(58)【調査した分野】(Int.Cl.,DB名)
障害が、デュシェンヌ型筋ジストロフィー、ベッカー型筋ジストロフィー、先天性筋ジストロフィー、肢帯型筋ジストロフィー、および筋緊張性ジストロフィーから成る群から選択される、請求項7記載の薬学的組成物。
対象における障害を予防または治療するための、請求項2記載の薬学的組成物であって、前記対象は、請求項12記載の方法により、障害を有するまたは発症するリスクがあると決定される、薬学的組成物。
障害が、デュシェンヌ型筋ジストロフィー、ベッカー型筋ジストロフィー、先天性筋ジストロフィー、肢帯型筋ジストロフィー、および筋緊張性ジストロフィーから成る群から選択される、請求項17記載の方法。
組成物中のバイグリカン変異体ポリペプチドが、約0.016〜0.256μg/mlの濃度で、最大のアグリン誘発性AChRクラスター形成の少なくとも50%を増強する、請求項1記載の組成物。
組成物中のバイグリカン変異体ポリペプチドが、約0.016〜0.128μg/mlの濃度で、最大のアグリン誘発性AChRクラスター形成の少なくとも50%を増強する、請求項1記載の組成物。
組成物中のバイグリカン変異体ポリペプチドが、約0.016〜0.064μg/mlの濃度で、最大のアグリン誘発性AChRクラスター形成の少なくとも50%を増強する、請求項1記載の組成物。
【発明を実施するための形態】
【0023】
発明の簡単な説明
本発明は、T2−rhBGN(T2組み換えヒトバイグリカン)と名付けられたバイグリカン変異体の発見に基づき、この変異体は、GAG付加の部位が変異しており、それによって変異体へのGAG側鎖の付加が排除されている。かかる変異体は、様々な治療および診断用途に有用である。このように、ひとつの態様では、本発明は、プラズマ細胞膜の完全性維持に使用するためのバイグリカン治療薬、特に、これらの膜中のジストロフィン結合タンパク質複合体(DAPC)を安定化し、それにより、膜の崩壊を予防するバイグリカン治療薬を提供する。本発明は、シナプス後膜分化の刺激によるなど、神経筋接合部形成を刺激するバイグリカン治療薬、およびより一般的に、シナプス形成を刺激する化合物も提供する。
【0024】
本発明の好ましい治療薬は、DAPCおよび/またはMuSKの1つ以上の成分を結合可能であることに加えて、または代わりに、バイグリカンの1つ以上の生理活性を有する。例えば、本発明の治療薬は、AChR凝集の誘発および/または刺激もしくはMusKのアグリン誘発チロシンリン酸化の刺激を含む神経筋接合部形成、特に、シナプス後膜分化を刺激し得る。
【0025】
本発明の治療薬は、タンパク質またはその誘導体、特に、本明細書に記載のバイグリカン変異体ポリペプチドであり得る。本発明の変異体は、GAG側鎖の付加を排除する変異配列を有する。
【0026】
好ましい実施形態では、本発明の変異体は、例えば、SDSアクリルアミドゲル上の泳動により測定して、約40kDa〜約44kDaの分子量を有するM型プロテオグリカンである。好ましい実施形態では、「M型」は、一般に、単量体と考えられるが、単量体である必要はない。これらのプロテオグリカンの断片または一部分も、本発明の範囲内である。特定の理論に束縛されないが、バイグリカンのD型は、(混合物中であるとき)M型に悪影響を与えると考えられる。好ましい実施形態では、「D型」は、一般に、二量体であるが、二量体である必要はない。それは、単純にM型に悪影響を与える。
【0027】
本発明のプロテオグリカンは、小ロイシンリッチプロテオグリカン(SLRP)のファミリーのメンバーであり、それぞれ、そのヒアルロナンと相互作用できない理由で、またはグリコサミノグリカンのそのタイプの理由で、「非凝集または小デルマタン硫酸プロテオグリカン」とも呼ばれる。SLRPは、そのタンパク質およびゲノム構築に基づいて、3分類に組織化される。全SLRPは、どちら側かに小システインクラスターが隣接したロイシンリッチ反復(LRR)を含む中央ドメインにより特徴付けられる。SLRPは、例えば、Iozzo et al. (1998) Ann. Rev. Biochem. 67:609(具体的に、参照により本明細書に組み入れられるものとする)に記載されている。
