特許第6651942号(P6651942)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本ポリエチレン株式会社の特許一覧

特許6651942パイプ及び継手用ポリエチレン並びにその成形体
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6651942
(24)【登録日】2020年1月27日
(45)【発行日】2020年2月19日
(54)【発明の名称】パイプ及び継手用ポリエチレン並びにその成形体
(51)【国際特許分類】
   C08L 23/04 20060101AFI20200210BHJP
   F16L 9/12 20060101ALI20200210BHJP
   F16L 47/20 20060101ALI20200210BHJP
【FI】
   C08L23/04
   F16L9/12
   F16L47/20
【請求項の数】7
【全頁数】34
(21)【出願番号】特願2016-67399(P2016-67399)
(22)【出願日】2016年3月30日
(65)【公開番号】特開2016-194060(P2016-194060A)
(43)【公開日】2016年11月17日
【審査請求日】2018年6月1日
(31)【優先権主張番号】特願2015-72626(P2015-72626)
(32)【優先日】2015年3月31日
(33)【優先権主張国】JP
【前置審査】
(73)【特許権者】
【識別番号】303060664
【氏名又は名称】日本ポリエチレン株式会社
(74)【代理人】
【識別番号】100104499
【弁理士】
【氏名又は名称】岸本 達人
(72)【発明者】
【氏名】平本 知己
(72)【発明者】
【氏名】福田 哲朗
【審査官】 中西 聡
(56)【参考文献】
【文献】 特表2008−501828(JP,A)
【文献】 特表2009−533511(JP,A)
【文献】 国際公開第2013/146944(WO,A1)
【文献】 特開2014−208770(JP,A)
【文献】 国際公開第2014/086468(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 1/00−101/14
C08F 6/00−246/00
F16L 9/00−11/26,41/00−49/08
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
少なくとも下記のポリエチレン成分(a)を27〜30重量%、ポリエチレン成分(b)を73〜70重量%含み、下記の特性(1)〜(5)を満足するパイプ及び継手用ポリエチレン組成物。
ポリエチレン成分(a)は、メタロセン触媒によって重合され、HLMFRが0.1〜0.5g/10分であり、密度が0.9200.925g/cmであるポリエチレンである。
ポリエチレン成分(b)は、チーグラー触媒によって重合され、エチレン単独重合体及びエチレンとα−オレフィンの共重合体のうちの少なくとも一方であって、温度190℃、荷重2.16kgにおけるメルトフローレート(MFR)が1〜10g/10分、密度が0.9610.970g/cm、Mw/Mnが1521であるポリエチレンであり、さらにポリエチレン成分(b)は、ポリエチレン成分(b−1)が18〜28重量%及びポリエチレン成分(b−2)が72〜82重量%からなり、ポリエチレン成分(b−1)のHLMFRが0.50〜4.0g/10分、密度が0.940〜0.955g/cmであり、ポリエチレン成分(b−2)のMFRが70〜200g/10分、密度が0.960〜0.973g/cmである。
特性(1):温度190℃、荷重21.6kgにおけるメルトフローレート(HLMFR)が5〜20g/10分である。
特性(2):密度(D)が0.954〜0.960g/cmである。
特性(3):ゲルパーミエーションクロマトグラフィー(GPC)にて測定される重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が21〜27である。
特性(4):フルノッチクリープ試験(80℃、5MPaで測定)における破断時間(FNCT)が150時間以上である。
特性(5):−20℃で測定されるシャルピー衝撃強度(CIS)が10.0kJ/m以上である。
【請求項2】
さらに下記の特性(6)を満足する請求項1に記載のパイプ及び継手用ポリエチレン組成物。
特性(6):CISとHLMFRとの関係が下記の式(1)を満足する。
CIS>−0.1255×HLMFR+11.216 式(1)
【請求項3】
さらに下記の特性(7)を満足する請求項1又は2に記載のパイプ及び継手用ポリエチレン組成物。
特性(7):CISと密度(D)との関係が下記の式(2)を満足する。
CIS>−1375×D+1323 式(2)
【請求項4】
請求項1〜3のいずれか一項に記載のパイプ及び継手用ポリエチレン組成物からなる成形体。
【請求項5】
成形体がパイプ又は継手である請求項4に記載の成形体。
【請求項6】
内圧クリープ試験(20℃、円周応力13.0MPa)における破壊時間が500時間以上である請求項5に記載のパイプ。
【請求項7】
ISO 9080:2012に準拠して測定される長期流体静力学的強度(LTHS)によって決定される23℃の試験温度及び50年の使用寿命についての内部圧力が12.5MPa以上である請求項6に記載のパイプ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明はパイプ及び継手用ポリエチレン並びにその成形体に関し、さらに詳しくは、特にパイプ及び継手用途において、耐圧性が高いうえに、長期耐久性に優れ、射出成形法及び押出成形法の両方法において成形が可能であるうえに、射出成形品の寸法安定性、パイプ表面外観に優れた、パイプ及び継手用ポリエチレン並びにその成形体に関する。
【背景技術】
【0002】
ポリエチレン樹脂は、成形加工性や各種物性に優れ経済性や環境問題適応性が高いので、非常に広い技術分野における資材として重用され広汎な用途に利用されている。その用途の一分野としてパイプ分野があり、地震時における耐久性の実績を基に、ガスパイプ、配水パイプなどへの利用が増大している。
現在ガスパイプや配水パイプなどに使われる樹脂は、ISO 9080及びISO 12162で規定されているPE80(MRS:Minimum Required Strength=8MPa)やPE100(MRS=10MPa)、好ましくはPE125(MRS=12.5MPa)といった優れた長期耐久性を満足する必要がある。また、ISO 1167に記載されているような極めて高性能の熱間内圧パイプクリープ性能を有する必要がある。かかる性能を発揮するためには、流動性を上げると耐久性が劣る傾向があったため、生産性を犠牲にしても、流動性又はメルトフローレート(以下、「MFR」ともいう。)の低いポリエチレンを使用せざるを得なかった。
また、現在、例えば、配水用ポリエチレン管の規格においては、耐久性を確保するために、管厚設計は、SDR(Standard dimension ratio)=D/t=11とされている。しかしながら、この場合、呼び径が大きい管の場合は、管厚も比例して厚くなり、例えば、呼び径が200の場合、厚さは20mmにもなる。したがって、重量増及び経済性等の理由から、管厚を薄くするためには、配水用ポリエチレン管材料の長期静水圧強度であるMRSをさらに向上させる必要がある。
【0003】
耐圧性の点では、現在、ポリエチレン管に比べ、耐圧性、耐候性等に優れているダクタイル鋳鉄管等が、高水圧にも使用できる配水管として多く用いられている。したがって、ポリエチレン管を、ダクタイル鋳鉄管の代替として用いるためには、ポリエチレン管において、耐圧性、耐候性等を向上させる必要がある。
また、最近はパイプ敷設の施工法の変化により、成形パイプの表面に傷がついても長期耐久性にも優れる、すなわち、ISO 13479に規定されているノッチ入りパイプ試験のような低速亀裂進展性(Slow Crack Growth:SCG)にも優れるポリエチレン樹脂が求められるようになってきた。
【0004】
これらパイプ用ポリエチレン樹脂は、フィリップス触媒やチーグラー触媒の存在下で多段重合によりエチレンとα−オレフィンとの共重合で製造されているが、フィリップス触媒によるポリエチレン樹脂は長期耐久性に難点があり、PE100を満足する高耐久性の配水パイプ用ポリエチレン樹脂は専ら後者のチーグラー触媒により製造されている。
チーグラー触媒を用いた多段重合によるエチレンとα−オレフィンとの共重合で得られるパイプ用ポリエチレン樹脂は数多くの先行技術があるが、PE100の規格を満足し、かつSCG、剛性、流動性、均質性などに優れるポリエチレン樹脂の製造は難しいものの、以下のとおり、各種の提案がなされている。
【0005】
チーグラー触媒を用いて製造することができるパイプ用ポリエチレン樹脂の改良提案として、例えば、製造の間にパイプの開裂、又は、たるみの問題の危険性のない、同時に、パイプ用品質基準、例えば、内圧への長期耐性、高度の応力亀裂抵抗、低温ノッチ付衝撃強さ及び急速亀裂成長への高度の耐性に十分合致する機械的性能と製品の均質性を有する大口径厚肉パイプの製造に使用可能な、十分高い溶融強度を有するポリエチレン成形コンパウンドを提供することを目的として、コモノマーとして4〜10個の範囲の全炭素原子数を有する1−オレフィンと、エチレンとのコポリマーであり、第1エチレンポリマー(A)の質量に対して0.2〜5質量%の割合のコモノマーと、広いバイモーダル分子質量分布とを有する第1エチレンポリマー(A)55〜75質量%と、エチレン構成単位と、4〜10個の範囲の炭素原子数を有する1−オレフィンとで製造されたコポリマーであり、第1エチレンポリマー(A)とは異なるバイモーダル分子質量分布を有する第2エチレンポリマー(B)25〜45質量%とから製造される高分子成形コンパウンドが提案されている(特許文献1参照)。
しかしながら、特許文献1記載のコンパウンドであっても、より高い耐圧性及び長期耐久性の要求を満たすものではなかった。
【0006】
また、メタロセン触媒の存在下で製造されたパイプ用ポリエチレン樹脂も提案されている。
例えば、改善されたポリエチレンパイプ樹脂を提供することを目的として、実質的にメタロセン触媒により製造された、35〜49重量%の高分子量の第1ポリエチレン画分及び51〜65重量%の低分子量の第2ポリエチレン画分を含んで成るポリエチレン樹脂であって、第1ポリエチレン画分が最高0.928g/cmの密度及び0.6g/10分未満のHLMIを有する線状低密度ポリエチレンを含んで成り、そして第2ポリエチレン画分が少なくとも0.969g/cmの密度及び100g/10分より高いMIを有する高密度ポリエチレンを含んで成り、そしてポリエチレン樹脂が0.951g/cmより高い密度及び1〜100g/10分のHLMIを有する、ポリエチレンパイプ樹脂が提案されている(特許文献2参照)。
しかしながら、特許文献2記載のポリエチレン樹脂であっても、より高い耐圧性及び長期耐久性の要求を満たすものではなかった。
【0007】
また、本出願人は、成形加工性及び剛性とSCGの機械的物性のバランスに優れ、しかも均質性に優れるパイプ用ポリエチレン樹脂を、先に提案した(特許文献3参照)。
すなわち、パイプ、特に配水用パイプ分野において、PE100を満足するだけでなく、特にSCGに優れ、流動性、均質性等も十分なポリエチレン樹脂及びその製造方法、並びにその樹脂を用いたパイプ・継手を提供することを目的として、(a)高荷重メルトフローレート(HLMFR、HLa)が5〜20g/10分、(b)密度(Da)が0.945〜0.965g/cm、(c)α−オレフィン含有量(Ca)が0.05〜1.5mol%、(d)ノッチ入りLander法−ESCRによる破壊時間(T)とHLaとCaが特定の式を満足する、との要件を満足するパイプ用ポリエチレン樹脂を提案した。
該ポリエチレン樹脂は、好ましくはチーグラー触媒を用いたポリエチレン樹脂であって、HLMFR、密度やα−オレフィン含有量を規定し、ノッチ入りLander法−ESCRにより特定される構成を有し、さらに好ましくはこの樹脂において特定のα−オレフィン共重合体を組み合わせ、特定の多段重合法によることをも特徴とするものであり、特にパイプ成形品においてPE100を満足するとともに、非常に優れたSCGを可能とするものである。
【0008】
特許文献4には、下記の特性(i)〜(vi)を満足することを特徴とするパイプ及び継手用ポリエチレンが開示されている。
特性(i):温度190℃、荷重21.6Kgにおけるハイロードメルトフローレート
(HLMFR)が8〜30g/10分である。
特性(ii):密度が0.947〜0.960g/cmである。
特性(iii):フルノッチクリープ試験(80℃、5MPaで測定)における破断時
間が300時間以上である。
特性(iv):示差走査熱量計(DSC)にて測定される121.5℃での等温結晶化
におけるピークトップ時間が300秒以下である。
特性(v):曲げ弾性率(23℃)が950MPa以上である。
特性(vi):190℃における溶融張力が100mN以上である。
しかしながら、さらに高い性能又は生産性の要求のために、耐圧性、長期耐久性、流動性に加え耐衝撃性において、より一層の向上が望まれている。特に、耐圧性と耐衝撃性については、管厚の薄肉化、管の重量減、耐用年数の向上、適用箇所の拡大、耐震性の向上等が見込めることから、特に、より一層の向上が好ましい。
【0009】
