特許第6649684号(P6649684)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ジー・エフ マシーニング ソリューションズ アー・ゲーの特許一覧

<>
  • 特許6649684-びびり予測のための改良型データベース 図000002
  • 特許6649684-びびり予測のための改良型データベース 図000003
  • 特許6649684-びびり予測のための改良型データベース 図000004
  • 特許6649684-びびり予測のための改良型データベース 図000005
  • 特許6649684-びびり予測のための改良型データベース 図000006
  • 特許6649684-びびり予測のための改良型データベース 図000007
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6649684
(24)【登録日】2020年1月21日
(45)【発行日】2020年2月19日
(54)【発明の名称】びびり予測のための改良型データベース
(51)【国際特許分類】
   B23Q 15/12 20060101AFI20200210BHJP
   G05B 19/404 20060101ALI20200210BHJP
   B23Q 17/09 20060101ALI20200210BHJP
【FI】
   B23Q15/12 A
   G05B19/404 K
   B23Q17/09 A
【請求項の数】13
【外国語出願】
【全頁数】13
(21)【出願番号】特願2015-43436(P2015-43436)
(22)【出願日】2015年3月5日
(65)【公開番号】特開2015-168057(P2015-168057A)
(43)【公開日】2015年9月28日
【審査請求日】2018年1月26日
(31)【優先権主張番号】14157853.4
(32)【優先日】2014年3月5日
(33)【優先権主張国】EP
(73)【特許権者】
【識別番号】519198557
【氏名又は名称】ジー・エフ マシーニング ソリューションズ アー・ゲー
【氏名又は名称原語表記】GF Machining Solutions AG
(74)【代理人】
【識別番号】100114890
【弁理士】
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100099483
【弁理士】
【氏名又は名称】久野 琢也
(72)【発明者】
【氏名】ジャン−フィリップ ブスシェ
(72)【発明者】
【氏名】ジェレミー モナン
【審査官】 藤井 浩介
(56)【参考文献】
【文献】 特開平06−208465(JP,A)
【文献】 特開2010−146537(JP,A)
【文献】 特開2012−088783(JP,A)
【文献】 特開2012−171058(JP,A)
【文献】 特開2004−265321(JP,A)
【文献】 特開2010−042499(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 19/18−19/416;19/42−19/427
B23Q 15/00−15/28;17/00−23/00
(57)【特許請求の範囲】
【請求項1】
中央びびりデータベースを含むびびりデータベースシステムであって、
前記中央びびりデータベースには、工作機械の機械加工条件データおよびびびり条件データが供給される、びびりデータベースシステムにおいて、
前記中央びびりデータベースに供給されるデータは、前記びびりデータベースシステムに含まれる少なくとも2つの個別の工作機械から取得および収集され、前記少なくとも2つの個別の工作機械は、それぞれ、機械制御部を有しており、前記データは、現実の条件に基づいたびびり安定性マップを生成するために、データ接続部を介して、前記中央びびりデータベースに送信され、
前記びびりデータベースシステムは、前記中央びびりデータベースに含まれるクラス識別システムを含み、前記クラス識別システムは、前記少なくとも2つの個別の工作機械のそれぞれから収集され、かつ、前記中央びびりデータベースに送信されたデータから、機械加工条件のセットを定義するために使用され、前記クラス識別システムが、一意的な安定性マップを生成するために、前記機械加工条件のセットについて、種々の機械加工動作によって提供されるびびり条件比較することによって、びびり条件に関して同等な前記機械加工条件が得られる、
ことを特徴とする、びびりデータベースシステム。
【請求項2】
