【課題を解決するための手段】
【0016】
上述した本発明の目的は、特許請求の範囲の独立項によって達成される。従属項には殊に有益な態様が示されている。
【0017】
スパッタリングターゲットは、30〜68at%、好ましくは40〜68at%のGa含有量を有する。
【0018】
本発明の上記目的は、次の2つの選択肢により達成される:
1.スパッタリングターゲットが、
・Cu−及びGa−含有金属間化合物相としてCuGa
2のみ
又は
・Cu
9Ga
4の体積割合よりも多い体積割合のCuGa
2を含有する。
2.スパッタリングターゲットが、Ga−及びCu−含有金属間化合物相を含む領域において500HV0.01を下回る平均微小硬さを有する。
特に有益な態様では、スパッタリングターゲットは、上記選択肢1,2の特徴を両方とも有する。
【0019】
さらに、Cu
9Ga
4に対するCuGa
2の体積比率が好ましくは2を上回り、好適には5を上回る。CuGa
2とCu
9Ga
4相の割合は、BSE−SEM(SEM:走査型電子顕微鏡、BSE:後方散乱電子)により1000倍に拡大して(基準サイズはポラロイド545フォーマット)研磨区域で測定される。化学相判別は、まずEDXにより実行される。画像分析は、CuGa
2とCu
9Ga
4相に限定される。その他の微細構造(Cu粒子、Cu混晶粒子、気孔など)は全て除外される。Cu
9Ga
4とCuGa
2粒子を区別するため、画像は、しきい値法により二値化される。このようにして、Cu
9Ga
4とCuGa
2の面積割合を測定することが可能である。相割合の測定は、2以上の箇所で繰り返され、平均が計算される。次に、同じ測定手順が、第1シリーズの検体に対し90°回転(対象のスパッタリング表面に垂直の90°回転/回転軸)した研磨表面をもつ別の研磨区域、及びスパッタリング表面に平行の研磨表面をもつ研磨区域で、繰り返される。これら3シリーズの検体からのCu
9Ga
4又はCuGa
2相の面積割合の平均が、その体積含有量に当てられる。
【0020】
本発明によれば、主な金属間化合物相はCuGa
2である。CuGa
2は、254℃で分解融解する、熱力学的に安定した金属間化合物である。Cu−Gaの状態図(
図1参照)によると、CuGa
2相は、均質領域をもつ。これに続くのは、CuGa
2相が、化学量論的化合物CuGa
2よりも低含有量のCu又はGa及び高含有量のCu又はGaの両方をもち得るということである。
【0021】
金属間化合物相は、典型的には、例えばCu
9Ga
4(約720HV0.01の微小硬さ)でもそうであるように、極めて高い硬度、強度及び脆性を有する。CuGa
2を含有するスパッタリングターゲットは、したがって驚くことに、著しく低い硬度をもつ。このスパッタリングターゲットは、それ故、高い靭性とこれに伴う優れた機械的加工性を備える。
【0022】
既述した本発明の利点は、好ましくは、Ga−及びCu−含有金属間化合物相を含む領域における平均微小硬さが500HV0.01を下回るときにも達成される。平均微小硬さは、好ましくは400HV0.01を、好適には300HV0.01を、下回る。開示する例の場合、200HV0.01を下回る最適値も達成可能である。
【0023】
平均微小硬さは次のように測定される。最初に、研磨区域が生成され、当該研磨区域で微小硬さが測定される。相の割当は、EDXによる先行相判別を場合により利用した光学的微分によって実行される。Cu−Ga−含有金属間化合物相の微小硬さの測定は、ISO6507−1:2005に則って実施される。硬度値は、好ましくは、熱処理など他の後処理を一切施していない検体に基づく。金属間Cu−Ga相を含む10の異なる領域のそれぞれにおいて3つの圧痕が形成され、平均が測定される。
【0024】
好ましくは、少なくとも90%のGaがスパッタリングターゲットにCuGa
2相として存在する。したがって、10%を下回る残りはその他の形態(Cu−Ga混晶、他の金属間Cu−Ga相)で存在し得る。このパラメータは次のように測定される。まず、スパッタリングターゲットの総Ga含有量が、ICP−OESによる5個の試料の化学分析と平均の作成によって測定される。そしてCuGa
