインのドメインを含むタンパク質としては、T細胞受容体、CD4、血小板由来成長因子受容体(PDGFR)、および細胞間接着分子(ICAM)が挙げられる。
【0121】
免疫グロブリン結合部分の1つのタイプは抗体である。本明細書において使用される用語「抗体」は、完全長の2本鎖免疫グロブリン分子および抗原結合部位およびそれらのフラグメント(合成変異体を含む)を指す。典型的な抗体は、2つの重(H)鎖可変領域(本明細書において、VHと省略する)、および2つの軽(L)鎖可変領域(本明細書において、VLと省略する)を含む。VHおよびVL領域は、より保存された「フレームワーク領域」(FR)と呼ばれる領域が組み込まれた、「相補性決定領域」(CDR)と呼ばれる超可変領域にさらに分けることができる。フレームワーク領域およびCDRの範囲は、以前に同定されている(Kabat, E. A., et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242, and Chothia et al., J. Mol. Biol., 196:901 (1987)を参照)。各VHおよびVLは、以下の順序でアミノ末端からカルボキシ末端に配置された3つのCDRおよび4つのFRからなる:FR1、CDR1、FR2、CDR2、FR3、CDR3、およびFR4。
【0122】
抗体は、また、軽鎖または重鎖の一部として定常領域を含むことができる。軽鎖は、COOH末端にκまたはλ定常領域遺伝子(CLと呼ばれる)を含むことができる。重鎖は、例えば、γ定常領域(IgG1、IgG2、IgG3、IgG4;約330アミノ酸をコードする)を含むことができる。γ定常領域は、例えば、CH1、CH2、およびCH3を含むことができる。用語「完全長抗体」は、VLおよびCLを含む1つのポリペプチド、ならびにVH、CH1、CH2、およびCH3を含む第二のポリペプチドを含むタンパク質を指す。
【0123】
本明細書において使用される抗体の用語「抗原結合フラグメント」は、標的に特異的に結合する能力を保持する、完全長抗体の1つまたは複数のフラグメントを指す。抗原結合フラグメントの例としては、(i)Fabフラグメント(VL、VH、CLおよびCH1ドメインから構成される一価フラグメント);(ii)F(ab')
2フラグメント(ヒンジ領域にジスルフィド架橋により連結した2つのFabフラグメントを含む二価フラグメント);(iii)VHおよびCH1ドメインから構成されるFdフラグメント;(iv)抗体の単一アームのVLおよびVHドメインから構成されるFvフラグメント;(v)VHドメインから構成されるdAbフラグメント(Ward et al., Nature 341 :544 (1989));および(vi)単離相補性決定領域(CDR)が挙げられるが、これらに限定されない。さらに、Fvフラグメント、VLおよびVHの2つのドメインは、別々の遺伝子によりコードされているが、これらは、組み換え法を使用して、VLおよびVH領域が一緒になって、一価の分子を形成する単一のタンパク質鎖として製造することが可能な合成リンカーにより、連結することができる(単鎖Fv(scFv)として知られている;例えば、Bird et al., Science 242:423 (1988); およびHuston et al., Proc. Natl. Acad. Sci. USA, 85:5879 (1988)を参照)。そのような単鎖抗体は、また、用語「抗原結合フラグメント」に包含される。
【0124】
単一のドメイン抗体(sdAb、ナノボディ)は、単一の一価可変抗体ドメインから構成される抗体フラグメントであり、かつ、また、本発明のシステムおよび方法において使用してもよい。全抗体と同様に、sdAbは、特異的な抗原に選択的に結合することができる。わずか12〜15kDaの分子量を有する単一のドメイン抗体は、2つのタンパク質重鎖および2つの軽鎖からなる通常の抗体(150〜160kDa)よりもはるかに小さく、かつ、Fabフラグメント(約50kDa、1つの軽鎖および半分の重鎖)および単鎖可変フラグメント(約25kDa、2つの可変ドメイン、1つは軽鎖に由来し、1つは重鎖に由来する)よりもさらに小さい。
【0125】
多糖結合部分
ある態様においては、結合部分は、例えば、任意の様々な化学を使用して、単結合、例えば、共有結合により、2つの末端の1つで、磁性粒子上の官能基に連結された、多糖である。多糖は、合成物または天然物であることができる。単糖、二糖、三糖および多糖は、結合部分として使用することができる。これらは、例えば、配糖体、N-グリコシルアミン、O-アシル誘導体、O-メチル誘導体、オサゾン、糖アルコール、糖酸、糖リン酸を含み、磁性粒子への適切な接着化学と共に使用される。
【0126】
連結を達成する方法は、アビジンを磁性粒子にカップリングさせ、かつ、アビジン-磁性粒子と市販のビオチン化多糖を反応させて、多糖-磁性粒子コンジュゲートを得ることである。例えば、シアリルルイスベースの多糖は、ビオチン化試薬として市販されており、かつ、アビジン-CLIOと反応する(Syntesome, Gesellschaft fur medizinische Biochemie mbHを参照)。シアリルルイスx四糖(Sle
x)は、白血球の表面に存在し、かつ、白血球の動員のための炎症カスケードの一部として機能する、セレクチンとして知られるタンパク質により認識される。
【0127】
さらに他の標的化部分は、非タンパク性要素、例えば、グリコシル修飾(ルイス抗原など)または別の非タンパク性有機分子を含む。別の方法は、タンパク質の磁性粒子への共有カップリングである。
【0128】
本方法の別の特徴は、上述の結合部分のいずれかを使用した、CD4/CD3細胞数および循環腫瘍細胞などの血液学的または組織病理学調査のための、特定の細胞タイプの同定を含む。
【0129】
多価結合剤
本発明のアッセイは、(i)担体(例えば、単純な合成足場、またはより大きい担体タンパク質もしくは多糖、例えば、BSA、トランスフェリン、またはデキストラン)に連結した多検体を有する多価結合剤、または、例えば、磁性粒子の2つ以上の集団に結合して、凝集体を形成するための複数のエピトープを有する多価結合剤を含むことができる。
【0130】
多価結合剤が用いられる場合、多検体は、担体(例えば、単純な合成足場、またはより大きい担体タンパク質もしくは多糖、例えば、BSA、トランスフェリン、またはデキストラン)に連結することができる。あるいは、多価結合剤は、磁性粒子の2つ以上の集団に結合するように設計された核酸であることができる。そのような多価結合剤は、凝集因子として作用し、かつ、アッセイアーキテクチャは、検出される検体と多価結合剤の間の競合により特徴付けられる(例えば、阻害アッセイ、競合アッセイ、または解離アッセイにおいて)。
【0131】
検体中に存在する官能基は、担体と共有結合を形成するために使用することができる。あるいは、検体を誘導化して、担体と共有結合を形成するために使用される官能基(すなわち、アルコール、アミン、カルボキシル基、スルフヒドリル基、またはリン酸基)で末端化されたリンカー(すなわち、コンジュゲート中で検体を担体と分離するスペーサー)を提供することができる。
【0132】
検体と担体の共有結合は、検体および担体中に存在するそのような官能基と反応することが可能な反応性部分を含有するリンカーを使用して達成してもよい。例えば、検体のヒドロキシル基は、リンカーのカルボキシル基またはその活性化誘導体と反応して、結果として2つを連結するエステルを形成することができる。
【0133】
スルフヒドリル基と反応することが可能な部分の例としては、Gurd, Methods Enzymol. 1 1 :532 (1967)に記載されるような、スルフヒドリル基に特に反応性を示すが、しかしイミダゾリル、チオエーテル、フェノール、およびアミノ基を修飾するために使用することもできる、XCH
2CO型(式中、X=Br、ClまたはI)のα-ハロアセチル化合物を挙げることができる。N-マレイミド誘導体も、また、スルフヒドリル基に対して選択的であると考えられるが、しかし特定の条件下でのアミノ基へのカップリングにも追加的に有用となり得る。アミノ基の変換によりチオール基を導入する2-イミノチオラン(Traut et al., Biochemistry 12:3266 (1973))などの試薬は、連結がジスルフィド架橋の形成により生じる場合、スルフヒドリル試薬として考慮してもよい。
【0134】
アミノ基と反応することが可能な反応性部分の例としては、例えば、アルキル化剤およびアシル化剤が挙げられる。代表的なアルキル化剤としては、以下のものが挙げられる:
(i)例えば、Wong, Biochemistry 24:5337 (1979)に記載されるような、反応性チオール基の非存在下でアミノ基に対して特異性を示し、かつ、XCH
2CO型(式中、X=Cl、BrまたはI)である、α-ハロアセチル化合物;(ii)例えば、Smyth et al., J. Am. Chem. Soc. 82:4600 (1960) and Biochem. J. 91:589 (1964)に記載されるような、マイケル型反応または環カルボニル基へ付加させることによるアシル化を介してアミノ基と反応することができる、N-マレイミド誘導体;(iii)反応性ニトロハロ芳香族化合物などのハロゲン化アリール;(iv)例えば、McKenzie et al., J. Protein Chem. 7:581 (1988)に記載されるような、ハロゲン化アルキル;(v)アミノ基とシッフ塩基の形成が可能なアルデヒドおよびケトン、形成されたその付加体は、通常、還元により安定化されて安定なアミンを与える;(vi)アミノ、スルフヒドリル、またはフェノール性ヒドロキシル基と反応することができる、エピクロルヒドリンおよびビスオキシランなどのエポキシド誘導体;(vii)アミノ、スルフヒドリル、およびヒドロキシル基などの求核剤に対して非常に反応性である、s-トリアジンの塩素含有誘導体;(viii)例えば、Ross, J. Adv. Cancer Res. 2: 1 (1954)に記載されるような、開環によりアミノ基などの求核剤と反応する、上記に詳述したs-トリアジン化合物系のアジリジン;(ix)Tietze, Chem. Ber. 124:1215 (1991)に記載されるような、スクアリン酸ジエチルエステル;および(x)Benneche et al., Eur. J. Med. Chem. 28:463 (1993)に記載されるような、エーテル酸素原子により引き起こされる活性化のため通常のハロゲン化アルキルより高い反応性のアルキル化剤である、α-ハロアルキルエーテル。
【0135】
代表的なアミノ反応性アシル化剤としては、以下のものが挙げられる:(i)安定な尿素およびチオ尿素誘導体をそれぞれ形成するイソシアネートおよびイソチオシアネート、特に、芳香族誘導体;(ii)Herzig et al., Biopolymers 2:349 (1964)に記載されている、塩化スルホニル;(iii)酸ハロゲン化物;(iv)ニトロフェニルエステルまたはN-ヒドロキシスクシンイミジルエステルなどの活性エステル;(v)混合、対称、またはN-カルボキシ無水物などの酸無水物;(vi)例えば、M. Bodansky, Principles of Peptide Synthesis, Springer-Verlag, 1984に記載されるような、アミド結合形成のための他の有用な試薬;(vii)Wetz et al., Anal. Biochem. 58:347 (1974)に記載されるような、アシルアジド、例えば、ここで、アジド基は、事前に形成されたヒドラジド誘導体から亜硝酸ナトリウムを使用して生成する;および(viii)例えば、Hunter and Ludwig, J. Am. Chem. Soc. 84:3491 (1962)に記載されるような、アミノ基との反応により安定なアミジンを形成するイミドエステル。アルデヒドおよびケトンは、アミンと反応して、シッフ塩基を形成することができ、これは、還元的アミノ化により有利に安定化され得る。アルコキシルアミノ部分は、例えば、Webb et al., Bioconjugate Chem. 1 :96 (1990)に記載のように、ケトンおよびアルデヒドと容易に反応して、安定なアルコキサミン(alkoxamine)を生成する。カルボキシル基と反応することが可能な反応性部分の例としては、例えば、Herriot, Adv. Protein Chem. 3: 169 (1947)に記載されるような、高い特異性で反応してエステル基を生成する、ジアゾ酢酸エステルおよびジアゾアセトアミドなどのジアゾ化合物が挙げられる。O-アシル尿素形成と、それに続く、アミド結合形成を介して反応する、カルボジイミドなどのカルボキシル修飾試薬を用いてもよい。
【0136】
検体および/または担体中の官能基は、所望であれば、例えば、追加の反応性または選択性を付与するために、反応の前に他の官能基に変換してもよいことが明らかであろう。所望であれば、追加の連結材料を導入することなしに、検体の反応性化学基と担体の反応性化学基の直接的な共有結合に関与する、いわゆるゼロレングスリンカーを本発明に従って使用してもよい。しかし、最も一般的には、リンカーは、上述したような、スペーサーエレメントにより接続された2つ以上の反応性部分を含む。そのようなスペーサーが存在することによって、二官能性リンカーが、検体および担体内の特異的な官能基と反応して、その2つの間に共有結合を形成することが可能になる。リンカー中の反応性部分は、同じ(ホモ二官能性リンカー)または異なる(ヘテロ二官能性リンカー、または、いくつかの異なる反応性部分が存在する場合は、ヘテロ多官能性リンカー)種類であってもよく、検体と担体間に共有結合をもたらし得る多様な潜在的試薬が提供される。リンカー中のスペーサーエレメントは、典型的には、直鎖または分岐鎖からなり、かつ、C
1-10アルキル、1〜10個の原子のヘテロアルキル、C
2-10アルケン、C
2-10アルキン、C
5-10アリール、3〜10個の原子の環系、または-(CH
2CH
2O)
nCH
2CH
2-(式中、nは、1〜4である)を含んでもよい。典型的には、多価結合剤は、2、3、4、5、6、7、8、15、50、または100個(例えば、3〜100、3〜30、4〜25、または6〜20個)のコンジュゲート検体を含むだろう。多価結合剤は、典型的には、10kDa〜200kDaのサイズであり、かつ、実施例に記載のようにして調製することができる。
【0137】
検体
本発明の態様は、試料(例えば、タンパク質、ペプチド、酵素、ポリペプチド、アミノ酸、核酸、オリゴヌクレオチド、治療薬剤、治療薬剤の代謝物、RNA、DNA、循環DNA(例えば、細胞、腫瘍、病原体、または胎児)、抗体、微生物、ウイルス、細菌、糖質、多糖、グルコース、脂質、気体(例えば、酸素および/または二酸化炭素)、電解質(例えば、ナトリウム、カリウム、塩化物、重炭酸塩、BUN、マグネシウム、リン酸塩、カルシウム、アンモニア、および/または乳酸塩)、一般的な化学分子(クレアチニン、グルコース)、リポタンパク質、コレステロール、脂肪酸、糖タンパク質、プロテオグリカン、および/またはリポ多糖)中の1つまたは複数の検体の濃度を検出および/または測定するためのデバイス、システム、および/または方法を含む。検体は、細胞または特異的な細胞タイプの同定を含んでもよい。検体は、1つまたは複数の生物学的に活性な物質および/または代謝物、生物学的に活性な物質のマーカー、および/または他の指標を含んでもよい。生物学的に活性な物質は、単一の実体または実体の組み合わせとして記載してもよい。用語「生物学的に活性な物質」としては、非限定的に、医薬;ビタミン類;ミネラルサプリメント;疾患または病気の治療、予防、診断、治癒または緩和のために使用される物質;または身体の構造または機能に影響を及ぼす物質;または所定の生理学的環境に置かれた後に生物学的に活性またはより活性になるプロドラッグ;または生物学的に毒性の薬剤、例えば、炭疽菌、エボラ、サルモネラ・チフィリウム、マールブルグウイルス、ペスト菌、コレラ菌、野兎病菌(Francisella tulariesis)(ツラレミア)、ブルセラ病菌、Q熱菌、ボリビア出血熱菌、コクシジオイデス・ミコシス(Coccidioides mycosis)、鼻疽菌、類鼻疽菌、赤痢菌、ロッキー山発疹熱菌、チフス菌、オウム病菌、黄熱病菌、日本脳炎ウイルス、リフトバレー熱ウイルス、および天然痘ウイルスなどの微生物を含む、細菌戦において使用される薬剤;リシン、アフラトキシン、SEB、ボツリヌス毒素、サキシトキシン、および多くのマイコトキシンを含む、兵器として使用することができる天然の毒素が挙げられる。検体としては、また、カンジダ・アルビカンス、カンジダ・グラブラータ、カンジダ・クルセイ、カンジダ・パラシローシス、カンジダ・トロピカリス、コアグラーゼ陰性ブドウ球菌、エンテロコッカス・フェカーリス、エンテロコッカス・フェシウム(Enterococcus faecium)、大腸菌、クレブシエラ・ニューモニエ、緑膿菌、黄色ブドウ球菌、アシネトバクター・バウマニー、アスペルギルス・フミガーツス(Aspergillus fumigates)、バクテロイデス・フラジリス、バクテロイデス・フラジリス、blaSHV、バークホルデリア・セパシア、カンピロバクター・ジェジュニ/コリ、カンジダ・ギリエルモンディ、カンジダ・ルシタニアエ(Candida lusitaniae)、ウェルシュ菌、エンテロバクター・アエロゲネス、エンテロバクター・クロアカエ、エンテロバクター属、ヘモフィルス・インフルエンザ、キンゲラ・キンゲ、クレブシエラ・オキシトカ、リステリア・モノサイトジェネス、MecA遺伝子所有細菌(MRSA)、モルガネラ・モルガナ、ナイセリア・メニンジティディス(Neisseria meningitides)、メニンジティディス以外のナイセリア属、プレボテラ・ブカエ、プレボテラ・インターメディア(Prevotella intermedia)、プレボテラ・メラニノジェニカ(Prevotella melaninogenica)、プロピオニバクテリウム・アクネス、プロテウス・ミラビリス、プロテウス・ブルガリス(Proteus vulgaris)、サルモネラ・エンテリカ、セラチア・マルセセンス、スタフィロコッカス・ヘモリチカス、スタフィロコッカス・マルトフィリア(Staphylococcus maltophilia)、スタフィロコッカス・サプロフィティクス(Staphylococcus saprophyticus)、ステノトロホモナス・マルトフィリア、ステノトロホモナス・マルトフィリア、ストレプトコッカス・アガラクティエ、ストレプトコッカス・ボビス(Streptococcus bovis)、ストレプトコッカス・ディスガラクティエ(Streptococcus dysgalactie)、ストレプトコッカス・ミチス、ストレプトコッカス・ミュータンス(Streptococcus mutans)、ストレプトコッカス・ニューモニエ、ストレプトコッカス・ピオゲネス、ストレプトコッカス・サングイニス(Streptococcus sanguinis)、VanA遺伝子、VanB遺伝子などの微生物を挙げることができる。検体としては、また、dsDNAウイルス(例えば、アデノウイルス、ヘルペスウイルス、ポックスウイルス);ssDNAウイルス(+)センスDNA(例えば、パルボウイルス);dsRNAウイルス(例えば、レオウイルス);(+)ssRNAウイルス(+)センスRNA(例えば、ピコルナウイルス(picornavirus)、トガウイルス);(-)ssRNAウイルス(-)センスRNA(例えば、オルトミクソウイルス、ラブドウイルス);ssRNA-RTウイルス(+)センスRNA(ライフサイクルにおいてDNA中間体を伴う)(例えば、レトロウイルス);およびdsDNA-RTウイルス(例えば、肝炎ウイルス)などのウイルス微生物を挙げることができる。
【0138】
本発明のシステムおよび方法を使用して検出することができる日和見感染としては、真菌、ウイルス、細菌、原生動物感染、例えば、1)真菌感染、例えば、カンジダ属(薬物耐性および非耐性株)、C.アルビカンス、C.クルセイ、C.グラブラータ、およびアスペルギルス・フミガーツスによる感染;2)グラム陰性感染、例えば、大腸菌、ステノトロホモナス・マルトフィリア、クレブシエラ・ニューモニエ/オキシトカ、および緑膿菌による感染;ならびに3)グラム陽性感染、例えば、ブドウ球菌属、S.アウレウス、S.ニューモニア(S.pneumonia)、腸球菌属(E.フェカリスおよびE.フェシウム)による感染が挙げられるが、これらに限定されない。感染は、コアグラーゼ陰性ブドウ球菌、コリネバクテリア属、フゾバクテリウム属、モーガネラ・モーガニイ(Morganella morganii)、ニューモシスチス・イロベチー(Pneumocystis jirovecii)(以前は、ニューモシスチス・カリニ(Pneumocystis carinii)として知られていた)、F.ホミニス(F.hominis)、S.ピオゲネス、緑膿菌、ポリオーマウイルス属JCポリオーマウイルス(進行性多巣性白質脳症を引き起こすウイルス)、アシネトバクター・バウマニー(Acinetobacter baumanni)、トキソプラズマ・ゴンヂ(Toxoplasma gondii)、サイトメガロウイルス、アスペルギルス属、カポジ肉腫、クリプトスポリジウム属、クリプトコッカス・ネオフォルマンス(Cryptococcus neoformans)、およびヒストプラスマ・カプスラーツム(Histoplasma capsulatum)による感染であることができる。
【0139】
本発明のデバイス、システムおよび方法を使用して検出することができる検体の広範な分類の非限定的な例としては、以下の治療薬分類が挙げられるが、これらに限定されない:同化剤、制酸薬、抗喘息薬、抗コレステロールおよび抗脂質薬、抗凝固薬、抗痙攣薬、下痢止め薬、抗嘔吐薬、抗感染症薬、抗炎症剤、抗躁薬、制吐薬、抗腫瘍薬、抗肥満薬、解熱薬および鎮痛薬、鎮痙薬、抗血栓薬、抗尿酸血薬、抗狭心症薬、抗ヒスタミン薬、鎮咳薬、食欲抑制剤、生物製剤、脳拡張薬(cerebral dilator)、冠動脈拡張薬、鬱血除去薬、利尿薬、診断薬、赤血球生成薬、去痰薬、胃腸鎮静薬、血糖上昇薬、睡眠薬、血糖降下薬、イオン交換樹脂、緩下薬、ミネラルサプリメント、粘液溶解薬、神経筋薬、末梢血管拡張薬、向精神薬、鎮静薬、興奮薬、甲状腺および抗甲状腺薬、子宮弛緩薬、ビタミン類、ならびにプロドラッグ。
【0140】
本発明のデバイス、システムおよび方法を使用して検出することができる生物学的に活性な物質としては、胃腸管または消化器系用の医薬、例えば、制酸薬、逆流抑制薬、整腸剤、抗ドーパミン作動薬、プロトンポンプ阻害薬、H
2-受容体アンタゴニスト、細胞保護剤、プロスタグランジン類似体、緩下薬、鎮痙薬、下痢止め薬、胆汁酸抑制薬、およびオピオイド;心臓血管系用の医薬、例えば、β-受容体阻害薬、カルシウムチャンネル阻害薬、利尿薬、強心配糖体、抗不整脈薬、硝酸塩、抗狭心症薬、血管収縮薬、血管拡張薬、末梢活性化薬、ACE阻害薬、アンジオテンシン受容体阻害薬、α-阻害薬、抗凝固薬、ヘパリン、HSGAG、抗血小板薬、線維素溶解薬、抗血友病因子、止血薬、脂質低下薬、およびスタチン;中枢神経系用の医薬、例えば、睡眠薬、麻酔薬、抗精神病薬、抗鬱薬、抗嘔吐薬、抗痙攣薬、抗癲癇薬、抗不安薬、バルビツレート、運動障害薬、興奮薬、ベンゾジアゼピン、シクロピロロン、ドーパミンアンタゴニスト、抗ヒスタミン薬、コリン作動薬、抗コリン作動薬、催吐薬、カンナビノイド、5-HTアンタゴニスト;疼痛および/または意識用の医薬、例えば、NSAID、オピオイドおよびオーファン、例えば、パラセタモール、三環系抗鬱薬、および抗痙攣薬;筋骨格障害用の医薬、例えば、NSAID、筋弛緩薬、および神経筋薬抗コリンエステラーゼ;眼用の医薬、例えば、アドレナリン作動性ニューロン阻害薬、収斂薬、眼潤滑薬、局所麻酔薬、交感神経様作用薬、副交感神経遮断薬、散瞳薬、毛様筋調節薬、抗生物質、局所抗生物質、サルファ剤、アミノ配糖体、フルオロキノロン、抗ウイルス薬、抗真菌薬、イミダゾール、ポリエン、NSAID、コルチコステロイド、肥満細胞阻害薬、アドレナリン作動薬、β-阻害薬、炭酸脱水酵素阻害薬/高浸透圧薬、コリン作動薬、縮瞳薬、副交感神経様作用薬、プロスタグランジンアゴニスト/プロスタグランジン阻害薬、ニトログリセリン;耳、鼻および中咽頭用の医薬、例えば、交感神経様作用薬、抗ヒスタミン薬、抗コリン作動薬、NSAID、ステロイド薬、防腐薬、局部麻酔薬、抗真菌薬、耳垢水;呼吸器系用の医薬、例えば、気管支拡張薬、NSAID、抗アレルギー薬、鎮咳薬、粘液溶解薬、鬱血除去薬、コルチコステロイド、β-受容体アンタゴニスト、抗コリン作動薬、ステロイド薬;内分泌異常用の医薬、例えば、アンドロゲン、抗アンドロゲン、ゴナドトロピン、コルチコステロイド、成長ホルモン、インスリン、抗糖尿病薬、甲状腺ホルモン、抗甲状腺薬、カルシトニン、ジホスホネート、およびバソプレッシン誘導体;生殖器系または泌尿器系用の医薬、例えば、抗真菌薬、アルカリ化物質、キノロン、抗生物質、コリン作動薬、抗コリン作動薬、抗コリンエステラーゼ、鎮痙薬、5-α還元酵素阻害薬、選択的α-1阻害薬、およびシルデナフィル;避妊用の医薬、例えば、経口避妊薬、殺精子薬、およびデポー避妊薬;産科婦人科用の医薬、例えば、NSAID、抗コリン作動薬、止血薬、抗線維素溶解薬、ホルモン補充療法、骨調節薬、β-受容体アゴニスト、卵胞刺激ホルモン、黄体形成ホルモン、LHRHガモレン酸、ゴナドトロピン放出阻害剤、プロゲストゲン、ドーパミン作動薬、エストロゲン、プロスタグランジン、ゴナドレリン、クロミフェン、タモキシフェン、およびジエチルスチルベストロール;皮膚用の医薬、例えば、皮膚軟化薬、抗掻痒薬、抗真菌薬、殺菌剤、抗疥癬薬、シラミ駆除剤、タール製品、ビタミンA誘導体、ビタミンD類似体、角質溶解薬、研磨薬、全身性抗生物質、局所抗生物質、ホルモン、抗かさぶた剤(desloughing agent)、浸出液吸収剤、線維素溶解薬、タンパク質分解薬、日焼け防止薬、制汗剤、およびコルチコステロイド;感染および侵入用の医薬、例えば、抗生物質、抗真菌薬、抗ハンセン菌薬、抗結核薬、抗マラリア薬、駆虫薬、抗アメーバ薬(amoebicide)、抗ウイルス薬、抗原虫薬、および抗血清;免疫系用の医薬、例えば、ワクチン、免疫グロブリン、免疫抑制剤、インターフェロン、モノクローナル抗体;アレルギー性疾患用の医薬、例えば、抗アレルギー薬、抗ヒスタミン薬、およびNSAID;栄養摂取用の医薬、例えば、強壮剤、鉄剤、電解質、ビタミン類、抗肥満薬、同化薬、造血薬、および食品薬;腫瘍性疾患用の医薬、例えば、細胞毒性薬、性ホルモン、アロマターゼ阻害剤、ソマトスタチン阻害剤、組み換えインターロイキン、G-CSF、およびエリスロポエチン;診断用の医薬、例えば、造影剤;ならびに癌用の医薬(抗癌剤)が挙げられるが、これらに限定されない。
【0141】
本発明のデバイス、システムおよび方法を使用して検出することができる生物学的に活性な物質としては、血液作用薬、例えば、貧血治療薬、造血貧血治療薬、凝固剤、抗凝固薬、止血凝固剤、血小板阻害凝固剤、血栓溶解酵素凝固剤、および血漿増量剤;抗凝固薬、ヘパリン、HSGAG、抗血小板薬、線維素溶解薬、抗血友病因子、止血薬が挙げられるが、これらに限定されない。本発明のデバイス、システムおよび方法を使用して検出することができる抗血栓薬(例えば、血栓溶解薬、抗凝固薬、および抗血小板薬)の例としては、ビタミンKアンタゴニスト、例えば、アセノクマロール、クロリンジオン、ジクマロール、ジフェナジオン、ビスクマ酢酸エチル、フェンプロクモン、フェニンジオン、チオクロマロール、およびワルファリン;ヘパリン群(血小板凝集阻害剤)、例えば、抗トロンビンIII、ベミパリン、ダルテパリン、ダナパロイド、エノキサパリン、ヘパリン、ナドロパリン、パルナパリン、レビパリン、スロデキシド、およびチンザパリン;他の血小板凝集阻害剤、例えば、アブシキシマブ 、アセチルサリチル酸(アスピリン)、アロキシプリン、ベラプロスト、ジタゾール、カルバサレートカルシウム、クロリクロメン、クロピドグレル、ジピリダモール、エポプロステノール、エプチフィバチド、インドブフェン、イロプロスト、ピコタミド、プラスグレル、チクロピジン、チロフィバン、トレプロスチニル、およびトリフルサル;酵素、例えば、アルテプラーゼ、アンクロッド、アニストレプラーゼ、ブリナーゼ、ドロトレコギンα、フィブリノリジン、プロセイン(procein)C、レテプラーゼ、サルプラーゼ、ストレプトキナーゼ、テネクテプラーゼ、およびウロキナーゼ;直接トロンビン阻害薬、例えば、アルガトロバン、ビバリルジン、デシルジン、レピルジン、メラガトラン、およびキシメラガトラン;他の抗血栓薬、例えば、ダビガトラン、デフィブロタイド、デルマタン硫酸、フォンダパリヌクス、およびリバロキサバン;ならびにその他、例えば、クエン酸塩、EDTA、およびシュウ酸塩が挙げられる。
【0142】
本発明のデバイス、システムおよび方法を使用して検出することができる他の生物学的に活性な物質としては、Basic and Clinical Pharmacology (LANGE Basic Science), Katzung and Katzung, ISBN 0071410929, McGraw-Hill Medical, 9
th edition (2003) において言及されるものが挙げられる。
【0143】
医学的状態