【0028】
SLRPタンパクコアは、最N末端で結合した1つまたは2つのGAG鎖を有する約35〜45kDの範囲である。SLRPタンパクコアの一般構造は、保存ジスルフィド結合システインを有するドメインが隣接した6〜10ロイシンリッチ反復(LRR)の縦列整列から成る。グリコシル化の程度およびGAG鎖の数に依存して、固有の分子量は、約100〜250kDの範囲である。それらの配列相同性に基づいて、上記のIozzoは、SLRPが、1)バイグリカンおよびデコリン;2)フィブロモジュリン、ルミカン、ケラトカン、PREPLP、およびオステオアドヘリン;および3)エピフィカンおよびオステオグリシンから成る3分類に分類されると提案した。SLRPタンパクコアの最も興味深い特徴はLRRである。かかる反復(SLRP中の各24aa)は、各種の細胞内、膜貫通、および細胞外の文脈(Kobe & Deisenhofer, (1994) Trends Biochem. Sci. 19: 415−21)中のタンパク質間相互作用を媒介する。trkB上のニューロトロフィン結合部位は、例えば、LRR(Windisch et al., (1995) Biochemistry 34: 11256−63)である。反復は、αヘリックスに次いで逆平行配列のβシートの一般構造を有すると考えられるが、配列解析は、この順序が、SLRP中で逆転している可能性を示唆している(Hocking et al., (1998) Matrix Biol. 17: 1−19)。介在性アミノ酸がリガンド結合の特異性を決定する一方、各反復の保存残基がその2次構造を決定づけている可能性が高い。
【0029】
本発明の使用に好ましいSLRPとしては、バイグリカンなどの分類IのSLRPが挙げられる。様々な種のバイグリカン遺伝子およびタンパク質のヌクレオチドおよびアミノ酸配列は、ジェンバンクなどで公的に入手可能である。例えば、ヒトバイグリカンは、ジェンバンクアクセッション番号J04599(Fisher et al. (1989) J. Biol. Chem. 264: 4571に記載の骨小プロテオグリカンI(バイグリカン)をコードするヒトhPGI)およびM65154で見つけることができる;ウシバイグリカンは、ジェンバンクアクセッション番号L07953で見つけることができる;ラットバイグリカンは、ジェンバンクアクセッション番号U17834で見つけることができる;マウスバイグリカンは、ジェンバンクアクセッション番号L20276およびX53928で見つけることができる;ヒツジバイグリカンは、ジェンバンクアクセッション番号AF034842で見つけることができる。
【0030】
典型的に、バイグリカンは、2つのグリコサミノグリカン(GAG)鎖をそれぞれ有する。その構成は、組織特異的であり、複数のレベルで制御され得る(Hocking et al., (1998) Matrix Biol 17: 1−19)。例えば、骨中で合成されるバイグリカンはコンドロイチン硫酸プロテオグリカンである一方、皮膚および軟骨のバイグリカンGAGは圧倒的にデルマタン硫酸である。ヘパラン硫酸側鎖は報告されていない。タンパクコアおよび細胞型の両方が、これらのSLRPの互いに異なるグリコシル化に寄与している。
【0031】
しかしながら、本明細書で検討するように、本発明のプロテオグリカンは、GAG側鎖の付加を排除する変異配列を有する。本発明のプロテオグリカンの一部分および断片も本発明の範囲内である。一部分は、典型的に、少なくとも5、10、15、または20アミノ酸長である。好ましい一部分は、DAPC成分との相互作用など生理活性を発現するのに十分なものである。一部分は、タンパク質の1つ以上の特異的ドメインを含み得るまたはから成り得る。バイグリカンのドメインは、2つのシステインに富む領域(成熟バイグリカンのN−およびC末端40〜50アミノ酸に含まれる)およびロイシンリッチ反復(LRR)を含む。「LRR領域」は、反復を含むバイグリカンの領域を表し、アミノ酸81〜314番から本質的に成る。各個別の反復は、本明細書において「LRR」と呼ばれる。LRRは、タンパク質間相互作用を媒介すると考えられ、従って、DAPCおよびシナプス後膜の安定化に十分であり得る。