2の体積割合が、上記測定シーケンスを使用したBSE−SEMによって測定される。CuGa
2として存在するGa含有量は、CuGa
2の体積割合から測定される。この含有量は、スパッタリングターゲット中のGa総含有量で割られ、CuGa
2として存在するGaの割合がそれにより計算される。
【0025】
スパッタリングターゲットのGa含有量がCuGa
2相(約64〜約68at%)の均質領域にあれば、このときにはCu及びGaの全量がCuGa
2として存在し得る。Ga含有量が約64at%以下であれば、スパッタリングターゲットは、CuGa
2だけではなく、有益なことに80at%、好ましくは90at%、好適には95at%を上回るCu含有量をもつCu−リッチ相も、含有する。このことは、Cu−リッチ相が高い変形能力を有することを保証する。Cu−リッチ相は、好ましくは、Ga−含有Cu混晶又は純Cuである。最良の結果は、Cu−リッチ相が純Cuである場合に得ることができる。本発明の意図では、純Cuは、通常在る不純物を含んだCuである。
【0026】
Ga−及びCuのみを含有した相を考察すると、スパッタリングターゲットの相組成として次の好適な可能性がある。
・CuGa
2のみ
・CuGa
2+純Cu
・CuGa
2+Ga−含有Cu混晶
・CuGa
2+純Cu+Ga−含有Cu混晶
・CuGa
2+他の金属間Cu−Ga相
・CuGa
2+純Cu+他の金属間Cu−Ga相
・CuGa
2+Ga−含有Cu混晶+他の金属間Cu−Ga相
又は
・CuGa
2+純Cu+Ga−含有Cu混晶+他の金属間Cu−Ga相
【0027】
有益なスパッタリングターゲットは、30体積%、好ましくは60体積%、好適には90体積%を上回るCuGa
2を含む。別の金属間Cu−Ga相、具体例ではCu
9Ga
4の有益な割合は、15体積%、好ましくは10体積%、好適には5体積%を下回る。実施形態から分かるように、BSE−SEMによって検出可能なCu
9Ga
4の無いスパッタリングターゲットを製造することが可能であり、大変有益である。
【0028】
最大割合で存在するCu−及びGa−含有金属間化合物相がCuGa
2であるスパッタリングターゲットは、驚くことに、極めて均質なスパッタリング特性をもつ。さらに、本発明のスパッタリングターゲットは、実施形態において詳細に説明されるように、簡単、安価に、高信頼性で製造することができる。このスパッタリングターゲットは気孔及び亀裂をもたず、その結果、スパッタリング中、欠陥での局所電弧生成が回避される。スパッタリング中の局所的部分融解を招き得る偏析相(Ga含有量>約75at%)は存在しない。CuGa
2は非常に柔らかいので、スパッタリングターゲットは比較的低い温度でも成形可能である。これにより、粒界偏析を確実に避けられる。さらに、このスパッタリングターゲットは優れた機械的加工性を示し、これにより、製造コスト及び表面品質の点で有利である。関係する全ての相が低い降伏点をもつので、内部応力が低い。このことは、スパッタリング中に材料の偏った剥離で生じる非対称の解放応力が少なくなることから、使用中のスパッタリングターゲットの寸法安定性に効果を発揮する。このスパッタリングターゲットは、融解法による簡単な方法で再利用可能である。融解物のGa濃度は、好ましくは、合金に対する純Gaの添加により適切な目標値に設定される。ここでは64〜68at%のGa含有量が好ましくは選択される。そして、例えば引き続いて新しいスパッタリングターゲットの製造に使用可能なCuGa
2粉末が、既存の噴霧プロセスを用いて製造される。
【0029】
さらに、スパッタリングターゲットは、アルカリ金属類から選択される少なくとも1つ元素も0.01〜5at%含み得る。複数種類のアルカリ金属がある場合、0.01〜5at%は総含有量を表す。好ましいアルカリ金属は、Li、Na及びKである。上述したように、アルカリ金属は、CIGS薄膜太陽電池の効率に効果がある。殊に優れたアルカリ金属をあげるとNaであり、有効なNa化合物がNa
