(58)【調査した分野】(Int.Cl.,DB名)
前記フェール判定手段は、前記信号無入力状態において前記所定条件が成立する状態が前記第1設定時間継続しなくても、前記信号無入力状態が、前記第1設定時間よりも長い第2設定時間を経過したことをもって、前記レンジ検知器のフェールを確定する
ことを特徴とする、請求項1記載の車両の制御装置。
【背景技術】
【0002】
車両に搭載された自動変速機では、ドライバが操作するセレクトレバーが装備され、セレクトレバーによって選択された選択レンジに応じて、変速制御装置が自動変速機の変速を制御する。
【0003】
セレクトレバーには、セレクトレバーがD,N,R,P等の何れかのレンジ位置に選択操作されると、その選択レンジを検知して検知した選択レンジ信号を出力するインヒビタスイッチと呼ばれるレンジ検知器が付設されている。
【0004】
また、セレクトレバーには、車両の前後進切替機構を切り替え操作するマニュアルバルブが機械的に連動するように接続されている。
【0005】
変速制御装置は、インヒビタスイッチから送られた選択レンジ信号に基づいて自動変速機の変速を制御するが、インヒビタスイッチが故障している場合には、これに対応したフェールセーフ制御によって自動変速機を制御する。そこで、インヒビタスイッチのフェール判定が必要になる。
【0006】
インヒビタスイッチのフェールとは、主に、D,N,R,P等の各レンジ位置に設けられた電気接点の接触不良や電気信号線の断線であるため、フェール時には、セレクトレバーが何れかのレンジ位置にあってもインヒビタスイッチから検出信号は出力されない。
【0007】
しかし、セレクトレバーが何れかの隣接するレンジ位置の中間の中間レンジ位置に位置する場合にも、インヒビタスイッチから検出信号は出力されないので、インヒビタスイッチから検出信号は出力されないからといって、一概にインヒビタスイッチがフェールしているとは判定できない。
【0008】
そこで、例えば、特許文献1に開示されているように、インヒビタスイッチから検出信号は出力されない状態が所定時間だけ継続したらインヒビタスイッチがフェールしていると判定する技術が提案されている。
【0009】
つまり、セレクトレバーが中間レンジ位置に位置する状況は、ドライバがセレクトレバーの操作を行なっている途中であり、この状況は、通常の操作では僅かな時間(例えば、1〜2秒)だけであるが、ドライバがレンジ選択操作の途中で操作を停止した場合には、これよりも長い時間継続する。
【0010】
ただし、この場合の継続時間にも限度(例えば数十秒程度)があるものと想定さるので、インヒビタスイッチから検出信号は出力されない状態がこの限度に基づく所定時間だけ継続したらインヒビタスイッチがフェールしていると判定している。
【発明を実施するための形態】
【0020】
以下、図面を参照して、本発明の実施の形態について説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。以下の実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができるとともに、必要に応じて取捨選択することができ、あるいは適宜組み合わせることが可能である。
【0021】
[1.全体システム構成]
図1は本実施形態にかかるハイブリッド車両(以下、車両という)及びその制御装置の全体システム図である。この
図1に基づいて、車両100及びその制御装置を説明する。
【0022】
図1に示すように、車両100は、エンジン1と、モード切換クラッチ2と、電動モータ及び発電機の機能を有するモータジェネレータ(以下、MGという)3と、前後進切換機構4及び無段変速機構(以下、バリエータ)5からなる無段変速機(以下、CVTという)5Aと、駆動輪6と、統合コントローラ10とを備える。
【0023】
また、MG3の出力軸には第1オイルポンプ(OP1)71が接続され、さらに、これとは別に、第2オイルポンプ(OP2)72が装備されている。
【0024】
エンジン1は、ガソリン,ディーゼル等を燃料とする内燃機関であり、統合コントローラ10からのエンジン制御指令に基づいて、回転速度,トルク等が制御される。
【0025】
モード切換クラッチ2は、エンジン1とMG3との間に介装されたノーマルオープンの油圧駆動式クラッチである。このモード切換クラッチ2は、統合コントローラ10からのモード切換指令に基づき油圧コントロールバルブユニット8の第1クラッチ圧調整部81により作り出された制御油圧によって、締結・解放状態が制御される。モード切換クラッチ2としては、例えば、乾式多板クラッチが用いられる。