少なくとも2つの個別の工作機械から前記中央びびりデータベースに収集される前記データによって生成される前記びびり安定性マップは、前記個別の工作機械の機械制御部によって取り出される、または、データ接続部を介してCAMオペレータに送信されることを特徴とする、請求項1記載のびびりデータベースシステム。
【請求項3】
前記個別の工作機械は、前記びびり条件データを生成する自動びびり検出システムを含むことを特徴とする、請求項1または2記載のびびりデータベースシステム。
【請求項4】
前記機械制御部は、当該機械制御部を有する前記工作機械の機械加工条件データを集めることを特徴とする、請求項1から3のいずれか一項記載のびびりデータベースシステム。
【請求項5】
前記びびり条件データおよび前記機械加工条件データは、前記機械制御部によって集められ、前記個別の工作機械から前記中央びびりデータベースまで、前記データ接続部を介して送信されることを特徴とする、請求項1から4のいずれか一項記載のびびりデータベースシステム。
【請求項6】
前記びびりデータベースシステムは、前記中央びびりデータベースに含まれるびびりデータ検証システムを含み、前記びびりデータ検証システムは、前記中央びびりデータベースに収集される前記びびり条件データに矛盾がないことを確認することを特徴とする、請求項1から5のいずれか一項記載のびびりデータベースシステム。
【請求項7】
矛盾するびびり条件データが検出された場合、前記びびりデータ検証システムは、これらのデータを前記中央びびりデータベースから取り除き、対応する工作機械の前記機械制御部に前記データ接続部を介して送出される警告信号を生成することを特徴とする、請求項6記載のびびりデータベースシステム。
【請求項8】
前記びびりデータベースシステムは、びびりの発生を計算および予測するための物理的モデルが埋め込まれているびびり予測システムを含むことを特徴とする、請求項1から5および7のいずれか一項記載のびびりデータベースシステム。
【請求項9】
前記びびり予測システムは、計算されたびびり予測を検証し、前記埋め込まれた物理的モデルを調整するために、前記中央びびりデータベースに保存された前記機械加工条件データおよび前記びびり条件データを使用することを特徴とする、請求項8記載のびびりデータベースシステム。
【請求項10】
前記物理的モデルの調整は、アルゴリズムによって発生し、機械加工条件およびびびり条件を伴う所定の量の新たなデータセットが、前記中央びびりデータベースに供給された後に発生する、請求項9記載のびびりデータベースシステム。
【請求項11】
前記びびり予測システムは、前記中央びびりデータベースに含まれ、機械加工条件の所与のセットに対する、結果として生じる計算されたびびり予測もまた、前記中央びびりデータベースに記憶され、前記工作機械の前記機械制御部が前記データ接続部を介して、前記びびり予測を取り出すことを特徴とする、請求項8から10のいずれか一項記載のびびりデータベースシステム。
【請求項12】
前記びびり予測システムが、前記工作機械の前記機械制御部に実装されており、前記びびり予測システムは、前記中央びびりデータベースから、前記工作機械の動作中にびびりの発生を予測するための、前記個別の工作機械の予見される機械パラメータ設定と同等の機械加工条件に対応する、記憶されたびびりデータを取り出すことを特徴とする、請求項8から10のいずれか一項記載のびびりデータベースシステム。
【請求項13】
前記工作機械が、ミリング工作機械、旋盤工作機械、穿孔工作機械、または、ボーリング工作機械である、請求項1から12のいずれか一項記載のびびりデータベースシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、請求項1の上位概念部に記載されたびびりデータベースシステムに関する。
【背景技術】
【0002】
高性能機械加工(HPM)プロセスは、最終生成物の品質に制約を加え(例えば、許容範囲外の波状表面仕上げされた加工製品)、かつ、追加のコスト(例えば、過度のツール摩耗)を発生させるびびり現象(chatter phenomenon)の発生に定期的に直面する。切削プロセスと機械ツールの構造力学との間の閉ループ的な相互作用に起因して、高振幅の自励振動(びびり)が、ツールと加工製品との間で生じ、上述した品質の問題をもたらす。HPMアプリケーションに対する、常にかなり厳しい市場の要求に立ち向かうために、工作機械製造業者は、びびりに関する問題を高い信頼度で予測し、防ぎ、早期に検出できるような解決策を提案しなければならない。
【0003】