2SO
4及びNaClである。したがってスパッタリングターゲットは、30〜68at%のGa、好適には40〜68at%のGa、必要に応じて1以上のアルカリ金属又は1以上のアルカリ金属化合物、当該アルカリ金属のスパッタリングターゲット含有量は0.01〜5at%、残余のCu及び通常在る不純物、を含むのが好ましい。スパッタリングターゲットがアルカリ金属化合物を含有する場合、そのアルカリ金属に加えて当該化合物中の別の元素、例えばS、Cl及びOのいずれか1つ以上も含有する。上記の通常在る不純物としては、Cu−Ga又はCu粉末を経てスパッタリングターゲットに入るFe、N、O及びCをあげることができる。Cu又はCu−Ga粉末中の典型的なO含有量は約500〜1500μg/gである。
【0030】
CuGa
2、そしてCu−リッチ相も、両者とも非常に簡単で効率良く成形又は高密度化可能であるから、本発明のスパッタリングターゲットは極めて高密度である。相対密度(基準パラメータ=論理密度)は好ましくは85%、好適には90%を上回る。95%以上の非常に有益な相対密度値でも達成可能であることが確認された。
【0031】
特段に均一のスパッタリング反応を得る目的には、研磨区域で測定される平均粒子径が150μm、好ましくは90μm、好適には30μmを下回ることがCuGa
2にとって有効である。本発明に係る製造技術は、非異型の相変態が無いまま進み、粒子成長を起こすこともないので、CuGa
2粒子の径及び形状は、主として、使用するCuGa
2粉末の粒径及び形状により決まる。好適には球形粉末が使用されるので、研磨区域内の粒子は好ましくは丸い形となる。Cu−リッチ相の径と形状も、使用する純Cu−又はCu混晶粉末の粒径により調節可能であり、スパッタリングターゲット中の当該純Cu−又はCu混晶相の平均粒子の径は好ましくは150μm、好適には100μmを下回る。50μmを下回る非常に有益な粒子の径も、微細な出発材料によって設定可能となる。Cu粉末も球形であるから、Cu粒子もまた好ましくは丸い。CuGa
2粒子及び純Cu又はCu混晶粒子の少なくともいずれかの形状及び径は、スパッタリングターゲットの加工性に好ましい効果をもつ。純Cu又はCu混晶粒子は、好ましくは、金属間Cu−Ga相からなるマトリックス中に埋め込まれる。
【0032】
さらに言うと、スパッタリングターゲットは、好ましくは平板状又は管状ターゲットの形態であり、後者が本発明の特に有益な実施形態の代表である。
【0033】
上記本発明の目的は、30〜68at%、好ましくは40〜68at%のGa含有量をもつスパッタリングターゲットの製造方法によっても達成される。この方法は、本発明のスパッタリングターゲットを製造するために殊に最適である。
【0034】
この方法は少なくとも次のステップを含む。
・CuGa
2−含有粒子を含む粉末混合物の生成
及び
・前記粉末混合物の成形
【0035】
粒子がCuGa
2を含有しているか否かを調べる定性的測定を、XRD及びEDXの両方を利用して実行することができる。XRD測定のために、次のJCPDS番号を相の指定に使用した:
CuGa
2:00−025−0275
Cu
9Ga
4:00−002−1253
Cu:00−004−0836
【0036】
定量的相分析が、内部標準を使用するXRDにより実施される。CuGa
2及びCu
9Ga
4の割合は、強度比較によって測定される。
【0037】
上記方法は、次にあげる中の少なくとも1つの特徴をもつ:
・粉末混合物が純Cu及びCu混晶粒子のいずれか又は両方を含む。
・粉末混合物がアルカリ金属を含有した粒子を含む。
・CuGa
2−含有粒子が、金属間Cu−Ga相を含んだ領域において硬さ分布の1又は複数の最大値をもち、少なくとも1つの最大値が4.5GPaを下回る押し込み硬さH
ITである。
・CuGa
2−含有粒子がCuGa
2のみを含むか又はCuGa
2の体積割合がCu
9Ga
4の体積割合を上回る。
・成形は、圧力と少なくとも一時的な電界の印加を用いた焼結により達成される。