【0026】
MG3は、ロータに永久磁石を埋設しステータにステータコイルが巻き付けられた同期型回転電動機である。MG3は、統合コントローラ10のモータ制御部(モータ制御手段)10MからのMG制御指令に基づいて、バッテリ31からの電力の供給を受けてインバータ32により作り出された三相交流を印加することにより制御される。
【0027】
また、MG3は、ロータがエンジン1や駆動輪6から回転エネルギを受ける場合には、ステータコイルの両端に起電力を生じさせる発電機として機能し、バッテリ31を充電することができる。また、変速機5Aがニュートラル状態のときには、MG3は、駆動輪6の回転に追従する回転制御で制御され、出力トルクは抑えられる。
【0028】
第1オイルポンプ71は、エンジン1又はMG3によって駆動される機械式のベーンポンプであり、油圧コントロールバルブユニット8に油圧を供給する。
【0029】
第
2オイルポンプ72は、電動オイルポンプであって、統合コントローラ10からの指令に基づき、第1オイルポンプ71のみでは油量が不足する場合に駆動され、第1オイルポンプ71と同様に、油圧コントロールバルブユニット8に油圧を供給する。
【0030】
前後進切換機構4は、MG3とバリエータ5との間に介装され、詳細は図示しないが、遊星歯車と、フォワードクラッチ(FWD/C)及びリバースブレーキ(RWV/B)とを備えて構成される。
【0031】
遊星歯車は、サンギア、ピニオンギア、リングギア及びキャリアで構成され、リングギアの回転軸がバリエータ5の入力軸に接続され、サンギアの回転軸がMG3の出力軸に接続されている。
【0032】
フォワードクラッチは、締結することでサンギアとキャリアとを連結するクラッチである。リバースブレーキは、締結することでキャリアを変速機ケースに対して相対回転不能に連結するブレーキである。
【0033】
フォワードクラッチを締結し、リバースブレーキを解放すれば、エンジン1及びMG3の回転がそのままバリエータ5に伝達される前進状態が実現され、フォワードクラッチを解放し、リバースブレーキを締結すれば、エンジン1及びMG3の回転が減速かつ逆転されてバリエータ5に伝達される後進状態が実現される。
【0034】
これらのフォワードクラッチ及びリバースブレーキは、統合コントローラ10からの前後進切換指令に基づき、油圧コントロールバルブユニット8の第2クラッチ圧調整部82により作り出された制御油圧により、締結・解放が制御される。フォワードクラッチ及びリバースブレーキとしては、例えば、ノーマルオープンの湿式多板クラッチが用いられる。
【0035】
バリエータ5は、MG3の下流に配置され、車速やアクセル開度等に応じて変速比を無段階に変更する。バリエータ5は、プライマリプーリ51と、セカンダリプーリ52と、両プーリ51,52に掛け渡されたベルト53とを備える。
【0036】
プライマリプーリ51及びセカンダリプーリ52は、油圧コントロールバルブユニット8のプライマリ圧調整部83,セカンダリ圧調整部84により作り出されたプライマリプーリ圧及びセカンダリプーリ圧によりプライマリプーリの可動プーリとセカンダリプーリの可動プーリとを軸方向に動かし、ベルトのプーリ接触半径を変化させることで、変速比を無段階に変更する。
【0037】
なお、油圧コントロールバルブユニット8には、第1オイルポンプ71及び第2オイルポンプ72からの吐出圧をライン圧に調整するライン圧調整部80が装備され、第1クラッチ圧調整部81,第2クラッチ圧調整部82,プライマリ圧調整部83,セカンダリ圧調整部84では、ライン圧調整部80で調整されたライン圧を元圧として、各圧力を作り出す。
【0038】
バリエータ5の出力軸には、図示しない終減速ギヤ機構を介してディファレンシャル61が接続され、ディファレンシャル61には、ドライブシャフト62を介して駆動輪6が接続される。
【0039】
統合コントローラ10は、各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUでの演算結果等が一時的に記憶されるRAM、外部との間で信号を入出力するための入出力ポート、時間をカウントするタイマ等を備えたコンピュータである。
【0040】