【0032】
本発明の好ましいバイグリカンは、サルコグリカンに結合可能なバイグリカンの部分から成る。ヒトバイグリカンのαサルコグリカン結合ドメインは、成熟バイグリカンタンパク質のN末端ドメイン、すなわち配列番号1のアミノ酸38〜80番、およびより具体的には、アミノ酸38〜58番に位置していることが示されている。GAG鎖は、αサルコグリカンに結合するために必要ではない。C末端システインリッチドメインは、γサルコグリカンとの相互作用を媒介することも示されている。従って、本発明の好ましいバイグリカンは、N末端またはC末端システインリッチドメイン、すなわち、配列番号1のアミノ酸38〜48番、38〜80番および315〜368番から成るバイグリカンの部分を含む。バイグリカンの特定のドメインの組み合わせも、本発明の範囲内である。
【0033】
好ましい断片は、少なくとも約30アミノ酸、少なくとも約40アミノ酸、50、60、70、80、90、100、150、または200アミノ酸から成る。本発明のプロテオグリカンの短い部分を、「本発明のミニプロテオグリカン」と名付ける。例えば、約20、30または40アミノ酸のバイグリカンコア断片を、「ミニバイグリカン」と呼ぶ。
【0034】
ヒトバイグリカンは、アミノ酸1〜19番がシグナルペプチド(ジェンバンクアクセッション番号NP001702および上記のFisher et al.)を構成する、368個のアミノ酸(配列番号1)から成る。従って、シグナルペプチドを除いたバイグリカンは、配列番号1のアミノ酸20〜368番から成る。プレプロペプチドであるアミノ酸1〜37番はプロセシング中に切断されるので、成熟バイグリカンタンパク質は、配列番号1のアミノ酸38〜368番から成る。アミノ酸38〜80番は、N末端システインリッチ領域に対応する。およそアミノ酸81〜314番は、約24個または23個のアミノ酸の10反復を含むロイシンリッチ反復領域に対応する。
【0035】
本発明のプロテオグリカンは、配列番号1または配列番号2で表される変異配列を有する変異体バイグリカンポリペプチドである。ひとつの実施形態では、変異体は、GAG側鎖を排除するアミノ酸残基42および47番(配列番号2のアミノ酸位置5および10番に相当する)における変異を含む。ひとつの実施形態では、変異体は、アミノ酸5および10番のいずれかまたは両方が、セリン(野生型)以外のいずれかのアミノ酸である、配列番号2のアミノ酸配列を有する。ひとつの実施形態では、変異体は、アミノ酸5および10番がアラニンである、配列番号3のアミノ酸配列を有する。
【0036】
本発明の好ましいプロテオグリカンは、SLRP、例えば、バイグリカン、またはその一部のヌクレオチド配列に、少なくとも約70%、好ましくは、少なくとも約80%、より好ましくは、少なくとも約85%、少なくとも約90%、少なくとも約95%、少なくとも約98%、およびさらにより好ましくは、少なくとも約99%同一なヌクレオチド配列によりコードされる。
【0037】
本発明の好ましい核酸は、SLRP、例えば、バイグリカン、またはその一部のヌクレオチド配列に、少なくとも約70%、好ましくは、少なくとも約80%、より好ましくは、少なくとも約85%、少なくとも約90%、少なくとも約95%、少なくとも約98%、およびさらにより好ましくは、少なくとも約99%同一なアミノ酸配列を含むポリペプチドをコードするものを含む。ひとつの実施形態では、核酸は、配列番号1の全部または断片を含むポリペプチドをコードする。
【0038】
本発明の化合物を調製する方法は、当技術分野で周知である。タンパク質またはその誘導体である本発明の化合物のため、化合物は、組織から単離され得、または化合物は、組み換えで、または合成で、製造され得る。組織からのタンパク質の単離を、実施例に記載する。組織から単離される本発明のタンパク質またはプロテオグリカンは、好ましくは少なくとも約70%、好ましくは少なくとも約80%、少なくとも約85%、少なくとも約90%、少なくとも約95%、少なくとも約98%、および最も好ましくは、少なくとも約99%純粋である。従って、好ましい化合物は、化合物が抽出された元の物質を約1%未満、およびより好ましくは約0.1%未満含む。