本発明の方法は、任意の広範な医学的状態の診断、管理、および/または処置における1つまたは複数の検体のモニタリングにおいて使用してもよい。様々な医学的状態の分類としては、例えば、疼痛の障害;体温の変化の障害(例えば、発熱);神経系機能不全(例えば、失神、筋肉痛、運動障害、痺れ、感覚消失、せん妄、認知症、記憶喪失、または睡眠障害);眼、耳、鼻、および咽喉の障害;循環機能および/または呼吸機能不全(例えば、呼吸困難、肺水腫、咳、喀血、高血圧、心筋梗塞、低酸素症、チアノーゼ、心血管虚脱、鬱血性心不全、浮腫、またはショック);消化管機能不全(例えば、嚥下障害、下痢、便秘、GI出血、黄疸、腹水、消化不良、吐き気、嘔吐);腎臓および尿路機能不全(例えば、アシドーシス、アルカローシス、体液および電解質恒常性障害、高窒素血症、または尿の異常);性機能および生殖の障害(例えば、勃起障害、月経障害、多毛症、男性化、不妊症、妊娠関連障害および標準的測定);皮膚の障害(例えば、湿疹、乾癬、座瘡、酒さ、皮膚感染、免疫皮膚疾患、または光線過敏症);血液の障害(例えば、血液病);遺伝子の障害(例えば、遺伝性疾患);薬物反応の障害(例えば、薬物有害反応);および栄養摂取の障害(例えば、肥満、摂食障害、または栄養状態評価)が挙げられる。本発明の態様の有用性が見出される他の医学分野としては、腫瘍学(例えば、悪性新生物、悪性腫瘍、血管新生、腫瘍随伴症候群、または癌救急);血液病(例えば、貧血、異常ヘモグロビン症、巨赤芽球性貧血、溶血性貧血、再生不良性貧血、骨髄異形成、骨髄不全、真性赤血球増加症、骨髄増殖性疾患、急性骨髄性白血病、慢性骨髄性白血病、リンパ球悪性腫瘍、血漿細胞障害、輸血生物学(transfusion biology)、または移植);止血(例えば、凝固および血栓の障害、または血小板および血管壁の障害);および感染性疾患(例えば、敗血症、敗血症性ショック、原因不明の発熱、心内膜炎、刺傷、火傷、骨髄炎、膿瘍、食中毒、骨盤内炎症性疾患、細菌(例えば、グラム陽性、グラム陰性、混合型(ノカルジア菌、放線菌、混合型)、マイコバクテリア、スピロヘータ、リケッチア、またはマイコプラズマ);クラミジア;ウイルス(DNA、RNA)、真菌および藻類感染;原生動物および蠕虫感染;内分泌疾患;栄養性疾患;ならびに代謝性疾患が挙げられる。
【0144】
本発明の態様の有用性が見出される他の医学的状態および/または分野としては、Harrison's Principles of Internal Medicine, Kasper et al., ISBN 0071402357, McGraw-Hill Professional, 16
th edition (2004) において言及されるもの、ならびにRobbins Basic Pathology, Kumar, Cotran, and Robbins, eds., ISBN 1416025340, Elsevier, 7
th edition (2005)において言及されるものが挙げられる。
【0145】
本明細書に記載の本発明の様々な態様を使用して実施してもよい医学検査(例えば、血液検査、尿検査、および/またはその他のヒトまたは動物の組織検査)としては、例えば、一般的な化学検査(例えば、検体としては、アルブミン、血中尿素窒素、カルシウム、クレアチニン、マグネシウム、リン、総タンパク質、および/または尿酸が挙げられる);電解質検査(例えば、検体としては、ナトリウム、カリウム、塩化物、および/または二酸化炭素が挙げられる);糖尿病検査(例えば、検体としては、グルコース、ヘモグロビンA1C、および/またはミクロアルブミンが挙げられる);脂質検査(例えば、検体としては、アポリポタンパク質A1、アポリポタンパク質B、コレステロール、トリグリセリド、低密度リポタンパク質コレステロール、および/または高密度リポタンパク質コレステロールが挙げられる);栄養状態評価(例えば、検体としては、アルブミン、プレアルブミン、トランスフェリン、レチノール結合タンパク質、α1-酸糖タンパク質、および/またはフェリチンが挙げられる);肝臓検査(例えば、検体としては、アラニントランスアミナーゼ、アルブミン、アルカリホスファターゼ、アスパラギン酸トランスアミナーゼ、直接ビリルビン、γ-グルタミルトランスアミナーゼ、乳酸脱水素酵素、免疫グロブリンA、免疫グロブリンG、免疫グロブリンM、プレアルブミン、総ビリルビン、および/または総タンパク質が挙げられる);心臓検査(例えば、検体としては、アポリポタンパク質A1、アポリポタンパク質B、心臓トロポニン-1、クレアチンキナーゼ、クレアチンキナーゼMBアイソザイム、高感受性CRP、マスクレアチンキナーゼMBアイソザイムミオグロビン、および/またはN末端前脳性ナトリウム利尿ペプチドが挙げられる);貧血の検査(例えば、検体としては、フェリチン、葉酸、ホモシステイン、ハプトグロビン、鉄、可溶性トランスフェリン受容体、総鉄結合能、トランスフェリン、および/またはビタミンB12が挙げられる);膵臓検査(例えば、検体としては、アミラーゼおよび/またはリパーゼが挙げられる);腎症(例えば、検体としては、アルブミン、α1-ミクログロブリン、α2-マクログロブリン、β2-ミクログロブリン、シスタチンC、レチノール結合タンパク質、および/またはトランスフェリンが挙げられる);骨検査(例えば、検体としては、アルカリホスファターゼ、カルシウム、および/またはリンが挙げられる);癌マーカーモニタリング(例えば、検体としては、総PSAが挙げられる);甲状腺検査(例えば、検体としては、遊離チロキシン、遊離トリヨードチロニン、チロキシン、甲状腺刺激ホルモン、および/またはトリヨードチロニンが挙げられる);生殖能力検査(例えば、検体としては、β-ヒト絨毛性ゴナドトロピンが挙げられる);治療薬モニタリング(例えば、検体としては、カルバマゼピン、ジゴキシン、ジギトキシン、ゲンタマイシン、リドカイン、リチウム、N-アセチルプロカインアミド、フェノバルビタール、フェニトイン、プロカインアミド、テオフィリン、トブラマイシン、バルプロ酸、および/またはバンコマイシンが挙げられる);免疫抑制薬(例えば、検体としては、シクロスポリンA、シロリムス、および/またはタクロリムスが挙げられる);補体活性および/または自己免疫疾患の検査(例えば、検体としては、C3補体、C4補体、C1阻害剤、C-反応性タンパク質、および/またはリウマチ因子が挙げられる);ポリクローナル/モノクローナル高ガンマグロブリン血症(例えば、検体としては、免疫グロブリンA、免疫グロブリンG、免疫グロブリンM、Ig軽鎖κおよび/またはλ型、免疫グロブリンGサブクラス1、2、3、および/または4が挙げられる);感染性疾患の検査(例えば、検体としては、抗ストレプトリジンOが挙げられる);炎症性疾患の検査(例えば、検体としては、α1-酸糖タンパク質、α1-抗トリプシン、セルロプラスミン、C-反応性タンパク質、および/またはハプトグロビンが挙げられる);アレルギー検査(例えば、検体としては、免疫グロブリンEが挙げられる);尿タンパク質検査(例えば、検体としては、α1-ミクログロブリン、免疫グロブリンG、Ig軽鎖κおよび/もしくはλ型、ミクロアルブミン、ならびに/または尿/脳脊髄液タンパク質が挙げられる);タンパク質-CSFの検査(例えば、検体としては、免疫グロブリンGおよび/または尿/脳脊髄液タンパク質が挙げられる);毒物検査(例えば、検体としては、血清アセトアミノフェン、血清バルビツレート、血清ベンゾジアゼピン、血清サリチル酸、血清三環系抗鬱薬、および/または尿エチルアルコールが挙げられる);および/または薬物乱用の検査(例えば、検体としては、アンフェタミン、コカイン、バルビツレート、ベンゾジアゼピン、エクスタシー、メタドン、アヘン剤、フェンシクリジン、テトラヒドロカンナビノイド、プロポキシフェン、および/またはメタカロンが挙げられる)が挙げられる。本発明の方法、デバイス、カートリッジ、およびキットを使用して検出することができる特異的癌マーカーとしては、17-β-ヒドロキシステロイド脱水素酵素1型、Ablインタラクター2、アクチン関連タンパク質2/3複合体サブユニット1A、アルブミン、アルドラーゼA、アルカリホスファターゼ、胎盤型、α1抗トリプシン、α1酸糖タンパク質1、α2-HS-糖タンパク質、α-ラクトアルブミン、α2-マクログロブリン、α-フェトプロテイン(AFP)、アンギオジェニンリボヌクレアーゼRNase Aファミリー5、アンジオポイエチン1、アンジオポイエチン2、モノクローナル抗体Ki-67により同定される抗原、抗ロイコプロテイナーゼI(SLPI)、アポリポタンパク質A1、ATP7B、β2-ミクログロブリン、B細胞CLL/リンパ腫2、BCL2-関連Xタンパク質、BRCAl、BRCA2、BrMS1、ブチラート誘導転写産物1、CA15.3/CA27-29、癌抗原125、癌抗原15.3、癌抗原19.9、癌抗原602、癌抗原72-4/TAG-72、癌関連ガラクトトランスフェラーゼ抗原、癌関連血清抗原(CASA)、癌胎児性抗原(CEA)、カテニンβ1、カテプシンD、カテプシンメンバー8、CCケモカイン4(HCC-4)、CCL21(小分子誘導サイトカインA21)、CCL5、CD15、CD24、CD34、CD44、細胞分裂タンパク質キナーゼ5、セルロプラスミン、子宮頸癌1プロトオンコジーンタンパク質p40、c-Ets1、シャペロニン含有TCP1、サブユニット3、ケモカイン(c-cモチーフ)リガンド4 小分子誘導サイトカインA4(CCL4、MIP-1-β)、ケモカインリガンド5、キチナーゼ-3様タンパク質1(YKL-40)、塩化物イオン細胞内チャンネル4(CLIC4)、胎盤性性腺刺激ホルモンβ鎖、クローディン-3、クローディン-4、クラステリン、凝固因子II(プロトロンビン)、凝固因子III、凝固因子XIIIα鎖、凝固因子XIIIβ鎖、コラーゲンIc末端ペプチド、コロニー刺激因子2、コロニー刺激因子3、補体成分3、C-反応性タンパク質、脳クレアチニンキナーゼ(CKB)、CTD小分子ホスファターゼ様、サイクリンDl、サイクリン依存性キナーゼ6(CDK6)、サイクリン依存性キナーゼ阻害剤1(p21)、シクロオキシゲナーゼ-1、シトクロムc酸化酵素Va、シトクロムc-1、デスミン、ジストログリカン1、エンドグリン、エンドセリン1、上皮細胞成長因子受容体(EGFR)、上皮細胞成長因子(EGF)、エリスロポエチン、E-セレクチン、EST転座変異体4(EST4)、細胞外マトリクスメタロプロテイナーゼ誘導因子(EMMPRIN)、フェリチンH、フェリチンL、線維芽細胞成長因子2、フィブロネクチン、Fit-3リガンド、CA125を伴うフルオロデオキシグルコース-PET(FDG-PET)、Fms-関連チロシンキナーゼ1(VEGFR-1)、GADD45A、ゲミニン、グリホセートN-アセチルトランスフェラーゼ、グラニュリン-エピセリン前駆体(GEP)、増殖分化因子15、ハプトグロビン1、ハプトグロビン-a-サブユニット、HE4(ヒト精巣上体タンパク質)、Her2、HER2-neu、hK10、hK11、hK13、hk6、hk7、hK8、HLAクラスIIDoβ、hLMH1、hLMH2、HNF-1β、ヒト絨毛性ゴナドトロピン-βサブユニット、ヒト絨毛性性腺刺激ホルモン(hCG)、IGFBP-2、IL-2Rα(可溶性インターロイキン2受容体α)、免疫グロブリン、免疫抑制酸性タンパク質(IAP)、インドールアミン2,3-ジオキシゲナーゼ、インスリン様成長因子結合タンパク質1、インスリン様成長因子結合タンパク質2、インスリン様成長因子結合タンパク質3、インテグリンα-V、インテグリンανβ6、細胞間接着分子、インターフェロンα1、インターロイキン1α、インターロイキン1β、インターロイキン10、インターロイキン12A、インターロイキン16、Inter-α-トリプシン阻害剤フラグメント、カリクレイン8、ケラチン、ケラチン18、ケラチン、I型細胞骨格19(サイトケラチン19)、Kitリガンド、KRAS、ラクトトランスフェリン、ラミニン-β3、レプチル(Leptil)-セレクチン、黄体形成ホルモン放出ホルモン受容体、Mac-2結合タンパク質90k、マクロファージコロニー刺激因子、マクロファージ遊走阻止因子、乳房血清抗原、マンモグロビンB、M-CAM、MIR21、メソテリン、MMP3、ムチン型糖タンパク質抗原、ミオシンX、神経成長因子β、ネトリン-1、神経内分泌タンパク質-55、好中球デフェンシン1、好中球デフェンシン3、Nm23-Hl、非金属細胞タンパク質2、非転移細胞1タンパク質(NM23A)、O-アシルトランスフェラーゼドメイン含有2、OVX1、OX40、P53、パラオキソナーゼ2、Pcaf、p-糖タンパク質、ホスホリボシルアミノイミダゾールカルボキシラーゼ、血小板由来成長因子受容体α、血小板由来成長因子受容体β、血小板内皮細胞接着分子(PECAM-1)、血小板因子4、妊娠関連血漿タンパク質-A、妊娠領域タンパク質、プロコル-lys1,2オキソグルテ(oxoglute)5-ジゴキシン(digixyg)3、プロコル-lys1,2オキソグルテ(oxoglute)5-ジゴキシン(digoxyg)1、プロゲステロン受容体(PR)、プロラクチン、前立腺分泌タンパク質PSP94、前立腺特異的抗原(PSA)、プロスタチン、タンパク質キナーゼC結合タンパク質1、p-セレクチン、ピロリン-5-カルボキシレート還元酵素1、Gタンパク質シグナル伝達12の調節因子、レティキュロカルビン、S-100α鎖、s-アデノシルホモシステイン加水分解酵素、血清アミロイドAタンパク質、7回膜貫通型ドメインタンパク質、性決定因子Y-ボックス-4、シアリルSSEA-1、小分子誘導サイトカインA18(CCL18、M1P-4)、小分子誘導サイトカインA2(CCL2)、小分子誘導サイトカインA3(CCL3)(マクロファージ炎症性タンパク質1-α)、小分子誘導サイトカインB5(CXCL5)、ソマトスタチン、成長ホルモン増殖因子、成長因子、扁平上皮癌抗原1、扁平上皮癌抗原2、ステロイドホルモン受容体、スルビビン、シンデカン-1、シヌクレインγ、テトラネクチン、テトラスパニン9、TGF-α、チミジンホスホリラーゼ(TP)、チログロブリン(Tg)、メタロプロテイナーゼ2の組織阻害剤、組織特異的移植抗原P35B、組織型プラスミノーゲン活性化因子(tPA)、トポイソメラーゼII、伝達受容体p90CD71、形質転換成長因子α、形質転換成長因子β1、ミトコンドリア外膜のトランスロカーゼ、トランスチレチン、トランスチレチン(レアルブミン)フラグメント、トロホブラスト糖タンパク質、トロポミオシン1α鎖(α-トロポミオシン)、トリプシン、チューブリンβ2、チューブリンβ3、腫瘍壊死因子(リガンド)スーパーファミリーメンバー5(CD154)、腫瘍壊死因子(リガンド)スーパーファミリーメンバー6(Fasリガンド)、腫瘍壊死因子α、腫瘍壊死因子受容体p75/p55、腫瘍壊死因子受容体スーパーファミリーメンバー6(fas)、腫瘍壊死因子受容体関連タンパク質1、腫瘍タンパク質p53、ユビキチン結合酵素E2C(ユビキチンcong enz)、尿中アンギオスタチン(uAS)、血管内皮成長因子(VEGF)、血管平滑筋細胞成長-促進因子(VSGPIF-スポンジン)、VEGF(165)b、V-erb-b2、ビタミンD結合タンパク質、ビタミンK依存性タンパク質C、ビトロネクチン、フォン・ヴィレブランド因子、ウィルムス腫瘍1(WT-1)、WWドメイン結合タンパク質11、Xボックス結合タンパク質-1、およびYKL-40が挙げられるが、これらに限定されない。Polanski et al., Biomarker Insights, 1:1 (2006); Cherneva et al., Biotechnol. & Biotechnol. EQ. 21/2007/2: 145 (2007); Alaoui-Jamali et al., J. Zhejiang Science B 7:41 1 (2006); Basil et al., Cancer Res.
66:2953 (2006); Suh et al., Expert Rev. Mol. Diagn. 10: 1069 (2010); および Diamandis, E. P., Molecular and Cellular Proteomics 3:367 (2004)を参照。
【0146】
本発明のデバイス、システムおよび方法を使用して検出することができる他の検体としては、Tietz Textbook of Clinical Chemistry and Molecular Diagnostics, Burtis, Ashwood, and Bruns, ISBN 0721601898, Elsevier, 4
th edition (2006)において言及されるものが挙げられる。
【0147】
本発明の方法、キット、カートリッジ、およびシステムは、対象の医学的状態を理解するために使用してもよい、検体の所定の組み合わせパネルを検出するために構成することができる。例えば、組み合わせパネルは、病原体、疑わしい病原体を処置するために使用される治療薬剤、および治療の薬理学的進行(有効性または薬物動態)をモニタリングするための潜在的バイオマーカーの検出、または病原体もしくは病原体副生成物の存在をモニタリングすることを含んでもよい。さらに、疾患または疾患バイオマーカー、疑わしい疾患を処置する際に使用するための治療薬のレベルまたは濃度、治療の薬理学的進行(有効性または薬物動態)をモニタリングするための潜在的バイオマーカー、および疾患または処置の効果の一般的な化学バイオマーカーまたは他の生理学的マーカーの検出用に使用するために構成された疾患処置パネルを想定することができる。このようにして、検体検出のパネルは、適切な医学的意思決定を通知および導くために使用することができる。
【0148】
例えば、本発明のシステムおよび方法は、同種移植後の免疫不全対象をモニタリングするために使用することができる。固形臓器、骨髄、造血幹細胞、またはその他の同種提供物を受ける移植対象において、免疫状態、臓器機能をモニタリングをする必要があり、かつ、必要であれば、日和見感染を迅速および正確に同定する必要がある。例えば、薬物濃度および腎機能をモニタリングすることが、医師に最適な移植後治療の支援および指針を与えることができるため、対象由来の同じ血液試料からクレアチニンおよびタクロリムスレベルをモニタリングする必要がある。治療を最適化することは、拒絶反応を防止するためであるが、また免疫機能が日和見感染に対抗することができるように厳密なバランスを保つことであり、結果として、全体的に免疫抑制療法に対する対象のコンプライアンスを向上させる。主に、移植レシピエントは、移植の拒絶反応、移植片対宿主疾患、または日和見感染で死亡する。最初の2つでは、免疫抑制剤により、その反応を排除または抑制することができる。しかし、対象が潜在する感染を有する場合、臨床管理が課題である。具体例として、原因不明の発熱を呈する心臓、肺移植対象は、医療施設に入れられる。対象は、培養結果が判明するまで広域スペクトル抗生物質から使用を開始する。状態が悪化する場合、かつ、培養により特異的感染、例えば、カンジダの感染が明らかになった場合、特異的抗真菌薬のフルコナゾールを判明した対象に投与することができる。しかし、この抗真菌薬は、ほとんど全ての同種移植レシピエントに与えられる免疫抑制剤タクロリムスのレベルを変化させ得る。タクロリムスおよびクレアチニンの両方のレベルを試験した後、医師は、フルコナゾールが感染に打ち勝つと信じて、タクロリムスを速やかに中断する。この投薬計画のもとでは、カンジダ種がフルコナゾールに耐性である場合、対象は悪化する恐れがあり、かつ、対象は次に適切な抗真菌剤の使用を開始する。しかし、タクロリムスを中断した場合、免疫抑制療法は管理不能となり、かつ、対象は任意の追加療法に対して非応答性になり、結果として死に至る恐れがある。従って、クレアチニン(腎機能)、タクロリムス血中レベル、および日和見感染の正確な同定を同時にモニタリングする試験があれば、上記の対象は助かったかもしれない。
【0149】
本発明のシステムおよび方法は、免疫不全対象の状況において重要な役割を有する、薬物レベル、毒性または有害効果決定因子、および病原体同定を決定するための、マルチプレックスの非試料調製、単一検出法、自動システムを含むことができる。例えば、1)それらの表面に修飾されたクレアチニン特異的抗体を有する磁性粒子、2)それらの表面にタクロリムス特異的抗体を有する磁性粒子、および3)病原体種を同定するための特異的核酸プローブを有する磁性粒子を含有する、ポータルまたはウェルを有するカートリッジは、所与の移植対象の臨床管理値を迅速に決定および提供するために用いることができる。そのような対象、および感染のリスクを有する任意の他の患者集団においてモニタリングすることができる日和見感染としては、真菌感染;カンジダ感染(耐性および非耐性株);グラム陰性細菌感染(例えば、大腸菌、ステノトロホモナス・マルトフィリア、クレブシエラ・ニューモニエ/オキシトカ、または緑膿菌);およびグラム陽性細菌感染(例えば、ブドウ球菌種:S.アウレウス、S.ニューモニア、E.フェカリス、およびE.フェシウム)が挙げられるが、これらに限定されない。モニタリングすることができる他の日和見感染としては、コアグラーゼ陰性ブドウ球菌、コリネバクテリア属、フゾバクテリウム属、およびモーガネラ・モーガニイ、ならびにCMV、BKV、EBC、HHV-6、HIV、HCV、HBV、およびHAVなどのウイルス微生物感染が挙げられる。
【0150】
本発明のシステムおよび方法は、また、マルチプレックス診断検査の一部として癌患者をモニタリングおよび診断するために使用することができる。癌の具体的な形態の1つである結腸直腸癌は、特定の固形腫瘍のためのオーダーメイド医療処置に確かに有望であることが実証された。薬理遺伝子マーカーは、結腸直腸および他の癌の処置を最適化するために使用することができる。5FU、カペシタビン、イリノテカン、およびオキサリプラチンの薬物代謝において、これらの薬剤の毒性および有効性の両方に影響する有意な個々の遺伝的変異が存在する。遺伝子マーカーの例としては、UGT1A1
*28が挙げられるが、これは、SN-38(イリノテカンの活性代謝物)の抱合を減少させ、結果として、有害効果、特に、好中球減少の速度を増加させる。程度はより小さいが、5-FU毒性の増加は、DPYD
*2Aにより予測される。チミジル酸合成酵素エンハンサー領域中の様々な長さの反復配列多型を、単一のヌクレオチド多型C>Gと組み合わせて、5-FUに対する応答不良を予測することができる。オキサリプラチンの有効性は、ERCC1およびXRCC1などのDNA修復システムの成分中の多型により影響を受ける。内皮成長因子受容体の多型変化から、おそらく、セツキシマブの有効性が予測される。さらに、セツキシマブの抗体依存性の細胞介在細胞傷害効果は、免疫グロビンGフラグメントC受容体の多型により減少し得る。VEGF遺伝子および低酸素誘導因子1α遺伝子の多型変化は、また、治療結果の変動性においてある役割を担っていると考えられる。従って、対象におけるそのような多型の同定は、医師の処置法決定を支援するために使用することができる。例えば、PCRベースの遺伝学的試験は、非小細胞肺癌(NSCLC)、結腸直腸癌(CRC)および胃癌を有する対象のための、医師の治療的処置決定を支援するために開発されている。ERCC1、TS、EGFR、RRM1、VEGFR2、HER2の発現、およびKRAS、EGFR、およびBRAFの突然変異の検出は、医師が最適な治療選択を同定するために利用可能である。しかし、これらのPCR試験は、現場では利用することができないため、試料を現地外の実験室に送らなければならない。これらの固形腫瘍は、生検されることが多く、FFPE(ホルマリン固定、パラフィン包埋(組織))試料が調製される。本発明のシステムおよび方法は、データおよび情報を得るための所要時間が5〜7日間要せず、かつ、従来の方法に必要な固定試料を使用することなく使用することができる。本発明のシステムおよび方法は、複数のタイプの検体、例えば、癌においては、化学療法薬、遺伝子型決定、毒性および有効マーカーの場合に、試料調製なしで試料を分析するための単一のプラットフォームを提供することができ、これにより、オーダーメイド医療の実施に革命をもたらし、かつ、迅速で正確な診断検査を提供することができる。
【0151】
本発明のシステムおよび方法は、また、神経疾患、例えば、認知症(以前は健常であった人の認知能力の欠損)および他の形態の認識機能障害をモニタリングおよび診断するために使用することができる。認知症は、大きく皮質認知症および皮質下認知症の2つの群に分類することができる。皮質認知症としては、アルツハイマー病、ビンスワンガー病を含む血管性認知症(多発梗塞性認知症としても知られている)、レビー小体認知症(DLB)、アルコール誘導性持続性認知症、コルサコフ症候群、ウェルニッケ脳症、ピック病、前頭側頭認知症(または前頭変異型FTLD)、意味認知症(または側頭変異型FTLD)、進行性非能弁的失語症を含む前頭側頭葉変性症(FTLD)、クロイツフェルト・ヤコブ病、拳闘家認知症、モヤモヤ病、テベスチア(thebestia)(癌と間違えられることが多い)、後部皮質萎縮症またはベンソン症候群が挙げられる。皮質下認知症としては、ハンチントン病に起因する認知症、甲状腺機能低下症に起因する認知症、パーキンソン病に起因する認知症、ビタミンB1欠乏に起因する認知症、ビタミンB12欠乏に起因する認知症、葉酸欠乏に起因する認知症、梅毒に起因する認知症、硬膜下血腫に起因する認知症、高カルシウム血症に起因する認知症、低血糖に起因する認知症、AIDS認知症複合体、擬認知症(顕著な認知症状を伴う大鬱病エピソード)、物質誘導性持続性認知症(向精神薬使用に関連し、以前はアブサン中毒)、複数の病因に起因する認知症、他の一般的な医学的状態(すなわち、末期腎不全、心臓血管疾患など)に起因する認知症、または特定されない認知症(特定の基準が満たされない場合に使用される)が挙げられる。アルツハイマー病は、認知症のよく見られる形態である。認知症は、多くの神経変性疾患と本質的に関連しているため、単一のプラットフォームにおいて、薬物または薬物代謝物のレベルと共に疾患のバイオマーカーとしてこれらのタンパク質を試験することは、医師の投薬量の調整、投薬計画の変更、または疾患の進行の一般的なモニタリングを支援するであろう。これらの試験は、現在のところ、対象および介護者から離れた地域の現地外で実行されている。従って、薬物レベルおよびバイオマーカーを同じ検出システム,すなわち、現地でモニタリングすることができれば、この消耗性および破壊的な疾患に大きな利点をもたらすだろう。本発明の方法は、薬物レベル、毒性または有害効果決定因子、および疾患の進行の潜在的バイオマーカーを決定するための、マルチプレックスの非試料調製、単一検出法、自動システムであることができる。例えば、1)それらの表面に修飾された認知症タンパク質特異的バイオマーカー抗体を有する磁性粒子、2)それらの表面に特異的抗体を有する磁性粒子、および3)タンパク質発現レベルを同定するための特異的核酸プローブを有する磁性粒子を含有する、ポータルまたはウェルを有するカートリッジは、所与の認知症対象の臨床管理値を迅速に決定および提供するために用いることができる。
【0152】
本発明のシステムおよび方法は、また、感染性疾患をマルチプレックスの自動非試料調製システムでモニタリングおよび診断するために使用することができる。本発明のデバイス、システムおよび方法を使用して検出されうる病原体の例としては、例えば、細菌の中でも、カンジダ(耐性および非耐性株)、例えば、C.アルビカンス、C.グラブラータ、C.クルセイ、C.トロピカリス、およびC.パラプシローシス;A.フミガータス(A.fumigatus);大腸菌、ステノトロホモナス・マルトフィリア、クレブシエラ・ニューモニエ/オキシトカ、P.エルジノーサ(P. aeruginosa);ブドウ球菌属(例えば、S.アウレウスまたはS.ニューモニア);E.フェカリス、E.フェシウム、コアグラーゼ陰性ブドウ球菌属、コリネバクテリア属、フゾバクテリウム属、モーガネラ・モーガニイ、ニューモシスチス・イロベチー(以前はニューモシスチス・カリニとしても知られている)、F.ホミニス、ストレプトコッカス・ピオゲネス、緑膿菌、ポリオーマウイルス属JCポリオーマウイルス(進行性多巣性白質脳症を引き起こすウイルス)、アシネトバクター・バウマニー、トキソプラズマ・ゴンジ、サイトメガロウイルス、アスペルギルス属、カポジ肉腫、クリプトスポリジウム、クリプトコッカス・ネオフォルマンス、およびヒストプラズマ・カプスラーツム、酵母、真菌、ウイルス、プリオン、カビ、放線菌、原生動物、寄生虫、原生生物および蠕虫の感染性生物が挙げられる。
【0153】
本発明のシステムおよび方法は、対象における疾患の原因を同定およびモニタリングするために、治療的介入を選択するために、かつ選択した処置の有効性をモニタリングするために使用することができる。例えば、ウイルス感染を有するまたはそのリスクを有する患者の場合、本発明のシステムおよび方法は、感染性ウイルス、ウイルス負荷を同定するために、および感染の状態の指標となる白血球数および/またはバイオマーカーをモニタリングするために使用することができる。ウイルスの識別は、適切な治療を選択するために使用することができる。治療的介入(例えば、特定の抗ウイルス剤)をモニタリングすることもできるが、さらに、処置計画を抗ウイルス剤およびウイルス負荷の血中濃度と関連付けて、患者が処置に応答しているかを確認することができる。
【0154】
本発明のシステムおよび方法は、例えば、サイトメガロウイルス(CMV)、エプスタイン・バーウイルス、BKウイルス、B型肝炎ウイルス、C型肝炎ウイルス、単純ヘルペスウイルス(HSV)、HSV1、HSV2、呼吸器合胞体ウイルス(RSV)、インフルエンザ;インフルエンザA、インフルエンザA亜型H1、インフルエンザA亜型H3、インフルエンザB、ヒトヘルペスウイルス6型、ヒトヘルペスウイルス8型、ヒトメタ肺炎ウイルス(hMPV)、ライノウイルス、パラインフルエンザ1、パラインフルエンザ2、パラインフルエンザ3、およびアデノウイルスを検出するように構成されたウイルスパネルを用いて、対象におけるウイルス感染をモニタリングするために使用することができる。本発明の方法は、ウイルス感染を有する対象のための適切な治療(例えば、アバカビル、アシクロビル(Aciclovir)、アシクロビル(Acyclovir)、アデフォビル、アマンタジン、アンプレナビル、アンプリジェン、アルビドール、アタザナビル、アトリプラ、ボセプレビル、シドフォビル、コンビビル、ダルナビル、デラビルジン、ディダノシン、ドコサノール、エドクスジン、エファビレンツ、エムトリシタビン、エンフビルチド、エンテカビル、ファムシクロビル、ホミビルセン、ホスアンプレナビル、ホスカネット、ホスホネット、ガンシクロビル、イバシタビン、イムノビル、イドクスウリジン、イミキモド、インジナビル、イノシン、インテグラーゼ阻害剤、インターフェロンIII型、インターフェロンII型、インターフェロンI型、インターフェロンα、インターフェロンβ、ラミブジン、ロピナビル、ロビリド(Loviride)、マラビロク、モロキシジン、メチサゾン、ネルフィナビル、ネビラピン、ネキサビル、ヌクレオシド類似体、オセルタミビル(タミフル)、ペグインターフェロンα-2a、ペンシクロビル、ペラミビル、プレコナリル、ポドフィロトキシン、ラルテグラビル、逆転写酵素阻害剤、リバビリン、リマンタジン、リトナビル、ピラミジン、サキナビル、スタブジン、ティーツリー油、テノホビル、テノホビルジソプロキシル、チプラナビル、トリフルリジン、トリジビル、トロマンタジン、ツルバダ、バラシクロビル(バルトレックス)、バルガンシクロビル、ビクリビロック、ビダラビン、ビラミジン、ザルシタビン、ザナミビル(リレンザ)、またはジドブジン)をモニタリングするために、および対象に投与された治療薬の血中濃度をモニタリングするために使用することができる。