特許文献5には、低分子量エチレンホモポリマー又はコポリマーの画分(A)と、高分子量エチレンホモポリマー又はコポリマーの画分(B)とを含むベース樹脂を含み、該画分(A)が該画分(B)よりも低い平均分子量を有し、該ベース樹脂が190,000g/mol〜300,000g/molの重量平均分子量(Mw)と75〜500kPa・sの0.05ラジアン/秒における複素粘度(η0.05ラジアン/秒)とを有することを特徴とするポリエチレン組成物が開示されているが、更なる性能向上が求められている。
以上の様に、パイプ及び継手用ポリエチレン並びにその成形体においては、耐圧性及び長期耐久性において、パイプ用品質基準の高い水準を大幅に超える性能をもつものが求められている。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】日本国特表2004−510023号公報
【特許文献2】日本国特表2004−512410号公報
【特許文献3】日本国特開2007−002235号公報
【特許文献4】日本国特開2014−208770号公報
【特許文献5】日本国特表2015−537092号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明の目的は、上記した従来技術の問題点に鑑み、特にパイプ及び継手用途において、耐圧性が高いうえに、長期耐久性・耐衝撃性に優れ、射出成形法及び押出成形法の両方法において、射出成形品の寸法安定性、パイプ表面外観に優れた、パイプ及び継手用ポリエチレン並びにその成形体を提供することにある。
【課題を解決するための手段】
【0012】
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定性状のポリエチレンにより、特にパイプ及び継手用途において、耐圧性が高いうえに、長期耐久性・耐衝撃性に優れ、射出成形法及び押出成形法の両方法において成形が可能であるうえに、射出成形品の寸法安定性、パイプ表面外観に優れた、パイプ及び継手用ポリエチレン並びにその成形体が得られることを見出し、本発明を完成するに至った。
【0013】
すなわち、本発明の第1の発明によれば、少なくとも下記のポリエチレン成分(a)を27〜30重量%、ポリエチレン成分(b)を73〜70重量%含み、下記の特性(1)〜(5)を満足するパイプ及び継手用ポリエチレン組成物が提供される。
ポリエチレン成分(a)は、メタロセン触媒によって重合され、HLMFRが0.1〜0.5g/10分であり、密度が0.9200.925g/cmであるポリエチレンである。
ポリエチレン成分(b)は、チーグラー触媒によって重合され、エチレン単独重合体及びエチレンとα−オレフィンの共重合体のうちの少なくとも一方であって、温度190℃、荷重2.16kgにおけるメルトフローレート(MFR)が1〜10g/10分、密度が0.9610.970g/cm、Mw/Mnが1521であるポリエチレンであり、さらにポリエチレン成分(b)は、ポリエチレン成分(b−1)が18〜28重量%及びポリエチレン成分(b−2)が72〜82重量%からなり、ポリエチレン成分(b−1)のHLMFRが0.50〜4.0g/10分、密度が0.940〜0.955g/cmであり、ポリエチレン成分(b−2)のMFRが70〜200g/10分、密度が0.960〜0.973g/cmである。
特性(1):温度190℃、荷重21.6kgにおけるメルトフローレート(HLMFR)が5〜20g/10分である。
特性(2):密度(D)が0.954〜0.960g/cmである。
特性(3):ゲルパーミエーションクロマトグラフィー(GPC)にて測定される重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が21〜27である。
特性(4):フルノッチクリープ試験(80℃、5MPaで測定)における破断時間(FNCT)が150時間以上である。
特性(5):−20℃で測定されるシャルピー衝撃強度(CIS)が10.0kJ/m以上である。
【0014】
本発明の第2の発明によれば、第1の発明において、さらに下記の特性(6)を満足するパイプ及び継手用ポリエチレン組成物が提供される。
特性(6):CISとHLMFRとの関係が下記の式(1)を満足する。
CIS>−0.1255×HLMFR+11.216 式(1)
【0015】
本発明の第3の発明によれば、第1又は2の発明において、さらに下記の特性(7)を満足するパイプ及び継手用ポリエチレン組成物が提供される。
特性(7):CISと密度(D)との関係が下記の式(2)を満足する。
CIS>−1375×D+1323 式(2)
【0021】
本発明の第の発明によれば、第1〜のいずれかの発明のパイプ及び継手用ポリエチレン組成物からなる成形体が提供される。
【0022】
本発明の第の発明によれば、第の発明において、成形体がパイプ又は継手である成形体が提供される。
【0023】
本発明の第の発明によれば、第の発明において、内圧クリープ試験(20℃、円周応力13.0MPa)における破壊時間が500時間以上であるパイプが提供される。
【0024】
本発明の第の発明によれば、第の発明において、ISO 9080:2012に準拠して測定される長期流体静力学的強度(LTHS)によって決定される23℃の試験温度及び50年の使用寿命についての内部圧力が12.5MPa以上であるパイプが提供される。
【発明の効果】
【0025】
本発明のパイプ及び継手用ポリエチレンは、ガスパイプ、配水パイプ及びそれらの継手に好適であり、特に、水道配水用ポリエチレン管及びその継手に好適であり、パイプ用品質基準、例えば、内圧がかかった状態での長期耐性、ノッチ形状等による応力集中下でのSCGへの高度の耐性及び低温での耐衝撃性に十分合致し、それらを従来のPE100を満足する材料(以下、「PE100材料」ともいう)に比べ大幅に向上した性能を有する。したがって、特に、耐久性については、従来のPE100をはるかに上回る性能(PE125相当)を有するとともに、射出成形及び押出成形の両方の成形法において、優れた生産性を発揮するという効果がある。
具体的には、射出成形においては、厚い製品であっても成形出来、さらに、押出成形においては、溶融状態で押し出されたパイプ製品の成形時に発生するパイプ表面傷への耐性、パイプ表面に現れる高分子ゲルの低減が向上しパイプ表面外観が良好となるという効果がある。
また、本発明のパイプ及び継手用ポリエチレンを用いた成形品は、耐久性・耐衝撃性に関して、従来のパイプ用品質基準をはるかに上回る性能を有するため、管厚の薄肉化、管の重量減、耐用年数の向上、適用箇所の拡大等が可能であるという効果がある。
【発明を実施するための形態】
【0026】
本発明のパイプ及び継手用ポリエチレンは、特定の物性の要件を満足することを特徴とするものであり、以下、本発明を、項目毎に、詳細に説明する。
尚、本発明において、「重量」と「質量」は同義である。
【0027】
1.パイプ及び継手用ポリエチレンの特性
本発明のポリエチレンは、下記の特性(1)〜(5)、好ましくはさらに後述の(6)〜(7)を満足することを特徴とする。
特性(1):温度190℃、荷重21.6Kgにおけるメルトフローレート(HLMFR)が5〜20g/10分である。
特性(2):密度(D)が0.954〜0.960g/cmである。
特性(3):ゲルパーミエーションクロマトグラフィー(GPC)にて測定される重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が15〜27である。
特性(4):フルノッチクリープ試験(80℃、5MPaで測定)における破断時間(FNCT)が150時間以上である。
特性(5):−20℃で測定されるシャルピー衝撃強度(CIS)が8.5kJ/m以上である。
【0028】
1−1.特性(1):HLMFR
本発明のパイプ及び継手用ポリエチレンにおいて、特性(1)のHLMFRは、5〜20g/10分であり、好ましくは7〜15g/10分であり、更に好ましくは8〜12g/10分である。
HLMFRは、本範囲より低い場合には、分子量が増大し、流動性の低下により成形性が確保できなくなるおそれがある。また、本範囲より高い場合には、長期耐久性、特にFNCTを指標とするSCGが低下するおそれがある。
【0029】
本明細書において、HLMFRは、JIS K6922−2:1997に準じて測定される値である。
HLMFRは、ポリエチレンの製造において、エチレン重合温度や連鎖移動剤の使用等により調整することができ、所望のものを得ることができる。即ち、例えば、エチレンとα−オレフィンとの重合温度を上げることにより、分子量を下げた結果として、HLMFRを大きくすることができ、重合温度を下げることにより、分子量を上げた結果として、HLMFRを小さくすることができる。また、エチレンとα−オレフィンとの共重合反応において、共存させる水素量(連鎖移動剤量)を増加させることにより、分子量を下げた結果として、HLMFRを大きくすることができ、共存させる水素量(連鎖移動剤量)を減少させることにより、分子量を上げた結果として、HLMFRを小さくすることができる。
また、HLMFRは、組み合わせるポリエチレン成分(a)及びポリエチレン成分(b)のMFR又はHLMFRや組成割合により調整することが可能である。
【0030】
1−2.特性(2):密度
本発明のパイプ及び継手用ポリエチレンにおいて、特性(2)の密度は、0.954〜0.960g/cmであり、好ましくは0.954〜0.959g/cm、さらに好ましくは0.954〜0.958g/cmである。本密度が0.954g/cm未満であれば、曲げ弾性率が低下し、結果として材料の剛性が不足し耐圧性が低下するおそれがある。一方、密度が0.960g/cmを超えると、長期耐久性、特にFNCTを指標とするSCGが低下したり、耐衝撃性が低下するおそれがある。
【0031】
本明細書において、ポリエチレン、ポリエチレン成分(a)、ポリエチレン成分(b)等の密度は、JIS K6922−1,2:1997に準じて、測定される値である。
密度は、例えば、エチレンと共重合させるコモノマーの種類や量により変化させることにより、所望のものを得ることができる。また、組み合せるポリエチレン成分(a)とポリエチレン成分(b)の密度及び組成割合により調整することが可能である。
【0032】
1−3.特性(3):Mw/Mn
本発明のパイプ及び継手用ポリエチレンにおいて、特性(3)のゲルパーミエーションクロマトグラフィー(GPC)にて測定される重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn)が15〜27であり、好ましくは18〜25、更に好ましくは21〜24である。Mw/Mnが15未満では、成形品の耐久性が不足するため好ましくない。一方、Mw/Mnが27より大きいと耐衝撃性や耐ストレスクラック性等が不十分となるため好ましくない。
【0033】
なお、本明細書において、ポリエチレンのMw/Mnは、GPCで測定される重量平均分子量Mwと数平均分子量Mnから計算される値をいう。
Mw/Mnは、主に、重合触媒及び重合条件を選択することにより達成することができる。また、組み合せるポリエチレン成分(a)とポリエチレン成分(b)のMw/Mn及び組成割合により調整することが可能である。
【0034】
ゲルパーミエーションクロマトグラフィー(GPC)による分子量の測定(重量平均分子量Mw)は以下の方法で行なうことができる。
即ち、下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定できる。
装置:WATERS社製150C
カラム:昭和電工社製AD80M/Sを3本
測定温度:140℃
濃度:1mg/1ml
溶媒:o−ジクロロベンゼン
なお、分子量の計算及びカラムの較正は、以下の方法に準拠して行なう。
GPCクロマトデータは、1点/秒の頻度でコンピュータに取り込み、森定雄著・共立出版社発行の「サイズ排除クロマトグラフィー」第4章の記載に従ってデータ処理を行ない、Mw値を計算する。
カラムの較正は、昭和電工社製単分散ポリスチレン(S−7300、S−3900、S−1950、S−1460、S−1010、S−565、S−152、S−66.0、S−28.5、S−5.05)、n−エイコサン及びn−テトラコンタンの各0.2mg/ml溶液を用いて、一連の単分散ポリスチレンの測定を行い、それらの溶出ピーク時間と分子量の対数の関係を4次多項式でフィットしたものを較正曲線とする。
なお、ポリスチレンの分子量(MPS)は、次式を用いてポリエチレンの分子量(MPE)に換算する。MPE=0.468×MPS
【0035】
1−4.特性(4):FNCT
本発明のパイプ及び継手用ポリエチレンにおいて、特性(4)のフルノッチクリープ試験(80℃、5MPaで測定)における破断時間(FNCT)が150時間以上であり、好ましくは160時間以上であり、より好ましくは170時間以上である。
FNCTが150時間未満であると、成形品における耐久性が劣るおそれがあるため好ましくない。
【0036】
本明細書において、FNCT(80℃、5MPaで測定)における破断時間は、JIS K6774(1995)「ガス用ポリエチレン管」の付属書1の全周ノッチ式引張クリープ試験に準拠し、80℃、5MPaで測定を行った値である。試験片は、JIS K6922−2(1997)「プラスチック−ポリエチレン(PE)成形用及び押出用材料−第2部:試験片の作り方及び諸性質の求め方」の表2の条件で作成した厚さ6mmで圧縮成形シートから切出したものである、全周にノッチを入れたもの(試験片厚み:6mm、ノッチ深さ:1mm、全周)を使用する。
また、試験溶液は水ではなく、アルキル硫酸ナトリウム1%水溶液を用いる。