・前記電界の作用により粉末混合物に直流電流を通す。
・150〜250℃の焼結温度へ粉末混合物を加熱する。
・50℃を上回る温度範囲にある時間が60分より短い。
・成形は、コールドスプレー法により達成される。
・コールドスプレー法において、10バール(bar)を上回る圧力のプロセスガスを先細末広ノズルで加速する。この先細末広ノズルの上流、中又は下流においてプロセスガス中に粉末混合物を射出して加速し、基板上に堆積させ成形体を形成する。
・基板は、支持管としての機能をもち、成形体が管状ターゲットを形成できるように構成されている。
【0038】
押し込み硬さH
ITの測定は次のように実施される。粉末研磨区域がまず準備される。押し込み硬さの測定は、バーコビッチ(Berkovich)圧子及びオリバーファー(Oliver and Pharr)の評価法を使用するISO14577(2002年版)に則って実施する。硬度値は、好ましくは、熱処理など他の後処理を一切受けていない検体と結びつく。金属間Cu−Ga相(ホワイト〜ライトグレー色)は、光学顕微鏡下であっても明確に純Cu又はCu混晶(それぞれブロンズ着色)から区別可能であるから、硬度の圧痕は、金属間Cu−Ga相内にのみ位置させられる。
【0039】
平均押し込み硬さの測定は、次の条件下で実施される:
力:2.8mN
力の立ち上がり時間:5s
力をかける時間:2s
力を取り除く時間:5s
【0040】
硬度グリッドが、金属間Cu−Ga相を含んだ各領域にそれぞれ配置される。金属間Cu−Ga相領域に十分なサイズがあれば、当該グリッドの長さ及び幅は10μmである。圧痕間の距離は2μmであり、これにより25の圧痕が1グリッドフィールドにつき形成される。この手順は、合計10個の金属間Cu−Ga相領域で実行される。この方法により測定される250の押し込み硬さ値から、硬さの度数分布が得られる。金属間Cu−Ga相を含む領域は、好ましくは、硬さ分布の1又は複数の最大値をもち、少なくとも1つの最大値が4.5GPaを下回る押し込み硬さH
ITである。4.5GPaを下回る押し込み硬さH
ITの少なくとも1つの最大値が好適には3GPaを下回るとより良い。金属間Cu−Ga領域が非常に小さい場合は、グリッドサイズを適当に小さくする。圧痕間の距離は2μmを維持する。測定する金属間Cu−Ga相領域の数は、合計押し込み硬さ値が同じく250となるように選択する。
【0041】
本発明の方法は、粉末混合物の成形を含む。成形は、拡散がほとんど起きない条件下で好ましくは実行される。これは、例えばCuGa
2及びCu粉末の混合物から得られた、状態図に従って平衡状態のCu
9Ga
4を含有する合金組成の場合に、平衡状態に相当する相が許容できないほどに生じ得ることを防ぐ。特に好ましい成形技術は、放電プラズマ焼結法及びコールドスプレー法である。実施形態に示すように、これらのプロセス技術を採用してCuGa
2+純Cu混合物を使用した場合、平衡状態に相当するCu
9Ga
4が一切形成されない。
【0042】
放電プラズマ焼結法(SPS)は、同義語「電界活性化焼結法(FAST)」又は「通電焼結法」の下でも知られている。この場合の高密度化は、圧力と少なくとも一時的な電界の印加で達成される。電界の作用が、好ましくは粉末混合物に直流電流を通し、その結果、ジュール効果で粉末混合物に熱が発生する。焼結温度は、好ましくは50〜包晶温度(=約254℃)より下であり、好適には150〜250℃である。圧力は、好ましくは5〜400MPa、好適には10〜200MPa、最適には15〜100MPaである。
【0043】
SPSにおいて、粉末混合物は、黒鉛坩堝に入れられて2つの黒鉛パンチによって成形される。直流電流は、電界作用によって黒鉛坩堝と黒鉛パンチも通すのが好ましく、これにより、ジュール効果による加熱を黒鉛中に起こす。粉末の低硬度が、比較的低温及び低圧で極めて高い密度を達成することを可能にする。非常に効率的な高密度化と組み合わせたSPSにより可能となった焼結温度への急加熱が、拡散が起こり得る温度(50℃以上)の時間を非常に短くすることを可能にする。この時間は、60分、好ましくは30分、好適には15分を下回るのがよい。拡散及びこれに伴うCu