【0155】
本発明のシステムおよび方法は、また、HIV/AIDS患者をモニタリングするためにも使用することができる。臨床医が急性感染を疑ったとき(例えば、急性レトロウイルス症候群の症状および徴候と関連する最近のリスク行動の報告を受けた対象において)、HIV RNAの試験が通常実施される。陰性または不確定HIV抗体検査と組み合わせて、高感度増幅アッセイ(PCR、bDNA、またはNASBA)を使用することにより、血漿で検出される高いレベルのHIV RNAは、急性HIV感染という診断を裏付けている。HIV/AIDS対象のウイルス負荷、薬物レベル、CD4細胞数、および毒性パターンを単一のプラットフォーム診断法でモニタリングすることは、対象に明らかに有利な点を提供することができるだろう。本発明のシステムおよび方法は、薬物レベル、毒性または有害効果決定因子、および疾患の進行の潜在的バイオマーカーを決定するための、マルチプレックスの非試料調製、単一検出法、自動システムにおいて使用することができる。例えば、1)それらの表面に修飾されたCD4細胞特異的抗体を有する磁性粒子、2)それらの表面に毒性バイオマーカー特異的抗体を有する磁性粒子、および3)ウイルス負荷レベルを同定するための特異的核酸プローブを有する磁性粒子を含有する、ポータルまたはウェルを有するカートリッジは、所与のHIV/AIDS対象の臨床管理値を迅速に決定および提供するために用いることができる。
【0156】
本発明のシステムおよび方法は、また、対象における免疫疾患(例えば、クローン病、回腸炎、腸炎、炎症性腸疾患、過敏性腸症候群、潰瘍性大腸炎、ならびに非胃腸系免疫疾患)をモニタリングおよび診断するためにも使用することができる。比較的最近開発された遺伝子改変薬剤は、免疫疾患の処置を根本的に変える可能性があり、かつ、レミケード(抗TNF抗体のインフリキシマブとしても知られている)は、高い有効性、速やかな作用発現、長期間にわたる効果、および改善された耐性を有する新しい治療薬クラスとして導入された。しかし、これらの薬剤は高価であり、適格患者の少なくとも3分の1は、任意の有用な応答を示さない。従って、応答する患者を予測し、かつ、再発を予想する手段を見出すことが重要であることは明らかである。TNF多型は、また、炎症性腸疾患(IBD)の腸管外症状の性質および頻度に影響すると考えられる。いくつかの大規模対照臨床試験は、レミケードが、中程度から重度の急性クローン病を有する患者の処置およびクローン病における瘻孔形成において、ある役割を有することを示している。小規模な研究から、レミケードに対する応答不良と、活性化NF-κBの粘膜レベルの増加、TNFR2(遺伝子型Argl96Arg)のエクソン6における多型のホモ接合性、核周囲型抗好中球細胞質抗体(ANCA)に対する陽性、ならびにインターフェロン-γおよびTNF-αを産生する活性化粘膜固有層単核細胞の増加した数の存在との間に関連している可能性があることが示された。従って、クローン病患者のTNF-αおよび毒性パターンを単一のプラットフォーム診断法でモニタリングすることは、明らかに有利な点を提供するだろう。本発明の方法は、薬物レベル、毒性または有害効果決定因子、および疾患の進行の潜在的バイオマーカーを決定するための、マルチプレックスの非試料調製、単一検出法、自動システムであることができる。例えば、1)それらの表面に修飾された抗TNF-α特異的抗体を有する磁性粒子、2)それらの表面に毒性バイオマーカー特異的抗体を有する磁性粒子、および3)進行の疾患マーカーを同定するための特異的プローブを有する磁性粒子を含有する、ポータルまたはウェルを有するカートリッジは、所与のクローン病またはIBD患者の臨床管理値を迅速に決定および提供するために用いることができる。
【0157】
本発明のシステムおよび方法は、また、感染性疾患および炎症をマルチプレックスの自動非試料調製システムでモニタリングおよび診断するために使用することができる。そのようなシステムおよび方法は、例えば、菌血症、敗血症、および/または全身性炎症反応症候群(SIRS)をモニタリングするために使用することができる。このタイプの感染は、未処置のまま放置した場合、臓器機能不全、血流低下、低血圧、難治性(敗血性)ショック/SIRSショック、および/または多臓器機能不全症候群(MODS)をもたらす恐れがあるため、早期診断は臨床上重要である。典型的な患者の場合、多くの細菌または真菌感染は、医療環境に入院している間に起こり、医療関連感染(HAI)と呼ばれていて(院内感染、院内獲得または院内発症感染としても知られている)。細菌の分類の中で、免疫不全患者に感染することがよく知られている細菌は、MRSA(メチシリン耐性黄色ブドウ球菌)、グラム陽性細菌およびヘリコバクター(グラム陰性である)である。グラム陽性MRSAにより引き起こされる疾患を処置することができる抗生物質があるが、現在、アシネトバクターに効果的な薬物も数種類ある。血流感染でよく見られる病原体は、コアグラーゼ陰性ブドウ球菌、腸球菌、および黄色ブドウ球菌である。また、カンジダ・アルビカンスおよび肺炎の病原体、例えば、緑膿菌、黄色ブドウ球菌、クレブシエラ・ニューモニエ、およびヘモフィルスインフルエンザが、感染の大部分を占める。尿路感染の病原体としては、大腸菌、カンジダ・アルビカンス、および緑膿菌が挙げられる。グラム陰性腸内微生物は、また、尿路感染においてさらに一般的に見られる微生物である。手術部位感染としては、黄色ブドウ球菌、緑膿菌、およびコアグラーゼ陰性ブドウ球菌が含まれる。感染性因子は、非限定的に、敗血症に関連する病原体、例えば、アシネトバクター・バウマニー、アスペルギルス・フミガーツス、バクテロイデス・フラジリス、B.フラジリス、blaSHV、バークホルデリア・セパシア、カンピロバクター・ジェジュニ/コリ、カンジダ・ギリエルモンディ、C.アルビカンス、C.グラブラータ、C.クルセイ、C.ルシタニアエ、C.パラプシローシス、C.トロピカリス、ウェルシュ菌、コアグラーゼ陰性ブドウ球菌、エンテロバクター・アエロゲネス、E.クロアカエ、エンテロバクター属、エンテロコッカス・フェカーリス、E.フェシウム、大腸菌、ヘモフィルス・インフルエンザ、キンゲラ・キンゲ、クレブシエラ・オキシトカ、K.ニューモニエ、リステリア・モノサイトジェネス、MecA遺伝子(MRSA)、モルガネラ・モルガナ、ナイセリア・メニンジティディス、メニンジティディス以外のナイセリア属、プレボテラ・ブカエ、P.インターメディア、P.メラニノゲニカ、プロピオニバクテリウム・アクネス、プロテウス・ミラビリス、P.ブルガリス、緑膿菌、サルモネラ・エンテリカ、セラチア・マルセセンス、黄色ブドウ球菌、S.ヘモリチカス、S.マルトフィリア、S.サプロフィティクス、ステノトロホモナス・マルトフィリア、S.マルトフィリア、ストレプトコッカス・アガラクティエ、S.ボビス、S.ディスガラクティエ、S.ミティス、S.ミュータンス、S.ニューモニエ、S.ピオゲネス、およびS.サングイス;または本明細書に記載の任意の他の感染性因子から選択することができる。ある場合では、本方法およびシステムは、感染性因子が、バンコマイシン耐性に特徴的なVanA遺伝子またはVanB遺伝子;メチシリン耐性のmecA、β-ラクタムに対してより一般的な耐性のNDM-1およびESBLを有するか否かを確認するために設計されるだろう。
【0158】
敗血症または敗血症性ショックは、全身炎症状態(全身性炎症反応症候群またはSIRS)および公知のまたは疑わしい感染の存在により特徴づけられる重篤な医学的状態である。敗血症は、感染の存在下でSIRSとして定義され、敗血性ショックは、適切な輸液蘇生にもかかわらず難治性動脈低血圧または血流低下異常を伴う敗血症として定義され、かつ、重度の敗血症は、臓器機能不全、血流低下、または低血圧を伴う敗血症として定義される。多くの研究で、現在利用可能なマーカーの組み合わせの価値が試験されており、それによって、記載したようなプラットフォームにより、GRO-α、高移動度群ボックス1タンパク質(HMBG-1)、IL-1受容体、IL-1受容体アンタゴニスト、IL-1b、1L-2、IL-4、IL-6、IL-8、IL-10、IL-12、IL-13、IL-18、マクロファージ炎症性タンパク質(MIP-1)、マクロファージ遊走阻止因子(MIF)、オステオポンチン、RANTES(regulated on activation, normal T-cell expressed and secreted;またはCCL5)、TNF-α、C-反応性タンパク質(CRP)、CD64、および単球走化性タンパク質1(MCP-1)のような因子のレベルを単独でまたは同時に決定することが可能になる。また、本システムおよび方法は、敗血症に特徴的な特定のタンパク質、例えば、アデノシンデアミナーゼ結合タンパク質(ABP-26)、誘導性一酸化窒素合成酵素(iNOS)、リポ多糖結合タンパク質(LBP)、およびプロカルシトニン(PCT)をモニタリングするために設計することができる。従って、このプラットフォームは、特異的病原体および/または所与の患者の潜在する全身性機能障害を標的化するか、またはしなくてもよい、実験的プロトコールおよび/または非特異的/一般的抗菌剤の使用を減少させる。このプラットフォームにより、効果的な治療を提示することができる迅速および正確な診断が可能になり、それによって、医師の判断のための重要な要素が提供され、かつ、罹患率および死亡率を低下させる。
【0159】
患者が敗血症を有するか否かを決定するために、病原体の存在を同定することが必要である。患者を最も効果的に処置するために、適切な治療を最も早期に開始することが重要である。敗血症の抗菌剤および他の処置は、1)細菌、ウイルス、真菌、寄生虫、その他;2)グラム陽性、グラム陰性、酵母、またはカビ、3)種、および4)感受性などの、複数レベルでの病原体の分類(薬剤の同定を含む)に依存している。
【0160】
これらの特異性のレベルは、それぞれ、適切な治療を開始する時期を早め、さらに、各々の工程は、治療薬剤の範囲を最も特異的な組にさらに限定することにつながるだろう。確かな感受性データがなければ、ケアのための実験的アプローチは、ケアの別の現場の病院における病原体についての入手可能な情報(いずれかのレベルでの)、ならびに病原体の頻度および感受性の傾向パターンに依存している。従って、病原体と治療の組み合わせを改良するためのデータがより多くなるまで、特定の分類の病原体が原因であると推定されることが多い。具体的には、これらの標的は、ESKAPE分類(耐性病原体のシリーズである)および患者の隔離が必要な高病原性の病原体の組であるSPACE分類に分けられる。
【0161】
複数の試料タイプ(血液、組織、尿など)においてこれらの病原体を同定する他に、症状のある患者、例えば、全身性炎症症候群、またはSIRSを有する患者と敗血症患者を識別する別の方法は、感染を有する患者を同定するために、個別にまたは指標を介して相関するバイオマーカーを使用する。抗菌剤療法が診断法と干渉することにより感染が検出されない場合、その治療の免疫系の制御、あるいは、複数のタイプの検体(サイトカイン、代謝産物、DNA、RNA/遺伝子発現など)であることができるこれらのバイオマーカーが、感染、かつ、従って、敗血症を示すだろう。
【0162】
感染の存在およびあるレベルの種の同定の両方に必要な診断情報を生成するために、1つのパネルは、(i)グラム陽性クラスター(例えば、S.アウレウス、およびCoNS(コアグラーゼ陰性ブドウ球菌));(ii)グラム陽性連鎖/組(例えば、連鎖球菌属、ミチス・ニューモニア属、アガラクチア属、ピオゲネス属、腸球菌属(E.フェシウム、E.フェカリス(E. fecalis));(iii)グラム陰性桿菌(例えば、大腸菌、プロテウス属、クレブシエラ属、セラシア属、アシネトバクター属、ステノトロフォモナス属);(iv)SPACE(例えば、セラシア属、シュードモナス属、アシネトバクター属、シトロバクター属、エンテロバクター属);(v)シュードモナス(例えば、シュードモナス属);(vi)ESKAPE(E.フェシウム、黄色ブドウ球菌、クレブシエラ属、アシネトバクター属、シュードモナス属、エンテロバクター属);および(vii)汎バクテリア(全ての細菌種)であることができる。
【0163】
このパネルは、全範囲をカバーするために真菌アッセイと併用すべきである。各々のケアの現場が、グラム+、グラム-などに対する陽性反応に基づいた実験的に誘導されたアプローチを有すると考えると、その分類は、適切な治療を用いた有効な介入に必要な情報を提示する。各々の分類に同定された種は、各項目のもとで適合するものを提示するが、包括的ではない。さらに、汎バクテリアマーカーは、各々の分類に用いられる診断法によりカバーされない任意の種をカバーするために含まれる。さらに、結果の組み合わせは、また、上述したように含まれるとしても、完全ではないが種の指標となる。分類による相互参照陽性および陰性により、数種類の種を確率的に同定するための消去アプローチのプロセスが可能になる。
【0164】
本発明のシステムおよび方法は、また、対象における心筋梗塞などの心疾患をモニタリングおよび診断するために使用することができる。心臓マーカーまたは心筋酵素は、損傷した心筋細胞から漏出するタンパク質であり、かつ、心外傷を評価するために使用される。心臓マーカーとしては、酵素SGOT、LDH、酵素クレアチンキナーゼMBサブタイプ、および心臓トロポニン(TおよびI)が挙げられるが、これらに限定されない。従って、急性期においては、単一のプラットフォーム診断法における薬物療法および毒性パターンの他に、トロポニンIおよびT、ならびに心虚血の潜在的な他のバイオマーカーをモニタリングすることは、明らかに有利な点を提供するだろう。本発明のシステムおよび方法は、薬物レベル、毒性または有害効果決定因子、および疾患の進行の潜在的バイオマーカーを決定するための、マルチプレックスの非試料調製、単一検出法、自動システムを提供するために使用することができる。例えば、1)それらの表面に修飾された抗トロポニンIまたはトロポニンT特異的抗体を有する磁性粒子、2)それらの表面に毒性バイオマーカー特異的抗体を有する磁性粒子、および3)進行の疾患マーカーを同定するための特異的プローブを有する磁性粒子を含有する、ポータルまたはウェルを有するカートリッジは、所与の心筋梗塞患者の臨床管理値を迅速に決定および提供するために用いることができる。
【0165】
1つまたは複数のマルチウェルカートリッジを、本発明のシステムおよび方法において使用するために構成することができ、かつ、これは、患者からの少なくとも1つの全血試料;検出される検体の各々を検出するための磁性粒子(1つまたは複数の小分子;1つまたは複数の小分子の1つまたは複数の代謝産物;肝機能パネルに記載されるような代謝バイオマーカー);ならびに希釈および洗浄緩衝液を用いて調製することができる。肝機能検査は、患者の血清または血漿試料で行われ、かつ、臨床生化学検査室の血液分析により患者の肝臓の状態に関する重要なデータが提供される。「肝機能パネル」は、1つまたは複数の酵素の低または高レベルによって、肝臓の疾患または損傷を示すことができる血液検査である。例えば、肝機能パネルは、1つまたは複数の下記の検体検出アッセイを含むことができる:1つまたは複数の小分子;1つまたは複数の小分子の1つまたは複数の代謝産物;生物製剤、代謝バイオマーカー;遺伝子型決定、遺伝子発現プロファイリング;およびプロテオーム解析。
【0166】
肝機能パネルは、患者または対象の生物試料中の1つまたは複数の下記のタンパク質の分析を含むことができる:1)アルブミン(肝臓における全タンパク質の主要な構成成分;残りはグロブリンと呼ばれる;アルブミンは、3.9〜5.0g/dLで存在しなければならず、低アルブミン血症は、栄養摂取不良、より低いタンパク質異化、肝硬変またはネフローゼ症候群を呈する);2)アスパラギン酸トランスアミナーゼ(AST)(血清グルタミン酸オキサロ酢酸トランスアミナーゼまたはアスパラギン酸アミノトランスフェラーゼとしても知られており、肝臓実質細胞中の酵素であり、かつ、通常10〜34IU/Lである;レベルの上昇は、急性肝障害の指標となる);3)アラニントランスアミナーゼ(ALT)(血清グルタミン酸ピルビン酸トランスアミナーゼまたはアラニンアミノトランスフェラーゼとしても知られており、肝細胞中に8〜37IU/Lのレベルで存在する酵素であり;レベルの上昇は、ウイルス性肝炎またはパラセタモール過量摂取における急性肝障害の指標となり;ASTとALTの比は、肝障害の原因を識別するために使用される);4)アルカリホスファターゼ(ALP)(肝臓の胆管内皮細胞中に存在する酵素であり;正常な範囲は、44〜147IU/Lであり、かつ、肝臓の浸潤性疾患、肝内胆汁鬱滞または大胆管閉塞症の症例でレベルが上昇する);5)γ-グルタミルトランスペプチターゼ(GGT)(ALPよりも胆汁鬱滞性障害により高感度のマーカーであり、肝臓に非常に特異的であり;標準範囲は、0〜51IU/Lであり;急性および慢性アルコール毒性の両方でGGTが上昇し;ALPの極端な上昇の理由は、GGTにより検出することができる);6)総ビリルビン(TBIL)(総ビリルビンの増加は、黄疸をもたらし、かつ、肝硬変、ウイルス性肝炎、溶血性貧血、または内出血に起因し得る);7)直接ビリルビン;8)プロトロンビン時間(PTT)(肝細胞障害および胆汁流出障害は、血液凝固時間の変化を引き起こし得る);9)α-フェトプロテイン検査(レベルの上昇は、肝炎または癌を示す);10)乳酸脱水素酵素;および11)ミトコンドリア抗体(存在する場合、慢性活動性肝炎、原発性胆汁性肝硬変、または他の自己免疫疾患を示し得る)。上述のタンパク質は、本発明のシステムおよび方法を使用して、肝機能パネルにおいて分析することができる。
【0167】
追加の肝機能パネルは、チトクロームP450酵素の遺伝子型決定を含んでもよい。チトクロームP450の遺伝子型決定試験は、患者または対象が薬物をどの程度代謝できるかを決定するために使用される。チトクロームP450試験の結果は、個体を以下の4つの主なタイプに分けるために使用することができる:
(i)不全代謝者。特定の薬物を健常者よりもゆっくり代謝し、かつ、医薬は、より長い半減期を有し、かつ、副作用を引き起こす可能性を増加させる恐れがある。
(ii)正常代謝者。薬物は平均的な速度で代謝され、従って、処置が有効であり、かつ、同様にこれらの特定の医薬を代謝しない他の個体より少ない副作用を示す指標となる。
(iii)中間代謝者。薬物は平均的な速度で代謝されるか、またはされない可能性がある。薬物代謝に関与する少なくとも1つの遺伝子は、異常に機能していると疑われる。かつ、特定の薬物を異なる形態で代謝する傾向がある。
(iv)超迅速代謝者。薬物は、平均より速く、かつ、より効率的に代謝される。代謝速度が平均より高いため、いくつかの医薬は、健常者より速く不活性化されるか、または排出され、かつ、医薬は、所望の有効性を有さない可能性がある。
【0168】
現在、1つの集団全体でこれらの酵素に関与する遺伝子を遺伝子型決定することにより、これらの酵素における多型の違いが、いくつかの薬物の有効性および毒性を変化させ得ることが示されている。遺伝子型決定は、患者または対象のゲノムに代表的な細胞試料を必要とし、かつ、その分析は、これらの臨床上重要な遺伝子の遺伝的差異を決定することを目的としている。
【0169】
肝機能パネルの一部となり得る可能な肝臓の代謝酵素としては、CYP2C19、CYP2D6、CYP2C9、CYP2C19、CYP1A2、NAT2、DPD、UGT1A1、5HTTが挙げられるが、これらに限定されない。
【0170】
本発明は、a)肝臓の酵素の状態、ならびにb)重要な代謝酵素の遺伝子型を決定し、次に、本発明のシステムおよび方法を使用して最適な治療ケアのための薬物療法計画を設計することができる、患者からの単一の血液試料(例えば、単一の採血、または本明細書に記載の任意の他のタイプの患者試料)のマルチプレックス分析を特徴とする。
【0171】
本発明のシステムおよび方法は、上述のマルチプレックスアッセイにおいて使用するために、患者からの少なくとも1つの全血試料;検出される検体の各々を検出するための磁性粒子;検体抗体;多価結合剤;ならびに/または希釈および洗浄緩衝液を用いて調製された、1つまたは複数のマルチウェルカートリッジを含むことができる。
【0172】
腎毒性
腎臓毒性は、外因性化学物質の使用によってよく起こる副作用であり、かつ、腎毒性の初期段階における早期の迅速な検出は、医学的意思決定を支援し得る。腎臓毒性の検出の初期の報告では、特定の遺伝子のmRNA発現の増加をモニタリングすることができることを示唆している。しかし、他方では、腎臓毒性のマーカーを尿中で検出することができることが示唆された。これらのマーカーとしては、kim-1、リポカリン-2、好中球ゼラチナーゼ関連リポカリン(NGAL)、timp-1、クラステリン、オステオポンチン、ビメンチン、およびヘムオキシゲナーゼ1(HO-1)が挙げられる。さらに広範には、尿中のDNA、重金属イオンまたはBUNレベルの検出は、有用な臨床情報となり得る。従って、本発明の方法および利用法は、また、腎臓毒性のこれらのマーカーを検出する能力を含む。任意で、肝機能パネルは、また、腎毒性の1つまたは2つの顕著なバイオマーカーを含んでもよく、その逆もまた同様である。
【0173】
複合試料からの核酸の増幅および検出
本発明のシステムおよび方法は、複合試料(例えば、診断、法医学、および環境解析のための)から開始して実施される増幅ベースの核酸検出アッセイを含むことができる。
【0174】
試料調製は、また、複合試料(例えば、体液、土壌、または他の複合環境)でよく見られるPCR阻害物質に対する耐性を除去または提供しなければならない。一般的な阻害物質としては、とりわけ、Wilson, Appl. Environ. Microbiol., 63:3741 (1997)において同定された阻害物質が挙げられる。阻害物質は、典型的には、細胞溶解、変性または標的核酸の捕捉の抑制、および/またはポリメラーゼ活性の阻害により作用する。最もよく用いられるポリメラーゼのTaqは、反応物中、0.1%の血液の存在により阻害される。最近、血液および土壌でよく見られる阻害物質(例えば、ヘモグロビンおよび/またはフミン酸)に耐性の突然変異Taqポリメラーゼが開発された(Kermekchiev et al., Nucl. Acid. Res., 37(5): e40, (2009))。製造業者の提言によれば、これらの突然変異は最大で20%の血液においても直接増幅が可能である。突然変異により耐性が得られたにもかかわらず、血液試料の存在下で観察される蛍光消光が原因で正確なリアルタイムPCR検出は困難となっている(Kermekchiev et al., Nucl. Acid. Res., 37:e40 (2009))。
【0175】
DNAまたはcDNAのポリメラーゼ連鎖反応増幅は、実証済みの方法である。しかし、上記で考察したように、ポリメラーゼは、非限定的に、一般的に用いられる抗凝固薬およびヘモグロビンを含む、粗試料中に含有される作用因子により阻害される。最近、血液および土壌において見られる一般的な阻害物質に耐性をもつ突然変異Taqポリメラーゼが開発された。現在利用可能なポリメラーゼ、例えば、HemoKlenTaq(商標)(New England BioLabs, Inc., Ipswich, MA)ならびにOmniTaq(商標)およびOmniKlenTaq(商標)(DNA Polymerase Technology, Inc., St. Louis, MO)は、生成物および反応条件に応じて最大で10%、20%または25%の全血の存在下においてDNAを増幅することが可能な突然変異(例えば、N末端切断型および/または点突然変異)Taqポリメラーゼである(例えば、Kermekchiev et al. Nucl. Acids Res. 31:6139 (2003);およびKermekchiev et al., Nucl. Acid. Res., 37:e40 (2009)を参照;ならびに米国特許第7,462,475号を参照)。また、Phusion(登録商標)Blood Direct PCR Kits(Finnzymes Oy, Espoo, Finland)は、二本鎖DNA結合ドメインを組み込むように改変されたユニークな融合DNAポリメラーゼ酵素を含み、これは、典型的には、TaqまたはPfuなどの従来のポリメラーゼに阻害性である条件下で増幅を可能にし、かつ、特定の反応条件下、最大で約40%の全血の存在下においてDNAの増幅を可能にする(Wang et al., Nuc. Acids Res. 32: 1197 (2004)を参照;ならびに米国特許第5,352,778号および第5,500,363号を参照)。さらに、Kapa Blood PCR Mixes(Kapa Biosystems, Woburn, MA)は、特定の反応条件下、反応容量の最大約20%の全血で直接増幅を可能にする、遺伝子改変DNAポリメラーゼ酵素を提供する。これらの飛躍的な進歩にもかかわらず、蛍光、吸光、および他の光学系の方法では血液の存在によりシグナルが消失されるため、生成したアンプリコンの直接的な光学検出は、現存する方法では不可能である(Kermekchiev et al., Nucl. Acid. Res, 37:e40 (2009)を参照)。
【0176】
本発明者らは、増幅反応において、約5%、約10%、約20%、約25%、約30%、約25%、約40%、および約45%以上の全血を使用して、全血などの複合試料を直接増幅することができること、かつ、標的核酸配列に相補的なオリゴヌクレオチドに結合したコンジュゲート磁性粒子を加えることにより、磁気共鳴(MR)緩和測定を使用して、増幅反応から得られたアンプリコンを直接検出することができることを見出した。あるいは、磁性粒子は、増幅の前に試料に加えることができる。従って、複合汚染試料における核酸増幅、得られたアンプリコンの常磁性粒子へのハイブリダイゼーション、その後の、磁性粒子ベースの検出システムを使用した、ハイブリダイズした磁性粒子コンジュゲートおよび標的アンプリコンの直接検出の使用のための方法が提供される。特定の態様においては、ハイブリダイズした磁性粒子コンジュゲートおよびアンプリコンの直接検出は、MR緩和測定(例えば、T
2、T
1、T
1/T
2混成、T
2*など)を介する。試料中の元の核酸コピー数を定量化するために、動力学的な方法がさらに提供される(例えば、サンプリングおよび所定のサイクル数での核酸検出、内因性の内部コントロール核酸の比較、外因性のスパイクされた相同競合的コントロール核酸の使用)。
【0177】
本明細書において使用される用語「増幅」または「増幅する」またはそれらの派生語は、標的または鋳型核酸をコピーすることによって、選択された核酸配列のコピー数を増加させる、当技術分野において公知の1つまたは複数の方法を意味する。増幅は、指数関数的または線形的であってもよい。標的または鋳型核酸は、DNAまたはRNAのいずれであってもよい。このように増幅された配列は、「増幅領域」または「アンプリコン」を形成する。プライマープローブは、特異的な鋳型核酸配列を標的化するように、当業者により容易に設計することができる。ある好ましい態様においては、得られたアンプリコンは短く、迅速なサイクリングおよびコピーの生成を可能にする。アンプリコンのサイズは、必要に応じて、標的核酸と非標的核酸を識別する能力を与えるために変更することができる。例えば、アンプリコンは、約1000未満のヌクレオチド長であることができる。望ましくは、アンプリコンは、100〜500ヌクレオチド長(例えば、100〜200、150〜250、300〜400、350〜450、または400〜500ヌクレオチド長)である。
【0178】
本明細書で以下に記載する典型的な方法は、ポリメラーゼ連鎖反応(「PCR」)を使用した増幅に関するが、核酸の増幅のための非常に多くの他の方法(例えば、等温法、ローリングサークル法など)が当技術分野において公知である。当業者であれば、これらの他の方法を、PCR法の代わりに、またはPCR法と一緒に使用してもよいことが理解されよう(例えば、Saiki, "Amplification of Genomic DNA" in PCR Protocols, Innis et al., Eds., Academic Press, San Diego, Calif., pp 13-20 (1990); Wharam et al., Nucleic Acid Res. 29:E54 (2001); Hafner et al., Biotechniques, 30:852 (2001)を参照)。本方法と共に使用するために適切なさらなる増幅方法としては、例えば、ポリメラーゼ連鎖反応(PCR)法、逆転写PCR(RT-PCR)、リガーゼ連鎖反応(LCR)、転写ベースの増幅システム(TAS)、転写介在増幅(TMA)、核酸配列ベースの増幅(NASBA)法、鎖置換増幅(SDA)法、ループ介在等温増幅(LAMP)法、核酸の等温およびキメラプライマー開始増幅(ICAN)法、およびスマート増幅システム(SMAP)法が挙げられる。これらの方法、ならびに他の方法は当技術分野においてよく知られており、かつ、提供された増幅核酸の検出方法と併用するために適合させることができる。
【0179】