【0039】
本発明のタンパク質は、当業者に周知の方法に従って、組み換えでも製造され得る。典型的に、タンパク質をコードする遺伝子は、プラスミドまたはベクター中に挿入され、それから、得られた構築物は、適切な細胞中にトランスフェクトされ、それから、タンパク質が発現され、そこから、タンパク質が最終的に精製される。
【0040】
従って、本発明は、対象のタンパク質を製造する方法にさらに関する。例えば、関心のタンパク質をコードする発現ベクターでトランスフェクトした宿主細胞は、タンパク質の発現が起こることを可能にする適切な条件下、培養され得る。タンパク質は、分泌シグナル配列を含むことにより分泌され得、タンパク質を含む細胞および培地の混合物から単離され得る。あるいは、タンパク質は、細胞質内に保持され得、細胞を回収、溶解し、タンパク質を単離する。細胞培養液は、宿主細胞、培地および他の副生成物を含む。細胞培養に適切な培地は、当技術分野で周知である。タンパク質は、イオン交換クロマトグラフィー、ゲル濾過クロマトグラフィー、限外濾過、電気泳動、およびタンパク質の特定のエピトープに特異的な抗体を用いた免疫親和性精製を含む、タンパク質を精製するための当技術分野で公知の技術を用いて、細胞培養培地、宿主細胞、または両方から単離され得る。
【0041】
従って、本発明のタンパク質のコード配列は、微生物または真核生物細胞プロセスを介してタンパク質の組み換え型を製造するために使用され得る。発現ベクターなどの遺伝子構築物中に、ポリヌクレオチド配列をライゲートし、宿主、真核生物(酵母、トリ、昆虫または哺乳類)あるいは原核生物(細菌細胞)のどちらかに形質転換またはトランスフェクトすることは、標準手順である。
【0042】
組み換えタンパク質の製造用発現媒体としては、プラスミドおよび他のベクターが挙げられる。例えば、即時の融合タンパク質発現用の適切なベクターとしては、E. coliなど原核生物での発現用のpBR322由来プラスミド、pEMBL由来プラスミド、pEX由来プラスミド、pBTac由来プラスミドおよびpUC由来プラスミドの型のプラスミドが挙げられる。
【0043】
多くのベクターは、酵母中の組み換えタンパク質発現用に存在する。例えば、YEP24,YIPS、YEP51、YEP52、pYES2、およびYRP17は、S. cerevisiae中への遺伝子構築物の導入に有用なクローニングおよび発現媒体である(例えば、Experimental Manipulation of Gene Expression, ed. M. Inouye Academic Press, p. 83中Broach et al., (1983)(参照により本明細書に組み入れられるものとする)参照)。これらのベクターは、pBR322oriの存在により、E. coli中で、および酵母2ミクロンプラスミドの複製決定因子により、S. cerevisiae中で複製し得る。加えて、アンピシリンなどの薬剤耐性マーカーを使用し得る。
【0044】
タンパク質は、真核生物細胞、例えば、哺乳類細胞、酵母細胞、昆虫細胞(バキュロウイルス系)、あるいは原核生物細胞のどちらかで、製造され得る。バイグリカンが筋肉細胞の文脈中で使用されるとき、筋肉細胞、例えば、C2筋肉細胞中で、バイグリカンを製造することが好ましい。
【0045】
あるいは、プロテオグリカンのタンパクコアは、原核生物中で製造され得、グルコース側鎖を含まないタンパク質を得られる。
【0046】
不死化したセルライン、例えば、バイグリカン陰性セルラインなどの筋肉セルラインは、Jat et al., PNAS (1991) 88: 5096−100; Noble et al., (1992) Brain Pathology 2: 39−46に記載のようにして得られ得る。ひとつの実施形態では、H−2K.sup.b/tsA58トランスジェニックマウスを使用する。このマウスは、インターフェロンにより誘導可能なプロモーターの制御下、熱不安定不死化遺伝子(SV40ラージT抗原のtsA58変異体)を内部に持つヘテロ接合体である(このマウスは、チャールズリバー社で入手可能である)。この遺伝子を含む細胞が培養されるとき、それらは、インターフェロンの存在下、33Cで無制限に増殖する。しかしながら、温度を39Cに上昇させて(この温度で、tsA58抗原は機能しない)、インターフェロンを取り除くと、細胞は分裂を止める。