生産性の損失をもたらすことなしに、びびりに関する問題を抑制するいくつかの方法がある。その中でも、モデルベースの手法が最も高い可能性を示している。しかしながら、初期の研究によって、実際に遭遇する広範囲の機械加工条件に対する、物理的モデルに基づいた、びびりの予測に対する信頼度が欠如していることが指摘された。これらの予測は、また、時間のかかる手順を必要とし、その大部分は、実装に時間がかかる。これらの全ての理由により、このような現象の制御のためのモデルベースの方法の大きな可能性が、実際にはかなり低減されている。
【0004】
びびりを予測する手法の改良は、機械加工プロセスをびびりの発生から防ぎやすいモデルベースの手法のアプリケーションに必要とされる第1のステップを構成する。例えば、これらの予測に基づいて、大規模な機械加工テストを自ら行うことなしに、びびりのない機械加工条件を保証する最適な生産性に到達するために、機械がオペレータにヒントを提供する。
【0005】
良好に設計されたびびり予測のアプリケーションは、いずれにしても、プロセスの力学を良好なレベルで理解することと共に、その構成要素(機械、ツールおよび加工品)の全てを有するメカトロニックなシステムの正確なモデリングを必要とする。
【0006】
ミリングプロセス中においては、再生型びびりが最も重要なタイプのびびりである。再生型びびりは、加工品材料内での切削工具の現在の振動および事前の切削によって残された波状表面によって生成される可変のチップ厚によって引き起こされる。機械構造を励起する可変の切削力と、機械構造の振動との間の段階に起因して、エネルギーが振動システムに供給されて、不安定な自励振動をもたらす。この現象は、通常、スピンドル速度に依存する(軸方向における加工品における回転ツールの)臨界的な切削深度によって表現される安定性限界を特徴とする。安定性限界に達する前により大きな切削深度が選択されるスピンドル速度を示している一連のローブに安定性限界は対応しているため、このチャートは、一般的に「安定性ローブダイアグラム」と呼ばれる。いわゆる安定性ローブダイアグラムの例は、図1の上部の図で例示されている(参考文献[1]:非特許文献1)。
【0007】
安定性ローブダイアグラムが信頼度高く予測されている場合、びびり現象は制御可能である。例えば、特定の機械加工動作に対して、オペレータが、対応する安定性チャートを知っている場合、オペレータは、機械加工パラメータ(例えば、スピンドル速度または切削深度)を相応に選択する可能性を有し、びびりのない条件において最適な機械生産性を可能にする(図1参照)。
【0008】
図1は、選択された2つの機械加工条件を例示している。第1の条件は、9500rpmのスピンドル速度で4.7mmの軸方向切削深度によるものであり、この条件は、びびりが発生する機械加工条件に相当する。この条件は、第2の条件より大きな切削力および表面粗さを示している左側下部の図によって示されており、上記第2の条件は、14000rpmのスピンドル速度で同一の軸方向切削深度によるものであり、第2の条件では、ミリングプロセスは安定したままである。第1の条件に対応するびびり振動数は、最下部の左側のチャートにおいて見られ、第2の条件については、歯が通過する振動数の高調波のみが見られる。
【0009】
安定性ローブダイアグラムは、モデルベースの手法を用いて予測可能である。このことは、オペレータが、機械加工試験を事前に行うことなしに、最適な機械加工パラメータを選択することを可能にする。しかしながら、モデルベースのびびり安定性予測は、通常、信頼度が欠けており、この予測に対する検証は、大規模な機械加工試験を必要とする。
【0010】
今日の最先端技術は、データベース作成のためにびびりをモニタリングすることに、工作機械の切削パラメータを相応に適応させる自己学習アルゴリズムを組み合わせる。
【0011】
コンピュータを用いて動作パラメータを測定し、これらの値を知識データベース(エキスパートシステム)で評価し、最適の動作パラメータを決定することが公知である。例えば、DE4333286(特許文献1)は、機械の擾乱またはエラーを診断するためのエキスパートシステムを開示している。
【0012】
DE19643383(特許文献2)は、センサを用いた、振動を含む動作パラメータの測定、および、ニューラルネットワークを用いた、これらの測定された値および振動数の解析を開示している。このシステムは、また、比較値の保存のためのデータベース(エキスパートシステム)を含み、このデータベースは、自己学習型のデータ処理および機械制御のために使用される。
【0013】