9Ga
4の形成はアレニウスの関係に従う温度と時間により決められるので、高密度化に必要な焼結温度が例えば高圧の場合などで低ければ、相対的に長い時間(60分を上回る)が有利である。
【0044】
別の極めて有効な成形方法がコールドスプレー法(CGS)である。このために、複数のコーティングの層を基板上に堆積させる。層を堆積させた後、該基板は取り除くこともできるが、本発明の好適な態様では、スパッタリングターゲットのバックプレート又は支持管として利用する。好ましい基板材料は、言及すれば、具体的にはCu及びCu合金である。本発明に係る粉末混合物(=コーティング材料)は、好ましくは、先細末広ノズルの上流、中、又は下流においてプロセスガス(例えばN
2、空気、He又はこれらの混合)の中に射出される。好適なノズル形状はラバールノズルである。プロセスガスは、10バール(bar)、好ましくは少なくとも20バール、好適には少なくとも30バールを越える圧力をもつのがよい。有益な範囲は10〜100バール、好ましくは20〜80バール、好適には30〜60バールである。この圧力範囲の上限は、現在利用可能な設備によりある程度決まる。より高いガス圧を可能にする設備が将来的に利用可能になれば、それ相応に限度はより高圧へ移り得る。使用されるプロセスガスに応じて、ガス速度は例えば900m/s(Nの場合)〜2500m/s(Heの場合)に達する。この場合のコーティング材料は、典型的には、300〜1200m/sの速度へ加速される。先細末広ノズルの上流でガスを加熱すると、ガスがノズル内で膨張するときにガスの流速が上がり、これにしたがって粒子速度も増加する。
【0045】
コーティング材料の基板材料への付着及びコーティング材料の粒子間の結合が、CGSにより製造されるスパッタリングターゲットの品質を左右する。基本的には、コーティング材料/基板境界の領域における付着及びコーティング材料の粒子間における付着の両者とも、多くの物理的及び化学的付着メカニズムの相互作用であり、未だ完全には解明されていない場合もある。CGSにより製造されるスパッタリングターゲットが満足しなければならない重要な要件、例えばコーティングの個々の層間の良好な付着、低い有孔度及び十分な粒界強度は、各種のコーティング材料により、異なる度合いへ合わせられる。金属間Cu−Ga相を有し、押し込み硬さが低く、好ましくは十分なCuGa
2を含有する粒子を含む粉末混合物の使用は、極めて均一なスパッタリング反応を備え、局所的電弧形成を示さない傾向にあり、75at%を越えるGa含有量の領域を一切もたず(スパッタリング中の局所的部分融解が無い)、そして機械的に非常に加工しやすい、スパッタリングターゲットを生む。加えて、安価な製造コスト及び簡単なリサイクルという利点がある。
【0046】
本発明の粉末混合物が層品質に影響するメカニズムは、詳細には未だ解明されていない。しかし、多くのメカニズムの相互作用が、例えば衝突の場合における流動応力の削減、マイクロプラスチック流動作用の促進、低圧密又は向上した粒子の広がりといった役割を担う。
【0047】
脆弱な材料の場合、コーティング材料の粒径が現在までのところ非常に小さく保たれているか、又は、付着に必要な粒子速度をこの方法において唯一達成できるHeがプロセスガスとして使用されている(あるいはこれら両方)。しかし、非常に細かい粉末はOの含有量が高く、CIGS太陽電池の場合に効率に悪影響を及ぼし得る。さらに、細かい粉末は、その流動挙動が良くないので、粉末輸送システムに障害を起こす可能性がある。また、基板上の衝突による粒子結合が、粗い粉末の場合に比べて非常に小さい粒径の粉末では少ない。この径の影響は、衝突により境界で局所的に放出される熱の急速な均一化といった動的効果に基づく。本発明に係る粉末混合物は、安価なプロセスガスと十分良好な流動挙動の粉末を使用する場合であっても、高品質のスパッタリングターゲットを得ることを可能にする。本発明のスパッタリングターゲットは、上述のように高い粒子速度を実現するプロセスガスHeだけではなく、N含有量が好ましくは50体積%、より好ましくは90体積%を越えるN−含有プロセスガスを使用する場合であっても、堆積させられる。プロセスガスNは、好適には他のガスと混ぜずに使用される。Nの使用は、本発明の経済的な実施を可能にする。