FNCT(80℃、5MPaで測定)における破断時間は、概ね、例えば、ポリエチレンを構成するポリエチレン成分(a)の密度を小さくすること及びHLMFRを小さくすることにより、大きくすることができる。
【0037】
1−5.特性(5):CIS
本発明のパイプ及び継手用ポリエチレンにおいて、特性(5)の−20℃で測定されるシャルピー衝撃強度(CIS)が8.5kJ/m以上であり、好ましくは9.0kJ/m以上であり、より好ましくは10kJ/m以上である。CISの上限値は、特に限定されないが、通常50KJ/mである。
CISが8.5kJ/m未満であると、成形品における耐衝撃性が劣るおそれがあるため好ましくない。
【0038】
ここで、−20℃のシャルピー衝撃強度は、JIS K6922−2(1997)「プラスチック−ポリエチレン(PE)成形用及び押出用材料−第2部:試験片の作り方及び諸性質の求め方」に準拠して試験片を作成し、JIS K7111(1996)「プラスチック−シャルピー衝撃強さの試験方法」に準じて測定されるものである。
−20℃のシャルピー衝撃強度は、エチレン系重合体の分子量を上げるか、分子量分布を狭くすることにより、大きくすることができる。
【0039】
1−6.特性(6):式(1)
本発明のパイプ及び継手用ポリエチレンは、さらに下記の特性(6)を満足することが好ましい。
特性(6):CISとHLMFRとの関係が下記の式(1)を満足する。
CIS>−0.1255×HLMFR+11.216 式(1)
【0040】
式(1)の技術的な意味は、本発明のポリエチレンが、他の材料と比較して、HLMFR見合いでCISが比較的大きな値を示し、同程度の流れ性であってもCISが高い値を示し、耐衝撃性に優れる材料であることを示している。
そして、本願発明のポリエチレンと従来技術のポリエチレンとを区別するために、縦軸にCIS(単位:KJ/m)、横軸にHLMFR(単位:g/10分)をとり、従来技術のポリエチレンをプロットすると当該プロットは傾きが負の相関があり、当該プロットの一次式近似を行ない、当該一次式の傾きと同一としつつ、本願発明のポリエチレンと区別するようにCIS軸の切片の値を設定し、式(1)を決定している。
本願発明において、式(1)を満足するポリエチレンを製造するためには、特性(1)〜特性(4)を満足するポリエチレンとすることが必要であり、特に、複数成分のポリエチレンを組み合わせることによって達成することができる。当該組合せるポリエチレン成分は、特定の密度、HLMFR、MFR、Mw/Mn、配合割合とする、特に低分子量成分のMFRを小さくすることが重要である。
【0041】
1−7.特性(7):式(2)
本発明のパイプ及び継手用ポリエチレンは、さらに下記の特性(7)を満足することが好ましい。
特性(7):CISと密度(D)との関係が下記の式(2)を満足する。
CIS>−1375×D+1323 式(2)
【0042】
式(2)の技術的な意味は、本発明のポリエチレンが、他の材料と比較して、密度(D)見合いでCISが比較的大きな値を示し、同程度の密度(剛性)であってもCISが高い値を示し、耐衝撃性に優れる材料であることを示している。
そして、本願発明のポリエチレンと従来技術のポリエチレンとを区別するために、縦軸にCIS(単位:KJ/m)、横軸に密度(D)(単位:g/cm)をとり、従来技術のポリエチレンをプロットすると当該プロットは傾きが負の相関があり、当該プロットの一次式近似を行ない、当該一次式の傾きと同一としつつ、本願発明のポリエチレンと区別するようにCIS軸の切片の値を設定し、式(2)を決定している。
本願発明において、式(2)を満足するポリエチレンを製造するためには、特性(1)〜特性(4)を満足するポリエチレンとすることが必要であり、特に、複数成分のポリエチレンを組み合わせることによって達成することができる。当該組合せるポリエチレン成分は、特定の密度、HLMFR、MFR、Mw/Mn、配合割合とする、特に低分子量成分のMFRを小さくすることが重要である。
【0043】
1−8.特性(8):内圧クリープ試験
本発明のパイプ及び継手用ポリエチレン組成物において、特性(8)のパイプによる内圧クリープ試験(20℃、円周応力13.0MPaで測定)における破断時間が500時間以上であり、好ましくは600時間以上であり、より好ましくは700時間以上である。
内圧クリープ試験(20℃、円周応力13.0MPaで測定)の破壊時間が500時間未満であると、成形品における長期使用における耐圧性が劣るおそれがあるため好ましくない。
【0044】
本明細書において、内圧クリープ試験(20℃、円周応力13.0MPaで測定)における破断時間は、ISO1167(2006)に準拠し、20℃、円周応力13.0MPaで測定を行った値である。試験片は外径32mm、厚み3mm、長さ350mmのパイプを使用する。また、試験環境は水中とし、パイプ内への水を供給し加圧する。
内圧クリープ試験(20℃、円周応力13.0MPaで測定)における破断時間は、概ね、例えば、ポリエチレンを構成するポリエチレン成分(a)の密度を小さくすること及びHLMFRを小さくすることに加え、ポリエチレン成分(b)の密度を大きくすることにより、大きくすることができる。
【0045】
2.ポリエチレン成分(a)
本発明のパイプ及び継手用ポリエチレンは、本発明のポリエチレンを調製しやすく、好ましいパイプ及び継手用ポリエチレンとなることから、メタロセン触媒を用いて重合され、好ましくはTi、Zr又はHfを含有するメタロセン触媒を用いて重合され、HLMFRが0.01〜0.5g/10分であり、密度が0.915〜0.930g/cm、Mw/Mnが3.0〜5.0であるポリエチレン成分(a)を含有させたものであることが好ましい。
【0046】
ポリエチレン成分(a)のHLMFRは、0.01g/10分以上、0.5g/10分以下、好ましくは0.05〜0.2g/10分、更に好ましくは0.1〜0.15g/10分の範囲である。このHLMFRが0.01g/10分未満であれば、最終のポリエチレンにおいて、HLMFRが規定の範囲内を達成できず、流動性が低下するおそれがある。一方、このHLMFRが0.5g/10分を超えた場合には、最終ポリエチレンにおいて、長期耐久性、特にFNCTを指標とするSCGが低下するおそれがある。
HLMFRは、ポリエチレンの製造において、エチレン重合温度や連鎖移動剤の使用等により調整することができ、所望のものを得ることができる。即ち、例えば、エチレンとα−オレフィンとの重合温度を上げることにより、分子量を下げた結果として、HLMFRを大きくすることができ、重合温度を下げることにより、分子量を上げた結果として、及びHLMFRを小さくすることができる。また、エチレンとα−オレフィンとの共重合反応において、共存させる水素量(連鎖移動剤量)を増加させることにより、分子量を下げた結果として、HLMFRを大きくすることができ、共存させる水素量(連鎖移動剤量)を減少させることにより、分子量を上げた結果として、HLMFRを小さくすることができる。
【0047】
ポリエチレン成分(a)の密度は、0.915〜0.930g/cmであり、好ましくは0.915〜0.925g/cm、更に好ましくは0.920〜0.925g/cmである。密度が0.915g/cm未満であれば、最終ポリエチレンにおける密度範囲を達成できず曲げ弾性率が低下し、結果として材料の剛性不足となり、耐圧性が低下するおそれがある。一方、密度が0.930g/cmを超えた場合には、最終ポリエチレンの長期耐久性、特にFNCTを指標とするSCGが低下するおそれがある。
密度は、JIS K6922−1,2:1997に準じて、測定される値である。
密度は、例えば、エチレンと共重合させるコモノマーの種類や量により変化させることにより、所望のものを得ることができる。
【0048】
ポリエチレン成分(a)のMw/Mnは、好ましくは2.0以上、より好ましくは2.5以上、更に好ましくは3.0以上、特に好ましくは3.2以上であり、好ましくは5.0未満、より好ましくは4.5以下、更に好ましくは4.0以下、特に好ましくは3.8以下である。ポリエチレン成分(a)のMw/Mnは、上記の下限値のいずれか及び上限値のいずれかによって限定することができる。例えば、2.0〜5.0未満、2.0〜4.5、2.5〜4.0、3.0〜5.0未満、3.2〜3.8等である。
本発明のポリエチレン成分(a)のMw/Mnは、2.0〜5.0未満が好ましい。Mw/Mnが2.0未満であれば、ポリエチレン組成物のMFRが低下し、成形性が低下するおそれがある。一方、Mw/Mnが5.0以上では、ポリエチレン組成物の長期耐久性、特にFNCTを指標とするSCGが低下するおそれがある。
Mw/Mnは、GPCで測定される重量平均分子量Mwと数平均分子量Mnから計算される値である。
Mw/Mnは、例えば、重合温度等の重合条件を変化させることにより、所望のものを得ることができる。
【0049】
ポリエチレン成分(a)は、好ましくはメタロセン触媒、更に好ましくはTi、Zr又はHfを含有するメタロセン触媒で重合される。メタロセン触媒としては、シクロペンタジエン骨格を有する配位子が遷移金属に配位してなる錯体と助触媒とを組み合わせたものが例示される。具体的なメタロセン触媒としては、Ti、Zr、Hfなどを含む遷移金属に、メチルシクロペンタジエン、ジメチルシクロペンタジエン、インデン等のシクロペンタジエン骨格を有する配位子が配位してなる錯体触媒と、助触媒として、アルミノキサン等の長周期型周期表(以下、単に「周期表」という)における第1族〜第3族元素の有機金属化合物とを、組み合わせたものや、これらの錯体触媒をシリカ等の担体に担持させた担持型のものが挙げられる。
【0050】
本発明で用いられるメタロセン触媒は、以下の触媒成分(A)及び触媒成分(B)を含むものであり、必要に応じて触媒成分(C)と組み合わせてなる触媒である。
触媒成分(A):メタロセン化合物
触媒成分(B):触媒成分(A)と反応して、カチオン性メタロセン化合物を形成する化合物
触媒成分(C):微粒子担体
【0051】
(1)触媒成分(A)
触媒成分(A)は、周期表第4族遷移金属のメタロセン化合物が用いられる。具体的には、下記一般式(I)〜(VI)で表される化合物が使用される。
(C5−a)(C5−b)MXY (I)
Q(C4−c)(C4−d)MXY (II)
Q’(C4−e)ZMXY (III)
(C5−f)ZMXY (IV)
(C5−f)MXYW (V)
Q”(C5−g)(C5−h)MXY (VI)
【0052】
ここで、Qは、二つの共役五員環配位子を架橋する結合性基を示し、Q’は、共役五員環配位子とZ基を架橋する結合性基を示し、Q”は、RとRを架橋する結合性基を示し、Mは、Ti、Zr又はHfを示し、X、Y及びWは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1〜20の炭化水素基、炭素数1〜20の酸素含有炭化水素基、炭素数1〜20の窒素含有炭化水素基、炭素数1〜20のリン含有炭化水素基又は炭素数1〜20の珪素含有炭化水素基を示し、Zは、酸素原子、イオウ原子を含む配位子、炭素数1〜40の珪素含有炭化水素基、炭素数1〜40の窒素含有炭化水素基又は炭素数1〜40のリン含有炭化水素基を示す。
【0053】
〜Rは、それぞれ独立して、炭素数1〜20の炭化水素基、ハロゲン基、炭素数1〜20のハロゲン含有炭化水素基、アルコキシ基、アリールオキシ基、酸素含有炭化水素基、硫黄含有炭化水素基、珪素含有炭化水素基、リン含有炭化水素基、窒素含有炭化水素基又はホウ素含有炭化水素基を示す。また、隣接する2個のR、2個のR、2個のR、2個のR、又は2個のRが、それぞれ結合して炭素数4〜10個の環を形成していてもよい。また、a、b、c、d、e、f、g及びhは、それぞれ0≦a≦5、0≦b≦5、0≦c≦4、0≦d≦4、0≦e≦4、0≦f≦5、0≦g≦5、0≦h≦5、を満足する整数である。
【0054】
2個の共役五員環配位子の間を架橋する結合性基Q、共役五員環配位子とZ基とを架橋する結合性基Q’、及び、RとRを架橋するQ”は、具体的には、下記のようなものが挙げられる。
すなわち、メチレン基、エチレン基のようなアルキレン基、エチリデン基、プロピリデン基、イソプロピリデン基、フェニルメチリデン基、ジフェニルメチリデン基のようなアルキリデン基、ジメチルシリレン基、ジエチルシリレン基、ジプロピルシリレン基、ジフェニルシリレン基、メチルエチルシリレン基、メチルフェニルシリレン基、メチル−t−ブチルシリレン基、ジシリレン基、テトラメチルジシリレン基のような珪素含有架橋基、ゲルマニウム含有架橋基、アルキルフォスフィン、アミン等である。これらのうち、アルキレン基、アルキリデン基、珪素含有架橋基、及びゲルマニウム含有架橋基が特に好ましく用いられる。
【0055】
上述の一般式(I)、(II)、(III)、(IV)、(V)及び(VI)で表される具体的なZr錯体を下記に例示するが、ZrをHf又はTiに置き換えた化合物も、同様に使用可能である。
また、一般式(I)、(II)、(III)、(IV)、(V)及び(VI)で示される触媒成分(A)は、同一の一般式で示される化合物、又は異なる一般式で示される化合物の二種以上の混合物として用いることができる。
【0056】
一般式(I)の化合物:
ビスシクロペンタジエニルジルコニウムジクロリド、ビス(2−メチルインデニル)ジルコニウムジクロリド、ビス(2−メチル−4,5ベンゾインデニル)ジルコニウムジクロリド、ビスフルオレニルジルコニウムジクロリド、ビス(4H−アズレニル)ジルコニウムジクロリド、ビス(2−メチル−4H−アズレニル)シクロペンタジエニルジルコニウムジクロリド、ビス(2−メチル−4−フェニル−4H−アズレニル)ジルコニウムジクロリド、ビス(2−メチル−4−(4−クロロフェニル)−4H−アズレニル)ジルコニウムジクロリド。