EP2614922(特許文献3)は、びびり検出および制御システムを開示しており、このシステムは、スピンドルの回転速度を調整する。US2012253708(特許文献4)は、測定された振動数を解析し、生成されたびびり振動が、再生型びびり振動であるか、回転周期が引き起こすびびり振動であるか、あるいは、溝(flute)通過周期が引き起こすびびり振動であるかを決定する装置を開示している。US2012318062(特許文献5)もまた、発生したびびり振動のタイプを決定する(例えば、ツールと加工品との間の摩擦に起因して発生するびびり振動、および、機械加工による衝撃力が引き起こすびびり振動)。
【0014】
オークマ株式会社のJP2012187685(特許文献6)などのさらなる刊行物は、スピンドル回転速度を調整することによる、びびりのモニタリングおよび制御を開示している。
【0015】
市場では、切削パラメータを適応することによるびびり検出および低減のための種々のソフトウェアアプリケーションが見つかる。
【0016】
Manufacturing Automation Laboratories Inc.は、“ChatterPro”と呼ばれるびびり回避ソフトウェアを開発している。このソフトウェアは、完全に自動化されたオンラインびびり検出および回避プログラムであり、このソフトウェアは、CNCミリングシステムに完全に統合される。このソフトウェアは、びびりを検出するために、マイクロフォンおよび機械制御部を介してプロセスをモニタリングする。びびりが発生した場合、このソフトウェアは、自動的に、フィードを停止し、スピンドル速度を適応させる。高速のミリング動作においては、このソフトウェアは、びびりのない領域の近くまで、スピンドル速度を増加させることを試みる。低速のミリング動作においては、このソフトウェアは、スピンドル速度変動手法を適用することにより、スピンドル速度を周期的に変調する。この製品は、現在、開発の最終段階にある。
【0017】
Manufacturing Laboratories Inc.による“Harmonizer”というソフトウェアは、びびり発生の検出にマイクロフォンを使用し、最適のスピンドル速度範囲を示唆する。ユーザは、近似的なスピンドル速度と、切削工具上の歯の数とを入力するだけである。このソフトウェアは、閾値を自動的に設定可能であり、記録されたデータ内のびびりの存在を示す。びびりが検出されたとき、ソフトウェアは、存在する場合には1つの安定したスピンドル速度を推奨する。この製品は、IOSおよびアンドロイドオペレーティングシステムのためのスマートフォンアプリケーションとしてでさえ利用可能である。
【0018】
CNC工作機械製造業者オークマ株式会社は、“Machining Navi”という名称で、びびり検出および軽減のための種々のシステムを開発した。“Machining Navi L−g”は、より低速で動作可能である旋盤に対するオプションである。このシステムは、びびりを抑制するために、自動的なスピンドル速度変動を使用する。“Machining Navi M−g”というオプションは、動作パネル上に取り付けられたマイクロフォンによって記録された音に基づいて、複数の最適スピンドル速度を示唆する。スピンドル速度を変更するという決定がオペレータに届く。“Machining Navi−l”というオプションには、ビルトインセンサがびびり振動を検出し、スピンドル速度が理想的な範囲に自動的にシフトされる。
【0019】
これらの公知のシステムの不利な点は、a)現実的なミリング条件における物理的モデルに基づくびびり予測システムの信頼度の欠如、または、b)測定ベースの自己学習アルゴリズムに関して、現象の物理学への直接的な関連性が喪失し、事実として、びびり発生の現実的な理解が妨げられる、のいずれかである。このことに加えて、公知のびびり予測システムの全てが、その予測方法を、より広範囲の切削条件に拡張することができない。
【先行技術文献】
【特許文献】
【0020】
【特許文献1】独国特許発明第4333286号明細書
【特許文献2】独国特許出願公開第19643383号明細書
【特許文献3】欧州特許出願公開第26149222号明細書
【特許文献4】米国特許出願公開第2012−253708号明細書
【特許文献5】米国特許出願公開第2012−318062号明細書
【特許文献6】特開2012−187685号公報
【非特許文献】
【0021】
【非特許文献1】Y.AltintasおよびS.Engin,「Generalized modeling of mechanics and dynamics of milling cutters」、CIRP Annals,Vol.50/1(2001),p.25−30
【発明の概要】
【発明が解決しようとする課題】
【0022】