PCR法は、特異的な鋳型DNA配列の大量のコピーを製造するための技術である。PCRプロセスは、米国特許第4,683,195号;第4,683,202号;および第4,965,188号(各々、参照により本明細書に組み入れられる)に開示されている。鋳型DNAに相補的な1つのプライマーセットを設計して、かつ、そのプライマーによってフランキングされた領域が、多重増幅サイクルを含む反応においてDNAポリメラーゼにより増幅される。各増幅サイクルは、最初の変性、ならびに最大50サイクルのアニーリング、鎖伸長(または拡張)および鎖分離(変性)を含む。反応の各サイクルにおいて、プライマー間のDNA配列がコピーされる。プライマーは、元の鋳型配列だけではなくコピーされたDNAに結合することができ、それによって、総コピー数が時間と共に指数関数的に増加する。PCRは、Whelan, et al, Journal of Clinical Microbiology, 33:556(1995)に従って実施することができる。様々な改変PCR法が利用可能であり、かつ、当技術分野においてよく知られている。様々な改変、例えば、PCRを実施する前に逆転写酵素を使用してRNAからDNAを合成する「RT-PCR」法;ならびに蛍光標識したTaqManプローブ、およびTaqDNAポリメラーゼを使用して、特異的な対立遺伝子のみを増幅、検出する「TaqMan PCR」法が、当業者に公知である。RT-PCRおよびその変法は、例えば、米国特許第5,804,383号;第5,407,800号;第5,322,770号;および第5,310,652号、ならびにそこに記載の参考文献(参照により本明細書に組み入れられる)に記載されており;かつ、TaqMan PCRおよびその方法において使用するための関連試薬は、例えば、米国特許第5,210,015号;第5,876,930号;第5,538,848号;第6,030,787号;および第6,258,569号(参照により本明細書に組み入れられる)に記載されている。
【0180】
LCRは、2つの代わりに4つのプライマーを使用し、かつ、DNAの2つのセグメントを結合または連結するための酵素リガーゼを使用する以外は、PCRと類似のDNA増幅方法である。増幅は、サーマルサイクラー(例えば、Abbott Labs, North Chicago, ILのLCx)中で実施することができる。LCRは、例えば、Moore et al., Journal of Clinical Microbiology 36: 1028 (1998)に従って実施することができる。LCR法および変法は、例えば、欧州特許出願公報第EP0320308号、および米国特許第5,427,930号(各々、参照により本明細書に組み入れられる)に記載されている。
【0181】
TAS法は、鋳型RNAからcDNA合成工程およびRNA転写工程により転写物が得られる、標的RNAを特異的に増幅するための方法である。cDNA合成工程では、DNA依存性RNAポリメラーゼにより認識される配列(すなわち、ポリメラーゼ-結合配列またはPBS)が、2つのドメインオリゴヌクレオチドプライマーを使用して、増幅される標的またはマーカー配列の下流のcDNAコピーに挿入される。第二工程では、RNAポリメラーゼを使用して、cDNA鋳型からRNAの複数のコピーが合成される。TASを使用した増幅は、DNA依存性RNA転写によりcDNA鋳型1コピーごとに10〜1000コピーを得ることができるため、わずか数サイクルでよい。TASは、Kwoh et al., PNAS 86: 1173 (1989)に従って実施することができる。TAS法は、例えば、国際特許出願公報第WO1988/010315号(参照により本明細書に組み入れられる)に記載されている。
【0182】
転写介在増幅(TMA)は、RNAポリメラーゼによるRNA転写および逆転写酵素によるDNA転写を使用して標的核酸からRNAアンプリコンを生成する、転写ベースの等温増幅反応である。TMA法は、サイクルごとにわずか2コピーしか生成しないPCRまたはLCR法とは対照的に、増幅サイクルごとに100〜1000コピーのアンプリコンを生成することができるという点で有利である。TMAは、例えば、米国特許第5,399,491号(参照により本明細書に組み入れられる)に記載されている。NASBAは、RNAまたはDNA鋳型のいずれかから標的RNAを特異的に増幅するための、転写ベースの方法である。NASBAは、単一の混合物中、ある温度で核酸を連続的に増幅するために使用される方法である。鋳型RNAから、標的RNAと同一の配列を有する順方向プライマーおよび3'側で標的RNAに相補的な配列を有する逆方向プライマーおよび5'側でT7 RNAポリメラーゼを認識するプロモーター配列を使用して、DNA依存性RNAポリメラーゼにより、転写物が得られる。転写物は、得られた転写物を鋳型として使用してさらに合成される。この方法は、Heim, et al., Nucleic Acid Res., 26:2250 (1998)に従って実施することができる。NASBA法は、米国特許第5,130,238号(参照により本明細書に組み入れられる)に記載されている。
【0183】
SDA法は、制限酵素により生成した一本鎖ニックにより、5'→3'エキソヌクレアーゼ活性を欠損する鎖置換型DNAポリメラーゼにより合成された鎖で置換されたDNA鎖を次の複製の鋳型として使用して標的DNAが増幅される、等温核酸増幅法である。制限酵素認識部位を含有するプライマーが、鋳型にアニーリングし、次に、増幅プライマーが、5'隣接配列にアニーリングする(ニックを形成する)。増幅は、固定温度で開始される。新しく合成されたDNA鎖は、制限酵素によりニックが入れられ、かつ、ポリメラーゼ増幅が再度開始し、新しく合成された鎖と置き換わる。SDAは、Walker, et al., PNAS, 89:392 (1992)に従って実施することができる。SDA法は、米国特許第5,455,166号および第5,457,027号(各々、参照により組み入れられる)に記載されている。
【0184】
LAMP法は、合成されたDNAの3'末端でループが常に形成され、プライマーがそのループ内にアニーリングし、かつ、標的DNAの特異的な増幅が等温的に実施される、等温増幅法である。LAMPは、Nagamine et al., Clinical Chemistry. 47: 1742 (2001)に従って実施することができる。LAMP法は、米国特許第6,410,278号;第6,974,670号;および第7,175,985号(各々、参照により組み入れられる)に記載されている。
【0185】
ICAN法は、RNA-DNAを含有するキメラプライマーおよび鎖置換活性を有するDNAポリメラーゼおよびRNase Hを使用して、鎖置換反応、鋳型交換反応、およびニック導入反応により、標的DNAの特異的な増幅が等温的に実施される、等温増幅法である。ICANは、Mukai et al., J. Biochem. 142: 273(2007)に従って実施することができる。ICAN法は、米国特許第6,951,722号(参照により本明細書に組み入れられる)に記載されている。
【0186】
SMAP(MITANI)法は、2種類のプライマーを含むプライマーセットおよび鋳型としてDNAまたはRNAを使用して、等温条件下で、標的核酸が連続的に合成される方法である。プライマーセットに含まれる第一のプライマーは、その3'末端領域に、標的核酸配列の3'末端領域の配列(A)とハイブリダイズ可能な配列(Ac')、ならびに、前述した配列(Ac')の5'側に、前述した標的核酸配列の前述した配列(A)の5'側に存在する配列(B)に相補的な配列(Bc)とハイブリダイズ可能な配列(B')を含む。第二のプライマーは、その3'末端領域に、前述した標的核酸配列に相補的な配列の3'末端領域の配列(C)とハイブリダイズ可能な配列(Cc')、ならびに、前述した配列(Cc')の5'側に、同一の鎖上で互いにハイブリダイズ可能な2つの核酸配列を含む折り返し配列(D-Dc')を含む。SMAPは、Mitani et al., Nat. Methods, 4(3): 257 (2007)に従って実施することができる。SMAP法は、米国特許出願公報第2006/0160084号、第2007/0190531号および第2009/0042197号(各々、参照により本明細書に組み入れられる)に記載されている。
【0187】
増幅反応は、特定のタイプの増幅産物、例えば、二本鎖;一本鎖;3'もしくは5'オーバーハングを有する二本鎖;または5'および3'末端に化学リガンドを有する二本鎖の核酸を生成するために設計することができる。増幅したPCR産物は、(i)相補的オリゴヌクレオチドに結合した磁性粒子への増幅産物のハイブリダイゼーション(ここで、核酸が粒子の凝集作用を促進する粒子間テザーとして働くように、増幅産物にハイブリダイズする2つの異なるオリゴヌクレオチドが使用される);(ii)ハイブリダイゼーション介在検出(ここで、増幅産物のDNAは、最初に変性されなければならない);(iii)ハイブリダイゼーション介在検出(ここで、粒子は、増幅産物の5'および3'オーバーハングにハイブリダイズする);(iv)増幅産物の末端の化学または生化学リガンドへの粒子の結合、例えば、ビオチン官能化増幅産物へのストレプトアビジン官能化粒子の結合により検出することができる。
【0188】
本発明のシステムおよび方法は、リアルタイムPCRを実施し、かつ、試料中に存在する標的核酸の量についての定量的情報を提供するために使用することができる(
図25および実施例14を参照)。定量リアルタイムPCRを実施するための方法は、文献に提供されている(例えば:RT-PCRプロトコール Methods in Molecular Biology, Vol. 193. Joe O'Connell, ed. Totowa, NJ: Humana Press, 2002, 378 pp. ISBN 0-89603-875-0を参照)。実施例14は、全血試料のリアルタイムPCR分析のための本発明の方法の使用を記載している。
【0189】
本発明のシステムおよび方法は、捕捉プローブで修飾された磁性ナノ粒子および磁気分離を使用して、全血などの混濁試料でリアルタイムPCRを直接実施するために使用することができる。リアルタイムPCRを使用することにより、PCR反応を開始した後反応チューブを開口することなく、標的核酸の定量化が可能になる。
【0190】
先行研究から、いくつかの場合で、PCR反応中に粒子が存在するとPCRが阻害され得ることが示された。これらの阻害粒子については、粒子が、チューブの側部(または容器内の他の位置)に引き寄せられて、PCR反応の間、溶液の外に維持され得ることが想定される。粒子がPCR産物にハイブリダイズできるように、粒子を懸濁液中に戻すための方法を使用して、粒子を溶液の外から戻すことができる。
【0191】
ある態様においては、本発明は、全血と適合する酵素、例えば、NEB Hemoklentaq、DNAP Omniklentaq、Kapa Biosystems全血酵素、Thermo-Fisher Finnzymes Phusion酵素の使用を特徴とする。
【0192】
本発明は、また、定量的非対称PCRを特徴とする。本発明のリアルタイムPCR法のいずれかにおいて、本方法は、下記の工程を包含することができる:(i)全血を、超常磁性粒子を含有する調製PCRマスターミックスに分割する工程;(ii)最初のPCRサイクルの前に、PCRサイクリングが完了するまでチューブを閉じる工程;(iii)チューブをサーマルサイクラー上に装填する工程;(iv)標準PCR熱サイクルの「n」サイクルを実行する工程;(v)T
2検出を実施する工程(このための正確な時間および工程は、後述の生化学および粒子設計アプローチに応じて変更する);および(vi)初期標的濃度の正確な定量化のための十分なT
2読み取りが行われるまで、工程(iv)および(v)を繰り返す工程。
【0193】
上記方法は、以下を含む、本明細書に記載の凝集または解離の検出の下記項目のいずれかを用いて使用することができる:
【0194】
全血の様々な不純物および成分は、ポリメラーゼおよびプライマーアニーリングに対して阻害性であり得る。これらの阻害物質は、偽陽性および低感度の生成をもたらし得る。偽陽性および低感度の生成を減少させるために、複合試料中の核酸を増幅および検出するとき、全血試料により阻害されない熱安定性ポリメラーゼを利用(例えば、米国特許第7,462,475号を参照)し、かつ、1つまたは複数の内部PCRアッセイコントロールを含むことが望ましい(Rosenstraus et al. J. Clin Microbiol. 36: 191 (1998) and Hoofar et al., J. Clin. Microbiol. 42: 1863 (2004)を参照)。例えば、臨床標本の増幅および検出が確実に成功するようにするために、本アッセイは、標的配列のプライマー結合領域と同一のプライマー結合領域を含有する内部コントロール核酸を含むことができる。実施例において示すように、標的核酸および内部コントロールは、各々が、内部コントロールと標的核酸を識別するユニークなプローブ結合領域を有するように選択した。
【0195】
反応動力学
凝集体を形成するための磁性粒子と特異的検体の反応は、本発明のアッセイにおいて診断シグナルを生成するために使用することができる。多くの場合で、反応混合物を一定期間インキュベーションすることにより凝集体が十分に形成される。本発明の方法、キット、カートリッジ、およびデバイスは、特定の検体を捕捉するために、または磁性粒子の凝集体を生成するために必要な時間を減少させるように構成することができる。磁性粒子の全体の濃度を変更することは、凝集速度を増加させるための簡便で直接的なアプローチであると考えられるが、このアプローチは、以下の理由:(i)高濃度の磁性粒子で生じ得る非特異的凝集、および(ii)低濃度の検体の存在下で凝集に応答する観測可能なシグナル変化(すなわち、緩和シグナルの変化)を生成する必要があること、により困難になる。例えば、機械的に誘導した凝集、音響的に誘導した凝集、超音波によって誘導した凝集、静電的に誘導した凝集、または液体試料の一部において磁性粒子をトラッピングすることにより(例えば、ナノ粒子を磁界に曝露させる、多孔質膜を使用する、磁化性金属発泡体を用いる、または遠心分離)、反応動力学を改善することができる。
【0196】
NMRユニット
本発明の方法を実施するためのシステムは、1つまたは複数のNMRユニットを含むことができる。
図1Aは、適切なRFパルスシーケンスに対する液体試料のシグナル応答を検出するためのNMRシステムの概略
図100である。バイアス磁石102は、試料106を通るバイアス磁界Bb104を構築する。液体試料106がウェル108に注入されるまでは、磁性粒子は、試料ウェル(本明細書において使用される用語「ウェル」は、任意のインデント、槽、容器、または支持体を含む)108に注入する前にカートリッジ中で液体または凍結乾燥状態であるか、または磁性粒子は、液体試料をウェル108に注入する前に試料106に加えることができる。RFコイル110およびRFオシレーター112は、バイアス磁界Bbの線形関数であるラーモア周波数のRF励起をもたらす。1つの態様においては、RFコイル110は、試料ウェル108の周りに巻き付けられている。励起RFは、水プロトン(または非水溶性溶媒中の遊離プロトン)のスピンの非平衡分布を生成する。RF励起がオフになったとき、プロトンは、それらの元の状態に「緩和」され、RFシグナルを放出して、これを、検体の存在および濃度についての情報を抽出するために使用することができる。コイル110は、RFアンテナとして働き、かつ、印加されたRFパルスシーケンス、材料の特性が異なるプローブ、例えば、T
2緩和に基づいてシグナルを検出する。いくつかの技術では目的のシグナルは、スピン-スピン緩和(一般的に、10〜2000ミリ秒)であり、かつ、T
2緩和と呼ばれる。コイル110からのRFシグナルは、増幅114されて、かつ、バイアス磁界Bbにおいて励起に応答するT
2(減衰期間)を決定するために処理される。ウェル108は、ナノリットル〜マイクロリットルの試料を含有する小さなキャピラリーまたは他のチューブであってもよい(検体およびその周りに巻き付けられた適切なサイズのコイルを含む)(
図1Bを参照)。コイルは、典型的には、試料の周りに巻き付けられ、かつ、試料容量に従ってサイズ調整される。例えば(非限定的に)、約10mlの容量を有する試料では、約50mmの長さおよび10〜20mmの直径のソレノイドコイルを使用することができ;約40μlの容量を有する試料では、約6〜7mmの長さおよび3.5〜4mmの直径のソレノイドコイルを使用することができ;かつ、約0.1nlの容量を有する試料では、約20μmの長さおよび約10μmの直径ソレノイドコイルを使用することができる。あるいは、コイルは、
図2A〜2Eのいずれかに示すように、ウェル周りにまたは近接して構成してもよい。NMRシステムは、また、多重化目的の検出のための多重RFコイルを含有してもよい。ある態様においては、RFコイルは、6mm×6mm×2mmの寸法の円錐形を有する。
【0197】
図2A〜2Eは、典型的なマイクロNMRコイル(RFコイル)設計を説明する。
図2Aは、約100μmの長さの巻きソレノイドマイクロコイル200を示すが、しかし、200μm、500μmまたは最大1000μmの長さを有するコイルを想定することもできる。
図2Bは、約1000μmの直径の「平面」コイル202を示す(コイルは、有限厚を有するので、コイルは正確に平面でない)。
図2Cは、約0.02μLの容量を画定するMEMSソレノイドコイル204を示す。
図2Dは、MEMSヘルムホルツコイル206構造の概略を示し、かつ、
図2Eは、鞍型コイル220構造の概略を示す。
【0198】
従来のNMR検出に使用される巻きソレノイドマイクロコイル200は、Seeber et al., "Design and testing of high sensitivity micro-receiver coil apparatus for nuclear magnetic resonance and imaging", Ohio State University, Columbus, Ohioに記載されている。従来のNMR検出に使用される平面マイクロコイル202は、Massin et al., 「High Q factor RF planar microcoil for micro-scale NMR spectroscopy」, Sensors and Actuators A 97-98, 280-288 (2002) に記載されている。ヘルムホルツコイル構造206は、試料を保持するためのウェル208、上部Si層210、下部Si層212、および溶着金属コイル214を特徴とする。従来のNMR検出に使用されるヘルムホルツコイル構造206の例は、Syms et al, 「MEMS Helmholzcoils for Magnetic Resonance Spectroscopy」, Journal of Micromechanics and Micromachining 15 (2005) S1-S9に記載されている。
【0199】
NMRユニットは、磁石(すなわち、超電導磁石、電磁石、または永久磁石)を含む。磁石の設計は、開口しているかまたは部分的に閉じている、U字型またはC字型磁石、3つおよび4つの柱を有する磁石、試料配置のための小さな開口部を有する完全閉鎖型磁石であることができる。トレードオフとは、磁石と力学的安定性(力学的安定性は、高い磁場均一性が望まれる問題とすることができる)の「スイートスポット」への近接性(accessibility)である。例えば、NMRユニットは、円筒形状の、SmCo、NdFeB製の1つまたは複数の永久磁石、または約0.5〜約1.5Tの範囲の磁界を与える他の低磁場永久磁石を含むことができる(すなわち、適切なSmCoおよびNdFeB永久磁石は、Neomax, Osaka, Japanから入手可能である)。例示的および非限定的な目的のために、そのような永久磁石は、双極子/ボックス永久磁石(PM)アセンブリ、またはハルバッハ配列であることができる(Demas et al., Concepts Magn Reson Part A 34A:48 (2009)を参照)。NMRユニットは、非限定的に、約20〜30ppmの磁場均一性および40μLのスイートスポットを中央に有する、約0.5T強度の永久磁石を含むことができる。この磁場均一性により、アッセイ測定に支障を来すことなく(緩和測定および相関測定は、より高い均一場を必要としない)、変動性(例えば、温度ドリフト、経時的力学的安定性-実際には、影響はほとんど見られない)、漂遊磁界における強磁性体のまたは伝導性の物体の許容性運動(これらは影響が少なく、そのため遮蔽はほとんど必要ない)の傾向が少ないシステムにおいて、より安価な磁石を使用することが可能となる(組み立て/シミングの時間微調整が少ない)。
【0200】
コイル構造が異なると異なる性能特性が生じるため、コイル構造は、マイクロNMR-MRS技術の特定の実施に合わせて選択または適合してもよい。例えば、これらのコイル形状の各々は、異なる性能および磁場配列を有する。平面コイル202は、コイルの平面に垂直であるRF磁場を有する。ソレノイドコイル200は、コイルの軸の下側にRF磁場を有し、かつ、ヘルムホルツコイル206は、2つの長方形コイル214と直交するRF磁場を有する。ヘルムホルツ206および鞍型コイル220は横磁場を有し、それによって、ウェルの上下に永久磁石のバイアス磁場を設置することが可能になる。ヘルムホルツ206および鞍型コイル220が、チップ設計に最も効果的であるが、試料およびMRS磁性粒子がマイクロチューブ中に保持されるとき、ソレノイドコイル200が最も効果的であり得る。
【0201】
マイクロNMRデバイスは、コイルを巻き付けて、もしくはプリンティングすることにより、または微小電気機械システム(MEMS)半導体製造技術により組み立ててもよい。例えば、巻き付けられた、またはプリンティングされたコイル/試料ウェルモジュールは、約100μmの直径、または1センチメートル以上の大きさであってもよい。MEMSユニットまたはチップ(ウエハー上のダイスのように半導体プロセスで組み立てられるためそのように呼ばれる)は、例えば、約10μm〜約1000μmの特徴的な寸法のコイルを有していてもよい。巻き付けられた、またはプリンティングされたコイル/試料ウェル構造は、本明細書においてモジュールと呼ばれ、MEMS型のものは、本明細書においてチップと呼ばれる。例えば、液体試料108は、コイルを周囲に巻き付けたチューブ(例えば、キャピラリー、ピペット、またはマイクロチューブ)中に保持するか、またはウェルの周囲のRFコイルを備えたチップ上のウェル中に保持してもよい。あるいは、試料は、RFコイルに近接して、チューブ、キャピラリー、または空洞を流れるように位置付けられる。
【0202】
NMRユニットの基礎構成部品は、MRセンサー、受信機および送信電子機器(前置増幅器、増幅器および保護回路を含むことができる)、データ収集部、パルスプログラマならびにパルス発生器を含む、同調RF回路などの電気部品を磁界内に含む。
【0203】
本明細書に記載の磁性粒子センサーを含有する、RFコイルおよびマイクロウェルを備えたNMRユニットを含有するシステムは、粒子凝集現象のためのモデルの開発によりおよびRF-NMRシグナルチェーンモデルの開発により、目的の特異的検体の検出および/または濃度測定のために設計してもよい。例えば、親和性の効果、関連する寸法、および濃度などを含む、粒子凝集の物理学を特徴付けることにより、目的の検体/磁性粒子システムのための実験を実施することができる。また、粒子凝集または減少および磁性粒子の特性に応じて、NMRシグナル(T
2、T
1、T
2*、T
2rho、T
1rhoおよび/または他のシグナル特性、例えば、T
1/T
2混成シグナル、また、拡散、感受性、振動数が挙げられるが、これらに限定されない)を特徴付けるための実験を実施することができる。所与のシステムにおけるMRS(磁気共鳴スイッチ)現象に特異的なシグナル特性は、検出感度を増大および/または性能を改善するために使用することができる。
【0204】
NMRシステムは、その上にマイクロマシニングされたRFコイルおよび電子機器を備えたチップを含んでもよい。例えば、そのチップは、表面マイクロマシニングされたものであって、構造物が基板の上部に作られているものであってもよい。その構造物が、基板の内部ではなく、上部に作られる場合、基板の特性は、バルクマイクロマシニングにおいて重要ではなく、かつ、バルクマイクロマシニングにおいて使用される高価なシリコンウエハーは、ガラスまたはプラスチックなどのより安価な材料に交換することができる。しかし、代替の態様は、バルクマイクロマシニングされたチップを含んでもよい。表面マイクロマシニングは、一般的に、ウエハーまたは他の基板を用いて開始し、かつ、上部に層を成長させる。これらの層は、フォトリソグラフィーおよび酸が関与するウェットエッチングもしくはイオン化ガスが関与するドライエッチング、またはプラズマにより選択的にエッチングされる。ドライエッチングは、化学エッチングと物理エッチング、または材料のイオン衝撃を組み合わせることができる。表面マイクロマシニングは、必要に応じて多くの層を含めてもよい。
【0205】
いくつかの場合で、安価なRFコイルを、ディスポーザブルカートリッジに組み込んでもよく、かつ、ディスポーザブル部品であってもよい。該コイルは、固定されたNMR配置上の回路と電気接触することが可能なように置くことができるか、または結合を回路に誘導的に行うことができる。
【0206】
緩和測定がT
2である場合、精度および再現性(正確さ)は、校正に関連する試料の温度安定性、アッセイの安定性、シグナル対ノイズ比(S/N)、再収束のためのパルスシーケンス(例えば、CPMG、BIRD、Tangoなど)、ならびにシグナル処理要素、例えば、シグナル調整(例えば、エコーシグナルの増幅、整流、および/またはデジタル化)、時間/周波数ドメインの変換、および使用されるシグナル処理アルゴリズムの関数である。シグナル対ノイズ比は、磁気バイアス磁場(Bb)、試料容量、充填率、コイル形状、コイルのQ係数、電子機器の帯域、増幅器ノイズ、および温度の関数である。
【0207】
T
2測定の必要な正確さを理解するために、当面のアッセイの応答曲線を調べ、かつ、検体濃度を決定する所望の正確さといくつかの場合で測定可能な、例えば、T
2の正確さを関連付けるべきである。次に、適切なエラーバッジェトを形成することができる。
【0208】
例えば、トロポニンでは、0.02ng/mLの検出限界で10倍向上させるために(感度が10倍増加)、約100ミリ秒の従来の(非MRS測定)T
2から約5.6ミリ秒少ないΔT
2を判別する必要がある。この違いを検出するために、最小シグナル対ノイズ比(S/N)は、約20である必要があろう。
【0209】
本発明のシステムおよび方法において使用するためのNMRユニットは、米国特許第7,564,245号(参照により本明細書に組み入れられる)に記載されるものであることができる。
【0210】
本発明のNMRユニットは、国際公開公報第WO09/061481号(参照により本明細書に組み入れられる)に記載されるような、持ち運び型の磁気共鳴緩和計(relaxometer)において使用される小さいプローブヘッドを含むことができる。
【0211】
本発明のシステムは、対象に埋め込み可能または部分的に埋め込み可能である。例えば、本発明のNMRユニットは、国際公開公報第WO09/085214号および第WO08/057578号(各々、参照により本明細書に組み入れられる)に記載されるような、埋め込み可能な高周波コイル、および場合により、埋め込み可能な磁石を含むことができる。
【0212】
本発明のシステムは、国際公開公報第WO09/045354号(参照により本明細書に組み入れられる)に記載のように、液体試料の核磁気共鳴パラメーターに寄与する試料容器に関連するNMRシグナルを、部分的または完全に低下させるための高分子試料容器を含むことができる。
【0213】
本発明のシステムは、所定数の測定を可能にするように構成されている(すなわち、限定数の使用のために設計される)MR読み取り装置と共に使用するためのディスポーザブル試料ホルダーを含むことができる。ディスポーザブル試料ホルダーは、RF検出コイルの要素を含まない、一部含む、または全て含むことができる(すなわち、それによって、MR読み取り装置は検出コイルを有さない)。例えば、ディスポーザブル試料ホルダーは、MR読み取り装置内に存在する「ピックアップ」コイルに誘導結合される、RF検出のための「リード」コイルを含むことができる。試料容器がMR読み取り装置の内部にあるとき、ピックアップコイルに近接しており、かつ、これを使用してNMRシグナルを測定することができる。あるいは、ディスポーザブル試料ホルダーは、試料容器の挿入時にMR読み取り装置に電気的に接続される、RF検出のためのRFコイルを含む。従って、試料容器がMR読み取り装置に挿入されたとき、適切な電気接続が構築されて検出が可能になる。各ディスポーザブル試料ホルダーの可能な使用回数は、ディスポーザブル試料ホルダー内の電気回路、またはディスポーザブル試料ホルダーとMR読み取り装置の間に含まれる、ヒューザブルリンクを無効にすることにより制御することができる。ディスポーザブル試料ホルダーを試料中のNMR緩和を検出するために使用した後、ヒューザブルリンクに過電流が印加されるようにその装置を構成して、そのリンクを遮断し、コイルを作動不能にすることができる。任意に、全てが遮断され、かつ、ディスポーザブル試料ホルダーが作動不能になるまで、並列接続で作動し、各々システム上のピックアップに接続しており、かつ、使用ごとに各々個別に遮断される、複数のヒューザブルリンクを使用することができる。
【0214】
カートリッジユニット
本発明の方法を実施するためのシステムは、システム上に全てのアッセイ試薬および消耗品を置くための簡便な方法を提供するために、1つまたは複数のカートリッジユニットを含むことができる。例えば、本システムは、例えば、カスタマイズした磁性粒子をその中に含有するマイクロウェルのアレイを含有する交換可能なカートリッジユニットを介して、特定の機能を実施するためにカスタマイズしてもよく、または2つ以上の機能を実施するために適合させてもよい。本システムは、磁性粒子を事前に装填したウェルのアレイを含有し、かつ、特定の検体の検出および/または濃度測定のために設計された、取り換え可能および/または交換可能なカートリッジを含むことができる。あるいは、本システムは、それぞれ異なる検体の検出および/または濃度測定のために設計されているか、または所与のアッセイのための試薬用および検出用の別個のカートリッジモジュールで構成されている、異なるカートリッジと共に使用してもよい。カートリッジは、システム内の他のユニット(すなわち、磁性促進凝集作用ユニット、またはNMRユニット)に輸送される、液体試料の調製用の収容部に挿入およびそこから排出しやすいようにサイズ調整してもよい。カートリッジユニット自体は、操作ステーションならびにMR読み取り装置と直接的に連動する可能性がある。カートリッジユニットは、試薬モジュールとは独立して滅菌することができる入口モジュールを有する、モジュールカートリッジであることができる。