ビス(2−フリルシクロペンタジエニル)ジルコニウムジクロリド、ビス(2−フリルインデニル)ジルコニウムジクロリド、ビス(2−フリル−4,5−ベンゾインデニル)ジルコニウムジクロリド。
【0057】
一般式(II)の化合物:
ジメチルシリレンビス(1,1’−シクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレンビス[1,1’−(2−メチルインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1,1’−(2−メチルインデニル)]ジルコニウムジクロリド、エチレンビス[1,1’−(2−メチル−4,5ベンゾインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1,1’−(2−メチル−4−ヒドロアズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス[1,1’−(2−メチル−4−フェニル−4−ヒドロアズレニル)]ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−[2−メチル−4−(4−クロロフェニル)−4−ヒドロアズレニル]}ジルコニウムジクロリド、ジメチルシリレンビス[1,1’−(2−エチル−4−フェニル−4−ヒドロアズレニル)]ジルコニウムジクロリド、エチレンビス[1,1’−(2−メチル−4−ヒドロアズレニル)]ジルコニウムジクロリド。
ジメチルシリレンビス[1,1’−(2−フリルシクロペンタジエニル)]ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−[2−(2−フリル)−4,5−ジメチル−シクロペンタジエニル]}ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−{2−[2−(5−トリメチルシリル)フリル]−4,5−ジメチル−シクロペンタジエニル}ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−[2−(2−フリル)インデニル]}ジルコニウムジクロリド、ジメチルシリレンビス{1,1’−[2−(2−フリル)−4−フェニル−インデニル]}ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、イソプロピリデン(シクロペンタジエニル)[9−(2,7−t−ブチル)フルオレニル]ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)[9−(2,7−t−ブチル)フルオレニル]ジルコニウムジクロリド、ジメチルシリレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)[9−(2,7−t−ブチル)フルオレニル]ジルコニウムジクロリド。
【0058】
一般式(III)の化合物:
(第3級ブチルアミド)(テトラメチル−η−シクロペンタジエニル)−1,2−エタンジイルジルコニウムジクロライド、(メチルアミド)−(テトラメチル−η−シクロペンタジエニル)−1,2−エタンジイル−ジルコニウムジクロライド、(エチルアミド)(テトラメチル−η−シクロペンタジエニル)−メチレンジルコニウムジクロライド、(第3級ブチルアミド)ジメチル−(テトラメチル−η−シクロペンタジエニル)シランジルコニウムジクロライド、(第3級ブチルアミド)ジメチル(テトラメチル−η−シクロペンタジエニル)シランジルコニウムジベンジル、(ベンジルアミド)ジメチル(テトラメチル−η−シクロペンタジエニル)シランジルコニウムジクロライド、(フエニルホスフイド)ジメチル(テトラメチル−η−シクロペンタジエニル)シランジルコニウムジベンジル。
【0059】
一般式(IV)の化合物:
(シクロペンタジエニル)(フェノキシ)ジルコニウムジクロリド、(2,3−ジメチルシクロペンタジエニル)(フェノキシ)ジルコニウムジクロリド、(ペンタメチルシクロペンタジエニル)(フェノキシ)ジルコニウムジクロリド、(シクロペンタジエニル)(2,6−ジ−t−ブチルフェノキシ)ジルコニウムジクロリド、(ペンタメチルシクロ
ペンタジエニル)(2,6−ジ−i−プロピルフェノキシ)ジルコニウムジクロリド。
【0060】
一般式(V)の化合物:
(シクロペンタジエニル)ジルコニウムトリクロリド、(2,3−ジメチルシクロペンタジエニル)ジルコニウムトリクロリド、(ペンタメチルシクロペンタジエニル)ジルコニウムトリクロリド、(シクロペンタジエニル)ジルコニウムトリイソプロポキシド、(ペンタメチルシクロペンタジエニル)ジルコニウムトリイソプロポキシド。
【0061】
一般式(VI)の化合物:
エチレンビス(7,7’−インデニル)ジルコニウムジクロリド、ジメチルシリレンビス{7,7’−(1−メチル−3−フェニルインデニル)}ジルコニウムジクロリド、ジメチルシリレンビス{7,7’−[1−メチル−4−(1−ナフチル)インデニル]}ジルコニウムジクロリド、ジメチルシリレンビス[7,7’−(1−エチル−3−フェニルインデニル)]ジルコニウムジクロリド、ジメチルシリレンビス{7,7’−[1−イソプロピル−3−(4−クロロフェニル)インデニル]}ジルコニウムジクロリド。
【0062】
なお、これらの具体例の化合物のシリレン基を、ゲルミレン基に置き換えた化合物も、好適な化合物として例示される。
以上において記載した触媒成分(A)の中で、ポリエチレン成分(a)を製造するための好ましいメタロセン錯体としては、一般式(I)又は一般式(II)で表されるメタロセン錯体が好ましく、さらには、高分子量のポリマーを生成可能であり、エチレンと他のα−オレフィンとの共重合において共重合性に優れるという観点から、一般式(II)で表されるメタロセン錯体が好ましい。高分子量体を製造可能ということは、後述するような種々のポリマーの分子量の調整手法により、様々な分子量のポリマーの設計が行えるという利点がある。
本発明のポリエチレンの特性を満たすための一つの方法は、エチレン系重合体中に長鎖分岐を導入することであるが、高分子量でかつ長鎖分岐を有するポリエチレンを製造可能という観点から、一般式(II)で表されるメタロセン錯体の中でも、以下の2つの化合物群が好ましい。
【0063】
好ましい態様として、第一の化合物群は、R〜Rとして、化合物内に少なくとも一つ、複素環式芳香族基を含有している架橋メタロセン錯体である。好ましい複素環式芳香族基としては、フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基よりなる群が挙げられる。これらの置換基は、さらに珪素含有基等の置換基を有していてもよい。フリル基、ベンゾフリル基、チエニル基、ベンゾチエニル基よりなる群から選択される置換基の中で、フリル基、ベンゾフリル基がさらに好ましい。さらには、これらの置換基が、置換シクロペンタジエニル基又は置換インデニル基の2位に導入されていることが好ましく、少なくとも1つ、他に縮環構造を有しない置換シクロペンタジエニル基を有している化合物であることが特に好ましい。
【0064】
第二の化合物群は、置換シクロペンタジエニル基と置換フルオレニル基を組み合わせた架橋メタロセン錯体である。
【0065】
これらのメタロセン錯体は、後述するような担持触媒として用いることが好ましい。第一の化合物群においては、フリル基はチエニル基に含有されるいわゆるヘテロ原子と担体上の固体酸などの相互作用により、活性点構造に不均一性が生じ、長鎖分岐が生成しやすくなったものと考えている。また、第二の化合物群においても、担持触媒にすることで、活性点まわりの空間が変化するため、長鎖分岐が生成しやすくなったものと考えている。
【0066】
(2)触媒成分(B)
本発明に係るポリエチレン成分(a)の製造方法は、オレフィン重合用触媒の必須成分として、上記触媒成分(A)以外に、触媒成分(A)のメタロセン化合物(以下、「成分(A)」又は単に「A」と記すこともある。)と反応してカチオン性メタロセン化合物を形成する化合物(触媒成分(B)、以下、単に「B」と記すこともある。)、必要に応じて微粒子担体(触媒成分(C)、以下、単に「C」と記すこともある。)を含むことに、特徴がある。
【0067】
触媒成分(A)と反応してカチオン性メタロセン化合物を形成する触媒成分(B)の一つとして、有機アルミニウムオキシ化合物が挙げられる。
上記有機アルミニウムオキシ化合物は、分子中に、Al−O−Al結合を有し、その結合数は通常1〜100、好ましくは1〜50個の範囲にある。このような有機アルミニウムオキシ化合物は、通常、有機アルミニウム化合物と水とを反応させて得られる生成物である。
有機アルミニウムと水との反応は、通常、不活性炭化水素(溶媒)中で行われる。不活性炭化水素としては、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサン、ベンゼン、トルエン、キシレン等の脂肪族炭化水素、脂環族炭化水素及び芳香族炭化水素が使用できるが、脂肪族炭化水素又は芳香族炭化水素を使用することが好ましい。
【0068】
有機アルミニウムオキシ化合物の調製に用いる有機アルミニウム化合物は、下記一般式(4)で表される化合物がいずれも使用可能であるが、好ましくはトリアルキルアルミニウムが使用される。
AlX3−t (4)
(式中、Rは、炭素数1〜18、好ましくは1〜12のアルキル基、アルケニル基、アリール基、アラルキル基等の炭化水素基を示し、Xは、水素原子又はハロゲン原子を示し、tは、1≦t≦3の整数を示す。)
【0069】
トリアルキルアルミニウムのアルキル基は、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基等のいずれでも差し支えないが、メチル基であることが特に好ましい。
上記有機アルミニウム化合物は、2種以上混合して使用することもできる。
【0070】
水と有機アルミニウム化合物との反応比(水/Alモル比)は、0.25/1〜1.2/1、特に、0.5/1〜1/1であることが好ましく、反応温度は、通常−70〜100℃、好ましくは−20〜20℃の範囲にある。反応時間は、通常5分〜24時間、好ましくは10分〜5時間の範囲で選ばれる。反応に要する水として、単なる水のみならず、硫酸銅水和物、硫酸アルミニウム水和物等に含まれる結晶水や反応系中に水が生成しうる成分も利用することもできる。
なお、上記した有機アルミニウムオキシ化合物のうち、アルキルアルミニウムと水とを反応させて得られるものは、通常、アルミノキサンと呼ばれ、特にメチルアルミノキサン(実質的にメチルアルミノキサン(MAO)からなるものを含む)は、有機アルミニウムオキシ化合物として、好適である。
もちろん、有機アルミニウムオキシ化合物として、上記した各有機アルミニウムオキシ化合物の2種以上を組み合わせて使用することもでき、また、前記有機アルミニウムオキシ化合物を前述の不活性炭化水素溶媒に溶液又は分散させた溶液としたものを用いてもよい。
【0071】
また、触媒成分(B)の他の具体例として、ボラン化合物やボレート化合物が挙げられる。
上記ボラン化合物をより具体的に表すと、トリフェニルボラン、トリ(o−トリル)ボラン、トリ(p−トリル)ボラン、トリ(m−トリル)ボラン、トリ(o−フルオロフェニル)ボラン、トリス(p−フルオロフェニル)ボラン、トリス(m−フルオロフェニル)ボラン、トリス(2,5−ジフルオロフェニル)ボラン、トリス(3,5−ジフルオロフェニル)ボラン、トリス(4−トリフルオロメチルフェニル)ボラン、トリス(3,5−ジトリフルオロメチルフェニル)ボラン、トリス(2,6−ジトリフルオロメチルフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(パーフルオロナフチル)ボラン、トリス(パーフルオロビフェニル)、トリス(パーフルオロアントリル)ボラン、トリス(パーフルオロビナフチル)ボランなどが挙げられる。
【0072】
これらの中でも、トリス(3,5−ジトリフルオロメチルフェニル)ボラン、トリス(2,6−ジトリフルオロメチルフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(パーフルオロナフチル)ボラン、トリス(パーフルオロビフェニル)ボラン、トリス(パーフルオロアントリル)ボラン、トリス(パーフルオロビナフチル)ボランがより好ましく、さらに好ましくはトリス(2,6−ジトリフルオロメチルフェニル)ボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(パーフルオロナフチル)ボラン、トリス(パーフルオロビフェニル)ボランが好ましい化合物として例示される。
【0073】
また、ボレート化合物を具体的に表すと、第1の例は、次の一般式(5)で示される化合物である。
[L−H][BR (5)
【0074】
式(5)中、Lは、中性ルイス塩基であり、Hは、水素原子であり、[L−H]は、アンモニウム、アニリニウム、ホスフォニウム等のブレンステッド酸である。
アンモニウムとしては、トリメチルアンモニウム、トリエチルアンモニウム、トリプロピルアンモニウム、トリブチルアンモニウム、トリ(n−ブチル)アンモニウムなどのトリアルキル置換アンモニウム、ジ(n−プロピル)アンモニウム、ジシクロヘキシルアンモニウムなどのジアルキルアンモニウムを例示できる。
【0075】