本発明の目的は、広範囲の切削条件に対する、工作機械のびびり安定性を評価および予測可能なツールを提供して、それにより、公知のびびり予測システムの予測能力を改良することである。
【課題を解決するための手段】
【0023】
本発明の上記目的は、請求項1の特徴部に記載のびびりデータベースシステムを提供することによって達成される。
【0024】
本発明に従うと、びびりデータベースシステムは、中央びびりデータベースを含み、この中央びびりデータベースには、びびりデータベースシステムの一部である同一タイプのいくつかの工作機械(例えば、ミリング機械、旋盤機械、穿孔機械、または、ボーリング機械)の機械加工条件(機械加工パラメータ)および測定されたびびり条件に対応するデータを供給される。これらの工作機械は、データ接続部/リンク(例えば、安全なネットワーク)を介して、中央びびりデータベースに接続されている。びびりデータベースシステムの一部は、少なくとも2つの、好ましくはもっと多くの、個別の工作機械である。中央びびりデータベースに供給されるデータは、びびりデータベースシステムに含まれている、接続された工作機械から取得および収集される。中央びびりデータベースは、上記システムの工作機械部において測定およびモニタリングされる実際の条件に基づいて、びびり安定性マップを生成することが可能である。
【0025】
本発明のびびりデータベースシステムのおかげで、中央びびりデータベースによって収集されたデータによって生成されたびびり安定性マップは、例えば、オペレータのための制御パネルまたはユーザインターフェースにおいて視覚化されるために、あるいは、CAMオペレータによって、データ接続部を介して、個別の工作機械に取り出されるまたは送り戻される。
【0026】
好ましくは、びびりデータベースシステムの一部である個別の工作機械は、それぞれ、自動びびり検出システムを含み、この自動びびり検出システムは、びびりの発生をモニタリングし、中央びびりデータベースに供給されるびびりデータを相応に生成する。通常、個別の工作機械は、その工作機械の機械加工条件データを集める/生成する機械制御部を含む。好ましくは、びびり条件および機械加工条件のデータは、機械制御部によって集められ、個別の工作機械から中央びびりデータベースにデータ接続部を介して送信される。
【0027】
クラス識別システムは、好ましくは、接続されている各個別の工作機械によって収集された機械加工条件データから、機械加工条件のセットを定義するために、びびりデータベースシステムによって使用され、一意的な安定性マップを生成するために、この機械加工条件のセットについて、種々の機械加工動作によって提供されるびびり条件が同等に比較される。好ましくは、このクラス識別システムは、中央びびりデータベース内に含まれる。
【0028】
びびりデータ検証システムは、好ましくは、中央びびりデータベースによって収集されたびびりデータの一貫性をチェックするために使用される。接続された工作機械が、同等の機械加工条件に関して、他の工作機械と矛盾するびびり条件を送出する場合、好ましくは中央びびりデータベースに含まれるびびりデータ検証システムが、びびりデータベースから対応するデータを取り除き、対応する機械制御部に警告信号を送出する。びびりデータベースシステムは、また、好ましくは、接続された工作機械によって提供されたデータから識別された機械加工条件の各セットに対して、びびりの発生を予測するびびり予測システムを含む。このびびり予測システムは、埋め込まれた物理的モデルを含み、この物理的モデルは、機械パラメータ設定に基づいて、びびりの発生を計算および予測するために使用され、これにより、物理的モデルは、中央びびりデータベースにおいて生成された実験的びびり安定性マップに従ってびびり予想を計算するために調整される。好ましくは、埋め込まれた物理的モデルの調整は、中央びびりデータベースに供給された新たなデータを、アップデートされたびびり安定性マップとそれぞれ考えるアルゴリズムによって発生する。もっとも好ましくは、この調整は、所定の量の新たなデータのセットが中央びびりデータベースに供給された後に発生する。本発明の好ましい実施形態において、びびり予測システムは、中央びびりデータベースに含まれる。びびり予測システムは、中央びびりデータベースにおいて識別される機械加工条件の各セットについて、その埋め込まれた物理的モデルに基づいたびびり予測を提供する。中央びびりデータベースにおいて入手可能な、機械加工条件の各セットに対する、記憶された実験的びびり条件は、埋め込まれた物理的モデルを確認し、最終的に調整するために使用される。機械加工条件の所与のセットに対して確認された、結果として生じるびびり予想は、その後、好ましくは中央びびりデータベースに、対応する実験的なびびり条件と共に記憶される。この実施形態に従う中央びびりデータベースのアーキテクチャは、図4に表現されている。代替的に、接続された個別の工作機械は、それぞれ、好ましくは、工作機械の機械制御部に実装されたびびり予測システムを含む。このびびり予測システムは、工作機械の動作中にびびりの発生を予測するために、中央びびりデータベースから、関連する個別の工作機械について予見される機械パラメータ設定と同等の、機械加工条件に対応する、記憶された実験的びびり条件を、中央びびりデータベースから取り出す。