【0215】
血液試料などの生物試料を取り扱うために、二次汚染および偽陽性の試験結果を防止するための入口モジュールの滅菌の必要性、ならびに照射のような標準的な最終滅菌技術を使用して容易に滅菌することができない試薬をパッケージング中に含有させる必要性を含む、カートリッジ設計のための非常に多くの競合する要件がある。試料の分割のための入口モジュールは、蓋を外したバキュテナーチューブと連動するように、および、例えば、カンジダアッセイ(
図7D〜7Fを参照)を実施するために使用することができる2つの試料容量に分割するために設計することができる。バキュテナーは、部分的にまたは完全に充填することが可能である。入口モジュールは、2つの硬質プラスチック部分を有するが、これは、一緒に超音波溶接され、かつ、フォイルシールされてチャンネルネットワークを形成しており、第一のウェルがオーバーフローしたら第二の試料ウェルへ流れるように流路が形成されている。軟質のバキュテナーシール部分は、バキュテナーとのシールのために使用され、かつ、試料を流すためのポートおよび排出ポートを含む。流動抵抗を克服するために、バキュテナーに装填し反転させたら、ある程度の静水圧が必要である。毎回、試料を試料ウェルから除去し、そのウェルはバキュテナーからの流れにより再び満たされる。
【0216】
モジュールカートリッジは、特定のアッセイの間、非限定的に、PCR産物を複数の検出アリコートに分配することを含む、二次汚染制御のための簡単な手段を提供することができる。また、モジュールカートリッジは、自動流体分注に適合することができ、かつ、試薬を非常に少量で長期間(1年より長く)保持する方法を提供する。最後に、これらの試薬を事前に分注することで、濃度および容量の精度が製造プロセスにより設定可能となり、かつ、正確なピペッティングがそれほど必要とされないため、より簡便なポイントオブケア使用の装置が提供される。
【0217】
本発明のモジュールカートリッジは、別々にパッケージングおよび必要であれば滅菌することができるモジュールに分けられたカートリッジである。これらは、また、例えば、試薬モジュールを冷却する必要があるが、検出モジュールはその必要がない場合、別々に取り扱いおよび保存することができる。
図5は、互いに留められた入口モジュール、試薬モジュールおよび検出モジュールを備えた代表的なカートリッジを示す。この態様においては、入口モジュールは、滅菌パッケージ中に別々にパッケージングされ、かつ、試薬および検出モジュールは、事前に組み立てられ、互いにパッケージングされる。
【0218】
保存の間、試薬モジュールは冷蔵庫内で保存することができ、入口モジュールは乾式貯蔵で保存することができる。これは、多くのアッセイを保存するために、冷蔵庫または冷凍庫スペースが非常に少なくてよいという追加の利点を提供する。使用の際に、作業者は、検出モジュールを回収し、かつ、アッセイによって必要であれば、皮膚微生物叢の混入を防止するために潜在的に無菌技術を使用してパッケージを開封する。次に、バキュテナーチューブの蓋を外し、
図6Aに示すように、反転した入口モジュールをチューブ上に置く。このモジュールは、
図6Bおよび6Cに示すように単一の金型(single draw tooling)を使用して容易に成形できるように設計されており、かつ、カートリッジの上部および底部は、異物の混入を防止し、かつ、またチャンネルを閉じるためにアルミホイルでシールされる。入口モジュールを使用してチューブを再度シールしたら、そのアセンブリの表を上にして、カートリッジの残りの部分上に留める。入口部は、2〜6mLの血液を含有する試料チューブを使用することが可能なオーバーフロー(overflow)するウェルを含み、かつ、またシステムの自動化と連動する一定の深さを提供する。オーバーフローを用いてこれを達成し、ここで、サンプリングウェルからオーバーフローした血液が単純にカートリッジ本体に入り、異物の混入を防止する。
【0219】
あるいは、モジュールカートリッジは、マルチプレックスアッセイ用に設計される。マルチプレックスアッセイの課題は、1つのカートリッジに適合しないアッセイ要件(すなわち、異なるインキュベーション時間および/または温度)を有する、複数のアッセイを組み合わせることである。カートリッジは、2つの主な構成部品:(i)完全アッセイパネルに必要な個々の試薬の全てを含有する試薬モジュール、および(ii)検出モジュールを特徴とすることができる。検出モジュールは、インキュベーションを遂行するカートリッジの部分のみを含有し、かつ、単一アッセイまたは数種類のアッセイを必要に応じて実行することができる。検出モジュールは、単一アッセイ用の2つの検出チャンバーを含むことができ、第一の検出チャンバーはコントロールとして、かつ、第二の検出チャンバーは試料用である。試薬および追加の検出モジュールを含めることにより追加のアッセイを加えることができるため、このカートリッジフォーマットは拡張可能である。
【0220】
使用者がカートリッジの全体または一部を装置に挿入したとき、モジュールの操作が開始される。その装置は、アッセイ作動を実施して、アッセイを別々の検出チャンバーに分割する。次に、これらの個々の検出チャンバーは、試薬ストリップから、かつ、互いに離され、かつ、システムを別々に進行させる。試薬モジュールは分離され、かつ、廃棄されるので、最小限の試料ユニットが装置内を通過し、それによって、内部装置スペースを節約する。各アッセイをそれ独自のユニットに分けることにより、各マルチプレックスアッセイが他から物理的に除去され、かつ、各試料が個別に操作されるため、異なるインキュベーション時間および温度が可能となる。
【0221】
本発明のカートリッジユニットは、液体懸濁液または使用前に再構成される乾燥磁性粒子である、磁性粒子の1つまたは複数の集団を含むことができる。例えば、本発明のカートリッジユニットは、単一の液体試料をアッセイするために、1×10
6〜1×10
13個の磁性粒子(例えば、1×10
6〜1×10
8、1×10
7〜1×10
9、1×10
8〜1×10
10、1×10
9〜1×10
11、1×10
10〜1×10
12、1×10
11〜1×10
13、または1×10
7〜5×10
8個の磁性粒子)を含む区画を含むことができる。
【0222】
システム
本発明の方法を実施するためのシステムは、1つまたは複数のNMRユニット、カートリッジユニット、および撹拌ユニット(例えば、非特異的磁性粒子の相互作用を分解および磁性粒子を液体試料中に再分配するために、または、例えば、1つまたは複数の液体試料を混合するための超音波処理、ボルテックス、振とう、もしくは超音波装置でアッセイ試薬を完全に混合するために単純に試料チューブを撹拌する)を含むことができる。そのようなシステムは、本発明の自動アッセイを実施するための他の構成部品、例えば、オリゴヌクレオチドの検出のためのPCRユニット;遠心分離機、液体試料をシステム内のユニットからユニットに送達するためのロボットアーム;1つまたは複数のインキュベーションユニット;アッセイ試薬と生物試料を組み合わせて、液体試料を形成するための流体輸送ユニット(すなわち、ピペッティングデバイス);1つまたは複数のプリセットプロトコールに従って、データを保存、データを処理、および様々なユニットの起動および起動解除を制御するためのプログラマブルプロセッサを備えたコンピューター;ならびに充填済みカートリッジをシステムに送達するためのカートリッジ挿入システム、場合により、カートリッジと併用する試薬およびプロトコールを識別するためのコンピューターの使用説明書をさらに含んでもよい。
【0223】
本発明のシステムは、対象からの体液中に存在する検体のハイスループットおよびリアルタイム検出のための有効な手段を提供することができる。本検出方法は、非限定的に、特定の生物学的プロセス、生理的条件、障害または障害の状態と関連する検体の同定および/または定量化を含む、広範囲の状況において使用してもよい。そのため、本システムは、例えば、薬物スクリーニング、疾患診断、系統発生的分類、親および法医学同定、疾患の発症および再発、処置に対する個別応答対集団ベース、および治療のモニタリングにおいて広範な有用性を有する。対象のデバイスおよびシステムは、また、治療薬の開発を前臨床段階および臨床段階に進めるため、患者コンプライアンスを改善するため、処方薬と関連するADRをモニタリングするため、個別化医療を開発するため、中央検査室からホームへまたは処方箋に基づいて血液検査を外注するため、ならびに規制認可後の治療薬剤をモニタリングするために特に有用である。本デバイスおよびシステムは、オーダーメイド医療のためのフレキシブルなシステムを提供することができる。本発明のシステムは、本明細書に記載の広範囲のアッセイを実施するために、システムのプログラマブルプロセッサのプロトコールまたは使用説明書に沿って変更または入れ替えることができる。本発明のシステムは、デスクトップまたはより小さいサイズの自動装置に含まれる実験室環境で多くの利点を提供する。
【0224】
本発明のシステムは、広範な濃度範囲にわたって、同じ液体試料中に存在する検体を同時にアッセイするために使用することができ、かつ、単一の対象において所定の期間にわたって、検体濃度および/またはPDもしくはPKマーカーの濃度の変化率をモニタリングするために使用することができ、または薬物もしくはそれらの代謝産物の濃度であるかにかかわらず、その濃度で、またはPDもしくはPKのマーカーの傾向分析を実施するために使用することができる。例えば、グルコースが目的の検体であった場合、所与の時間における試料中のグルコース濃度ならびに所与の期間におけるグルコース濃度の変化率は、例えば、低血糖イベントを予測および回避するうえで非常に有用であり得る。従って、対象の流体デバイスおよびシステムの使用により生成したデータは、対象中の検体の濃度で傾向分析を実施するために利用することができる。例えば、患者は、様々な検体を所定の時間で検出するために使用される複数のカートリッジユニットを与えられてもよい。対象は、例えば、異なるカートリッジユニットを週の異なる日に使用してもよい。いくつかの態様においては、システムのソフトウェアは、システムコンピューターが、アッセイを実行および/またはデータを処理するための特定のプロトコールを実行するように指示する、カートリッジ上の識別子を認識するように設計される。システムのプロトコールは、USBドライブまたはイーサネット(登録商標)接続などの外部インターフェースを介して更新することができ、またはいくつかの態様においては、プロトコール全体は、カートリッジに添付したバーコードで記録することができる。プロトコールは、使用者に様々な入力(すなわち、試料の希釈、液体試料に対して供給される試薬の量の変化、インキュベーション時間または磁性促進凝集作用時間の変更、またはNMR緩和収集パラメーターの変更のための)を指示することにより必要に応じて最適化することができる。マルチプレックスアレイが標的核酸を検出するために構成される場合、本アッセイは異なるアンプリコンを生成し、次に、異なる反応物を連続的に検出するためのマルチプレックスPCRを含むことができる。マルチプレックスアッセイは、場合により、必要なアッセイ数を減らすために、標的が二分探索により設定される論理アレイを含む(例えば、グラム陽性または陰性は、1つの群またはその他の群でのみ実施される異なる種に基づく試験を導く)。
【0225】
本発明のシステムは、検出される検体が体液試料由来であるかにかかわらず、様々なアッセイを実行することができる。使用されるカートリッジユニットの独自性に依存するプロトコールを、システムコンピューター上に保存することができる。いくつかの態様においては、カートリッジユニットは、システムコンピューターにより検出または読み取られる識別子(ID)、または分析情報(例えば、校正曲線、プロトコール、以前の検体濃度またはレベル)を用いて追跡またはアクセスするために必要なアッセイ特異的または患者もしくは対象特異的情報を供給するカード上のバーコード(1Dまたは2D)を有する。所望であれば、カートリッジユニット識別子を、システムコンピューター上に保存されたプロトコールを選択するために、またはカートリッジユニット中の様々なアッセイ試薬の位置を同定するために使用する。システムで実行されるプロトコールは、非限定的に、実行される特定のアッセイおよび実施される検出方法を含む、プロトコールを実施するためのシステムのコントローラーの使用説明書を含んでもよい。アッセイがシステムにより実施されると、生物試料中の検体を示すデータが生成され、かつ、情報伝達アセンブリに伝えられ、そこで、非限定的に、試料中の検体濃度の計算を含む、処理のために外部デバイスに伝達されるか、またはシステムコンピューターにより処理されて、その結果を表示ディスプレイ上に提示することができる。
【0226】
例えば、識別子は、カートリッジユニットの挿入時に、バーコード読み取り機(または別の種類の検出器)により読み取ることができる、黒線と白線が連続したバーコード識別子であってもよい。カートリッジユニット上に位置し、かつ、システムコンピューターにより検出または読み取ることができる他の識別子、例えば、連続した英数字、色、隆起した突起、RFID、または任意の他の識別子を使用することもできる。検出器は、また、特定のカートリッジユニットの独自性を決定するための、光を反射し、かつ、システムコンピューターにより測定される識別子と相互作用することができる発光するLEDであってもよい。いくつかの態様においては、システムは、情報をシステムコンピューターに伝達するための、カートリッジユニットまたは検出器を備えた保存または記録デバイスを含む。
【0227】
従って、本発明のシステムは、異なるアッセイを実施するための操作プログラム、および以下のためにコード化されたカートリッジを含むことができる:(i)事前にプログラムされたアッセイのいずれが用いられたかを操作プログラムへ報告する;(ii)カートリッジの構造を操作プログラムへ報告する;(iii)操作システムにアッセイを実施するための工程の順序を伝える;(iv)事前にプログラムされたルーチンのいずれが用いられたかをシステムに伝える;(v)使用者による特定のアッセイ変数の入力を指示する;(vi)患者番号を記録する(患者番号は、また、血液試料を保持するバキュテナー上に含むことができる);(vii)特定のカートリッジ情報を記録する(すなわち、ロット番号、校正データ、カートリッジ上のアッセイ、分析データ範囲、有効期限、ストレージ要求、許容可能な試料の詳細);または(viii)操作プログラムアッセイのアップグレードまたは改定を報告する(すなわち、アッセイのより新しいバージョンが、より大きく、より高価なシステムのためではなく、カートリッジのアップグレードのためにのみ行われる)。
【0228】
本発明のシステムは、ロボットアームに接続するように構成された1つまたは複数の流体輸送ユニットを含むことができる。流体輸送ユニットは、エアーディスプレイスメントピペット、リキッドバックド(liquid backed)ピペット、またはシリンジピペットなどのピペットであることができる。例えば、流体輸送ユニットは、システムコンピューターのプログラマブルプロセッサと連通しているモーターをさらに含むことができ、かつ、そのモーターは、プログラマブルプロセッサからのプロトコールに基づいて複数のヘッドを移動させることができる。従って、本システムのプログラマブルプロセッサは、使用説明書またはコマンドを含むことができ、かつ、使用説明書に従って流体輸送ユニットを操作して、ピストンを引く(液体を吸引するための)または押し出す(液体を放出するための)ことにより、液体試料を密封空気スペースに輸送することができる。例えば、プログラマブルプロセッサにより、移動した空気の容量および移動の速さの両方を正確に制御することができる。試料(または試薬)と希釈剤(または他の試薬)の混合は、混合する成分を共通のチューブ中に吸引し、次に、混ぜ合わせた液体容量の大部分をチップ内で上下に吸引を繰り返すことにより達成することができる。チューブ中への乾燥した試薬の溶解も、同様にして行うことができる。
【0229】
システムは、液体試料を加熱するための、および/またはアッセイ温度を制御するための、1つまたは複数のインキュベーションユニットを含むことができる。反応を促進し、かつ、インキュベーション工程に必要な時間を短縮するために、加熱をアッセイ反応のインキュベーション工程において使用することができる。システムは、液体試料を所定の温度で所定の時間受け入れるように構成された、加熱ブロックを含むことができる。加熱ブロックは、複数の試料を受け入れるように構成することができる。
【0230】
システム温度は、注意深く調節することができる。例えば、システムは、温度制御された空気を撹拌することにより所定の温度(すなわち、37℃)を維持する、ケーシングを含む。各ユニットからの廃熱は、空気の伝導および対流によって単純に包囲して受動的に分散させることができる量を超えるであろう。廃熱を行わないために、本システムは、絶縁床により分離された2つの区画を含むことができる。上部の区画は、液体試料の操作および測定に必要な部品部分を含み、下部の区画は、個々のユニットの熱生成要素(例えば、遠心分離のためのモーター、撹拌ユニットのためのモーター、個別のユニットの各々のための電子機器、およびインキュベーションユニットのための加熱ブロック)を含む。次に、下部の床に通気口を付け、冷却用の空気を送ってシステムから熱を放出させる。
【0231】
MRユニットには、より厳密な温度制御が必要であり(例えば、±0.1℃)、そのため、場合により、所定の温度で加熱された空気が排出される個別のケーシングを含んでもよい。ケーシングは、液体試料がそこを通って挿入および除去され、かつ、加熱された空気をそこから逃がすことができる、開口部を含むことができる。
【0232】
下記の実施例は、当業者に本明細書に記載のデバイス、システムおよび方法をどのように実施、作製、および評価すればよいかの完全な開示および説明を提供するために提示されるが、これは、純粋に本発明を例示することを意図し、本発明者等が自身の発明として見なす範囲を限定することを意図しないものとする。
【実施例】
【0233】
実施例1. コーティング粒子の調製
簡単に述べると、実質的に単分散のカルボキシル化磁性粒子1mgを、10mMのMESの活性化緩衝液100μL中で洗浄して、再懸濁した。10mg/mLの10kDaアミノデキストラン(Invitrogen)30μLを活性化緩衝液に加え、ローター上で室温で5分間インキュベートした。カルボキシル基をデキストラン上のアミンへカップリングするために、10mg/mLの1-エチル-3-[3-ジメチルアミノプロピル]カルボジイミド塩酸塩(EDC)30μLを加え、ローター上で室温にて2時間インキュベートした。磁気分離を使用し、PBS 1mL中で遊離デキストランから粒子を洗い出し(3×)、次に、PBS 1mL中に再懸濁した。スルホ-NHS-ビオチン(Invitrogen)の100mM溶液100μLを使用して、デキストラン表面のアミノ基をビオチンで修飾した。30分間インキュベートした後、活性化緩衝液1mL中で粒子を洗浄した(3×)。次に、タンパク質ブロッキング剤の0.5mg/mLウシ血清アルブミン(BSA)(Sigma)100μLおよび10mg/mLのEDC 30μLを投入し、一晩インキュベートした(Sigma)。調製した粒子をPBS1mL中で洗浄し(3×)、所望の濃度に再懸濁した。
【0234】
このプロトコールで合成した調製粒子は、試料が緩衝液または20%溶解血液を含むか否かにかかわらず、検体の検出のためのT
2アッセイと同様の結果を示した(
図14を参照)。前ビオチン化アミノデキストランを一工程で粒子に直接コンジュゲートした調製法の変法は、また、血液または緩衝液試料の両方におけるT
2アッセイと同様の性能であった。
【0235】
実施例2. タンパク質ブロッキング剤を用いておよび用いないで調製した粒子の評価
簡単に述べると、実施例1に記載の方法に従って調製したビオチン修飾アミノデキストラン磁性粒子を、PBSおよび20%溶解血液試料中、抗ビオチン滴定T
2アッセイでアッセイした。
【0236】
アッセイは、下記の手順を用いて実施した。PBSまたは20%溶解血液試料のいずれかのマトリクス50μL、種々の濃度の抗ビオチン抗体50μL、および1.0μg/mLの二次抗体50μLを5mmのNMRチューブに加えた。次に、0.02mMのFe粒子150μLを各チューブに加えた(すなわち、1チューブあたり2.7×10
8個の粒子)。次に、試料を4秒間ボルテックスし、37℃の加熱ブロック中で2分間インキュベートした。次に、各試料を4秒間再度ボルテックスし、37℃の加熱ブロック中でさらに1分間インキュベートした。インキュベートの後、各試料をBruker Minispecに入れ磁界下で10分間置いた。10分後、試料を磁石から引き離し、4秒間ボルテックスして、37℃の加熱ブロック中で5分間インキュベートした。5分間後、各試料を再度ボルテックスし、37℃の加熱ブロック中、さらに1分間インキュベートした。Bruker Minispecプログラムと下記のパラメーターを使用して、T
2値を取得した:スキャン:1;ゲイン:75;タウ:0.25;エコートレイン:3500;総エコートレイン:4500;およびダミーエコー:2。ΔT
2値:T
2-(T
2)
0を計算し、結果を
図14に表す。
【0237】
タンパク質ブロッキング剤のAXN4を用いて合成した粒子は、血液および緩衝液において同程度の性能を与えた(
図14)。
図15に表すグラフは、タンパク質ブロッキング工程を用いて調製した粒子(白丸)と用いないで調製した粒子(黒丸)の比較である。従って、本発明者らは、血液マトリクスにおいて同様の官能性を達成するために、タンパク質ブロッキング剤が必要であり得ることを見出した。
【0238】
追加のタンパク質ブロッキング剤(非限定的に魚皮ゼラチンを含む)も成功した。タンパク質ブロッキング剤としてBSAを使用する代わりに、魚皮ゼラチン(FSG)を代用する以外は、上述の方法に従って粒子を調製した。
図16に表すグラフは、抗体滴定を使用してBSAとFSGでブロッキングした粒子を比較にした、T
2アッセイ(上述したように)の結果を示す。データから、2つのタンパク質ブロッキング法にほとんど違いがないことが示される(
図16を参照)。しかし、BSAは、より信頼性のあるブロッキング剤であることが証明された。
【0239】
実施例3. デキストランコーティングの量の決定
粒子上のデキストランコーティング密度を増加させる試行から、血液中で調製した粒子の官能性が減少することが見出された。10×過剰のデキストランを使用して、緩衝液/血液でほとんど同程度の性能が実証された上記実施例1に記載の粒子の調製は、デキストランの量を決定するための空間充填モデルに基づいおり、これをコーティング実験に含めた。より高い忠実性を有する粒子を官能化する試行において、コーティング実験で、デキストランコーティングを1000〜10000×過剰のデキストランに増加させると、より厚いデキストランコーティングを有する粒子が生成し、血液中での応答が緩衝液と比較して減少した。本発明者らは、適度な密度のデキストランとタンパク質ブロッキング剤が、T
2アッセイにおいて血液試料の存在下でよく機能する粒子コーティングを生成するのに望ましいと結論付ける(
図17Aおよび17Bを参照)。
【0240】
実施例4. 全血試料中の小分子検体の検出
緩衝液/検体調製:1×PBS中の0.1% BSA、0.1% Tween(登録商標):10重量% Tween(登録商標)20溶液を調製した。簡単に述べると、1×PBS中のTween(登録商標)を調製した。10% Tween(登録商標)10mLを1×PBS 490mLに加えることにより、0.2% Tween(登録商標)溶液500mLを調製した。1×PBS溶液中の2重量% BSA溶液を調製した。PBS中の2% BSA 50mLを1×PBS 450mLに加えることにより、BSA溶液の0.2%溶液を調製した。希釈を組み合わせて、1Lの最終容量および1×PBS中の0.1% BSA、0.1% Tween(登録商標)の最終緩衝液濃度を作製した。
【0241】
PEG-FITC-ビオチン検体:0.5mMの溶液100μLを1mMのトリスHClから調製した。PEG-FITC-ビオチン40μLを0.5mMのトリスHCl 40μLと混合し、室温で15分間インキュベートした。15分後、0.5mMのトリスHCl中のPEG-FITC-ビオチン70μLを0.1% Tween(登録商標)630μLに加え、100μMのストック溶液を作製した。ボルテックスすることによりストック溶液を激しく混合した。100μM溶液200μLを0.1% Tween(登録商標)900μLに加え、20,000nMの検体を作製した。10倍希釈を繰り返して、0.02nMに調製した。
【0242】
手順:
適切な検体25μLおよび1:5溶解血液マトリクス50μLをピペッティングにより5mmのNMRチューブに直接移した。試料を4秒間ボルテックスした。一次抗ビオチン抗体(0.18μg/mL、0.1% Tween20、0.1% BSA、1×PBS中で希釈)25μLを加え、続いて、37℃で15分間インキュベートした。15分後、3.0μg/mLの二次抗マウス抗体(0.1% Tween、0.1% BSA、1×PBS中で希釈)50μLおよび0.02mMのFe粒子150μL(1チューブあたり2.7×10
8個の粒子)をNMRチューブに加えた。次に、試料を4秒間ボルテックスし、37℃で5分間インキュベートした。試料をBruker Minispecに入れ、磁界下で10分間置いた。10分後、試料を磁石から引き離し、さらに5分間インキュベートした。試料を再度4秒間ボルテックスし、さらに1分間インキュベートした。Bruker Minispecプログラムと下記のパラメーターを使用して、T
2値を取得した:スキャン:1;ゲイン:75;タウ:0.25;エコートレイン:3500;総エコートレイン:4500;およびダミーエコー:2。
【0243】
実施例5:抗体修飾粒子の合成
実施例1に記載のように調製したアミノデキストランコーティング磁性粒子は、SMCC-SATA(SMCC=4-[N-マレイミドメチル]シクロヘキサン-1-カルボン酸スクシンイミジル;SATA=N-スクシンイミジル-S-アセチルチオアセテート)連結を介して、抗体を用いてさらに官能化することができる。上述したようなEDC化学を介して、カルボキシル化磁性粒子を最初に10kDaアミノデキストランにコンジュゲートする。デキストランコーティング粒子を過剰のスルホ-SMCCでさらに修飾して、マレイミド官能基を得る。抗体上のアミンに主に結合するSATAリンカーで抗体を修飾する。SATA連結は、粒子の架橋または抗体の親和性の減少をもたらし得る、抗体の過剰な官能化を最小限にするように制御される。脱アセチル化の後、SATAリンカーを、マレイミド(malemide)官能化粒子に直接連結してチオエーテル結合を形成するために使用することができる、チオール官能基に曝露させる。各粒子にコンジュゲートした抗体の数は、BCAタンパク質アッセイ(Pierce)を使用して測定することができる。SPDP(3-[2-ピリジルジチオ]-プロピオン酸N-スクシンイミジル)などのSATAと同様の官能性を与えるリンカーの使用も成功している。
【0244】
抗体コーティング磁性粒子は、また、上述の化学を使用して、ベースのカルボキシル化粒子に直接共有結合させて調製することができる。場合によって、デキストランなどの追加のコーティング、またはブロッキング剤を粒子表面に加える必要があり得る。PEGまたはBSAなどの同様の化学をアミノデキストランへの代替コーティングで使用することができる。
【0245】
実施例6. クレアチニンアッセイ
簡単に述べると、本アッセイは下記を含む:磁性粒子の表面に連結するクレアチニンで修飾された磁性粒子の存在下で、標的試料をインキュベートする。クレアチニン修飾磁性粒子はクレアチニン抗体の存在下で凝集するように設計される。クレアチニン修飾磁性粒子およびクレアチニン抗体の各々を、クレアチニン抗体に対して磁性粒子と競合するクレアチニンを含有する液体試料に加える。従って、クレアチニンの抗体への結合は、磁性粒子の凝集作用を妨害するため、低レベルのクレアチニンは凝集体の形成を特徴付ける。これらの凝集体は、磁界に曝露されたとき試料のスピン-スピン緩和率を変化させ、かつ、T
2緩和時間の変化(周囲の水分子からの磁気共鳴シグナルの変化を測定する)は、標的試料中の検体の存在および/または濃度に直接相関することができる。
【0246】
クレアチニン抗体
クレアチニンの抗体生成プログラムの確立において、修飾クレアチニン分子(COOH-クレアチニン)を考案し、BALB-CおよびAJマウスで免疫化するためにトランスフェリンにコンジュゲートさせた。
【0247】
34個の安定な抗体産生クローンを生成した。これらのクローンは、BALB-Cマウス(脾臓細胞)(n=17)またはAJマウス(n=17)のいずれかに由来する。2つの遺伝学的に異なるマウス系統を、免疫系の公知の遺伝的差異について選択した。アッセイにおいて使用するための最適なモノクローナル抗体のスクリーニングおよび同定のための基準および選択プロセスを開発した。抗体の選択プロセスに、ELISAによるBSA-クレアチニンへの結合、遊離クレアチニンおよび潜在的干渉物質を使用したELISA競合アッセイによる抗体の親和性/感受性/特異性のためのスクリーニング、磁性粒子にコンジュゲートする抗体の能力およびT
2磁気緩和スイッチアッセイにおける官能性の決定を含めた。
【0248】
上記の確立された抗体選択基準を使用して、7つのモノクローナル抗体をアッセイにおける潜在的候補として同定し、選択した。
【0249】
クレアチニンコーティング磁性粒子
実質的に単分散のカルボキシル化磁性粒子を、カップリング緩衝液(50mMのMES、pH=4.75)100μL中で洗浄して、再懸濁した。スルホ-NHS(MES緩衝液200μL中の55μmol)を加え、混合物をボルテックスした。混合物に、EDC(MES緩衝液200μL中の33.5μmol)を加えた。溶液を簡単にボルテックスし、室温で1時間回転撹拌ミキサー上に置き、沈殿させて、上清を除去した。得られた固体に、PBS中の1% BSA 1mLを加え、再度、混合物をボルテックスし、室温で15〜18時間回転撹拌ミキサー上に置いた。粒子を沈殿させて、上清を除去した。