また、アニリニウムとしては、N,N−ジメチルアニリニウム、N,N−ジエチルアニリニウム、N,N−2,4,6−ペンタメチルアニリニウムなどのN,N−ジアルキルアニリニウムが例示できる。
さらに、ホスフォニウムとしては、トリフェニルホスフォニウム、トリブチルホスホニウム、トリ(メチルフェニル)ホスフォニウム、トリ(ジメチルフェニル)ホスフォニウムなどのトリアリールホスフォニウム、トリアルキルホスフォニウムが挙げられる。
【0076】
また、式(5)中、R及びRは、6〜20、好ましくは6〜16の炭素原子を含む、同じか又は異なる芳香族又は置換芳香族炭化水素基で、架橋基によって互いに連結されていてもよく、置換芳香族炭化水素基の置換基としては、メチル基、エチル基、プロピル基、イソプロピル基等に代表されるアルキル基やフッ素、塩素、臭素、ヨウ素等のハロゲンが好ましい。
さらに、X及びXは、それぞれ独立して、ハイドライド基、ハライド基、1〜20の炭素原子を含む炭化水素基、1個以上の水素原子がハロゲン原子によって置換された1〜20の炭素原子を含む置換炭化水素基である。
【0077】
上記一般式(5)で表される化合物の具体例としては、トリブチルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリブチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(2,6−ジフルオロフェニル)ボレート、トリブチルアンモニウムテトラ(パーフルオロナフチル)ボレート、ジメチルアニリニウムテトラ(ペンタフルオロフェニル)ボレート、ジメチルアニリニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(2,6−ジフルオロフェニル)ボレート、ジメチルアニリニウムテトラ(パーフルオロナフチル)ボレート、トリフェニルホスホニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルホスホニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリフェニルホスホニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリフェニルホスホニウムテトラ(2,6−ジフルオロフェニル)ボレート、トリフェニルホスホニウムテトラ(パーフルオロナフチル)ボレート、トリメチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリエチルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリエチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリエチルアンモニウムテトラ(パーフルオロナフチル)ボレート、トリプロピルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリプロピルアンモニウムテトラ(パーフルオロナフチル)ボレート、ジ(1−プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラフェニルボレートなどを例示することができる。
【0078】
これらの中でも、トリブチルアンモニウムテトラ(ペンタフルオロフェニル)ボレート、トリブチルアンモニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリブチルアンモニウムテトラ(パーフルオロナフチル)ボレート、ジメチルアニリニウテトラ(ペンタフルオロフェニル)ボレート、ジメチルアニリニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、ジメチルアニリニウムテトラ(パーフルオロナフチル)ボレートが好ましい。
【0079】
また、ボレート化合物の第2の例は、次の一般式(6)で表される。
[L[BR (6)
【0080】
式(6)中、Lは、カルボカチオン、メチルカチオン、エチルカチオン、プロピルカチオン、イソプロピルカチオン、ブチルカチオン、イソブチルカチオン、tert−ブチルカチオン、ペンチルカチオン、トロピニウムカチオン、ベンジルカチオン、トリチルカチオン、ナトリウムカチオン、プロトン等が挙げられる。また、R、R、X及びXは、前記一般式(5)における定義と同じである。
【0081】
上記一般式(6)で表される化合物の具体例としては、トリチルテトラフェニルボレート、トリチルテトラ(o−トリル)ボレート、トリチルテトラ(p−トリル)ボレート、トリチルテトラ(m−トリル)ボレート、トリチルテトラ(o−フルオロフェニル)ボレート、トリチルテトラ(p−フルオロフェニル)ボレート、トリチルテトラ(m−フルオロフェニル)ボレート、トリチルテトラ(3,5−ジフルオロフェニル)ボレート、トリチルテトラ(ペンタフルオロフェニル)ボレート、トリチルテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(パーフルオロナフチル)ボレート、トロピニウムテトラフェニルボレート、トロピニウムテトラ(o−トリル)ボレート、トロピニウムテトラ(p−トリル)ボレート、トロピニウムテトラ(m−トリル)ボレート、トロピニウムテトラ(o−フルオロフェニル)ボレート、トロピニウムテトラ(p−フルオロフェニル)ボレート、トロピニウムテトラ(m−フルオロフェニル)ボレート、トロピニウムテトラ(3,5−ジフルオロフェニル)ボレート、トロピニウムテトラ(ペンタフルオロフェニル)ボレート、トロピニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(パーフルオロナフチル)ボレート、NaBPh、NaB(o−CH−Ph)、NaB(p−CH−Ph)、NaB(m−CH−Ph)、NaB(o−F−Ph)、NaB(p−F−Ph)、NaB(m−F−Ph)、NaB(3,5−F−Ph)、NaB(C、NaB(2,6−(CF−Ph)、NaB(3,5−(CF−Ph)、NaB(C10、HBPh・2ジエチルエーテル、HB(3,5−F−Ph)・2ジエチルエーテル、HB(C・2ジエチルエーテル、HB(2,6−(CF−Ph)・2ジエチルエーテル、HB(3,5−(CF−Ph)・2ジエチルエーテル、HB(C10・2ジエチルエーテルを例示することができる。なお、上記「Ph」はフェニル基を表す。
【0082】
これらの中でも、トリチルテトラ(ペンタフルオロフェニル)ボレート、トリチルテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(3,5−ジトリフルオロメチルフェニル)ボレート、トリチルテトラ(パーフルオロナフチル)ボレート、トロピニウムテトラ(ペンタフルオロフェニル)ボレート、トロピニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(3,5−ジトフルオロメチルフェニル)ボレート、トロピニウムテトラ(パーフルオロナフチル)ボレート、NaB(C、NaB(2,6−(CF−Ph)、NaB(3,5−(CF−Ph)、NaB(C10、HB(C・2ジエチルエーテル、HB(2,6−(CF−Ph)・2ジエチルエーテル、HB(3,5−(CF−Ph)・2ジエチルエーテル、HB(C10・2ジエチルエーテルが好ましい。
【0083】
さらに好ましくは、これらの中でもトリチルテトラ(ペンタフルオロフェニル)ボレート、トリチルテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、トロピニウムテトラ(ペンタフルオロフェニル)ボレート、トロピニウムテトラ(2,6−ジトリフルオロメチルフェニル)ボレート、NaB(C、NaB(2,6−(CF−Ph)、HB(C・2ジエチルエーテル、HB(2,6−(CF−Ph)・2ジエチルエーテル、HB(3,5−(CF−Ph)・2ジエチルエーテル、HB(C10・2ジエチルエーテルが挙げられる。
【0084】
(3)触媒成分(C)
触媒成分(C)である微粒子担体としては、無機物担体、粒子状ポリマー担体又はこれらの混合物が挙げられる。無機物担体は、金属、金属酸化物、金属塩化物、金属炭酸塩、炭素質物、又はこれらの混合物が使用可能である。
無機物担体に用いることができる好適な金属としては、例えば、鉄、アルミニウム、ニッケルなどが挙げられる。
【0085】
また、金属酸化物としては、周期表第1〜14族の元素の単独酸化物又は複合酸化物が挙げられ、例えば、SiO、Al、MgO、CaO、B、TiO、ZrO、Fe、Al・MgO、Al・CaO、Al・SiO、Al・MgO・CaO、Al・MgO・SiO、Al・CuO、Al・Fe、Al・NiO、SiO・MgOなどの天然又は合成の各種単独酸化物又は複合酸化物を例示することができる。
ここで、上記の式は、分子式ではなく、組成のみを表すものであって、本発明において用いられる複合酸化物の構造及び成分比率は特に限定されるものではない。
また、本発明において用いる金属酸化物は、少量の水分を吸収していても差し支えなく、少量の不純物を含有していても差し支えない。
【0086】
金属塩化物としては、例えば、アルカリ金属、アルカリ土類金属の塩化物が好ましく、具体的にはMgCl、CaClなどが特に好適である。
金属炭酸塩としては、アルカリ金属、アルカリ土類金属の炭酸塩が好ましく、具体的には、炭酸マグネシウム、炭酸カルシウム、炭酸バリウムなどが挙げられる。
炭素質物としては、例えば、カーボンブラック、活性炭などが挙げられる。
以上の無機物担体は、いずれも本発明に好適に用いることができるが、特に金属酸化物、シリカ、アルミナなどの使用が好ましい。
【0087】
これら無機物担体は、通常、200〜800℃、好ましくは400〜600℃で空気中又は窒素、アルゴン等の不活性ガス中で焼成して、表面水酸基の量を0.8〜1.5mmol/gに調節して用いるのが好ましい。
これら無機物担体の性状としては、特に制限はないが、通常、平均粒径は5〜200μm、好ましくは10〜150μm、平均細孔径は20〜1000Å、好ましくは50〜500Å、比表面積は150〜1000m/g、好ましくは200〜700m/g、細孔容積は0.3〜2.5cm/g、好ましくは0.5〜2.0cm/g、見掛比重は0.10〜0.50g/cmを有する無機物担体を用いるのが好ましい。
【0088】
上記した無機物担体は、もちろんそのまま用いることもできるが、予備処理としてこれらの担体をトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム、ジイソブチルアルミニウムハイドライドなどの有機アルミニウム化合物やAl−O−Al結合を含む有機アルミニウムオキシ化合物に接触させた後、用いることができる。
【0089】
本発明に係るメタロセン触媒は、触媒成分(A)と、触媒成分(B)、及び必要に応じて触媒成分(C)からなる触媒を得る際の各成分の接触方法は、特に限定されず、例えば、以下の方法が任意に採用可能である。
【0090】
(I)触媒成分(A)と、触媒成分(B)とを接触させた後、触媒成分(C)を接触させる。
(II)触媒成分(A)と、触媒成分(C)とを接触させた後、触媒成分(B)を接触させる。
(III)触媒成分(B)と、触媒成分(C)とを接触させた後、触媒成分(A)を接触させる。
【0091】
これらの接触方法の中で(I)と(III)が好ましく、さらに(I)が最も好ましい。いずれの接触方法においても、通常は窒素又はアルゴンなどの不活性雰囲気中、一般にベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素(通常炭素数は6〜12)、ヘプタン、ヘキサン、デカン、ドデカン、シクロヘキサンなどの脂肪族あるいは脂環族炭化水素(通常炭素数5〜12)等の液状不活性炭化水素の存在下、撹拌下又は非撹拌下に各成分を接触させる方法が採用される。
この接触は、通常−100℃〜200℃、好ましくは−50℃〜100℃、さらに好ましくは0℃〜50℃の温度にて、5分〜50時間、好ましくは30分〜24時間、さらに好ましくは30分〜12時間で行うことが望ましい。
【0092】
また、触媒成分(A)、触媒成分(B)と触媒成分(C)の接触に際しては、上記した通り、ある種の成分が可溶ないしは難溶な芳香族炭化水素溶媒と、ある種の成分が不溶ないしは難溶な脂肪族又は脂環族炭化水素溶媒とがいずれも使用可能である。
【0093】
各成分同士の接触反応を段階的に行う場合にあっては、前段で用いた溶媒などを除去することなく、これをそのまま後段の接触反応の溶媒に用いてもよい。また、可溶性溶媒を使用した前段の接触反応後、ある種の成分が不溶もしくは難溶な液状不活性炭化水素(例えば、ペンタン、ヘキサン、デカン、ドデカン、シクロヘキサン、ベンゼン、トルエン、キシレンなどの脂肪族炭化水素、脂環族炭化水素あるいは芳香族炭化水素)を添加して、所望生成物を固形物として回収した後に、あるいは一旦可溶性溶媒の一部又は全部を、乾燥等の手段により除去して所望生成物を固形物として取り出した後に、この所望生成物の後段の接触反応を、上記した不活性炭化水素溶媒のいずれかを使用して実施することもできる。本発明では、各成分の接触反応を複数回行うことを妨げない。
【0094】
本発明において、触媒成分(A)と、触媒成分(B)と、触媒成分(C)の使用割合は、特に限定されないが、以下の範囲が好ましい。
【0095】