【0029】
本発明の利点は、システムに接続されているいくつかの機械のおかげで、種々の動作状況において効果的なびびり安定性を表す信頼性のある表現が集められ、それぞれ計算された物理的モデルベースの予測と比較されるように、可能な限り多くの実験的びびりデータ(例えば、機械加工パラメータおよびそれぞれのびびり条件)が、可能な限り素早く収集されることである。
【0030】
計算された予測と、実験的びびりデータから取り出された対応する生成されたびびり安定性マップとの間の差がある場合には、本発明に従う次のステップは、中央びびりデータベースに記憶されているような現実(既存の機械上での機械加工動作中に観測および測定される安定性制限)に従って、物理的モデルのびびり安定性予測を得るために、その物理的モデルを適応すること(パラメータ調整または拡張特徴)のためにアルゴリズムを使用することである。例えば、物理的モデルのパラメータ(例えば、固有振動数、減衰比率または切削係数)の適応は、Graham他によって調査された予備的感度研究に基づいて適応される(参考文献[2])。
【0031】
そのようにすることによって、本発明は、びびり現象のより良好な理解を可能にし、より信頼度の高いモデルベースの予測を容易な方法で可能にするために、物理的モデルのそれぞれの「微調整」の適応を可能にする。本発明のシステムのさらなる利点は、本発明の目的に必要な大規模な実験データが、いくつかの機械において、かつ、現実の機械加工条件下で副産物として、集められることである。
【0032】
同等の機械加工条件に対する、びびりデータベースにおいて収集される矛盾したびびり条件データを検出する可能性は、また、欠陥または摩耗問題が自動的に識別および報告されるように、接続された個別の工作機械間の性能をモニタリングすることを可能にする。矛盾したびびりデータがある場合、びびりデータ検証システムは、オペレータの機械の性能と、ネットワークで接続している他の工作機械の性能との間に隔たりがあること、および、健全性チェックが推奨されることを、対応する機械制御部を介してオペレータに通知する。
【0033】
提案される発明の独創性および新規性は、一方では、工作機械における広範囲の切削条件に対するびびり安定性情報を有する中央びびりデータベースを生成するために、ネットワークで接続された、いくつかの機械からのデータを収集および管理することにある。ここまで、1つの機械のデータのみが考慮され、ちょうど同等に制限されたデータ記録を生成した。もう一方では、提案される発明の独創性および新規性は、また、工作機械のびびり挙動についての予測を計算するための物理的モデルをさらに精密にするために、集められたびびりデータ情報および拡張されたびびりデータ情報を同時に使用することにもある。
【0034】
本発明を用いると、広範囲の切削条件に対する工作機械のびびり安定性挙動をそれぞれ評価可能なツールが提供される。びびりデータベースシステムに接続され、その一部を形成するいくつかの機械のおかげで、このことが迅速に行われる。
【図面の簡単な説明】
【0035】
図1図1は、選択された2つの機械加工条件を例示している。
図2図2は、本発明に従う、びびりデータベースシステムの種々の要素間での相互作用の例を概略的に例示している。
図3図3は、a)びびり条件、b)安定条件における、ミリング動作中に測定された振動センサ信号の線形スペクトルを例示する。
図4図4は、中央びびりデータベースアーキテクチャの例を例示する。
図5図5は、軸方向の切削深度、半径方向の切削深度、および、スピンドル速度によって定義される3次元空間において、びびりデータベースによって提供される実験的結果を表している。
図6図6は、びびりを生成しやすい再生型効果(R)を考慮した、ツール先端の力学(G)と、機械加工プロセス(P)との間の閉ループ的な相互作用のブロック図を示している。
【発明を実施するための形態】
【0036】
図2は、本発明に従う、びびりデータベースシステムの様々な要素間の相互作用の例を概略的に例示している。