統合コントローラ10には、エンジン1の回転速度を検出する回転速度センサ11、前後進切換機構4の出力回転速度(=バリエータ5の入力回転速度)を検出する回転速度センサ12、アクセル開度を検出するアクセル開度センサ13、セレクトレバー9のセレクトポジション(前進、後進、ニュートラル及びパーキングを切り替えるセレクトレバー9の位置状態)を検出するインヒビタスイッチ(レンジ検知器)14、車速を検出する車速センサ15等からの信号が入力され、統合コントローラ10は、これらに基づき、エンジン1、MG3(インバータ32)、及びCVT5Aに関する各種制御を行う。
【0041】
なお、回転速度センサ12は、回転速度を検出する回転体の外周に設けられた凸部がセンサ近傍を通過した時にパルスを発生するパルス発生装置で構成されるが、回転速度のみ検出可能で、回転方向は検出することができない。
【0042】
このため、回転方向はインヒビタスイッチ14で検出されるセレクトレバー9のセレクトポジションに基づき判断する。すなわち、セレクトポジションが前進用ポジション(D,L,2,1等)である場合は、回転方向が正転方向であると判断し、後進用ポジション(R)である場合は、回転方向が逆転方向であると判断する。
【0043】
また、統合コントローラ10は、車両100の運転モードとして、EVモードとHEVモードとを切り換える。
【0044】
EVモードは、モード切換クラッチ2を解放状態とし、MG3のみを駆動源として走行するモードである。EVモードは、要求駆動力が低く、バッテリ31の充電量が十分な時に選択される。
【0045】
HEVモードは、モード切換クラッチ2を締結状態とし、エンジン1とMG3とを駆動源として走行するモードである。HEVモードは、要求駆動力が高い時、あるいは、バッテリ31の充電量が不足する時に選択される。
【0046】
また、本実施形態の車両100は、トルクコンバータを備えていないので、発進時はフォワードクラッチ又はリバースブレーキをスリップさせながら発進する。ただし、トルクコンバータを備えてもよい。
【0047】
[2.セレクトレバーに関する構成]
ここで、車両には、走行モードを切り替える(選択する)ためのセレクトレバー(シフトレバーとも呼ばれる)9について、
図2を参照して説明する。
【0048】
図2はセレクトレバーに関する構成を例示した模式図であり、
図2に示すように、セレクトレバー9は、支点9aを中心として回動自在であり、支点9aよりも操作部9b側にワイヤ91の一端が接続されている。このワイヤ91の他端は、リンク92に接続されている。リンク92は、その支点92aを中心として回動自在であり、その他端がスライダ93に接続されている。
【0049】
スライダ93は、連結棒94aを介してインヒビタスイッチ14のスイッチ部14aに連結されている。スイッチ部14aは、Dレンジターミナル14c,Nレンジターミナル14d及びRレンジターミナル14eの何れか一つのターミナルと電源ターミナル14bとを導通可能にする。
【0050】
セレクトレバー9が、運転者により矢印に示すように操作されると、ワイヤ91を介してリンク92が矢印のように回動し、スライダ93が矢印のように移動する。このスライダ93の移動に合わせてスイッチ部14aが移動し、電源ターミナル14bと、Dレンジターミナル14c,Nレンジターミナル14d及びRレンジターミナル14eの何れか一つのターミナルとを導通させる。
【0051】
また、スライダ93は、上記の連結棒94aとは別の連結棒94bを介してマニュアルバルブ90に連結されており、セレクトレバー9の動きは、機械的な連動機構(ワイヤ91,リンク92,スライダ93,連結棒94b)によりマニュアルバルブ90に伝達される。つまり、セレクトレバー9が操作されると、ワイヤ91を介してリンク92が回動し、スライダ93が移動する。
【0052】
マニュアルバルブ90は、このスライダ93の移動に合わせて変位し、
図1に示す第2クラッチ圧調整部82で調整された油圧(前進クラッチ圧又は後進ブレーキ圧)を、前後進切換機構4のフォワードクラッチを締結・解放する油室(FWD/C油室)41及びリバースブレーキを締結・解放する油室(REV/B油室)42の何れか一方に選択的に供給する。
【0053】
つまり、セレクトレバー9がDレンジ位置に操作されると、スライダ93がこれに連動してマニュアルバルブ90を移動させ、FWD/C油室41へ前進クラッチ圧を供給する状態とする。また、セレクトレバー9がRレンジ位置に操作されると、スライダ93がこれに連動してマニュアルバルブ90を移動させ、REV/B油室42へ後進ブレーキ圧を供給する状態とする。