触媒成分(B)として、有機アルミニウムオキシ化合物を用いる場合、触媒成分(A)中の遷移金属(M)に対する有機アルミニウムオキシ化合物のアルミニウムの原子比(Al/M)は、通常、1〜100,000、好ましくは5〜1000、さらに好ましくは50〜200の範囲が望ましく、また、ボラン化合物やボレート化合物を用いる場合、メタロセン化合物中の遷移金属(M)に対する、ホウ素の原子比(B/M)は、通常、0.01〜100、好ましくは0.1〜50、さらに好ましくは0.2〜10の範囲で選択することが望ましい。
さらに、触媒成分(B)として、有機アルミニウムオキシ化合物と、ボラン化合物、ボレート化合物との混合物を用いる場合にあっては、混合物における各化合物について、遷移金属(M)に対して上記と同様な使用割合で選択することが望ましい。
【0096】
触媒成分(C)の使用量は、触媒成分(A)中の遷移金属0.0001〜5ミリモル当たり、好ましくは0.001〜0.5ミリモル当たり、さらに好ましくは0.01〜0.1ミリモル当たり、1gである。
【0097】
触媒成分(A)と、触媒成分(B)と、触媒成分(C)とを、前記接触方法(I)〜(III)のいずれかで相互に接触させ、しかる後、溶媒を除去することで、オレフィン重合用触媒を固体触媒として得ることができる。溶媒の除去は、常圧下又は減圧下、0〜200℃、好ましくは20〜150℃で1分〜50時間、好ましくは10分〜10時間で行うことが望ましい。
【0098】
なお、メタロセン触媒は、以下の方法によっても得ることができる。
(IV)触媒成分(A)と触媒成分(C)とを接触させて溶媒を除去し、これを固体触媒成分とし、重合条件下で有機アルミニウムオキシ化合物、ボラン化合物、ボレート化合物又はこれらの混合物と接触させる。
(V)有機アルミニウムオキシ化合物、ボラン化合物、ボレート化合物又はこれらの混合物と触媒成分(C)とを接触させて溶媒を除去し、これを固体触媒成分とし、重合条件下で触媒成分(A)と接触させる。
上記(IV)、(V)の接触方法の場合も、成分比、接触条件及び溶媒除去条件は、前記と同様の条件が使用できる。
【0099】
また、本発明に係るポリエチレン成分(a)の製造方法の必須成分である触媒成分(B)と触媒成分(C)とを兼ねる成分として、層状珪酸塩を用いることもできる。
層状珪酸塩とは、イオン結合等によって構成される面が互いに弱い結合力で平行に積み重なった結晶構造をとる珪酸塩化合物である。
大部分の層状珪酸塩は、天然には主に粘土鉱物の主成分として産出するが、これら、層状珪酸塩は特に天然産のものに限らず、人工合成物であってもよい。
【0100】
これらの中では、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト、ベントナイト、テニオライト等のスメクタイト族、バーミキュライト族、雲母族が好ましい。
【0101】
一般に、天然品は、非イオン交換性(非膨潤性)であることが多く、その場合は好ましいイオン交換性(ないし膨潤性)を有するものとするために、イオン交換性(ないし膨潤性)を付与するための処理を行うことが好ましい。そのような処理のうちで特に好ましいものとしては、次のような化学処理が挙げられる。
ここで化学処理とは、表面に付着している不純物を除去する表面処理と層状珪酸塩の結晶構造、化学組成に影響を与える処理のいずれをも用いることができる。
具体的には、(i)塩酸、硫酸等を用いて行う酸処理、(ii)NaOH、KOH、NH等を用いて行うアルカリ処理、(iii)周期表第2族から第14族から選ばれた少なくとも1種の原子を含む陽イオンとハロゲン原子又は無機酸由来の陰イオンからなる群より選ばれた少なくとも1種の陰イオンからなる塩類を用いた塩類処理、(iv)アルコール、炭化水素化合物、ホルムアミド、アニリン等の有機物処理等が挙げられる。これらの処理は、単独で行ってもよいし、2つ以上の処理を組み合わせてもよい。
【0102】
前記層状珪酸塩は、全ての工程の前、間、後のいずれの時点においても、粉砕、造粒、分粒、分別等によって、粒子性状を制御することができる。その方法は、合目的的な任意のものであり得る。特に、造粒法について示せば、例えば、噴霧造粒法、転動造粒法、圧縮造粒法、撹拌造粒法、ブリケッティング法、コンパクティング法、押出造粒法、流動層造粒法、乳化造粒法及び液中造粒法等が挙げられる。特に好ましい造粒法は、上記の内、噴霧造粒法、転動造粒法及び圧縮造粒法である。
【0103】
上記した層状珪酸塩は、もちろんそのまま用いることもできるが、これらの層状珪酸塩をトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、トリプロピルアルミニウム、トリブチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウム、ジイソブチルアルミニウムハイドライドなどの有機アルミニウム化合物やAl−O−Al結合を含む有機アルミニウムオキシ化合物と組み合わせて用いることができる。
【0104】
本発明に係るメタロセン触媒において、触媒成分(A)を、層状珪酸塩に担持するには、触媒成分(A)と層状珪酸塩を相互に接触させる、あるいは触媒成分(A)、有機アルミニウム化合物、層状珪酸塩を相互に接触させてもよい。
各成分の接触方法は、特に限定されず、例えば、以下の方法が任意に採用可能である。
【0105】
(VI)触媒成分(A)と有機アルミニウム化合物を接触させた後、層状珪酸塩担体と接触させる。
(VII)触媒成分(A)と層状珪酸塩担体を接触させた後、有機アルミニウム化合物と接触させる。
(VIII)有機アルミニウム化合物と層状珪酸塩担体を接触させた後、触媒成分(A)と接触させる。
【0106】
これらの接触方法の中で(VI)と(VIII)が好ましい。いずれの接触方法においても、通常は窒素又はアルゴンなどの不活性雰囲気中、一般にベンゼン、トルエン、キシレン、エチルベンゼンなどの芳香族炭化水素(通常炭素数は6〜12)、ヘプタン、ヘキサン、デカン、ドデカン、シクロヘキサンなどの脂肪族あるいは脂環族炭化水素(通常炭素数5〜12)等の液状不活性炭化水素の存在下、撹拌下又は非撹拌下に各成分を接触させる方法が採用される。
【0107】
触媒成分(A)と、有機アルミニウム化合物、層状珪酸塩担体の使用割合は、特に限定されないが、以下の範囲が好ましい。
触媒成分(A)の担持量は、層状珪酸塩担体1gあたり、0.0001〜5ミリモル、好ましくは0.001〜0.5ミリモル、さらに好ましくは0.01〜0.1ミリモルである。
また、有機アルミニウム化合物を用いる場合のAl担持量は、0.01〜100モル、好ましくは0.1〜50モル、さらに好ましくは0.2〜10モルの範囲であることが望ましい。
【0108】
担持及び溶媒除去の方法は、前記の無機物担体と同様の条件が使用できる。
触媒成分(B)と触媒成分(C)とを兼ねる成分として、層状珪酸塩を用いると、重合活性が高く、長鎖分岐を有するエチレン系重合体の生産性が向上する。
こうして得られるオレフィン重合用触媒は、必要に応じてモノマーの予備重合を行った後に使用しても差し支えない。
【0109】
メタロセン触媒の製造例として、例えば、公知刊行物である日本国特表2002−535339号公報や日本国特開2004−189869号公報に記載の「触媒」及び「原料の配合比や条件」を参酌することにより、製造することができる。また、重合体のインデックスは、各種重合条件により制御することができ、例えば、日本国特開平2−269705号公報や日本国特開平3−21607号公報記載の方法により制御することができる。
【0110】
ポリエチレン成分(a)は、エチレンの単独重合、又はエチレンと炭素数3〜12のα−オレフィン、例えば、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン等との共重合により得られる。また、改質を目的とする場合のジエンとの共重合も可能である。このとき使用されるジエン化合物の例としては、ブタジエン、1,4−ヘキサジエン、エチリデンノルボルネン、ジシクロペンタジエン等を挙げることができる。なお、重合の際のコモノマー含有率は、任意に選択することができるが、例えば、エチレンと炭素数3〜12のα−オレフィンとの共重合の場合には、エチレン・α−オレフィン共重合体中のα−オレフィン含有量は、0〜40モル%、好ましくは0〜30モル%である。
【0111】
生成重合体の分子量は、重合温度、触媒のモル比等の重合条件を変えることによってもある程度調節可能であるが、重合反応系に水素を添加することで、より効果的に分子量調節を行うことができる。
また、重合系中に、水分除去を目的とした成分、いわゆるスカベンジャーを加えても何ら支障なく実施することができる。
なお、かかるスカベンジャーとしては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムなどの有機アルミニウム化合物、前記有機アルミニウムオキシ化合物、分岐アルキルを含有する変性有機アルミニウム化合物、ジエチル亜鉛、ジブチル亜鉛などの有機亜鉛化合物、ジエチルマグネシウム、ジブチルマグネシウム、エチルブチルマグネシウムなどの有機マグネシウム化合物、エチルマグネシウムクロリド、ブチルマグネシウムクロリドなどのグリニヤ化合物などが使用される。これらのなかでは、トリエチルアルミニウム、トリイソブチルアルミニウム、エチルブチルマグネシウムが好ましく、トリエチルアルミニウムが特に好ましい。
水素濃度、モノマー量、重合圧力、重合温度等の重合条件が互いに異なる2段階以上の多段階重合方式にも、支障なく適用することができる。
【0112】
ポリエチレン成分(a)は、気相重合法、溶液重合法、スラリー重合法などの製造プロセスにより製造することができ、好ましくはスラリー重合法が望ましい。エチレン系重合体の重合条件のうち重合温度としては、0〜200℃の範囲から選択することができる。スラリー重合においては、生成ポリマーの融点より低い温度で重合を行う。重合圧力は、大気圧〜約10MPaの範囲から選択することができる。実質的に酸素、水等を断った状態で、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素等から選ばれる不活性炭化水素溶媒の存在下でエチレン及びα−オレフィンのスラリー重合を行うことにより製造することができる。
【0113】
ポリエチレン成分(a)は、所定の範囲を満たせば、単一の重合器、直列もしくは並列に接続した複数の反応器で順次連続して重合、及び複数のエチレン重合体を別々に重合した後に混合したものでもよい。
【0114】
3.ポリエチレン成分(b)
本発明のパイプ及び継手用ポリエチレンは、耐圧性及び/又は耐久性の観点から、ポリエチレン成分(b)として、エチレンの単独重合体及び/又はエチレンとα−オレフィンとの共重合体、すなわち、エチレン系重合体を含有させることが好ましい。
本発明において、ポリエチレン成分(b)は、温度190℃、荷重2.16kgにおけるメルトフローレート(MFR)が1〜10g/10分であり、密度が0.960〜0.975g/cmであることが好ましい。
【0115】
ポリエチレン成分(b)のMFRは、1〜10g/10分であり、好ましくは、1〜8g/10分、より好ましくは1〜5g/10分である。該MFRが1g/10分未満では、分子量が増大し流動性が低下し成形性が確保できなくなる。一方、該MFRが10g/10分を超えると、耐衝撃性が低下したり、SCGが低下するおそれがある。
【0116】
ここで、MFRは、JIS K6922−2:1997に準じて測定される値である。
MFRは、ポリエチレンの製造において、エチレン重合温度や連鎖移動剤の使用等により調整することができ、所望のものを得ることができる。即ち、例えば、エチレンとα−オレフィンとの重合温度を上げることにより、分子量を下げた結果として、MFRを大きくすることができ、重合温度を下げることにより、分子量を上げた結果として、MFRを小さくすることができる。また、エチレンとα−オレフィンとの共重合反応において、共存させる水素量(連鎖移動剤量)を増加させることにより、分子量を下げた結果として、MFRを大きくすることができ、共存させる水素量(連鎖移動剤量)を減少させることにより、分子量を上げた結果として、MFRを小さくすることができる。
【0117】
ポリエチレン成分(b)の密度は、0.960〜0.972g/cmであることが好ましく、好ましくは0.961〜0.970g/cm、より好ましくは0.962〜0.965g/cmである。該密度が0.960g/cm未満であれば、最終ポリエチレンにおいて、耐圧性が低下するおそれがある。一方、該密度が0.972g/cmを超えると、ポリエチレンの製造が困難となるとともに、製造できたとしても最終ポリエチレンにおいて、耐衝撃性が著しく低下するおそれがある。
【0118】
密度は、JIS K6922−1,2:1997に準じて、測定される値である。
密度は、例えば、エチレンと共重合させるコモノマーの種類や量により変化させることにより、所望のものを得ることができ、α−オレフィンの含有量を増加させると小さくすることができる。
【0119】
本発明のポリエチレン成分(b)は次の組成であることが好ましい。
即ち、ポリエチレン成分(b)は、ポリエチレン成分(b−1)が18〜30重量%及びポリエチレン成分(b−2)が70〜82重量%からなるものが好ましく、ポリエチレン成分(b−1)のHLMFRが0.45〜4.0g/10分、密度が0.935〜0.955g/cmであり、ポリエチレン成分(b−2)のMFRが50〜200g/10分、密度が0.960〜0.975g/cmであることが好ましい。
ポリエチレン成分(b−1)が18重量%未満であり、ポリエチレン成分(b−2)が82重量%を超える場合には、耐久性が低下するおそれがあり、ポリエチレン成分(b−1)が30重量%を超え、ポリエチレン成分(b−2)が70重量%未満の場合では成形品における長期使用における耐圧性が劣るおそれがある。