【0037】
切削相互作用中にモニタリングされるツールと加工物との間の振動およびモニタリングされる工作機械の機械制御部によって提供されるさらなる情報のいくつか(例えば、切削ツールのスピンドル速度および歯の数)に基づいて、機械の自動びびり検出システムは、いわゆる実験的びびり条件(またはびびり条件情報)を形成する機械加工プロセスの現在の状態(例えば、安定した切削または卓越したびびり振動数によるびびり)を識別および特徴化することが可能である。取得したデータを、図面の下部に示されている中央びびりデータベースに収集するために、現在の機械加工条件がカテゴライズされ、かつ、中央びびりデータベースにおいて、ネットワーク接続された他の機械からの同等の機械加工条件と比較されるように、機械制御部は、他方で、対応するツールの中心点(ツールと加工品との間の接触点)の力学および切削力相互作用に関する情報を提供しなければならない。機械制御部によって提供されたミリングプロセスの対応する状態を伴うこれらの機械加工条件、および、自動びびり検出システムによって決定されたびびり条件は、いわゆる、びびりデータを形成し、このびびりデータは、適切なデータ接続部(例示されているのは安全なネットワーク)を介して中央びびりデータベースに転送される。これらの実験的なデータは全て、その後、実験的安定性マップを作成するために組み合わされ、この実験的安定性マップは、オペレータまたは機械制御部が、その後、新たな製造プロセスのための十分な機械加工パラメータを選択することを補助しやすい。中央びびりデータベースは、また、結果として、この機械から収集された、または、ネットワーク接続された他の機械から収集され、かつ、同等に予見された機械加工条件に対応する、記憶された(びびり安定性マップに記憶された)びびりデータを、機械制御部に供給するために使用される。接続された機械と中央びびりデータベースとの間で移行されるびびりデータは、また、びびり予測システムによって生成されたびびり予測も含む。予見される機械加工条件に対応するびびり予測は、中央びびりデータベースから機械制御部に供給され、ここでびびり予測システムが統合される(図2および図4参照)。これらの予測は、物理的モデルに基づき、この物理的モデルは、予見される機械条件または設定について、びびりの発生を計算することによって予測を行い、安定性ローブダイアグラムにおいて表現され、オペレータまたは機械制御部が、びびりのない最適な機械加工条件を選択する(機械設定をそれぞれ選択する)ことを補助する。
【0038】
中央びびりデータベースから利用可能な実験的データは、結果として、びびり予測を検証し、最終的に物理的モデルをさらに精密にするために使用される。
【0039】
図3は、a)びびり条件、b)安定条件におけるミリング動作中に測定された振動センサ信号の線形スペクトルを例示する。ツールと加工品との間のびびり振動の発生は、例えば、機械加工点の十分近くに位置するマイクロフォンまたは振動センサを用いて検出される。(例えば、高速フーリエ変換を用いた)取得された信号の周波数解析は、工作機械による切削プロセスによって、それぞれ生成された強制振動に重ねられた自励(びびり)振動の識別を可能にする(図3参照)。この解析に基づいて、卓越振動数を伴うミリングプロセスの現在の状態(低強制振動または高強制振動(安定)、光または切断びびり)が検出される。
【0040】
図4を参照すると、自動びびり検出システムによって提供された情報と、対応する機械加工パラメータとが、中央びびりデータベースを作成するために、サーバ上のデータ接続部(例えば、安全なネットワーク)を介して、中央に集められる。
【0041】
中央びびりデータベースは、代表的な安定性ローブダイアグラムが導出され、実験結果と比較されるように、現実の条件を考慮する十分な情報を含まなければならない。より具体的には、データベースは、ツール中心点(TCP)において、工作機械全体、ツールシステムおよび加工品によって構成される構造ループの力学を決定するために必要な全ての情報を提供しなければならない:情報とは、すなわち、機械の軸方向位置およびフィード方向を伴う機械のタイプ、ツールのタイプおよびそのクランプ条件、スピンドル回転速度および加工品の幾何学形状、機械テーブル上のその材料およびそのクランプである。データベースは、また、対応する切削相互作用の特徴化に必要とされる情報、例えば、切り刃の幾何学形状およびトライボロジー(ツールコーティング、潤滑剤のタイプ)、最終的なチップ幾何学形状(切削深度、ツール幾何学形状、フィード速度)、切削速度および機械加工される材料を特定しなければならない。