【0250】
BSA-コーティング粒子を、PBS-0.01% T20(10mMのリン酸緩衝液(pH=7.4)、150mMのNaCl、0.01% Tween(登録商標)20を含有)0.5mL中に懸濁した。未反応のカルボキシル基を、ブロッキング剤としてのメチル-PEG4-アミン(DMSO中10%(v/v)20μL)に付した。混合物をボルテックスし、室温で8時間回転撹拌ミキサー上に置いた。得られたBSA-コーティング粒子を0.5mLのPBS-0.01% T20で繰り返し洗浄した。
【0251】
COOH-クレアチニン(66μmol)、EDC(140μmol)、およびNHS(260μmol)を脱水DMSO300μLと混ぜ合わせると、スラリーが形成され、これは反応が完了したとき透明になった。BSA-コーティング粒子を、PBS-0.01% T20(pH=8)0.5mL中に懸濁し、続いて、活性化COOH-クレアチニン溶液を加えた。得られた混合物をボルテックスし、室温で4時間回転撹拌ミキサー上に置いた。1:15および1:30のDMSO:PBS-0.01% T20(vol/vol)を使用し、超音波処理によりそれぞれ得られた粒子を洗浄した(3×)。次に、PBS-0.01% T20を使用し、超音波処理でそれぞれ粒子を洗浄した(3×)。粒子をPBS-0.1% T20(pH=8)中に再懸濁し、200μLのPBS-0.01% T20中のNHS-PEG2K 2mgを加えた。混合物を室温で12〜20時間回転撹拌ミキサー上に置いた。次に、PBS-0.01%T20を使用し、超音波処理でそれぞれ粒子を洗浄して(3×)、BSA、クレアチニンコーティング、PEGキャップおよびブロッキングを順次行った、クレアチニンコンジュゲート磁性粒子を生成した。
【0252】
クレアチニンコーティング粒子を、アッセイ緩衝液(100mMのグリシン(pH=9.0)、150mMのNaCl、1% BSA、0.05% ProClin(登録商標)、および0.05% Tween(登録商標))中に再懸濁した。
【0253】
クレアチニンアッセイプロトコールを、クレアチニンコンジュゲート粒子を使用して実施し、可溶性クレアチニン抗体を生成し、T
2シグナルを使用した検出を完了した。クレアチニン競合アッセイアーキテクチャを
図7Aに表す。
【0254】
磁性粒子、抗体、および液体試料の溶液を、ここに示す場合、100mMのトリス(pH7.0)、800mMのNaCl、1% BSA、0.1% Tween(登録商標)、および0.05% ProClin(登録商標)を含むアッセイ緩衝液による希釈に付した。
【0255】
クレアチニンコーティング磁性粒子を、アッセイ緩衝液中0.4mMのFe(5.48×10
9個の粒子/mL)に希釈し、十分にボルテックスし、4〜8℃で24時間平衡化させた。
【0256】
抗クレアチニンマウスモノクローナル抗体(上述した)をクレアチニンコンジュゲート磁性粒子のための多価結合剤として用いた。抗体を、アッセイ緩衝液中0.8μg/mLの濃度に希釈し、十分にボルテックスした。
【0257】
試料およびキャリブレーターを1部試料対3部アッセイ緩衝液に希釈した。アッセイ範囲の上限は、約4mg/dLのクレアチニンである。予想のクレアチニンレベル>4mg/dLの試料の場合、1部初期希釈試料対4部アッセイ緩衝液を使用して追加の試料希釈を実施した。
【0258】
事前希釈した試料、アッセイ緩衝液、磁性粒子、および抗体溶液をそれぞれボルテックスした。各溶液10μLをチューブに加え、チューブを5秒間ボルテックスした。
【0259】
次に、チューブを、勾配磁場中の磁性促進凝集作用に12分間付し、37℃で5分間インキュベートして、MR読み取り装置(2200 Fluke Temperature Controllerを備えたT
2MR読み取り装置、NDxlientソフトウェア0.9.14.1/ハードウェアバージョン0.4.13ビルド2、ファームウェアバージョン0.4.13ビルド0を用いて)に入れ、試料のT
2緩和率を測定して、試料のT
2緩和率を標準曲線と比較し(
図8Aを参照)、液体試料中のクレアチニンの濃度を決定した。
【0260】
修飾クレアチニン抗体の性能
アッセイにおいて異なるクレアチニン抗体を試験し、凝集作用に対する抗体の効果を確認した。本発明者らは、クレアチニン抗体の性能が、クレアチニンコーティング磁性粒子と混ぜ合わせたときにその性能特性が変化したことを確認した(
図8Bを参照)。2つの調製物のSDS-PAGEゲル分析は、調製物1において有意な凝集の増強を示したが、これは、この抗体に対するクレアチニン結合原子価の増加から生じ、その精製プロセスに起因して凝集したと考えられる。比較のため、本発明者らは、抗体をビオチン化して、ストレプトアビジンの存在下でその抗体を多量体化することにより、別のクレアチニンモノクローナル抗体(14HO3)を多量体化した。次に、単量体のビオチン化単量体、および多量体形態を、クレアチニンコーティング磁性粒子を用いて試験して、T
2時間に対する原子価の増加の効果を評価した。
図8Cに示されるその結果は、多量体化抗体が非多量体化抗体よりも極めて低濃度でクラスターを形成することを示す。粒子のクラスター化に対するこの原子価増強は、また、IgM抗体を使用しても観察された。
【0261】
実施例7. クレアチニン抗体コーティング磁性粒子
代替アッセイアーキテクチャを使用するアッセイは、以下を含む:標的試料を、(i)クレアチニン抗体で修飾された磁性粒子;および(ii)複数のクレアチニンコンジュゲートを含む多価結合剤の存在下でインキュベートする。磁性粒子は、多価結合剤の存在下で凝集するように設計されるが、凝集は、液体試料中のクレアチニンとの競合により阻害される。従って、クレアチニンの抗体コーティング粒子への結合は、多価結合剤の存在下で磁性粒子の凝集作用を妨害するため、低レベルのクレアチニンは凝集体の形成を特徴付ける。これらの凝集体は、磁界に曝露されたとき試料のスピン-スピン緩和率を変化させ、T
2緩和時間の変化(周囲の水分子からの磁気共鳴シグナルの変化を測定する)は、標的試料中の検体の存在および/または濃度に直接相関することができる。
【0262】
実質的に単分散のカルボキシル化磁性粒子を、カップリング緩衝液(50mMのMES、pH=4.75)300μL中で洗浄して、再懸濁し、スルホ-NHS(46μmmol)、EDC(25μmmol)を粒子に加えた。溶液を簡単にボルテックスし、室温で1時間回転撹拌ミキサー上に置いた。活性化粒子を、mL PBS-0.01% T20で洗浄し、PBS-0.01% T20中の10%(w/v)アミン-PEG-アミン溶液1mL中で再懸濁した。混合物をボルテックスし、室温で2時間回転撹拌ミキサー上に置き、次に、PBS-0.01% T20で洗浄した(3×)。
【0263】
代替化学として、BSAをアミン-PEG-アミンに交換することができる。BSAコーティング磁性粒子を、実施例6のクレアチニンコーティング磁性粒子を記載する項に記載のように調製した。
【0264】
粒子を260μLのPBS-0.01%T20中に再懸濁し、スルホSMCC(PBS-0.01% T20中の5mg/mL)198μLと反応させた。溶液を簡単にボルテックスし、室温で1時間回転撹拌ミキサー上に置き、次に、10mMのEDTAを含有するPBS-0.01% T20で洗浄して(3×)、SMCC-コーティング粒子を生成した。
【0265】
SATA(DMSO中の30nmol)と抗体(PBS中の2nmol、pH=7.4)を混ぜ合わせることにより、SATA標識抗体を調製した。溶液を室温で1時間回転撹拌ミキサー上に置いた。SATA標識抗体上のブロッキングしたスルフヒドリル基を、脱アセチル化緩衝液(0.5Mヒドロキシルアミン塩酸塩(pH7.4)、10mMのリン酸塩、150mMの塩化ナトリウム、10mMのEDTA)で1時間処理することにより脱保護し、使用する前に、10mMのEDTAを含有するPBSを使用し脱塩カラムを通して精製した。
【0266】
SATAの代替として、SPDP標識抗体を使用することができる。SPDP(DMSO中の10mmol)と抗体(PBS中の2nmol、pH7.4)を加えることにより、SPDP標識抗体を調製した。溶液を室温で1時間インキュベートし、脱塩カラムを通して精製した。SPDP標識抗体上のSPDPのジスルフィド結合を5mMのメルカプトエチルアミンと反応させて開裂させ、周囲温度で10分間インキュベートした。ジスルフィド結合が開裂したSPDP標識抗体は、使用する前に、脱塩カラムを通して精製した。
【0267】
PEGまたはBSAコーティングを有するSMCC官能化粒子と脱アセチル化SATA修飾抗体を混ぜ合わせ、室温で一晩回転撹拌ミキサー上に置き、PBS-0.05% Tween(登録商標)80で洗浄し(3×)、10mMのEDTAを含有するPBS-0.01% T20中に再懸濁した。ブロッキング剤(m-PEG-SH 2K)を加え、溶液を2時間回転撹拌ミキサー上に置き、PBS-0.05% Tween(登録商標)80で洗浄し(2×)、PBS-0.05% Tween(登録商標)80、1% BSA、および0.05% ProClin(登録商標)中に再懸濁して、抗体コーティング磁性粒子を生成した。
【0268】
SMCC官能化BSAコーティング粒子とジスルフィド結合を開裂したSPDP標識抗体を混ぜ合わせ、室温で2時間回転撹拌ミキサー上に置き、PBS-0.01% Tween(登録商標)20、10mMのEDTAで洗浄し(2回)、PBS、0.01% T20、および10mMのEDTA中に再懸濁した。ブロッキング剤のm-PEG-SH 2K(1μmole)を加え、溶液を2時間回転撹拌ミキサー上に置いた。第二のブロッキング剤のn-エチルマレイミド(5μmole)を加えた。粒子を15分間混合し、PBS-0.01% Tween(登録商標)20で2回洗浄し、100mMのトリス(pH9)、0.05% Tween(登録商標)80、1% BSA、および0.05% ProClin(登録商標)中に再懸濁して、抗体コーティング磁性粒子を生成した。
【0269】
上記の手順をクレアチニン抗体と共に使用するか、またはEDCカップリングを介してカルボキシル化磁性粒子の表面にクレアチニン抗体を直接カップリングさせることができる。
【0270】
クレアチニン多価結合剤
COOH-クレアチニンを、3アミノ-デキストラン化合物(Invitrogen;MW10k、40k、および70k、それぞれ、デキストラン1分子当たり6.5、12、および24個のアミノ基を有する)およびBSAに、EDCカップリングを介してコンジュゲートさせた。得られたBSA-クレアチニンおよびアミノ-デキストラン-クレアチニン多価結合剤は、上述の競合的阻害アッセイにおいて使用することができる。デキストラン部分あたり2〜30個のクレアチニンの置換度が達成された。クレアチニン阻害曲線の例を
図10に示す。使用される結合剤は、デキストラン1分子あたり約10個のクレアチニンを有する40kDaデキストランである。
【0271】
実施例8. タクロリムス多価結合剤の調製
タクロリムスコンジュゲートを、デキストランおよびBSAを使用して調製した。FK-506を、スキーム1に後述するように、4-ビニル安息香酸の存在下、Grubbsの第二世代触媒を使用するオレフィンメタセシス反応に付した。粗生成物混合物を順相のシリカゲルクロマトグラフィーにより精製した。
【0272】
デキストランコンジュゲート
デキストラン-タクロリムスコンジュゲートを、異なるアミノ基置換をそれぞれ有する3種の異なる分子量のアミノデキストランを使用して調製した。
【0273】
EDC溶液(40mg/mLのEDC塩酸塩)2.78mLおよびスルホ-NHS溶液(64mg/mLのスルホ-NHS)2.78mLを撹拌しながら混ぜ合わせた。この混合物に、タクロリムス-酸誘導体(C21)溶液(DMSO中28.8mg/mL)0.96mLを加え、その内容物を室温で30分間撹拌して、活性化タクロリムス-酸誘導体(活性化Tac溶液、4.6mM)を形成し、活性化タクロリムスをすぐに使用した。
【0274】
様々なアミノデキストランポリマーを100mMのリン酸ナトリウム緩衝液(pH8.0)に溶解させ、9.5mg/mLのストック溶液を作製した。
【0275】
活性化Tac溶液を、室温で撹拌しながら、下記の表の比率でアミノデキストランのストック溶液に滴下した。それぞれの反応物を少なくとも2時間激しく撹拌した。
【0276】
(表4)
【0277】
得られたTacデキストランコンジュゲートを、各反応生成物の5段階連続透析を使用して精製した(第1-15%(v/v)DMSO水溶液;第2-10%(v/v)メタノール水溶液;第3〜第5-高純度水;各工程で少なくとも2時間;10K MWアミノデキストランの場合、3,500MWCO透析膜、ならびに40Kおよび70Kアミノデキストランの場合、7K MWCO透析膜を使用する)。
【0278】
精製の後、各試料を凍結乾燥し、乾燥重量を決定した。多価結合剤を使用前に再構成した。
【0279】
再構成の後、タクロリムス置換比を、254nmでの吸光度に基づいて推定した。
【0280】
最適な凝集化性能を提供するデキストランのサイズを決定するための実験を実施した。簡単に述べると、PBS(pH6.3)緩衝液中の10% MeOH、1% BSA 10μL、種々の濃度のデキストランTac凝集因子10K、40K、70Kを20μL、および0.2mMのFeの抗タクロリムスコーティング磁性粒子10μLを、200μL PCRチューブに加えた(1チューブあたり2.7×10
9個の粒子)。プレートミキサーを使用して、2000rpmで2分間試料をボルテックスし、インキュベーションステーション中、37℃で15分間予熱し、側面および底面の磁石にそれぞれ1分間曝露させ、6サイクル繰り返して、再度2000rpmで2分間ボルテックスし、PCRチューブ用に設計された加熱ブロックを含む37℃インキュベーターで5分間インキュベートし、かつ、MR読み取り装置でT
2を読み取った。そのデータは、デキストランTacの分子量の増加/置換比の変化が、T
2シグナルの改善をもたらすことができたことを示している(
図11を参照)。また、より高い置換も応答の改善をもたらした(
図12を参照)。
【0281】
BSAコンジュゲート
BSAタクロリムスコンジュゲートを、種々のタクロリムス置換度で調製した。
【0282】
NHS溶液(アセトニトリル中の66.664mg/mL)34.5μLおよびEDC(50mMのMES(pH4.7)中6.481mg/mL)552μLを撹拌しながら混ぜ合わせた。このEDCとNHSの混合物515.2μLを、タクロリムス-酸誘導体(C21)溶液(アセトニトリル中の33.33mg/mL)220.8μLに滴下し、内容物を室温で1時間撹拌して、活性化タクロリムス-酸誘導体を形成した。活性化タクロリムスをすぐに使用した。
【0283】
BSAをリン酸緩衝生理食塩水およびアセトニトリルに溶解させ、40%アセトニトリル中5mg/mLのBSAを含有する溶液を形成した。
【0284】
活性化Tac溶液を、室温で撹拌しながら、下記の表の比率でBSA溶液に滴下した。それぞれの反応物を少なくとも2時間激しく撹拌した。
【0285】
(表5)
【0286】
得られたTac-BSAコンジュゲートを、40%アセトニトリルで事前に平衡化したPD10サイズ排除カラムを使用して精製した。1mL画分で溶離物を回収し、280nmでの吸光度をモニタリングして、BSAを含有する画分を特定した。
【0287】
BSA含有画分を合わせ、減圧下でアセトニトリルを除去した。
【0288】
デキストラン-タクロリムスコンジュゲートで使用したものを同様の滴定を実施することにより、Tac-BSAコンジュゲートのクラスター化能を評価した。観察されるように、クラスター化性能は、Tac置換比と異なっている(
図13を参照)。
【0289】
実施例9. タクロリムス競合アッセイプロトコール(粒子アーキテクチャにおける抗体)
抗タクロリムス抗体コンジュゲート粒子およびBSA-タクロリムス多価結合剤を使用して、MR読み取り装置での検出を用いるタクロリムスアッセイを開発した(実施例6を参照)。このアッセイは、抽出した全血試料を試験するために設計し、赤血球および結合タンパク質からタクロリムスを遊離させる(試料からの疎水性検体の抽出は、例えば、米国特許第5,135,875号に記載の方法を使用して達成することができる)。タクロリムス競合アッセイアーキテクチャを
図7Bに示す。
【0290】
磁性粒子および多価結合剤の溶液を、ここに示す場合、100mMのグリシン(pH9)、0.05% Tween(登録商標)80、1% BSA、150mMのNaCl、0.1% CHAPSを含むアッセイ緩衝液による希釈に付した。
【0291】
COOH官能基を有するベース粒子を、アミノ化コーティング(PEGまたはBSA)、抗体共有結合、PEGキャップおよびPEG/タンパク質ブロッキングにより順次修飾した(上記実施例に記載のように)。抗体コーティング磁性粒子を、アッセイ緩衝液中、0.4mMのFe(5.48×10
9個の粒子/mL)に希釈し、十分にボルテックスした。
【0292】
BSAに共有コンジュゲートしたCOOH修飾タクロリムスから多価結合剤を形成した(実施例8に記載のように)。多価結合剤を、アッセイ緩衝液中、0.02μg/mLに希釈し、十分にボルテックスした。
【0293】
抽出した試料溶液(10μL)および磁性粒子溶液(10μL)を混ぜ合わせ、5秒間ボルテックスして、37℃で15分間インキュベートした。この混合物に、多価結合剤20μLを加え、得られた混合物を5秒間ボルテックスして、37℃で5分間インキュベートした。
【0294】
上述のようにして数種類の試料を調製した。全ての試料を勾配磁場中の磁性促進凝集作用に1分間付した。次に、全ての試料を磁界から離れたトレーに入れた。各試料を少なくとも5秒間ボルテックスし、トレーに戻した。再度、全ての試料を磁性促進凝集作用に1分間付し、次いで、ボルテックスした。このプロセスを試料ごとに12回繰り返した。
【0295】
試料を37℃で5分間インキュベートし、MR読み取り装置に入れて(実施例6を参照)、試料のT
2緩和率を測定し、試料のT
2緩和率を標準曲線と比較して(
図9を参照)、液体試料中のタクロリムスの濃度を決定した。
【0296】
実施例10. カンジダアッセイ
カンジダ用に使用するアッセイでは、磁性粒子の2つのプールを各カンジダ種の検出のために使用する。第一のプールでは、種特異的捕捉オリゴヌクレオチドプローブを、磁性粒子にコンジュゲートさせる。第二のプールでは、追加の種特異的捕捉オリゴヌクレオチドプローブを、磁性粒子にコンジュゲートさせる。ハイブリダイゼーションした際、2つの粒子は、およそ10〜100ヌクレオチドにより分離された標的核酸のセンス鎖内の2つの別々の種特異的配列にハイブリダイズする(あるいは、2つの捕捉オリゴヌクレオチドは、粒子の単一のプールにコンジュゲートすることができ、結果として、第一および第二の領域の両方に特異性を有する個々の粒子が得られる)。オリゴヌクレオチド修飾磁性粒子を、特定のカンジダ種からの核酸分子の存在下で凝集するように設計する。従って、クレアチニンおよびタクロリムスで使用される阻害アッセイとは異なり、カンジダアッセイは、標的カンジダ核酸分子の存在下での凝集作用の増加を特徴とする。ハイブリダイゼーション介在凝集作用アッセイアーキテクチャを
図7Cに表す。
【0297】
カルボキシル化磁性粒子をカンジダアッセイにおいて使用する。磁性粒子をオリゴヌクレオチド捕捉プローブにコンジュゲートして、オリゴヌクレオチド-粒子コンジュゲートを作製する。各標的アンプリコンのために、オリゴヌクレオチド-粒子コンジュゲートの2つの集団を調製した。オリゴヌクレオチド-粒子コンジュゲートを、アミノ化オリゴヌクレオチドとカルボキシル化粒子間で標準的なEDC化学を使用して、または、場合により、ビオチン-TEG修飾オリゴヌクレオチドをストレプトアビジン粒子にカップリングさせることにより調製した。カップリング反応は、典型的には、1%固体の粒子濃度で実施した。
【0298】
コンジュゲート後、Cy5標識相補体を粒子にハイブリダイズし、粒子を3回洗浄して、非ハイブリダイズオリゴを除去し;かつ、95℃で5分間加熱して溶離させることにより、官能化オリゴヌクレオチド密度を測定した。蛍光分光法によりCy5標識オリゴヌクレオチドの量を定量化した。
【0299】
カップリング反応を、ロッカーまたはローラーを使用して、37℃で一晩連続的に混合しながら実施した。得られた粒子コンジュゲートを、下記のように洗浄した:1×反応容量のミリポア水で2回;1×反応容量の0.1Mイミダゾール(pH6.0)で2回を37℃で5分間;1×反応容量の0.1M重炭酸ナトリウムで3回を37℃で5分間;次に、1×反応容量の0.1M重炭酸ナトリウムで2回を65℃で30分間。得られた粒子コンジュゲートをTE(pH8)、0.1% Tween(登録商標)20中、1%固体で保存した。
【0300】
検出されたカンジダ種のパネルには、C.アルビカンス、C.グラブラータ、C.クルセイ、C.トロピカリス、およびC.パラプシローシスが含まれる。カンジダ属内の高度に保存された配列を認識するユニバーサルプライマーを使用して配列を増幅する。アンプリコン内の種特異的領域を認識およびハイブリダイズするように捕捉オリゴヌクレオチドを設計した。
【0301】
最初に、血液試料のアリコートを下記のように溶解に付した:
(i)全血試料を過剰(1.25×、1.5×、または2×)容量の塩化アンモニウム低張溶解液と混合した。溶解液の追加は全てのRBCを破壊するが、WBC、酵母、または細菌細胞を破壊しない。細胞物質を9000rpmで5分間遠心分離し、溶解物を除去した。インタクトな細胞をTE(トリスEDTA、pH=8)100μLで再構成して、約100μLの最終容量にした;かつ
(ii)試料およそ100μLに、0.5mmビーズ120mgを加えた。試料を約3K rpmで3分間かき混ぜて、溶解物を形成した。
【0302】
次に、溶解物を、ヌクレオチド;緩衝液(5mM(NH
4)SO
4、3.5mMのMgCl
2、6%グリセロール、60mMのトリシン、25℃でpH=8.7;プライマー(4×過剰の順方向プライマー(300mMの順方向;0.75mMの逆方向)、最終生成物中、非対称一本鎖産生が可能になる);および熱安定性ポリメラーゼ(HemoKIenTaq(New England Biolabs))を含む、PCRマスターミックスに加えることにより、溶解物のアリコート約50μLをPCR増幅に付した。95℃で3分間の初期インキュベーションの後、混合物をPCRサイクルに付した:62℃でアニーリング;68℃で伸長;95℃を40サイクル。注記:アニーリングと伸長温度で6℃の差がある;アニーリングと伸長を単一工程に組み合わせて、増幅全体の所要時間を減少させてもよい。
【0303】
検出のために準備ができたPCRアンプリコンを、サンドイッチアッセイにおいて粒子の2つの集団と混ぜ合わせる。
【0304】
カンジダアッセイにおいて使用することができるPCRプライマーおよび捕捉プローブを下記の表6に示す。
【0305】
(表6)
1. NitIndは、5'5-ニトロインドールである(4つのDNA塩基のいずれかとアニーリングすることが可能な塩基である)
2. オリゴTはスペーサーとして加えられることに注意されたい。
【0306】
場合により、コントロール配列の存在下で、コントロール配列の存在を確認するためのプローブで修飾された磁性粒子と共にアッセイを実施する。
【0307】
実施例11. 非凝集化法
このプロセスは、抗クレアチニン抗体で修飾し、かつ、クレアチニン誘導体化磁性粒子に特異的に結合することが示された、400μm孔を有するアミノシラン処理ニッケル金属発泡体を使用して実証した。1cm角片のニッケル金属発泡体(Recemat RCM-Ni-4753.016)を、2MのHCL中、室温で1時間インキュベートすることにより洗浄し、脱イオン水中で十分にすすぎ、100℃で2時間乾燥させた。次に、ニッケル発泡体を、アセトン中の2%の3-アミノプロピルトリエトキシシランで室温にて一晩処理した。次に、ニッケル金属発泡体を脱イオン水で広範囲にわたって洗浄し、100℃で2時間乾燥させた。アミノシラン処理ニッケル金属発泡体を、2%グルタルアルデヒド水溶液で室温にて2時間処理し、脱イオン水で広範囲にわたって洗浄した。次に、金属発泡体を、PBS中100μg/mLの抗クレアチニン抗体(14H03)に一晩曝露させ(実施例6を参照)、PBSで広範囲にわたって洗浄し、Surmodics Stabilguardで処理して、非特異的結合を安定化およびブロッキングした。発泡体構造を傷つけないように、未使用のカミソリ刃を使用して注意深く2mm角片の誘導体化金属発泡体をカットした。誘導体化金属発泡体の一片をPCRチューブ内のアッセイ緩衝液(100mMのグリシン(pH=9.0)、150mMのNaCl、1% BSA、0.05% ProClin(登録商標)、および0.05% Tween(登録商標))20μLに入れた。コントロール粒子(金属発泡体ABX1-11に結合しないものとする)20μLを0.2mMのFeでチューブに加え、最終容量を40μLにし、最終粒子濃度を0.1mMのFe(1×10
6〜1×10
8個の粒子/チューブ)にした。また、正確な粒子および緩衝液を含み、金属発泡体を含まない別のPCRチューブも調製した。誘導体化金属発泡体およびコントロール粒子を含有するPCRチューブを、勾配磁場中の磁性促進凝集作用に1分間付して、次に、手動消磁装置(hand demagnetizer)と接触させ、磁性促進凝集作用にさらに1分間付して、手動消磁装置との接触を止め、磁性促進凝集作用にさらに1分間付して、ボルテックスした(1分間の磁気曝露を3回)。試料30μLを両方のPCRチューブから取り出し、Grantブロックヒーター中、37℃で5分間加熱し、MR読み取り装置を使用してT
2を読み取った(実施例6を参照)。発泡体を含まない試料からのT
2は39.2と読み取り、発泡体を含有するPCRチューブからの試料は45.1と読み取った。これは、NSBに起因する低レベルの粒子減少を示している。誘導体化金属発泡体を消磁し、ボルテックスして、アッセイ緩衝液中ですすいだ。これを、アッセイ緩衝液20μLおよび0.1mMのFe粒子の最終濃度を有するクレアチニンで誘導体化したAACr2-3-4粒子20μLを含む新しいPCRチューブに入れた。また、誘導体化金属発泡体を含まない2連のPCRチューブを、コントロール実験として設定した。金属発泡体を含むPCRチューブを、コントロール実験として磁性促進凝集作用を正確に2回サイクルさせた(1分間の曝露を3回行って、各曝露後に消磁し、最後にボルテックスした)。両方のチューブから試料30μLを取り出し、37℃で5分間加熱して、次に、MR読み取り装置で読み取った。誘導体化金属発泡体を含むPCRチューブからの試料は41.5と読み取り、抗クレアチニン抗体で誘導体化した金属発泡体を含むPCRチューブからの試料は324.2と読み取った。従って、これは、MR読み取り装置により読み取られた水性容量からの適切なクレアチニン誘導体化磁性粒子の特異的な結合/減少を示している。
【0308】
実施例12. 単一のヌクレオチド多型の検出
T
2測定により単一のヌクレオチド多型を検出することができる多くの方法がある。
【0309】
最も簡単な適用は、好熱性DNAリガーゼ(Tthリガーゼ)を介したミスマッチの識別を含む。このアッセイは、試料材料の溶解、それに続くDNAせん断が必要である。ゲノムDNAのユニバーサル増幅が必要である場合、アダプターをせん断したDNA上にライゲーションすることができる。3'アミノ化捕捉プローブの5'末端が、1つの特定のSNP対立遺伝子に完全に相補的であり、その後のTthリガーゼでの処理によって2つの粒子結合捕捉プローブがライゲーションされるように、SNPをフランキングする超常磁性粒子結合捕捉プローブを改変することによりSNPが検出される。従って、ライゲーションは、粒子を凝集化状態にロックする。増幅バイアスのリスクによってゲノムDNAの増幅が望まれない場合、溶解、ハイブリダイゼーションサイクルの繰り返しはシグナル増幅をもたらすだろう。同じ5'アミノ化捕捉プローブを全ての場合に利用することができるが、端の5'末端に4つの別々のプール(A、G、C、またはT)を得るために、3'アミノ化プローブを生成することができる。検出には、ヌクレオチドがその特定の個体内で多型性部位に存在したか否かを決定するために、試料を4つのプールへ分割することが必要である。例えば、G検出チューブにおける強いT
2スイッチは、個体がその特定の配列位置でGにホモ接合であったことを示し、GおよびAのスイッチは、個体がその特定のSNP部位でGおよびAにホモ接合であることを示す。この方法の利点は、Tthポリメラーゼが、正確な相補体に対して1:200倍のG-Tミスマッチ(特定の許容ミスマッチ、また最も一般的である)でさえ識別する優れた識別能力を有することが実証されたことである。公知の多型性部位におけるヌクレオチド配列を明確にするために、リガーゼ検出反応ならびにオリゴヌクレオチドリガーゼアッセイが以前に用いられていたが、全てライゲーションの前後に増幅が必要であり;この特定の例において、ライゲーションの誘導によって、得られた凝集化粒子複合体のサイズが増加し、シグナルが増幅することにより、測定緩和時間(T
2)が増加し得る。
【0310】
この手順への改変は、ビオチン化プローブのハイブリダイゼーションをフランキングする、粒子結合捕捉プローブのハイブリダイゼーションを含むことができる。完全に相補的な二本鎖が粒子結合プローブのハイブリダイゼーションを介して形成されるとき、リガーゼは、ビオチンプローブを磁性粒子に共有結合させる。熱変性、それに続くアニーリングおよびライゲーションのラウンドを再度繰り返して、磁性粒子表面に長いビオチン化オリゴを高い比率で生成すべきである。任意の遊離プローブを除去する洗浄を実施して、その後、第二のストレプトアビジン標識超常磁性粒子を加える。凝集作用は、ビオチン化プローブが第一の粒子の表面にライゲーションしたときにのみ確実に起こるだろう。
【0311】