【0120】
ポリエチレン成分(b−1)のHLMFRは0.45〜4.0g/10分が好ましく、より好ましくは0.5〜2.0g/10分、更に好ましくは0.5〜1.0g/10分、ポリエチレン成分(b−1)の密度は0.935〜0.955g/cmが好ましく、より好ましくは0.940〜0.950g/cm、ポリエチレン成分(b−1)の割合は18〜30重量%、より好ましくは20〜28重量%である。
ポリエチレン成分(b−1)のHLMFRは、上述したHLMFRの測定方法と同様の方法で測定することができる。HLMFRが0.45g/10分未満であると、ポリエチレン成分(b−2)との相溶性が低下し、成形品における耐衝撃性が低下する傾向がある。HLMFRが4.0g/10分を超えると、成形品における耐衝撃性が低下する傾向がある。
HLMFRの調整は、エチレン重合中に共存させる連鎖移動剤(水素等)の量を変化させるか、重合温度を変化させることによって、調整することができ、水素の量を増加させる又は重合温度を高くすることにより、HLMFRを大きくすることができる。
ポリエチレン成分(b−1)の密度は、前述した密度の測定方法と同様の方法で測定することができる。密度が0.935g/cm未満であると、成形品の剛性不足が顕在化し、一方、0.955g/cmを超えると、成形品における耐久性・耐衝撃性が不足する。
密度の調整は、例えば、エチレンと共重合させるα−オレフィンの量を変化させることによって行うことができ、α−オレフィンの量を増加させると密度を小さくすることができる。
【0121】
ポリエチレン成分(b−2)のMFRは50〜200g/10分が好ましく、より好ましくは70〜150g/10分、ポリエチレン成分(b−2)の密度は0.960〜0.975g/cmが好ましく、より好ましくは0.962〜0.973g/cm、ポリエチレン成分(b−2)の割合は70〜82重量%、より好ましくは72〜82重量%である。
ポリエチレン成分(b−2)のMFRは、上述したHLMFRの測定方法と同様の方法で測定することができる。MFRが50g/10分未満であると、成形時に流動性が不足し、成形不安定な状態となる傾向がある。MFRが200g/10分を超えると、成形品における耐衝撃性が低下する傾向がある。
MFRの調整は、エチレン重合中に共存させる連鎖移動剤(水素等)の量を変化させるか、重合温度を変化させることによって、調整することができ、水素の量を増加させる又は重合温度を高くすることにより、MFRを大きくすることができる。
ポリエチレン成分(b−2)の密度は、上述した密度の測定方法と同様の方法で測定することができる。密度が0.960g/cm未満であると、成形品の剛性不足が顕在化し、一方、0.975g/cmを超えると、耐衝撃性が不足する。
密度の調整は、例えば、エチレンと共重合させるα−オレフィンの量を変化させることによって行うことができ、α−オレフィンの量を増加させると密度を小さくすることができる。
【0122】
ポリエチレン成分(b)は、そのMw/Mnが12〜25、好ましくは15〜21であることが好ましい。Mw/Mnが12未満であれば、ポリエチレン成分(a)との相溶性が低下し最終ポリエチレン組成物の耐衝撃性が低下するおそれがある。一方、Mw/Mnが25を超えた場合には、ポリエチレン成分(b)自体の耐衝撃が低位となるため、最終ポリエチレン組成物の耐衝撃性が低下するおそれがある。
Mw/Mnは、GPCで測定される重量平均分子量Mwと数平均分子量Mnから計算される値である。
Mw/Mnは、例えば、各成分の重合温度等の重合条件を変化させること、或いはポリエチレン成分(b−1)及び(b−2)の各MFRを変化させること、ポリエチレン成分(b−1)及び(b−2)の配合割合を変化させることにより、所望のものを得ることができる。
【0123】
ポリエチレン成分(b)の重合触媒は特に限定しないが、MFRと密度のバランスから好ましくはチーグラー系触媒が用いられる。好ましい触媒の例としては、Ti及び/又はVの化合物と周期表第1族〜第3族元素の有機金属化合物からなる固体チーグラー触媒である。
固体チーグラー触媒として、チタン(Ti)及び/又はバナジウム(V)並びにマグネシウム(Mg)を含有する固体触媒が挙げられ、これらの成分と共に用いることのできる有機金属化合物として、有機アルミニウム化合物、中でも、トリアルキルアルミニウムが好ましいものとして挙げられる。重合反応中における有機アルミニウム化合物の使用量は、特に制限されないが、用いる場合には、通常遷移金属化合物1モルに対して、0.05〜1000モルの範囲が好ましい。
【0124】
チーグラー触媒の例として、例えば、日本国特開昭63−202602号公報の実施例1等に記載の「触媒」を使用し、重合方法として、日本国特開2004−123995号公報の実施例1等に記載の「原料の配合比や条件」を参酌することにより、本発明におけるポリエチレン成分(b)を製造することができる。
【0125】
ポリエチレン成分(b)は、エチレンの単独重合、又はエチレンと炭素数3〜12のα−オレフィン、例えば、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン等との共重合により得られる。また、改質を目的とする場合のジエンとの共重合も可能である。このとき使用されるジエン化合物の例としては、ブタジエン、1,4−ヘキサジエン、エチリデンノルボルネン、ジシクロペンタジエン等を挙げることができる。
なお、重合の際のコモノマー含有率は、任意に選択することができるが、例えば、エチレンと炭素数3〜12のα−オレフィンとの共重合の場合には、エチレン・α−オレフィン共重合体中のα−オレフィン含有量は、0〜40モル%、好ましくは0〜30モル%である。
【0126】
ポリエチレン成分(b)は、気相重合法、溶液重合法、スラリー重合法などの製造プロセスにより製造することができ、好ましくはスラリー重合法が望ましい。該エチレン系重合体の重合条件のうち、重合温度としては、0〜300℃の範囲から選択することができる。スラリー重合においては、生成ポリマーの融点より低い温度で重合を行う。重合圧力は、大気圧〜約10MPaの範囲から選択することができる。実質的に酸素、水等を断った状態で、ヘキサン、ヘプタン等の脂肪族炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、シクロヘキサン、メチルシクロヘキサン等の脂環族炭化水素等から選ばれる不活性炭化水素溶媒の存在下でエチレン及びα−オレフィンのスラリー重合を行うことにより製造することができる。
【0127】
スラリー重合において重合器に供給される水素は、連鎖移動剤として消費され、生成するエチレン系重合体の平均分子量を決定するほか、一部は溶媒に溶解して重合器から排出される。溶媒中への水素の溶解度は小さく、重合器内に大量の気相部が存在しない限り、触媒の重合活性点付近の水素濃度は低い。そのため、水素供給量を変化させれば、触媒の重合活性点における水素濃度が速やかに変化し、生成するエチレン系重合体の分子量は、短時間の間に水素供給量に追随して変化する。従って、短い周期で水素供給量を変化させれば、より均質な製品を製造することができる。このような理由から、重合法としてスラリー重合法を採用することが好ましい。また、水素供給量の変化の態様は、連続的に変化させるよりも不連続的に変化させる方が、分子量分布を広げる効果が得られるので好ましい。
本発明に係るポリエチレン成分(b)においては、上記の通り、水素供給量を変化させることは重要であるが、その他の重合条件、例えば重合温度、触媒供給量、エチレンなどのオレフィンの供給量、1−ヘキセンなどのコモノマーの供給量、溶媒の供給量等を、適宜に水素の変化と同時に又は別個に変化させることも、重要である。
【0128】
ポリエチレン成分(b)は、複数の成分により構成することが可能である。該ポリエチレン成分(b)は、1種類の触媒を用いて多段重合反応器にて順次連続的に重合された重合体でもよく、複数種類の触媒を用いて単段又は多段重合反応器にて製造された重合体でもよいし、1種類又は複数種類の触媒を用いて重合された重合体を混合したものでもよい。
【0129】
直列に接続した複数の反応器で順次連続して重合するいわゆる多段重合方法を用いる場合は、所定の範囲を満たす限り、始めの重合域(第1段目の反応器)において高分子量成分を製造する製造条件を採用して重合し、得られた重合体を次の反応域(第2段目の反応器)に移送し、第2段目の反応器において低分子量成分を製造する順序でも、逆に、始めの重合域(第1段目の反応器)において低分子量成分を製造する製造条件を採用して重合し、得られた重合体を次の反応域(第2段目の反応器)に移送し、第2段目の反応器において高分子量成分を製造する順序のどちらでもよい。
具体的な好ましい重合方法は、以下の方法である。即ち、チタン系遷移金属化合物及び有機アルミニウム化合物を含むチーグラー触媒及び二器の反応器を使用し、第1段目の反応器にエチレン及びα−オレフィンを導入し、低密度の高分子量成分の重合体を製造し、第1段目の反応器から抜き出された重合体を第2段目の反応器に移送し、第2段目の反応器にエチレン及び水素を導入し、高密度の低分子量成分の重合体を製造する方法である。
なお、多段重合の場合、第2段目以降の重合域で生成するエチレン系重合体の量とその性状については、各段における重合体生成量(未反応ガス分析等により把握できる)を求め、各段の後でそれぞれ抜出した重合体の物性を測定し、加成性に基づいて各段で生成した重合体の物性を求めることができる。
【0130】
ポリエチレン成分(b)及びポリエチレン成分(a)に使用されるエチレンは、通常の化石原料由来の原油から製造されるエチレンであってもよいし、植物由来のエチレンであってもよい。植物由来のエチレン及びポリエチレンとしては、例えば、日本国特表2010−511634号公報に記載のエチレンやそのポリマーが挙げられる。植物由来のエチレンやそのポリマーは、カーボンニュートラル(化石原料を使わず大気中の二酸化炭素の増加につながらない)の性質を持ち、環境に配慮した製品の提供が可能である。
【0131】
4.ポリエチレン成分(a)及びポリエチレン成分(b)の組成割合
ポリエチレン成分(a)の組成割合は、ポリエチレン成分(b)75〜65重量%に対し、25〜35重量%、好ましくはポリエチレン成分(b)74〜65重量%に対し、26〜35重量%、更に好ましくはポリエチレン成分(b)73〜65重量%に対し、27〜35重量%未満である。ポリエチレン成分(a)の組成割合が25重量%未満であれば、本発明のポリエチレンの長期耐久性、特にFNCTを指標とするSCGが低下するおそれがある。一方、35重量%を超えれば、本発明のポリエチレンのMFR、密度が低下し、流動性、剛性、耐圧性が低下する重合体となるおそれがある。
【0132】
5.パイプ及び継手用ポリエチレンの成形方法
上記のパイプ及び継手用ポリエチレンは、常法に従い、ペレタイザーやホモジナイザー等による機械的な溶融混合によりペレット化した後、各種成形機により成形を行って所望の成形品とすることができる。
また、上記の方法により得られるパイプ及び継手用ポリエチレンには、常法に従い、他のオレフィン系重合体やゴム等のほか、酸化防止剤、紫外線吸収剤、光安定剤、滑剤、帯電防止剤、防曇剤、ブロッキング防止剤、加工助剤、着色顔料、架橋剤、発泡剤、無機又は有機充填剤、難燃剤等の公知の添加剤を配合することができる。
添加剤として、例えば、酸化防止剤(フェノール系、リン系、イオウ系)、滑剤、帯電防止剤、光安定剤、紫外線吸収剤等を1種又は2種以上、適宜併用することができる。充填材としては、炭酸カルシウム、タルク、金属粉(アルミニウム、銅、鉄、鉛など)、珪石、珪藻土、アルミナ、石膏、マイカ、クレー、アスベスト、グラファイト、カーボンブラック、酸化チタン等が使用可能であり、なかでも炭酸カルシウム、タルク及びマイカ等を用いるのが好ましい。いずれの場合でも、上記ポリエチレン樹脂組成物に、必要に応じ各種添加剤を配合し、混練押出機、バンバリーミキサー等にて混練し、成形用材料とすることができる。
【0133】
本発明において、パイプ及び継手用ポリエチレンの結晶化速度を更に促進するために、核剤を用いることも、有効な手法である。
該核剤としては、一般に知られているものを使用することができ、一般的な有機系又は無機系の造核剤を用いることができる。例えば、ジベンジリデンソルビトールもしくはその誘導体、有機リン酸化合物もしくはその金属塩、芳香族スルホン酸塩もしくはその金属塩、有機カルボン酸もしくはその金属塩、ロジン酸部分金属塩、タルク等の無機微粒子、イミド類、アミド類、キナクリドンキノン類、又はこれらの混合物が挙げられる。
中でもジベンジリデンソルビトール誘導体、有機リン酸金属塩、有機カルボン酸金属塩等は、透明性に優れるなど好適である。
ジベンジリデンソルビトール誘導体の具体例としては、1,3:2,4−ビス(o−3,4−ジメチルベンジリデン)ソルビトール、1,3:2,4−ビス(o−2,4−ジメチルベンジリデン)ソルビトール、1,3:2,4−ビス(o−4−エチルベンジリデン)ソルビトール、1,3:2,4−ビス(o−4−クロロベンジリデン)ソルビトール、1,3:2,4−ジベンジリデンソルビトールが挙げられ、安息香酸金属塩の具体例としては、ヒドロキシ−ジ(t−ブチル安息香酸)アルミニウム等が挙げられる。
【0134】