【0042】
収集されるデータは、同様の切削条件であるが、異なるスピンドル速度または切削深度で実現される機械加工試験を一緒にグループ化するためにカテゴライズされなければならない。例えば、2つの異なるクラスのグループが、TCP力学に対して、および、切削力相互作用に対して、それぞれ、生成されることが予見される。両方のクラスの組み合わせが、その後、相互接続された各機械間の機械加工条件を比較するために使用される。図4は、このような実施可能な中央びびりデータベースアーキテクチャの例を例示している。
【0043】
ネットワーク接続された異なる機械から収集されるデータに基づいて、実験的びびり安定性マップが生成される。発生した機械加工動作と共になされ、びびり安定性マップにおいて収集された経験に基づいて、十分な切削パラメータの選択を補助するために、これらの実験的安定性マップが、機械またはCAMオペレータに、あるいは、機械制御システムに提供される。
【0044】
例えば、(機械、ツールおよび加工品に関する)特定の機械加工条件に対して、びびりデータベースによって提供される実験結果は、図5で表されるように、軸方向の切削深度、および、半径方向の切削深度、ならびに、スピンドル速度によって定義される3次元空間で表現される。
【0045】
他方、データベースに保存されている同様の機械加工条件の各グループに対して、安定性ローブダイアグラムは、TCP力学、ミリングプロセス、およびこれらの相互作用のモデルに基づいて計算される。図6は、びびりを生成しやすい再生型効果(R)を考慮した、ツール先端力学(G)と機械加工プロセス(P)との間の閉ループ的な相互作用のブロック図を表す。
【0046】
より具体的には、ツールと加工品との間の機械の構造力学が、振動数応答測定を行うこと、または、有限要素法などのモデリング法を用いることによって、実験的に導出される。レセプタンスカップリング法は、また、両方の組み合わせを可能にする。
【0047】
ミリングプロセスの解析的モデルは、(同様に、ツールと加工品との間の過去および現在の振動に依存する)チップ幾何学形状、切削速度、ツール幾何学形状、加工品材料、潤滑剤などの切削条件に基づいて、TCPにおいて生成される切削力の計算に必要である。解析的モデルに含まれる経験的力係数は、良く研究された切削条件に関する文書に見られる。文書に示されていない切削条件について、上記係数は、機械加工力のモニタリングのための力センサを用いて実験的に導出される。これらの係数は、また、第一原理物理モデルベースのソフトウェアシミュレーションを用いて予測される。
【0048】
これらの両方のモデルは、結果として生じる閉ループ系の安定性を評価するため、および、安定性ローブダイアグラムを導出するために、組み合わされなければならない。安定性ローブダイアグラムの計算のために、様々な方法(例えば、0次近似、半離散化、時間的有限要素法)が存在する。
【0049】
物理的モデルと、自動びびり検出システムによって取得された実験的安定性マップとに基づいて生成された安定性ローブダイアグラムは、その後比較される。より具体的には、所与のスピンドル速度について、臨界的な切削深度および対応するびびり振動数は、両方の結果の一致を定量化することを可能にする。
【0050】
可能であれば、両方の結果に関連する不確定さの程度が、(例えば、物理的モデルベースの予測のためのモンテカルロ法を用いて)推定される。物理的モデルベースのびびり安定性予測の感度の研究に基づくと、両方の結果の間の最終的な差異は、予測方法における誤差要因の識別に対するヒントを与え、その信頼度の向上に役立つ(例えば、参考文献2を参照)。
【0051】
ミリング機械とは別に、提案された概念は、使用時にびびり現象に直面する他のタイプ(例えば、旋盤、ボーリング、穿孔など)の工作機械に容易に適用可能である。
【0052】
参考文献
1.Y.AltintasおよびS.Engin,「Generalized modeling of mechanics and dynamics of milling cutters」、CIRP Annals,Vol.50/1(2001),p.25−30
2.E.Graham他、「Robust prediction of chatter stability in milling based on the analytical chatter stability」、Journal of Manufacturing Processes,2013,http://dx.doi.org/10.1016/j.jmapro.2013.08.005
図1
図2
図3
図4
図5
図6