【0054】
ただし、セレクトレバー9が、Nレンジ位置にある場合や、各レンジ位置の相互間の位置(ここでは、中間レンジ位置と言う)にある場合は、マニュアルバルブ90はFWD/C油室41及びREV/B油室42の何れにも油圧は供給されない油圧供給停止状態となるので、前後進切換機構4(CVT5A)はニュートラル状態(動力非伝達状態)となる。
【0055】
[3.インヒビタスイッチのフェール判定]
ここで、本制御装置に特徴的なインヒビタスイッチ14のフェール判定について説明する。
【0056】
統合コントローラ10には、インヒビタスイッチ14のフェールを判定する機能が装備されており、インヒビタスイッチ14の出力信号の状態と、CVT(自動変速機)5Aの状態とから、インヒビタスイッチ14のフェールを判定する。
【0057】
つまり、統合コントローラ10は、インヒビタスイッチ14から検知信号が出力されていない状態(信号無入力状態)であるか否かを判定する信号判定部(信号判定手段)10Aと、信号判定部10Aが信号無入力状態と判定されているときに、所定条件の成立に基づいてインヒビタスイッチ14のフェール判定を確定するフェール判定部(フェール判定手段)10Bとを有している。
【0058】
上記所定条件とは、CVT5Aが動力伝達状態であることを確定する条件であり、アクセル開度センサ13で検出されたアクセル開度APOが設定開度値APO1以上であり、且つ、MG(電動モータ)3の出力トルクTmが設定トルク値Tm1以上であることを含む。
【0059】
なお、出力トルクTmにはモータ制御部10Mのトルク制御によるトルク指示値を用いることができるが、MG3に供給される電流量を測定することにより出力トルクTmを検出することも可能である。
【0060】
また、アクセル開度APOが設定開度値APO1以上であることは、ドライバが一定以上の出力要求をしていることを示し、このとき、CVT5Aがニュートラルの状態でなければ、統合コントローラ10は、アクセル開度APOに応じた出力トルクを出すようにMG3をトルク制御する。
【0061】
一方、CVT5Aがニュートラルの状態であれば、統合コントローラ10は、MG3を回転制御し、アクセル開度APOに応じた出力トルク以下に抑える。
【0062】
なお、CVT5Aの動力伝達状態の判定にかかる上記所定条件には、上記のアクセル開度の条件及びMG3の出力トルクの条件以外に、実際の制御において通常必要とされるその他の判定の必要な条件を含めてもよい。
【0063】
アクセル開度APOが設定開度値APO1以上であり、且つ、MG3の出力トルクTmが設定トルク値Tm1以上となる状況は、前後進切換機構4及び無段変速機構5に油圧が正常に供給されてCVT5Aが走行状態(動力伝達状態)であり、マニュアルバルブ90が走行レンジに対応した位置、即ち無段変速機構5及び前記FWD/C油室41またはREV/B油室42に油圧を供給する位置にあることを示している。
【0064】
マニュアルバルブ90はセレクトレバー9と機械的に接続されているので、セレクトレバー9も走行レンジに選択されており、この状態でインヒビタスイッチ14からの信号入力が無い状態(信号無入力状態)ならば、インヒビタスイッチ14のフェールであることを確定することができる。
【0065】
フェール判定部10Bは、信号無入力状態で且つCVT5Aが動力伝達状態である(即ち、所定条件が成立する)状態が第1設定時間継続したことをもって、インヒビタスイッチ14のフェールを確定する。
【0066】
この継続時間の条件は、動力伝達状態であることを確実に判定するためのもので、第1設定時間は短時間(例えば、数秒)で十分である。
【0067】
フェール判定部10Bは、信号無入力状態であるがCVT5Aが動力伝達状態である状態が第1設定時間継続しない場合に、ドライバがセレクトレバー9によるレンジ選択操作の途中で操作を停止している場合も想定でき、ある程度長い時間(第2設定時間)を待ってインヒビタスイッチ14のフェールを確定している。
【0068】
ドライバがセレクトレバー9によるレンジ選択操作の途中で操作を停止している場合も、ある程度の時間的な限度があるものと考えられ、第1設定時間よりも長い第2設定時間を設定している。
【0069】
つまり、フェール判定部10Bは、信号無入力状態において、自動変速機が動力伝達状態であると判定できなくても、この状態が第2設定時間を経過したことをもって、インヒビタスイッチ14のフェールを確定する。