ハイブリダイゼーション識別アプローチを同様に用いることができる。この例では、公知のSNPに隣接するアミノ化オリゴヌクレオチド相補体が生成する。これらのアミノ化オリゴヌクレオチドを使用し、96ウェルプレートの表面を誘導化して、ウェルごとに1つのSNP検出反応を実施する。次に、ゲノムDNAをせん断し、アダプターにライゲーションして、非対称に増幅させる。次に、この増幅したゲノムDNAをアレイならびに短いビオチン化SNP検出プローブに適用する。増幅したゲノムDNAをウェルに結合した捕捉プローブにハイブリダイズさせ、次に、SNP検出プローブをつながれたゲノムDNAに結合させる。遊離SNP検出プローブを除去するために洗浄を実施する。次に、ストレプトアビジン(SA)磁性粒子を各ウェルに加える。遊離SA粒子を除去するために再度洗浄が必要である。表面につながれた凝集化粒子を生成するために加えられたビオチン化超常磁性粒子により、T
2検出を直接ウェル内で実施することができ、またはSA磁性粒子をアレイ上の各ウェルから溶離させ、検出反応においてビオチン化磁性粒子とインキュベートすることができる。
【0312】
最後に、ヌクレオチドが多型性部位に存在するか否かを識別するために、プライマー伸長反応をT
2検出とカップリングさせることができる。このアッセイでは、ジデオキシヌクレオチドのプールを、ビオチンを有するプールごとに1つのヌクレオチドと用いる(すなわち、ddA、ddT、ddビオチン-C、および/またはddG)。最後の塩基がハイブリダイゼーション時にSNPに隣接する捕捉プローブを有する超常磁性粒子が用いられる。
【0313】
せん断したゲノムDNAを4つの別々のプライマー伸長反応に分割し、インキュベートする。次に、エクソDNAポリメラーゼは、SNPに存在するヌクレオチドに相補的なジデオキシの付加を触媒する。粒子上のほとんどの捕捉プローブが確実に伸長するように好熱性ポリメラーゼを用いる場合、再度この反応をサイクルさせることができる。磁気分離、その後、粒子の洗浄を実施した後、ストレプトアビジン超常磁性粒子とインキュベートさせる。結果として、クラスター化は第一の粒子の表面のビオチン化捕捉プローブの程度に比例する。2つのジデオキシプールがT
2の増加を生じさせた場合(すなわち、粒子の凝集作用を促進)、患者はヘテロ接合体であるだろう。1つのプールのみが生成し、T
2を増加させた場合、患者はホモ接合体であるだろう。
【0314】
SNPを検出する最後の方法は、プライマーの3'末端がSNPを包含する、対立遺伝子特異的PCRプライマーを用いる。ストリンジェントな増幅条件を用いるため、標的配列がプライマーに完全に相補的でない場合、PCR増幅は生成物をほとんどまたは全く生成しないだろう。一般的に、複数の順方向プライマーが、単一の逆方向プライマーと共に設計される(1つは各対立遺伝子に完全に相補的である)。アンプリコンは、ハイブリダイゼーションベースの凝集化反応を誘導する、2つ以上の捕捉プローブ結合超常磁性粒子を使用して検出される。このアプローチの1つの利点は、粗試料中のPCRを用いたT
2において既に実施されたいくつかの研究を活用して、かつ、単に公知のSNPを包含するように設計されたプライマーを必要とすることである。このアプローチの欠点は、デノボSNPの位置を決定することができないことである。
【0315】
使用することができる追加の方法は、短い核酸標的へのハイブリダイゼーションに起因する、粒子−粒子架橋の識別能力に単純に依存する。オリゴヌクレオチドに対する塩基対のミスマッチが、単一の塩基ミスマッチの存在からのハイブリダイゼーション効率の低下に起因して、粒子の凝集化状態、および測定T
2シグナルを劇的に変化させることが示された。
【0316】
実施例13. 診断用カンジダパネル
45日間にわたって試験を実施した。C.アルビカンスおよびC.クルセイ参照株ならびにC.アルビカンス臨床単離株を研究の期間培養し、維持した。
【0317】
材料:
C.アルビカンスおよびC.クルセイナノ粒子:2つの粒子集団をそれぞれの種から生成した。その粒子は、ITS2領域内の種特異的配列に相補的なオリゴに共有コンジュゲートされている(実施例10を参照)。粒子をTE(pH8)、0.1% Tween中、4〜8℃で保存して、使用直前にDNAハイブリダイゼーション緩衝液中、0.097mMのFeに希釈した。
【0318】
カンジダ株:C.アルビカンス参照株MYA2876(GenBank FN652297.1)、C.クルセイ参照株24210(GenBank AY939808.1)、およびC.アルビカンス臨床単離株を使用してパネルを実施した。使用した5つのC.アルビカンス単離株は、YPD上、室温で培養した。単一コロニーを選択し、PBSで3回洗浄して、次に、全血スパイクの調製のために血球計により定量化した。試料を凍結グリセロールストックとして-80℃で保存した。
【0319】
ヒト全血:全血を健常なドナーから採取し、K
2EDTAで処理して、洗浄した段階希釈カンジダ細胞を1E5〜5細胞/mLの範囲の濃度でスパイクした。新鮮な血液中に調製した細胞スパイクを-20℃で保存した。
【0320】
赤血球溶解緩衝液:10mMの重炭酸カリウム、155mMの塩化アンモニウム、および0.1mMのEDTAを含有する低張溶解緩衝液を無菌濾過し、使用するまで室温で保存した。あるいは、非イオン洗剤(例えば、Triton-X100とigepalの混合物、またはBrij-58)などの赤血球溶解剤を使用することができる。
【0321】
PCRマスターミックス:緩衝液、ヌクレオチド、プライマー、および酵素を含有するマスターミックス(5×反応緩衝液20μL、水22μL、10mMのdNTP 2μL、10μMの順方向プライマー3μL、2.5μMの逆方向プライマー3μL、HemoKlenTaq 10μL、およびビーズ破砕した溶解物40μL)を調製し、室温で保存した。
【0322】
粒子ハイブリダイゼーションマスターミックス:ナノ粒子コンジュゲート、塩、界面活性剤、およびホルムアミドから構成されるマスターミックス(ホルムアミド78μL、20×SSC 78μL、1×TE+0.1% Tween 88.3μL、CP1-3'7.5μL、およびCP3-5'8.2μL)を使用直前に調製した。
【0323】
カンジダの機械的溶解において使用されるガラスビーズ(0.5mm)を酸中で洗浄し、オートクレーブして、使用するまで室温で保存した。
【0324】
PCRプロトコール:
全血試料中の病原体(例えば、カンジダ)を検出するためのワークフローの一般スキームを
図20に示す。プロトコールは、以下のとおりである:(i)ヒト全血スパイク試料を室温に温め(約30分間);(ii)赤血球溶解緩衝液1mLを各チューブに分割し;(iii)各チューブを9000gで5分間遠心分離して、溶解血液を廃棄し;(iv)0.2ミクロン濾過したTE 100μLを各チューブに分割し;(v)酸洗浄ガラスビーズ120mgを各チューブに加え;(vi)各チューブを最高速度(約3000rpm)で3分間ボルテックスし;(vii)PCRマスターミックスを含有するチューブに溶解試料50μLを分割し;(viii)以下のようにPCR反応をサイクルし:(最初の変性:95℃、3分間;95℃、20秒を30〜40サイクル;62℃、30秒を30〜40サイクル;68℃、20秒を30〜40サイクル;最終伸長:68℃、10分間;最終浸漬:4℃);(ix)熱サイクル後に各試料を簡単に遠心分離して、凝固した血液ペレットを形成し;(x)増幅試料10μLごとに粒子マスターミックス5μLをチューブに分割し;(xi)得られた混合物を十分に混合し、試料を95℃で3分間変性させ;(xii)穏やかにかき混ぜながら試料を60℃で1時間ハイブリダイズさせ;(xiii)次に、粒子希釈緩衝液で試料を150μLに希釈し、加熱ブロック中37℃で1分間平衡化して;かつ、(xiv)試料のT
2をT
2MR読み取り装置を使用して測定した。
【0325】
試験結果
ヒト全血におけるカンジダ・アルビカンス検出の再現性:C.アルビカンス感染ヒト全血において、T
2測定の再現性を決定するために、本発明者らは、8日間の研究を実施し、その中で、同じドナーでスパイクおよび増幅させた試料を、毎日超常磁性粒子(n=3)にハイブリダイゼーションさせて、得られたT
2値を記録した。
【0326】
同時再現性を
図19Aに示すが、これは、一般的に、全ての測定量のCVが12%未満で緊密な関係性がある。8日間にわたって観察された再現性を
図19Bに示すが、カンジダの濃度範囲にわたってCVが10%未満であり、陰性対照の場合は6%であった。10細胞/mLでの擬カンジダ感染血液と健常なドナー血液との間の平均の差が有意であったかどうかを、2つの集団の両側スチューデントT検定を適用して決定した。得られたP値は0.0001未満であり、これはその差が統計学的に有意であることを裏付けている。
【0327】
カンジダ・アルビカンスおよびカンジダ・クルセイの検出および再現性に対する試料マトリクスの影響:6人のドナーからの健康な血液を、様々なC.アルビカンスまたはC.クルセイ細胞(1E5細胞/mL〜0細胞/mL)でスパイクした。カンジダ・アルビカンスでスパイクした血液から、16の独立した実験を実施した。各実験は、1E5〜0細胞/mLでスパイクした血液のPCR増幅からなり、各増幅反応物を3連T
2検出実験に付した;従って、C.アルビカンスの場合、各試験濃度で合計48個のT
2値が記録された(
図21Aを参照)。最小試験濃度(10細胞/mL)では、本発明者らは、37%の確率でカンジダ・アルビカンスの検出に失敗した(16の実験の内6つ);しかし、100細胞/mLのカンジダ・アルビカンスでは、100%の確率で検出した。このことは、C.アルビカンスのLODが10細胞/mL超であるが、100細胞/mL未満であると示唆している。LODを良好に定義するために10CFU〜100細胞/mLのより高い濃度を試験する;しかし、本発明者らは、アッセイ性能に対して任意の大きなマトリクス効果が観察されることを期待していない。これは、以下のようなT
2測定のCVにより明らかである:6人のドナーの血液において1E5細胞/mLでは12.6%、1E4細胞/mLでは13.7%、1E3細胞/mLでは15%、1E2細胞/mLでは18%、および0細胞/mLでは6%。このことは、アッセイが、100細胞/mL以上のC.アルビカンス濃度において、ドナー血液試料を介して大きく性能が阻害されることなく、確実に検出することができることを示唆している。
【0328】
C.クルセイの参照株を使用して同じ実験を実施した。この場合、7つの独立した実験を実施し、残りのスパイクした血液を血液培養分析用に保存した。本発明者らは、10細胞/mLでは実験のいずれにおいても検出しなかったが、100細胞/mLでは全ての実験で検出した。このことは、LODが10〜100細胞/mLであることを示唆している。LODを良好に定義するために、100〜10細胞/mLの細胞濃度の滴定を再度実施する必要があるだろう。濃度範囲にわたる測定のCVは、1E5細胞/mLでは10.5%、1E4細胞/mLでは9%、1E3細胞/mLでは12%、1E2細胞/mLでは20%、10細胞/mLでは6.4%、および0細胞/mLでは5.2%であった。結果を
図21Bに示す。
【0329】
検出限界の予備決定:5つのカンジダ・アルビカンス臨床単離株を、6つの異なるドナー血液試料に1E4、1E3、5E2、1E2、50、10、5、および0細胞/mLの濃度でスパイクした。各単離株を最低2つの異なるドナー血液試料にスパイクした。増幅反応をT
2測定により検出し、その結果を
図22にプロットした。この研究内で正当な理由なくデータを除くことがないことに注意することが重要である。本発明者らは、5細胞/mLまたは10細胞/mLであったとき、C.アルビカンスを50%の確率で検出できなかった;しかし、50細胞/mLであったとき、C.アルビカンスを95%の確率で検出した。これらのデータは、異なる臨床単離株を使用して生成した;各単離株は、異なるrDNA繰り返し数を含有し、これらの繰り返し数は、菌株間で最大4倍変化し得る(すなわち、約50ユニット〜200ユニット)。インプット標的コピー数が菌株間でわずかに変化し、種間で確実に変化するため、極めて低い細胞数(すなわち、10細胞/mL)で観察される絶対T
2値に微妙な違いがあるだろう。本発明者らのまさに予備的な研究に基づいて、データから10細胞/mLのカットオフが示唆される;しかし、この決定は、試薬の最終調合ならびに装置/カートリッジがなければ行うことができない。これは、10細胞/mLにおいて、各反応がわずか4つの細胞しか含有しないため、C5〜C95間隔を定義することが困難であることを示唆する。これより低い細胞数での滴定は、この血液のインプット容量では難しくなる。ポアソン分布を使用して10細胞/mLで0細胞を含有する反応物の数を計算することにより、反応物のわずか2%だけが細胞を含有しないことを示す;しかし、5細胞/mLでは、反応物の13%がカンジダ細胞を含有せず、2細胞/mLでは、反応物の約37%がカンジダ細胞を含有しない。アッセイの感度を10細胞/mLで95%まで増加させるために、本発明者らは、PCR反応に加えられる溶解物の量を40μLから50μLに増加させ、患者の血液の量を400μLから800μL/反応に増加させることができる。
【0330】
感度/特異度の予備決定:最初に、血球計を使用してインプットカンジダコロニー形成単位の定量化を実施した;しかし、この場合、作業者は、出芽娘細胞を別個の細胞としてカウントした。本発明者らのデータは、細胞/mLではなくコロニー形成単位/mLで報告しているので、芽は定量化しないものとする。このエラーのため、数個の細胞/mLのカンジダが様々なスパイク濃度で存在し、本発明者らの10細胞/mLでの感度はわずか90%であり、本発明者らの特異度は100%であった。本発明者らは、25細胞/mL以上で、100%の感度および100%の特異度を観察した。全ての場合で、カンジダ細胞を接種した血液培養バイアルは、8日目に血液培養陽性であった。血液培養の初期設定が5日間のインキュベートであることに留意すべきである;しかし、本発明者らの接種の多くが>5日のインキュベートを必要とするので、本発明者らはこのインキュベーション時間を延長する必要がある。例として、表7は、血液培養に接種された4つの異なるC.アルビカンス臨床単離株で記録された、接種から培養陽性までの時間を示す。
【0331】
これらのスパイクした全血試料からのアリコート800μLで実施されたT
2測定の結果を表8に示す。全ての場合で、本発明者らは、25細胞/mL以上で検出が可能であったが、しかし、本発明者らは、12細胞/mLでは臨床単離株C3を検出できなかった。この特定の方法比較実験では、CFUをコールターカウンターではなく血球計により定量化したことに注意することが重要である。合計51個の血液培養ボトルに、血球計算板で定量化したカンジダ・アルビカンス臨床単離株を接種して、35個の陰性血液培養バイアルをこの実験に含めた。25細胞/mLより多い接種の結果を表8の分割表に示す。
【0332】
(表7)4つの異なるカンジダ・アルビカンス臨床単離株で血液培養陽性結果が得られる時間
*注記:全ての血液培養陰性バイアルは陰性であり、t=8日目で廃棄した
【0333】
(表8)上記に示すインビトロでスパイクした血液試料の前培養におけるPCR増幅およびT
2検出により得られたT
2値(アッセイ時間、約3時間)
T
2値(ミリ秒単位)は平均n=3であり、反復測定ではCV10%未満である。
【0334】
(表9)>25細胞/mLのC.アルビカンスでの感度/特異度を計算するために使用した分割表
推定感度=100×[TP/(TP+FN)]=100%(95%の信頼区間=93〜100%)
推定特異度=100×[TN/(FP+TN]=100%(95%の信頼区間=90〜100%)
【0335】
CFU定量の標準化は、本発明者らのアッセイ感度および再現性を改善した。27個の血液培養ボトルからの予備結果を表10に示す。これらの予備結果から、本発明者らが10細胞/mL以上で100%の感度および特異度を有することが示される。本発明者らは、また、C.クルセイを使用して方法比較を開始した。予備結果(36個のバイアルから)を表11に示す。この結果から、本発明者らが、カンジダ・クルセイにおいて、10細胞/mL以上で88%/100%の感度/特異度、かつ、33細胞/mL以上で100%感度/100%特異度を有することが示される。新しい血液培養一致率の比較の前に開始される別の重要な課題は、マルチプローブ粒子の採用であった。この場合、C.アルビカンス検出のためのT
2クラスター化反応は、アルビカンス/パラシローシス/トロピカリス多官能化粒子を使用して実施し、C.クルセイは、グラブラータ/クルセイ多官能化粒子を使用して検出した。
【0336】
(表10)>10細胞/mLのC.アルビカンスでの感度/特異度を計算するための分割表
推定感度=100×[TP/(TP+FN)]=100%(95%の信頼区間=81.4〜100%)
推定特異度=100×[TN/(FP+TN]=100%(95%の信頼区間=54〜100%)
【0337】
(表11)>10細胞/mLのカンジダ・クルセイでの感度/特異度を計算するための分割表
推定感度=100×[TP/(TP+FN)]=89%(95%の信頼区間=71〜98%)
推定特異度=100×[TN/(FP+TN)]=100%(95%の信頼区間=66〜100%)
【0338】
臨床精度の予備評価:臨床精度は、2つ以上の臨床的状態、例えば、カンジダ性敗血症と非カンジダ性敗血症の識別能力として定義される。受信者動作特性(ROC)プロットは、試験の性能をグラフ化して記載するものであり、これは、感度(真の陽性画分)と特異度(真の陰性画分)間の関係を説明する。臨床的精度(感度/特異度の組)は、決定レベルのスペクトル全体について提示する。10細胞/mLおよび50細胞/mLの臨床単離株でスパイクした全血試料から生成したデータを使用して、2つのROCプロットを生成し、これを
図23Aおよび23Bに示す。曲線下面積は、診断精度(この場合、10細胞/mLまたは50細胞/mLで感染させたカンジダ性敗血症患者と非カンジダ性敗血症患者を識別する能力)を定量化するために使用することが多い。10細胞/mLでは、曲線下面積は、0.72であり、これは、T
2アッセイが、10細胞/mLの感染レベルで、ランダムに選択されたカンジダ性敗血症の人で実行された場合、そのT
2値が非カンジダ性敗血症の人より高い確率が72%であることを意味している。試験の臨床的精度は50細胞/mLでは極めて高く、曲線下面積は0.98である。これはまた、この感染レベルのカンジダ性敗血症の人では、T
2アッセイは、非カンジダ性敗血症の人からの試料より高い値を与える確率が98%であることを示している。これは、50細胞/mLの感染レベルでは優れた臨床精度である。100細胞/mL以上の試料については、その面積が100%の臨床診断精度に変換されるため、ROCプロットは作製しなかった。最終臨床精度は、臨床プラットフォームにおいて真の患者試料から決定する。
【0339】
アッセイの所要時間:主要なアッセイ工程と推定時間は、以下である:(i)低張溶解/遠心分離/ビーズ破砕(8分);(ii)PCR(120分);(iii)アンプリコンの粒子へのハイブリダイゼーション(30分);(iv)均一磁場中、磁性促進凝集作用に付す(10分);および(v)移動および読み取り(10秒)。アッセイの処理時間は、試薬および機器の準備を除いて約178分(約3時間)と推定される。これは、定量化に使用されるワークフローであるが、本発明者らは、より短いPCRおよびハイブリダイゼーション工程を用いた下記の改変ワークフローが、同じ検出感度を生成することを実証した(
図24を参照)(いくつかのカンジダ種(すなわち、グラブラータ)では生成したアンプリコンの量は減少したが、疾患と正常間のΔT
2はより小さかった):(i)低張溶解/遠心分離/ビーズ破砕(8分);(ii)PCR(70分);(iii)アンプリコンの粒子へのハイブリダイゼーション(30分);(iv)均一磁場中、磁性促進凝集作用に付す(10分);および(v)移動および読み取り(10秒)。この改変フローは、133分間、つまり2時間13分間のTATを生成する(かつ、これは、高速サーモサイクラーに移動させる必要はない)。
【0340】
結論
この試験は、下記の基準を有するカンジダ性敗血症の現在のT
2ベースの分子診断アッセイを実証する:(i)5-1E5細胞/mL(5-log)の範囲における全血中のカンジダ・アルビカンスの検出;(ii)10細胞/mL〜1E5細胞/mLの範囲における全血中のカンジダ・クルセイの検出;(iii)>25細胞/mLにおける100%/100%の感度/特異度;(iv)>50細胞/mLの濃度の98%より大きい診断精度;(v)全血とのアッセイ適合性(12個の異なるドナー血液試料を使用して、大きなマトリクス効果は観察されない);(vi)T
2測定の再現性(同日内で12%未満、8日間にわたって13%未満);および(vii)アッセイ全体の所要時間が2時間3分に減少。
【0341】
本発明者らは、より多いインプット容量のヒト血液で試験し、これらのより多い血液容量で効率的な低張溶解が達成可能であり;さらに、10細胞/mLでの検出の再現性が増加したことを見出した。
【0342】
50個の滴定物の2つの試料中に異物の混入を観察した。異物混入問題を減少させるために、PCR工程を検出工程と分けてもよい。さらに、アンプリコンを増幅不可能にするための化学的/生化学的方法を使用してもよい。例えば、ウラシルをPCR産物に組み込んでもよく、ウラシルNグリコシラーゼを用いて前PCRインキュベーションを実施してもよい。
【0343】
本発明のシステムおよび方法の利点は、試料からタンパク質と非標的核酸を分離する必要なく全血試料をアッセイできる能力を含む。DNA精製を通して標的核酸の損失を全く受けないため(例えば、溶解後および増幅前に、Qiagenカラムに通すことで、感度の>10×の損失をもたらす;かつ、全血の使用は、1%超の濃度で光学検出法を妨害する)、試料間変動およびバイアス(DNA精製により導入され得る)は最小となり、感度は最大となる。
【0344】
敗血症性ショック患者の10%超がカンジダの保因者であり;これは、S.アウレウスおよび大腸菌に続く第三の最もよく見られる病原体であり、カンジダに感染した敗血症性ショック患者はおよそ50%の死亡率である。カンジダは、院内感染症の第四番目の原因である。これらの患者の迅速な同定は、適切な処置計画を選択するうえで重要である。
【0345】
実施例14. ウイルスアッセイ
CMVゲノムDNAをCMVフリーの健康なドナー血液試料にスパイクして、このスパイクした血液40μLを、総容量100μLのPCR反応に分割した。全血適合性好熱性DNAポリメラーゼ(T2 Biosystems, Lexington, MA)および以下のように設計された典型的なユニバーサルプライマーを使用して増幅を実施した:24mer末端-C6リンカー-CMV特異的配列、正確な配列は以下のとおりである:
【0346】
捕捉プローブ(すなわち、磁性粒子を修飾する核酸)が10mer領域にアニーリングするようにプライマーを設計した(10merは、5'または3'末端のいずれかにおいて異なっている)。反応チューブ中の最終プライマー濃度は300nMであり、PCRマスターミックスは、5mM(NH
4)
2SO
4、3.5mMのMgCl
2、6%グリセロール、60mMのトリシン(pH8.7)を含む。5つの別々の試料の反応チューブをセットアップした。サイクルPCR反応は、95℃で3分間の最初の変性、ならびに95℃で20秒;55℃で30秒;および68℃で20秒から構成される各サイクルに従った。30、33、36、39、および42サイクルで、反応チューブを取り出し、4℃で維持した。全ての試料を準備したら、増幅試料10μLごとに粒子マスターミックス(6×SSC、30%ホルムアミド、0.1% Tween)5μLをチューブに分割して;得られた混合を十分に混合し、95℃で3分間試料を変性させ;穏やかにかき混ぜながら試料を45℃で1時間ハイブリダイズさせ;次に、粒子希釈緩衝液(PBS、0.1% Tween、0.1% BSA)で試料を150μLに希釈し、均一磁場中、磁性促進凝集作用に10分間付し、加熱ブロック中、37℃で1分間平衡化して;かつ、T
2MR読み取り装置を使用して、5つの別々の試料ごとにT
2緩和時間を測定した(
図25を参照)。
【0347】
捕捉プローブで修飾した磁性粒子が、10mer領域にアニーリングするようにプライマーを設計し(10merは、5'または3'末端のいずれかにおいて異なっている)、特異的な増幅プライマーとの凝集についてのユニバーサルアーキテクチャを示す粒子を提供した。
【0348】
図25で示されている結果は、本発明の方法およびシステムを使用して、リアルタイムPCRを実施し、かつ、全血試料中に存在する標的核酸の量についての定量的情報を提供することができることを示す。
【0349】
実施例15. リアルタイムPCR
以前の結果では、粒子がPCR反応中に存在したときに、アンプリコン産生が阻害されることを示した。本発明者らは、熱サイクルの間に粒子を反応チューブの側部に移動させることで、アンプリコンの産生が可能になると仮説を立てる。ナノ粒子をPCR反応の間側壁に維持するように、従って、PCR反応成分への妨害および粒子曝露を最小限にするように簡単な磁性分離器/PCRブロックインサート(
図26)を設計した。磁界を除いたら、粒子を反応混合物中に完全に再懸濁することができる。
【0350】
1つの実験において、本発明者らは、粒子がチューブの側部に隔離して、溶液に戻ることができる割合を試験した。この実験では、1×TE中のC.アルビカンス(3'および5')粒子混合物100μL(約150ミリ秒、非クラスター化T2ベースライン)を、95℃でのクラスター化/非クラスター化プロセスに3回通した。この後に下記のプロトコールを続けた:(i)ボルテックス、37℃で1分間のインキュベート、T
2の測定;(ii)磁気PCRインサート上で95℃にて5分間の加熱;(iii)37℃で1分間のインキュベート、T
2の測定;(iv)15秒間のボルテックス、37℃で1分間のインキュベート、T
2の測定;および(v)工程(ii)へ移行する。この実験の結果を以下の表12に示す。
【0351】
(表12)
【0352】
表12に示すように、完全に可逆的なナノ粒子のクラスター化は、試験した磁性分離器を使用したときに95℃で実証された。粒子は、95℃で少なくとも3回のクラスター化/非クラスター化サイクルで安定である。
【0353】
本発明者らは、次に、反応溶液中、ナノ粒子の存在下でのPCRの効率を試験した。PCRを、以下の2つの条件下で実施した:(1)ナノ粒子が溶液中に完全に分散している;および(2)磁気インサートを使用して、ナノ粒子がPCR試験チューブの側壁で濃縮されている。
【0354】
3つのPCR反応(ナノ粒子が試験チューブの壁上に濃縮されている;ナノ粒子が溶液中に完全に分散している;およびナノ粒子なし)を、出発材料としてC.アルビカンスのゲノムDNAを使用してセットアップした。成功した標的DNA増幅を、ゲル電気泳動を使用して検証した。Seramag粒子で修飾した捕捉プローブを使用した。
【0355】
事前に作製したPCR混合物と100コピーのC.アルビカンスのゲノムDNAを出発材料として使用して、非対称(4:1)PCR反応をセットアップした。1×TE中のC.アルビカンス捕捉粒子混合物(3'および5')を、反応物(1)および(3)に加えた(ベースライン、約150ミリ秒)。コントロール反応(2)はナノ粒子を加えなかった(
図27)。
【0356】
PCRの間、ナノ粒子が溶液中に存在したとき(溶液中に分散または磁界により試験チューブの側壁に濃縮)、PCR産物の形成において違いが観察されなかった。従って、捕捉プローブで修飾したナノ粒子はPCRを妨害しない。ゲル電気泳動により明らかなように、溶液中にナノ粒子が存在した反応と存在しない反応で同等の量の生成物が生成した。また、PCRプロセスの間、試験チューブの側壁へのナノ粒子の磁気濃縮は、PCRに影響を及ぼさない。
【0357】
実施例16. カンジダアッセイおよび臨床データ
迅速、正確、および再現性のある分子診断検査を、10細胞/mLの検出限界(LOD)および2時間未満で終わる時間で、ヒト全血中の5つのカンジダ種を直接検出するために開発した。アッセイの臨床性能は32個の遮光した臨床標本を使用して決定し、この研究において、本発明者らは、100%のカンジダ性敗血症患者試料中で原因となるカンジダ種を正確に同定しながら、血液培養との100%陽性および100%陰性一致率を観測した。本発明者らは、さらに、アッセイをカンジダ陽性患者から採血した血液標本に適用したところ、抗真菌薬処置の時間の経過と一致してカンジダの検出が減少することが観察された。この診断法は、迅速で自動化が可能であり、かつ、臨床医に複雑な生物学的標本中の複数のヒト病原体を検出する機会を提供する。
【0358】
磁気共鳴緩和計
記載の条件下で目的としたアッセイを実施するために、小型の磁気共鳴(MR)システムを正確なT
2緩和測定のために設計および構築した。このシステムは、温度調節により37℃で維持され、かつ、22〜24MHzのプロトン動作周波数に相当するおよそ0.5Tのサマリウムコバルト永久磁石を含有する。全ての標準MR構成部品:高周波プローブ、低ノイズ前置増幅器および送信電子機器、分光計台、ならびに温度調節ハードウェアは、システム内にパッケージングされる。本システムは標準AC電源入力を使用し、かつ、イーサネット(登録商標)を介して外部コンピューターに接続されている。分かりやすいグラフィカル・ユーザー・インターフェースにより使用者が実験パラメーターを設定することが可能である。
【0359】
本システムは、標準的な0.2mLPCRチューブ中の試料で対応可能なように設計された。電子機器ならびにコイルを、適用可能な試料容量の測定精度が改善されるように最適化することで、T
2の単一スキャン実行間の0.1%未満のCVを達成することが可能になった。装置間の変動性は、システム構成要素の2%未満の最小精度要件であり校正を必要としない。
【0360】
ナノ粒子センサーコンジュゲーションおよび特性評価
800nmの総粒子直径を含む高分子マトリクスに組み込まれた非常に多くの酸化鉄ナノ結晶からなる、800nmのカルボキシル化酸化鉄超常磁性粒子(Demas et al., New J. Phys. 13 : 1 (2011)を参照)を、標準的なカルボジイミド化学を使用して、アミノ化DNAオリゴヌクレオチドにコンジュゲートした。DNA誘導体化ナノ粒子を1×トリスEDTA(pH8)、0.1%Tween-20中、4℃で保存した。ナノ粒子コンジュゲートの鉄濃度は、Owen et al., J Immunol Methods, 73 :41 (1984)に記載のように、粒子を6MのHC1に溶解させて、続いて、ヒドロキシルアミン塩酸塩および1,10-O-フェナントロリンを加えて、その後、分光光度検出により測定した。次に、リン酸ナトリウムハイブリダイゼーション緩衝液4×SSPE(600mMのNaCl、40mMのリン酸ナトリウム、4mMのEDTA)中、5つの異なるカンジダ種からの真菌ITS2配列と同一の配列である希釈した合成オリゴヌクレオチド標的を使用して、ハイブリダイゼーション誘導凝集化反応を実施することにより、オリゴヌクレオチド誘導体化粒子を官能化性能試験に供する。凝集化反応の可逆性は、凝集化反応物を95℃の熱変性工程に付し、T