本発明のポリエチレンに核剤を配合する場合、核剤の配合量は、ポリエチレン100重量部に対して、0.01〜5重量部が好ましく、より好ましくは0.01〜3重量部、更に好ましくは0.01〜1重量部、特に好ましくは0.01〜0.5重量部である。核剤が0.01重量部未満では、高速成形性の改良効果が十分でなく、一方、5重量部を超えると、核剤が凝集してブツになり易いといった問題が生じる。
【0135】
6.成形体
本発明のパイプ及び継手用ポリエチレンを原料として、主に射出成形法、押出成形法等により成形され、各種成形品が得られる。成形体としては、例えば、パイプ、パイプの継手等が挙げられる。
本発明のパイプ及び継手用ポリエチレンは、上記特性を満足するものであるので、耐圧性に特に優れ、パイプ用品質基準、例えば、内圧がかかった状態での長期耐性、ノッチ形状等による応力集中下でのSCGへの高度の耐性に十分合致し、それらを従来のPE100材料に比べ大幅に向上した性能を有し、しかも、これらを、成形サイクルをハイサイクル化することにより、高い生産性にて、製造することができるので、性能が優れる上にコスト的に有利な成形体が得られる。
従って、本発明の成形体は、特に、このような特性を必要とする、水道配水用ポリエチレン管及び継手に好適に用いることができる。特に、耐圧性に極めて優れ、長期耐久性にも優れることから、従来よりも薄肉化することができるため、薄肉ポリエチレン管として、特に好適に用いることができる。
【0136】
本発明の成形体は、ISO 9080:2012に準拠して測定される長期流体静力学的強度(LTHS)によって決定される23℃の試験温度及び50年の使用寿命についての内部圧力が12.5MPa以上であることが好ましい。
【0137】
7.用途
本発明のパイプ及び継手用ポリエチレンは、特に、パイプ及び継手用途に好適である。
例えば、水道配水用ポリエチレン管及びその継手用途の場合、各種規格等の要請により、ポリエチレン管(パイプ)及び継手の材料として同一のものを使用することが望まれている。本発明のパイプ及び継手用ポリエチレンは、上記特性により、パイプ用品質基準、例えば、内圧がかかった状態での長期耐久性、ノッチ形状等による応力集中化でのSCGへの高度の耐性に十分合致し、それらを従来のPE100材料に比べ大幅に向上した性能を有するものとなり、パイプ及び継手に必要な耐久性等の物性を有するため、射出成形及び押出成形の両方の成形法において、優れた生産性を発揮するものとなる。
【0138】
具体的には、射出成形においては、ハイサイクルを可能にし、生産性が向上する上に、厚い製品であっても、後収縮が生じにくく、寸法安定性が良いという効果がある。さらに、押出成形においては、成形時に発生するパイプ表面傷への耐性が向上しパイプ表面外観が良好となるという効果がある。
すなわち、本発明のパイプ及び継手用ポリエチレンは、耐圧性が高く、特に、射出成形及び押出成形の両者において経済的に有効な点を兼ね備えた、パイプ及び継手用に好適なポリエチレンとなったものである。
さらに、本発明のパイプ及び継手用ポリエチレンを用いた成形品は、パイプ用品質基準において従来製品を上回る性能を有することから、ポリエチレン製パイプ及び継手として好適である。
また、本発明の薄肉ポリエチレン管は、本発明のパイプ及び継手用ポリエチレンを使用するものであるため、管厚の薄肉化、管の重量減、耐用年数の向上、適用箇所の拡大等が可能である。
【実施例】
【0139】
以下に、実施例を挙げて、本発明を更に具体的に説明するが、本発明は、その要旨を越
えない限り、これらの実施例に制約されるものではない。
【0140】
1.測定方法
実施例で用いた測定方法は以下の通りである。
(1)温度190℃、荷重21.6kgにおけるメルトフローレート(HLMFR):
JIS K6922−2:1997に準拠して測定した。
(2)温度190℃、荷重2.16kgにおけるメルトフローレート(MFR):
JIS K6922−2:1997に準拠して測定した。
(3)密度:
JIS K6922−1,2:1997に準拠して測定した。
【0141】
(4)ゲルパーミエーションクロマトグラフィー(GPC)による分子量の測定(重量平均分子量Mw):
下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定した。
装置:WATERS社製150C
カラム:昭和電工社製AD80M/Sを3本
測定温度:140℃
濃度:1mg/1ml
溶媒:o−ジクロロベンゼン
なお、分子量の計算及びカラムの較正は、以下の方法に準拠して行なった。
GPCクロマトデータは、1点/秒の頻度でコンピュータに取り込み、森定雄著・共立出版社発行の「サイズ排除クロマトグラフィー」第4章の記載に従ってデータ処理を行ない、Mw値を計算した。
カラムの較正は、昭和電工社製単分散ポリスチレン(S−7300、S−3900、S−1950、S−1460、S−1010、S−565、S−152、S−66.0、S−28.5、S−5.05)、n−エイコサン及びn−テトラコンタンの各0.2mg/ml溶液を用いて、一連の単分散ポリスチレンの測定を行い、それらの溶出ピーク時間と分子量の対数の関係を4次多項式でフィットしたものを較正曲線とした。
なお、ポリスチレンの分子量(MPS)は、次式を用いてポリエチレンの分子量(MPE)に換算した。MPE=0.468×MPS
【0142】
(5)フルノッチクリープ試験(80℃、5MPaで測定)における破断時間(FNCT):
JIS K6774(1995)付属書1の全周ノッチ式引張クリープ試験に準拠し、80℃、6MPaで測定を行った。試験片は、JIS K6922−2(1997)表2の条件で作成した厚さ6mmで圧縮成形シートから切出し、全周にノッチを入れたもの(試験片厚み6mm、ノッチ深さ1mm、全周)を使用した。サンプルを浸漬する試験溶液はアルキル硫酸ナトリウム1%水溶液を用いた。
(6)−20℃のシャルピー衝撃強度(CIS):
JIS K6922−2(1997)「プラスチック−ポリエチレン(PE)成形用及び押出用材料−第2部:試験片の作り方及び諸性質の求め方」に準拠して試験片を作成し、JIS K7111(1996)「プラスチック−シャルピー衝撃強さの試験方法」に準じて測定した。
【0143】
(7)内圧クリープ試験(20℃、円周応力13.0MPaで測定)における破断時間:ISO1167(2006)に準拠し、20℃、円周応力13.0MPaで測定を行った値。試験片は外径32mm、厚み3mm、長さ350mmのパイプを使用。試験環境は水中、パイプ内への水を供給し加圧する。
【0144】
(8)製品の耐久性:
FNCTが100時間を超えるものを良好「○」、100時間以下のものを不良「×」とした。
(9)製品の耐圧性:
内圧クリープ試験が500時間以上のものを良好「○」、500時間未満のものを不良「×」とした。
(10)製品の耐衝撃性:
CISとHLMFRとの関係が式(1)を満たし、且つCISと密度(D)との関係が式(2)を満たすものを良好「○」とし、式(1)に適合しないもの又は式(2)に適合しないものを不良「×」とした。
CIS>−0.1255×HLMFR+11.216 式(1)
CIS>−1375×D+1323 式(2)
(11)総合評価:
上記の製品の耐久性、耐圧性及び上記の製品の耐衝撃性の評価において、いずれも「○」であるものを「○」、いずれかが「×」であるものを「×」とした。
【0145】
2.実施例1で使用した材料
(1)ポリエチレン成分(a)
<メタロセン触媒Aの製造>
十分に窒素置換した、誘導撹拌機を装着した円筒状フラスコに、平均粒径11μmのシリカ(平均粒径11μm、表面積313m/g、細孔容積1.6cm/g)を3g充填し、トルエンを75ml添加し、オイルバスにより75℃に加熱した。別のフラスコにメチルアルミノキサンのトルエン溶液(アルベマール社製、3.0mol−Al/L)を8.0ml分取した。ジメチルシリレンビス[1,1’−{2−(2−(5−メチル)フリル)−4−(p−イソプロピルフェニル)−インデニル}]ジルコニウムジクロリド(63.4mg、75μmol)のトルエン溶液(15ml)をメチルアルモキサンのトルエン溶液に室温で添加し、75℃に昇温した後、1時間撹拌した。次いで、75℃に加熱したシリカのトルエンスラリーに、このトルエン溶液を、撹拌しながら添加し1時間保持した。その後、23℃において攪拌しながらn−ヘキサンを175ml添加し、10分後、攪拌を停止し静置した。触媒を十分沈降させた後、上澄みを除去し、n−ヘキサンを200ml添加した。一旦攪拌した後、再度、静置し上澄みを除去した。この操作を3回繰り返して、n−ヘキサンに遊離してくる成分を除去した。更に、40℃加熱した状態で、減圧により溶媒を留去した。減圧度が0.8mmHg以下となってから、さらに15分間減圧乾燥を継続しシリカ担持メタロセン触媒Aを得た。
<ファウリング防止成分Bの製造>
100mLのキシレンに、ポリエチレンイミン(分子量10,000)から誘導されたn−オクチル化ポリエチレンイミン(ポリエチレンイミンのモノマー単位当たり0.5個のn−オクチル基が導入されたもの)3gとリン酸エステル化合物であるフィチン酸1gを室温で混合、撹拌し、塩を形成させた。その後、ジオクチルスルホコハク酸エステルマグネシウム塩6gを混合し、ファウリング防止成分Bを得た。
<ポリエチレン成分(a)の製造>
内容積290Lのループ型スラリー反応器に、脱水精製イソブタン115L/h、トリイソブチルアルミニウムを0.13mol/h、ファウリング防止成分Bを6ml/h供給し、反応器内の温度を80℃として、圧力を4.2MPaGに保つように反応器から間欠的に排出しながら、エチレン、1−ヘキセン、水素を供給して、重合中の液中の1−ヘキセンとエチレンのモル比が0.019、水素とエチレンのモル比が3.5×10−4になるように調節した。
次に、ヘキサンで0.3g/Lに希釈した触媒Aのヘキサンスラリーを3L/hで反応器に供給して重合を開始し、反応器内のエチレン濃度が10vol%になるようにエチレンを供給した。生成したポリエチレンはイソブタンとともに間欠的に排出され、フラッシュさせた後、製品サイロに送った。その結果、ポリエチレンは11kg/hで製造され、HLMFRは0.20g/10分であり、密度は0.922g/cmであった。
【0146】
(2)ポリエチレン成分(b)
チーグラー触媒を使用して、エチレンと1−ヘキセンの重合を行い、表1に記載した特性のポリエチレン成分(b)を製造した。そのポリエチレン成分(b)の特性について表1に示した。
【0147】
3.実施例及び比較例
[実施例1]
<パイプ及び継手用ポリエチレンの製造及び評価>
上記のポリエチレン成分(a)及びポリエチレン成分(b)を表1に示す割合で溶融混合し、パイプ及び継手用ポリエチレンを製造した。
当該パイプ及び継手用ポリエチレンの物性及び評価結果を表1に示した。得られたポリエチレンは、引張降伏応力、長期耐久性・耐衝撃性などの機械物性に優れていた。
【0148】
[実施例2〜10]
実施例1に準じ、表1に示すポリエチレン成分(a)及びポリエチレン成分(b)を使用し、それぞれ表1に示す割合で溶融混合し、実施例1と同様にポリエチレンを製造した。得られたポリエチレンの評価結果を表1に示した。
【0149】
[比較例1〜9]
表2に示すポリエチレン成分(a)及びポリエチレン成分(b)を使用し、それぞれ表2に示す割合で溶融混合し、実施例1と同様にポリエチレンを製造した。得られたポリエチレンの評価結果を表2に示した。
なお、比較例5及び6は、ポリエチレン成分(a)及びポリエチレン成分(b)以外に表2に示すその他の成分をそれぞれの割合で溶融混合し、実施例1と同様にポリエチレンを製造した。得られたポリエチレンの評価結果を表2に示した。
【0150】
【表1】
【0151】
【表2】
【0152】
[評価]
以上のとおり、表1及び表2に示す結果から、実施例1〜10と比較例1〜9とを対比すると、本発明のパイプ及び継手用ポリエチレンの特定要件を満たすポリエチレン(実施例1〜10)は、成形品の耐久性及び耐衝撃性が優れていた。
これに対して、比較例1は、パイプ及び継手用ポリエチレンのポリエチレン成分(a)の分散が悪いため、HLMFRが大きく耐久性及び耐衝撃性が低かった。
比較例2は、パイプ及び継手用ポリエチレンのHLMFRが大きく耐久性及び耐衝撃性が低かった。
比較例3及び4は、FNCTが低いためパイプとしての耐久性が劣っていた。
比較例5及び6は、シャルピー衝撃強度が低いためパイプとしての耐衝撃性が劣っていた。
比較例7及び8は、HLMFRが大きいためパイプとしての耐久性及び耐衝撃性が劣っていた。
比較例9は、FNCTが低く、且つシャルピー衝撃強度が低いためパイプとしての耐久性及び耐衝撃性が劣っていた。
【0153】
本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2015年3月31日出願の日本特許出願(特願2015−072626)に基づくものであり、その内容はここに参照として取り込まれる。
【産業上の利用可能性】
【0154】
本発明によれば、ガスパイプ、配水パイプ及びそれらの継手に好適であり、特に、水道配水用ポリエチレン管及びその継手に好適であり、パイプ用品質基準、例えば、内圧がかかった状態での長期耐性、ノッチ形状等による応力集中下でのSCGへの高度の耐性に十分合致し、従来のPE100材料に比べ、それらを大幅に向上した性能を有し、かつ、流動性が高く、射出成形法及び押出成形法の両方法において成形が可能であるパイプ及び継手用ポリエチレンを提供することができる。
すなわち、本発明のパイプ及び継手用ポリエチレンを用いた成形品は、パイプ用品質基準に十分合致する性能を有する上に、高耐久性であり、更に耐衝撃性が優れ、パイプ表面外観が良好な成形品であり生産性、コスト的に有利であるため、産業上大いに有用である。