【0070】
[4.作用及び効果]
本発明の一実施形態にかかるは、上述のように構成されているので、例えば、
図3のフローチャートに示すように、インヒビタスイッチのフェール判定を行なうことができる。なお、
図3のフローチャートは、フェール判定開始後フェール確定まで所定周期で実施される。
【0071】
図3に示すように、まず、インヒビタスイッチ14からの信号が入力されていない信号無入力の状態にあるか否かを判定する(ステップS10)。ここで、インヒビタスイッチ14からの信号が入力されていない信号無入力の状態でなければこの周期の処理を終えてリターンし、信号無入力の状態にあれば、タイマAのカウント値C
Aをカウントアップする。
【0072】
そして、アクセル開度APOが設定開度値APO1以上であるか否かを判定する(ステップS20)。ここで、アクセル開度APOが設定開度値APO1以上であれば、MG3の出力トルクTmが設定トルク値Tm1以上であるか否かを判定する(ステップS30)。
【0073】
アクセル開度APOが設定開度値APO1以上で、且つ、MG3の出力トルクTmが設定トルク値Tm1以上であれば、タイマBのカウント値C
Bをカウントアップし、このカウント値C
Bが第1設定時間に応じたカウント値C
B1以上になったか否かを判定する(ステップS40)。
【0074】
カウント値C
Bがカウント値C
B1以上になったら、アクセル開度APOが設定開度値APO1以上で、且つ、MG3の出力トルクTmが設定トルク値Tm1以上である動力伝達状態が第1設定時間継続したことになり、インヒビタスイッチ14がフェールしているものと確定し、これに対応するフェールセーフ制御を実施し(ステップS60)、タイマAのカウント値C
A及びタイマBのカウント値C
Bを何れも0にリセットして、フェール判定を終了する。
【0075】
一方、インヒビタスイッチ14からの信号が入力されていない信号無入力の状態にあるが、
アクセル開度APOが設定開度値APO1以上でない場合、又は、MG3の出力トルクTmが設定トルク値Tm1以上でない場合は、ステップS20又はステップS30から、タイマBのカウント値C
Bを0にリセットして、タイマAのカウント値C
Aが第2設定時間に応じたカウント値C
A1以上になったか否かを判定する(ステップS50)。
【0076】
ここで、カウント値C
Aがカウント値C
A1以上になったら、信号無入力の状態が第2設定時間継続したことになり、インヒビタスイッチ14がフェールしているものと確定し、これに対応するフェールセーフ制御を実施し(ステップS60)、タイマAのカウント値C
Aを0にリセットして、フェール判定を終了する。
【0077】
なお、ステップS40で否定判定された場合やステップS50で否定判定された場合は、この周期の処理を終えてリターンする。
【0078】
このように、本制御装置によれば、インヒビタスイッチ14からの信号が入力されていない信号無入力の状態で、MG3の出力によってCVT5Aが動力伝達状態である状態が比較的短時間である第1設定時間継続したら、インヒビタスイッチ14のフェールを確定するので、短時間にインヒビタスイッチ14のフェールを確定することができ、対応するフェールセーフ制御を速やかに開始することができる。
【0079】
また、信号無入力の状態であるがCVT5Aが動力伝達状態である状態が第1設定時間継続しない場合にも、インヒビタスイッチ14からの信号が入力されていない信号無入力の状態が第2設定時間継続したら、インヒビタスイッチ14のフェールを確定するので、インヒビタスイッチ14のフェール時に対応するフェールセーフ制御に確実に移行することができる。
【0080】
[5.その他]
以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したものに過ぎず、本発明の趣旨を逸脱しない範囲で、上記実施形態を適宜変形して実施することが可能である。
【0081】
例えば、上記実施形態では、フェール判定部10Bは、信号無入力状態で且つCVT5Aが動力伝達状態である(即ち、所定条件が成立する)状態が第1設定時間継続したことをもって、インヒビタスイッチ14のフェールを確定し、且つ、信号無入力状態において、自動変速機が動力伝達状態である状態が第1設定時間継続しなくても、信号無入力状態が第2設定時間を経過したことをもって、レンジ検知器のフェールを確定しているが、前者の判定のみを採用してもよい。