2測定を実施して、かつ、60℃でハイブリダイゼーション、続いて、第二のT
2測定を繰り返し行うことにより確認した。
【0361】
PCRプライマーおよびナノ粒子捕捉プローブの設計
カンジダゲノムの介在転写スペーサー2(ITS2)領域を増幅する5.8Sおよび26SrRNA配列に相補的な、ユニバーサル汎カンジダPCRプライマーを設計した。非対称に増幅されたPCR産物の5'および3'末端それぞれのネステッド配列に相補的な、一対のオリゴヌクレオチド捕捉プローブを設計した。アンプリコンの5'末端にハイブリダイズする捕捉プローブを3'アミノ化し、アンプリコンの3'末端にハイブリダイズする捕捉プローブは5'アミノ化した。ポリTリンカー(n=9〜24)は、捕捉プローブ配列のアミノ基と第一ヌクレオチド塩基の間に付加させる。HPLC精製したPCRプライマーおよび捕捉プローブは、IDT Technologies(Coralville, IA)から入手した。
【0362】
阻害コントロール設計
PCR増幅を阻害する全血標本中でカンジダ種とモニタリング因子を共増幅するように、PCR阻害コントロールを設計した。カンジダrRNAオペロンの5.8Sおよび26S領域と同一の配列である30個のヌクレオチドフランキング配列を含有するように合成鋳型を設計した。この鋳型中の内部配列は、無作為に混ぜたC.アルビカンスアンプリコンから構成される。カンジダの非対称PCR反応物中の過剰に増幅した鎖に相補的な捕捉プローブを設計した。阻害コントロールと同一の配列である合成オリゴヌクレオチドウルトラマー(ultramer)をIDT(Coralville, IA)から入手した。オリゴヌクレオチドを2×SSC中5μMの濃度でアニーリングさせ、標準的な方法を使用して、HindII/EcoRVで消化したpBR322(NEB,Ipswich, MA)にクローニングした。エレクトロコンピテント大腸菌 K12細胞に、ライゲーション反応物1μLをエレクトロポレーションすることにより形質転換を行って、100μg/mLのアンピシリンを含有するLuria Bertani(LB)寒天プレートに形質転換体をプレーティングした。2つのアンピシリン耐性コロニーを選択し、LBアンピシリン培地2mL中で培養した。プラスミドミニプレップ、続いて、制限酵素マッピングを実施して、正しいインサートを含有するクローンを確認した。次に、サンガージデオキシ配列決定を実施し(Seq Wright, Houston, TX)、コントロールのクローニングが成功したかを確認して、正しいインサートを有するクローンでDNAマキシプレップを実施した。増加濃度の全5種のカンジダの存在下で阻害コントロールの滴定を実施して、再現性良く検出することができる阻害コントロールの最小濃度を決定した。公知のPCR干渉物質(SDS、ヘパリン、エタノール)の滴定物の存在下でPCR反応を実施し、コントロールの増幅が阻害されたかを実証することにより、阻害コントロールの機能の確認を実証した。
【0363】
カンジダ培養およびインビトロスパイクした試料の調製
MYA-2876、ATCC2001、ATCC24210、ATCC66029、およびATCC22019は、インビトロスパイクした全血標本を調製するために使用されるC.アルビカンス、C.グラブラータ、C.クルセイ、C.トロピカリス、およびC.パラプシローシス実験室参照株である(ATCC, Manassas, VA)。酵母を酵母ペプトンデキストロース寒天プレート(YPD)上で培養し、25℃でインキュベートした。単一のコロニーを選択し、リン酸緩衝生理食塩水(PBS)中に懸濁した。Accugenix(Newark,Delaware)でのITS2配列決定により種を検証した。次に、細胞を低速遠心分離(3000g、2分間)に付して、新しいPBSで3回洗浄した。次に、PBSで洗浄した細胞のアリコートを、20mLのAccuvette中、ISOTON II希釈剤(Beckman Coulter, Brea, CA)で希釈し、製造業者の使用説明書に従って、Multisizer4コールターカウンター(Beckman Coulter, Brea, CA)で細胞を定量化した。次に、500〜5細胞/PBS緩衝液100μLの濃度範囲に細胞を段階希釈した。K2EDTAバキュテナーチューブ(BD Diagnostics, Franklin Lakes, NJ)中に無菌回収した新しいヒトの健常なドナー血液をProMedXから得た。典型的には、ヒト血液5mLに、定量したカンジダ細胞100μLをスパイクした。次に、全血スパイク試料をアッセイにおいてすぐに使用した。
【0364】
全血PCR
以前に記載の方法を使用して、全血試料1mL中で赤血球溶解を実施し(Bramley et al., Biochimica et Biophysica Acta (BBA) - Biomembranes, 241 :752 (1971) and Wessels JM, Biochim Biophys Acta., 2: 178 (1973)を参照)、次に、低速遠心分離を実施して、上清を除去し、廃棄した。次に、阻害コントロール1500コピーを含有するトリスEDTA(TE)緩衝液(pH8.0)100μLを回収したペレットに加え、その懸濁液を機械的な溶解に付した(Garver et al., Appl. Microbiol., 1959. 7:318 (1959); Hamilton et al., Appl. Microbiol., 10: 577 (1962); and Ranhand, J.M., Appl. Microbiol., 28:66 (1974)を参照)。次に、溶解物50μLを、デオキシヌクレオチド、PCRプライマーおよび全血適合性好熱性DNAポリメラーゼ(T2 Biosystems, Lexington, MA)を含有する非対称PCRマスターミックス50μLに加えた。下記のサイクルパラメーターを使用して熱サイクルを実施した:95℃で5分間の熱変性、95℃で30秒の熱変性工程、62℃で20秒のアニーリング工程、および68℃で30秒の伸長工程から構成される40サイクル、ならびに68℃で10分間の最終伸長。
【0365】
ハイブリダイゼーション誘導凝集作用アッセイ
得られた増幅反応物15μLを0.2mLの薄壁PCRチューブに分割し、リン酸ナトリウムハイブリダイゼーション緩衝液(4×SSPE)中、1反応あたり0.2mMの鉄の最終鉄濃度でオリゴヌクレオチド誘導体化ナノ粒子の組とインキュベートした。ハイブリダイゼーション反応物を、撹拌速度1000rpmに設定した振とうインキュベーター(Vortemp, LabNet International)内で、95℃で3分間インキュベートし、続いて、60℃で30分間インキュベートした。次に、ハイブリダイズした試料を、37℃の加熱ブロックに入れ、温度をMR読み取り装置の温度に3分間平衡化する。次に、各試料を5秒間のボルテックス工程(3000rpm)に付して、T
2測定のためにMR読み取り装置に挿入する。
【0366】
カンジダ患者試料の回収プロトコール
血液培養(T=0)用に採取した標本と同じ日にK2EDTAバキュテナー(BD)に採血した血液検体廃棄物を、Massachusetts General Hospital(MGH)またはHouston University Hospitalの臨床血液学研究室から得た。血液培養陽性結果を有する患者から標本を回収し、分類した。試料を元のバキュテナー中に-80℃で保存し、遮光した検体回収物を氷上で一晩かけてT2 Biosystemsに送った。臨床試料の回収プロトコールは、適切なHuman Research Committeeにより概説されている。
【0367】
統計分析
プロビットモデリングを使用して、種ごとに検出限界を決定した。種ごとに90%の検出レベルおよび95%の信頼区間を計算した。それぞれの生のT
2シグナルをアッセイのバックグラウンドに対してT2ミリ秒として変換した。検出限界、スパイクした標本と培養の一致率、臨床標本における感度および特異度、ならびにカンジダクリアランスを測定するための連続アッセイの分析のための統計的計算に、SAS v. 9.1.3(Cary, NC)を使用した。
【0368】
カンジダのT2 MR検出と血液培養の一致率
カンジダ診断の現在の至適基準は血液培養である。インビトロスパイクした健常なドナー全血標本を、0、33、および100細胞/mLの濃度のC.アルビカンスおよびC.クルセイの実験室参照株、ならびにC.アルビカンスの臨床単離株を使用して調製した。小児科用BACTEC血液培養バイアル(BACTEC Peds Plus/F vials, Beckton Dickenson)に、T
2MRにより評価したインビトロスパイクした標本のアリコートを接種した。カンジダ細胞を接種した血液培養バイアルは、全ての場合で8日目に血液培養陽性であった。全体で、133個の血液培養ボトルに、90個のカンジダでスパイクした血液試料(33細胞/mLの接種)または43個の陰性血液試料を接種した。T
2MRと血液培養の間で98%の陽性一致率および100%の陰性一致率が観測された。
【0369】
臨床標本データ
T
2MRカンジダアッセイの臨床性能を試験するために、K2EDTA全血患者標本を得た。敗血症の症状を呈する患者を培養用に採血した。血液試料保持物(retain)を血液学研究室内にて4℃で保存し、転帰が、カンジダに血液培養陽性、菌血症に血液培養陽性、またはそのプラットフォームで実行される試料の範囲を良好に表す血液培養陰性であったかどうかT
2MRについて選択した。14個の試料はカンジダ性敗血症患者から、8個の試料は菌血症患者から、かつ10個の試料は血液培養陰性患者からである。
図29は、全32個の患者試料で測定したT
2値を示す。各標本1mLを使用して単一PCR反応を実施した。750コピーの内部阻害コントロールを各PCR反応に加えた。カンジダ陰性試料の中で、平均内部コントロール(IC)シグナルは279ミリ秒であり、18個のカンジダ陰性標本にわたってCVは25%であった。ICシグナルが、識別閾値未満であったことはなく(128ミリ秒、カンジダ陰性検出反応において測定された平均T
2に加えた5標準偏差)、このことは、全ての陰性が真の陰性であり、阻害物質が全血試料と共に存在しなかったことを示唆する。検出反応はIDSAガイドラインに基づくマルチプレックスであり、3つの結果が以下のように報告された:C.アルビカンスまたはC.トロピカリス陽性;C.クルセイまたはC.グラブラータ陽性;およびC.パラプシローシス陽性。カンジダ陰性標本において測定された平均T
2は114ミリ秒であり、これらの測定のCVは2.4%であり、識別閾値(カンジダ陰性検出反応において測定された5標準偏差とカンジダ陰性標本において測定された平均T
2を加えることにより計算された)は128ミリ秒であった。カンジダに陽性の標本では、ICシグナルは増幅試薬に対する競合に起因して抑制された。高C.アルビカンスの場合では、C.パラプシローシス粒子(例えば、患者試料#3)を用いた検出でいくつかの交差反応が観察されたが、しかし、このシグナルはカットオフ(20ミリ秒)を大きく超えることなく、C.アルビカンスとC.パラプシローシスの両方がフルコナゾールに感受性であるため、抗真菌薬療法において違いが生じない。
【0370】
T
2MRで同定に成功したC.アルビカンス、C.パラプシローシス、またはC.クルセイの14個の試料は、血液培養、その後の、Vitek 2生化学的カードにより陽性であると確認した。さらに、検出は、カンジダ属に特異的であっが、大腸菌、腸球菌属、黄色ブドウ球菌、クレブシエラ・ニューモニエ、コアグラーゼ陰性ブドウ球菌、またはα溶血性連鎖球菌を有する菌血症患者試料は陰性のままであった。
【0371】
カンジダクリアランスのモニタリングにおけるアッセイの有用性を実証するために、カンジダ性敗血症を疑う症状、例えば、抗生物質を投与した後に持続性の発熱を示す2人の患者から連続的に採取した試料を試験した。血液培養用の採血と同じ日にT
2MR用の採血を行った。次に、患者Aでは9日間にわたって、患者Bでは5日間にわたって監視培養物を採取した。
図3は、両方の患者についてT
2MR法を用いて得られた結果を示す。患者Aから培養用に採血し(t=0)、カンジダ性敗血症と診断して、血液培養(t=l)の翌日にミカファンギン(C.グラブラータ)を静脈内投与した。t=0日目、t=3日目、t=7日目、t=8日目、t=9日目にT
2MRを用いて全血標本を試験した。得られたT
2MR値は、t=0では320ミリ秒、t=3では467ミリ秒、t=7では284ミリ秒、t=8では245ミリ秒、かつ、t=9では117ミリ秒(カットオフ未満)であった。続いて、3日目および8日目に採血した血液培養物は、培養陽性までにそれぞれ24および48時間要した。一連の連続的に採取した標本を患者Bから得た。0日目にT
2MRを用いてC.アルビカンスを正確に検出した(T
2=426ミリ秒)。血液培養は2日目に陽性になり、C.アルビカンスの同定を続けた。患者にミカファンギンを投与した翌日、C.アルビカンスのT
2MRが明らかに激減し(T2=169ミリ秒)、抗真菌薬処置を開始した3日後以降、C.アルビカンスは検出されなかった。全ての試験は、高速ブロック式PCRサーモサイクラーおよび速度を最適化していない3工程の熱サイクル手順を使用して総処理時間2時間で完了した。
【0372】
結論
本発明者らは、非光学的検出の利点を活用して、検体精製を除去することにより、より迅速な所要時間およびより再現性の高い結果を得ることが可能となる、臨床上重要な5つのカンジダ種を検出することができる、全血T
2MRカンジダアッセイを開発および検証した。非対称PCRを使用して、全血中で直接カンジダゲノムのITS2領域を特異的に増幅することにより、臨床的に関連する検出感度を達成した。オリゴヌクレオチド誘導体化ナノ粒子の2つのプールを、一本鎖アンプリコンの各々の末端にハイブリダイズさせるT
2検出方法を開発した。従って、アンプリコンは粒子間テザーとして働き、水分子中のプロトンのスピン-スピン緩和時間測定(T
2)において測定可能で再現性のある変化を生成するナノ粒子凝集作用を誘導する。本発明者らは、さらに、患者試料に存在し得るPCR阻害剤をモニタリングするための内部阻害コントロールを構築および実施した。
【0373】
本アッセイは、コールターカウンターにより定量化し、かつ、健常なドナー全血にスパイクした参照株および臨床単離株を使用して評価した。アッセイの再現性は、C.アルビカンスでスパイクした血液(同じ試料、同じ作業者、同じ装置)を使用して10日間かけて測定し、かつ、本発明者らは、全動的応答範囲(0〜1E5細胞/mL)で、12.8%(n=30)未満のCVを観察した。≦10細胞/mLの分析感度および検出限界が、C.アルビカンス、C.トロピカリス、C.クルセイ、およびC.パラプシローシスで測定され、かつ、>10細胞/mLでは、C.グラブラータの場合に10細胞/mLで92.5%検出された。証明されてはいないが、より高いL
ODがC.グラブラータで観察された原因として考えられるものは、他のカンジダ種は二倍体であるがC.グラブラータは天然に半数体として存在することが公知であるため、他の疑われるカンジダ属と比較してC.グラブラータにおいてrDNAオペロンコピー数が減少することであるかもしれない。カンジダ診断の至適基準との一致率は高く、133個のインビトロスパイクしたC.アルビカンスおよびC.クルセイ試料で観測された98%陽性および100%陰性一致率であった。結果が得られる時間はT
2カンジダ試験の場合2時間であったが、血液培養陽性までの時間は、典型的には、C.アルビカンスでは2日間、かつ、カンジダ・クルセイでは約1日間(18〜24時間)であったことに留意すべきである。
【0374】
32個の臨床標本は、血液培養の結果と同様である。測定されたT
2は、平均に加えた、カンジダ陰性標本で測定されたT
2値の5標準偏差で確立されたカットオフを超えていた。この場合、閾値は128ミリ秒(n=54)であった。内部コントロールが、全32個の反応物中で、カンジダ陽性患者において観測されたICシグナルの減少、およびカンジダ陰性標本(n=18)にわたって25%のCV(279ミリ秒の平均T
2)で検出されたように、本発明者らがPCR反応の阻害を観察した事例はなかった。交差反応が菌血症標本(n=8)のいずれにおいても観察されなかったので、本アッセイは、カンジダ検出に非常に特異的である。カンジダ陽性標本が正確に同定され、原因となるカンジダ属が正確に同定され、かつ、全てにおいて2時間内に結果が出た。
【0375】
抗真菌薬療法の投与後のカンジダクリアランスの迅速検出を提供するこのアッセイの可能性もまた実証した。患者試料の2つのセットを採取し、これをT
2MRに付した(
図3)。患者Aにおいて、0日目および3日目にC.グラブラータについて中〜高いT
2シグナルが観測され、抗真菌剤は1日目に投与した。後日、C.グラブラータのシグナルの減少が観測されたが、抗真菌薬処置の8日後には観測不可能であった。強いC.アルビカンスのシグナルが0日目に患者Bで測定され、かつ、抗真菌薬投与の1日後にT
2シグナルの激減(306ミリ秒のΔT
2)が観測されたが、抗真菌薬処置の2日後には観測不可能であった。予備的ではあるが、このデータは、この試験を処置の有効性およびカンジダクリアランスをリアルタイムにモニタリングするために使用することができることを示唆している。
【0376】
結論として、本発明者らは、5つの最もよく見られるカンジダ種により引き起こされるカンジダ性敗血症の診断のための高感度および特異的な試験を開発した。早期の臨床結果は心強く、かつ、迅速な診断および種の同定が達成可能であり、適切な抗真菌薬による早期処置を促進するだけでなく、カンジダクリアランスをモニタリングする手段も提供することができることを示す。本発明者らは、このナノ粒子ベースのT
2MR法が、様々な標本型および病原体における感染性疾患の診断に広く適用することができることを予測する。
【0377】
実施例17. Fabを利用したタクロリムスアッセイ
タクロリムスアッセイは、赤血球および結合タンパク質からタクロリムスを遊離させるために抽出されたEDTA全血試料を使用して実施される、均一競合イムノアッセイである。アッセイの重要な要素は、高親和性のタクロリムス抗体、信頼性の高い抽出方法、ならびに特異的凝集を促進および非特異的凝集を最小化するために選択された緩衝液システムの改善である。本アッセイのこのバージョンは、タクロリムスに高親和性の組み換え一価Fabを利用する。
【0378】
タクロリムスアッセイは、全血キャリブレーター、市販の全血コントロール、スパイク試料および患者試料を使用して評価した。
【0379】
アッセイ試薬は、下記を含む:(a)BSA、および一価Fab抗体で連続的にコンジュゲートし、かつ、mPEG-チオール+NEMでブロッキングした244nmの粒子(粒子は、アッセイ緩衝液中0.2mMのFeに希釈する);(b)タクロリムスとBSAのインプット比10:1でBSAにコンジュゲートしたC22改変タクロリムス(アッセイ緩衝液中600ng/mLに希釈した);(c)100mMのグリシン(pH9.0)、1% BSA、0.05% Tween80、150mMのNaCl、および0.05%Proclinのアッセイ緩衝液;および(d)dH
2O中70% MeOH、60mMのZnSO
4の抽出試薬。
【0380】
全血キャリブレーターを、100% MeOH中1mg/mLのSigma FK506ストックを使用して調製した。EDTA全血に様々なレベルのタクロリムス溶液をスパイクした。スパイクした血液を穏やかに混合しながら37℃でインキュベートし、次に、分割および凍結するまで一晩4℃で保存した。標的レベルは、0、1、2、5、10、20、50、100、および250ng/mLのタクロリムスである。キャリブレーターは、アーキテクトタクロリムスアッセイによる数値割り当てのために外部の研究室に提供した。試料を質量分析によりアッセイした。結果は、理論値対実測値の割り当てに対して、0.9998の相関を示す。
【0381】
品質コントロールは、3つのレベルのUTAK免疫抑制マトリクスコントロールから構成される。患者試料は、タクロリムス療法を受けている移植患者から得た。
【0382】
試験プロトコールは以下のとおりである:
(i)全ての試料、キャリブレーター、QCおよび試薬を室温に平衡化し、穏やかに反転させることにより混合する。
(ii)200μLの試料、キャリブレーター、またはQC材料を1.5mL遠心分離チューブにピペットで移す。抽出試薬200μLを加え、30秒ボルテックスする。試料を室温で2分間インキュベートし、10,000rpmで5分間遠心分離する。清澄な上清をきれいなチューブに移し、アッセイ緩衝液を使用して2.5×希釈物を調製する。
(iii)希釈抽出物10μLおよび希釈粒子10μLを反応チューブにピペットで移し、ボルテックスで混合して、37℃で15分間インキュベートする。BSA-tacコンジュゲート20μLを反応チューブにピペットで移し、ボルテックスで混合して、37℃で15分間インキュベートする。試料を、勾配磁場中、6サイクルの磁性促進凝集作用に付す(12分間)。ボルテックスで混合して、37℃で5分間インキュベートし、T
2読み取り装置を用いて37℃で読み取る。
【0383】
キャリブレーターを試験ごとに3連で試験した(合計6回の実行)。個々の実行データを、Windows用GraphPad Prism 5 バージョン5.02(GraphPad Software, San Diego California USA)を使用して、5PLモデルに適合させた。0キャリブレーターを0.01ng/mLとして入れ、曲線モデルで使用した。得られた校正曲線(ランキャリブレーション)を使用して、実行に含まれる全てのキャリブレーター、全血スパイク、QCおよび患者試料のタクロリムス濃度を逆計算した。
【0384】
また、キャリブレーターごとに全3日間にわたる研究(n=18)データを適合させることにより、マスター校正曲線(master calibration curve)を得た。マスター曲線を使用して全ての試料を逆計算し、得られたタクロリムスレベルを、ランキャリブレーションを使用して得られたものと比較した。
【0385】
13個のメンバー(9個のキャリブレーター、3個のコントロールおよび1個のスパイクした全血試料)から構成される再現性パネルを、1日あたり2回の実行で3日間にわたり3連で試験した(合計18連)。研究期間中、キャリブレーターを-80℃で保存し、コントロールおよび全血スパイクを4〜8℃で保存した。
【0386】
ランキャリブレーション曲線、ならびにGraphPrismのマスター曲線を使用して試料濃度を予測した。実行以内、1日以内、一日毎および全体の正確さを、MiniTab15を使用してANOVAにより計算した。
【0387】
ランキャリブレーション法を使用して予測したデータは、約3〜210ng/mLのタクロリムス濃度範囲にわたって、<25% CVの全体の不正確さを示した。
【0388】
分析感度を2SD法により計算した。0キャリブレーターの18連の標準偏差を決定した。次に、最大T
2でのタクロリムスレベル(曲線適合のトップ漸近線)-2SDを計算して、マスター校正曲線を使用して濃度を予測した。分析感度は、0.8ng/mLである。
【0389】
タクロリムス抗体の開発およびスクリーニングの間、5つのタクロリムス代謝産物に対して抗体特異性を評価した。5つの代謝産物のそれぞれを用いてELISA阻害を実施し、5つの親和性成熟クローンおよび交差クローニングによる追加の親和性成熟を有する7つのクローンについて遊離タクロリムスと比較した。2つの交差クローンおよび最先端のマウスモノクローナルRUO抗体についてのデータを下記に示す。観察された交差反応だけが、15-O-デスメチル代謝物にわずかに反応性であった。
【0390】
タクロリムスアッセイ性能のまとめを下記に表で示す。
【0391】
(表13)
【0392】
実施例18. 核酸検体の検出のためのナノ粒子の調製
単一プローブ粒子の調製:800nmの総粒子直径を含む高分子マトリクスに組み込まれた非常に多くの酸化鉄ナノ結晶からなる、800nmのカルボキシル化酸化鉄超常磁性粒子(Demas et al., New J. Phys. 13:1 (2011)を参照)を、使用前にマグネティックラックを使用して洗浄した。磁性粒子を、ヌクレアーゼフリー水66μL、250mMのMES緩衝液(pH6)20μL、およびアミノ化プローブ(IDTから得た)4μL中に、調製する粒子1mgあたり1mMの濃度で再懸濁した。3'アミノ化プローブ粒子および5'アミノ化プローブ粒子を調製した(例えば、C.パラプシローシス用のプローブ)。プローブを粒子に加え、チューブを保持するための発泡体ホルダーを備えたボルテックスミキサーを使用して懸濁液をボルテックスした。粒子が跳ねることなくよく懸濁するような速度にボルテックスミキサーを設定した。次に、N-エチル-N'-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)を水に溶解させ、ボルテックスしている粒子-プローブ混合物にすぐに加えた。次に、チューブを閉管し、インキュベーター内で回転させながら、37℃で2時間インキュベートした。次に、チューブをマグネティックラックに入れ、反応流体を除去した。粒子を以下のように、連続して洗浄した(125μL/mg粒子):水、水、0.1Mイミダゾール(pH6.0)(回転させながら37℃で5分間インキュベートしながら)、水、0.1M重炭酸ナトリウム(pH8.0)(回転させながら37℃で5分間インキュベートしながら)、水。次に、粒子を、0.1M重炭酸ナトリウム(pH8.0)中、回転させながら60〜65℃での1時間の加熱-加圧に付した。加熱-加圧した後、チューブをマグネティックラックに入れることにより重炭酸塩を除去した。次に、粒子を、保存緩衝液(トリスEDTA、0.1% Tween20)中に再懸濁し、ボルテックスした。保存緩衝液を除去し、保存緩衝液の最後の100μLを粒子調製物に加えた。粒子を2〜8℃で保存し、粒子の鉄濃度を決定するための鉄試験を用いて定量化して、標的核酸に対して試験した(例えば、C.パラシローシスのITS2オリゴ滴定)。カンジダアッセイでは、粒子を、防腐剤として0.09%アジ化ナトリウムを補充した8×SSPE中で希釈する。
【0393】
二重プローブ粒子の調製:二重プローブ粒子の調製は、磁性粒子に加える前に第二のプローブ(例えば、3'アミノ化C.アルビカンス)および第一のプローブ(例えば、3'アミノ化C.トロピカリス)の等量を混合する以外は、上記と同じ手順である。同様に、磁性粒子に加える前に5'アミノ化プローブの等量を混合した。
【0394】
実施例19. カンジダアッセイの改良
実施例16のカンジダアッセイの検出限界は、ペレットを洗浄することにより改善された。全血2.0mLを、TRAX赤血球溶解緩衝液(すなわち、ノニルフェノキシポリエトキシエタノール(NP-40)と4-オクチルフェノールポリエトキシレート(Triton-X100)の混合物)100μLと混ぜ合わせ、約5分間インキュベートした。試料を6000gで5分間遠心分離して、得られた上清を除去し、廃棄した。ペレットを洗浄するために、ペレットをトリスEDTA(TE)緩衝液(pH8.0)200μLと混合し、ボルテックスに付した。試料を再び6000gで5分間遠心分離して、得られた上清を除去し、廃棄した。洗浄工程に続き、ペレットをTE緩衝液100μLと混合し、激しく撹拌しながらビーズ(例えば、0.5mmガラスビーズ、0.1mmシリカビーズ、0.7mmシリカビーズ、または異なるサイズのビーズの混合物など)で破砕した。試料を再び遠心分離した。次に、得られた溶解物50μLを、デオキシヌクレオチド、PCRプライマーおよび全血適合性好熱性DNAポリメラーゼ(T2 Biosystems, Lexington, MA)を含有する非対称PCRマスターミックス50μLに加えた。実施例16に記載のように熱サイクルおよびハイブリダイゼーション誘導凝集作用アッセイを実施して、血液試料中にカンジダが存在することを特徴とするT
2値を生成した。アッセイは、(i)カンジダ陽性試料において、20%未満のT
2値の変動係数;(ii)5細胞/mL以下で、50人の個々の健康な患者の血液試料にスパイクされた試料において、少なくとも95%の正確な検出;(iii)5細胞/mL以下で、50人の個々の不健康な患者の血液試料にスパイクされた試料において、少なくとも95%の正確な検出;および/または(iv)2mLの血液で開始して、臨床的に陽性の患者試料(すなわち、細胞培養などの別の技術によるカンジダ陽性)における80%以上の正確な検出を生成することができる。
【0395】
本願は、2010年10月22日に出願された米国出願第12/910,594号の優先権の主張を伴うものであり、かつ、2010年11月16日に出願された米国仮特許出願第61/414,141号、2010年12月1日に出願された米国仮特許出願第61/418,465号、および2011年6月15日に出願された米国仮特許出願第61/497,374号(各々参照により本明細書に組み入れられる)の恩典の主張を伴うものである。
【0396】
他の態様
本明細書において言及される全ての刊行物、特許、および特許出願は、あたかも、各々独立した刊行物または特許出願が参照により組み入れられたものであることが具体的に、かつ、個別に示されたかのように同程度に、参照により本明細書に組み入れられる。
【0397】
本発明はその具体的な態様と併せて記載しているが、さらなる改変が可能であること、かつ、本願が、一般的に、本発明の原理に従うとともに、本願が属する技術分野の公知のまたは慣習的な実施の範囲にあるものとして、かつ、本明細書に上記した本質的な特徴に適用することができ、かつ、特許請求の範囲に従うような、本開示からの逸脱を含む、本発明の任意の変形、使用、または適用を包含することを意図することが理解されるであろう。
【0398】
他の態様は、特許請求の範囲内である。