【0048】
プロセスガスは、好ましくは、先細末広ノズルの上流で少なくとも1つのヒータを通過させる。これによりガス速度が上がって粒子速度も上げることができ、結果的に、成形体の特性に好影響をもたらす。この場合、粒子温度が254℃(=共晶温度)以下を維持することを保証しておく。
【0049】
低いプロセス温度及び短時間高温のために、本発明の方法は、アルカリ金属又はアルカリ金属含有化合物を非常に微細な分布でスパッタリングターゲット中に導入することを可能にする。殊に好ましいアルカリ金属として、Naを特にとりあげることができ、Na
2SO
4及びNaClが特に有益なNa−含有化合物としてあげられる。短いプロセス時間と低いプロセス温度が、アルカリ金属/アルカリ金属含有化合物とCu又はGaとの間の望ましくない反応を防ぐ。
【0050】
本発明の方法は、平板ターゲットのみならず管状ターゲットでも簡単な方法で製造することを可能にする。コールドスプレー法は、管状ターゲットを製造するのに特に適している。このために、好ましくは管を基板として使用する。管状基板は、好ましくはスパッタリングターゲットの支持管に相当する。このように支持管と一緒にされた管状ターゲットは、簡単な方法によって製造され得る。
【0051】
成形プロセスの後、軽微な機械加工のみが必要である。必要に応じて熱処理も、内部応力を低減するために実施可能である。この熱処理は、好ましくは機械加工の前に実行される。
【0052】
本発明の方法により製造されるスパッタリングターゲットは、次にあげる特性の少なくとも1つを好ましくは備える。
・CuGa
2の体積割合がCu
9Ga
4の体積割合よりも多い。
・Ga−及びCu−含有金属間化合物相を含む領域における平均微小硬さが500HV0.01、好ましくは400HV0.01、好適には300HV0.01、最適には200HV0.01を下回る。
・Gaの90%がCuGa
2として存在する。
・Ga含有量が40〜68at%である。
・スパッタリングターゲットは、80at%を上回るCu含有量を有すると共に純Cu及びGa−含有Cu混晶からなる群から選択されるCu−リッチ相を含む。
・Cu−リッチ相が純Cuである。
・スパッタリングターゲットは、Cu
9Ga
4を、15体積%未満、好ましくは10体積%未満、好適には5体積%未満で含むか、最適には含まない。
・スパッタリングターゲットは、CuGa
2を、30体積%超過、好ましくは60体積%超過、好適には90体積%超過で含む。
・CuGa
2/Cu
9Ga
4体積比が2を上回るか、好ましくは5を上回る。
・CuGa
2が、研磨区域において150μmを下回る平均粒径の丸い粒の形態で存在する。
・Cu−リッチ相が、研磨区域において150μmを下回る平均粒径で且つCu−Gaマトリックスに埋め込まれている丸い粒の形態で存在する。
・スパッタリングターゲットは、0.01〜5at%のアルカリ金属、好ましくはNaを含有する。
・スパッタリングターゲットの組成:
*30〜68at%のGa、好ましくは40〜68at%のGa
*必要に応じて1以上のアルカリ金属又は1以上のアルカリ金属化合物、スパッタリングターゲットのアルカリ金属含有量は0.01〜5at%
*残余のCu及び通常在る不純物
【0053】
本発明のスパッタリングターゲットは、太陽電池の薄膜を製造するのに特に適している。CuGa
2が、スパッタリングにより堆積される層の中に驚くほど見つけられる。CuGa
2が層中に導入されるメカニズムは、未解明である。CuGa
2は分子としてスパッタされ、分子として層に導入されることが可能であると考えられる。一方で、Cu及びGaは原子の形態でスパッタされるが、再結合して熱力学的に安定したCuGa
2を形成して堆積することが可能であると考えられる。