【0047】
この方法は、アストロサイト、破骨細胞、小柱網、および結腸上皮細胞を含む各種の細胞型を生育するために使用されてきた(Chambers et al., (1993) PNAS 90: 5578−82; Groves et al., (1993) Dev. Biol. 159: 87−104; Whitehead et al., (1993) PNAS 90: 587−91; Noble et al., (1995) Transgenic Res. 4: 215−25; Tamm et al., (1999) Invest. Ophtamol. Vis. Sci. 40: 1392−403)。この技術は、筋肉セルラインの製造に適合している。例えば、ひとつの研究のみにおいて、65種類の別々の筋肉セルラインが、新生仔〜4週齢の範囲の動物から誘導された(Morgan et al., (1994) Dev. Biol. 162 486−98)。これらのラインは80世代以上維持された。著しいことに、それらは、培養液中非許容条件にシフトしたとき、筋管を形成しただけでなく、宿主マウスに移植したときも筋肉を形成した。H−2K.sup.b/tsA58トランスジェニック法は、MuSK.sup.−/−筋肉セルラインを製造するため、D. Glassと同僚によっても、使用された(Sugiyama et al., (1997) J. Cell Biol. 139: 181−91)。
【0048】
不死化セルラインを条件的に製造するため、特異的変異、例えば、バイグリカンまたはMuSK欠損を有するマウスは、ヘテロ接合体H−2K.sup.b/tsA58トランスジェニックマウスと交配され得る。遺伝子の1つのコピーのみが全活性のために必要なので、交配は単純である。それから、新生仔動物の筋肉細胞を播種して、許容条件(インターフェロンと共に33C)下、増殖させ得る。それから、増殖細胞は、クローン化され得、各ラインの試料は、非許容温度にシフトされ、その筋管形成能力を試験される。野生型;デコリン.sup.−/−;バイグリカン.sup.−/o;およびデコリン.sup.−/−バイグリカン.sup.−/oセルラインは、この技術を使用して得られ得るセルラインの例である。
【0049】
バイグリカンで対象を治療する好ましい方法は、対象にバイグリカンを投与することによるものである(細胞培養に添加されるときのバイグリカンの効率に少なくとも基づく)であるが、本発明のプロテオグリカンは、遺伝子治療技術により、対象内でも産生され得る。従って、例えば、対象は、ベクターが、筋肉細胞に入り、その中で発現されることが可能であるように、本発明のタンパク質またはプロテオグリカンをコードするベクターの筋肉(例えば、対象が筋ジストロフィーを有する場合)内への注射を受けることができる。あるいは、ベクターは、ウイルスベクターであり得、ウイルスキャプシドを提供されて、ウイルスは、細胞、例えば、筋肉細胞に感染し、それにより、ベクターを送達する。方法および遺伝子治療用ベクターは、当技術分野で周知である。例示の方法は、下記に記載される。
【0050】
好ましい哺乳類発現ベクターは、細菌内のベクターの増殖を促進する原核生物配列および真核生物細胞中で発現される1つ以上の真核生物転写単位の両方を含む。pcDNAI/amp、pcDNAI/neo、pRc/CMV、pSV2gpt、pSV2neo、pSV2−dhfr、pTk2、pRSVneo、pMSG、pSVT7、pko−neoおよびpHyg由来ベクターは、真核生物細胞のトランスフェクトに適切な哺乳類発現ベクターの例である。いくつかのこれらのベクターは、原核生物および真核生物細胞の両方の複製および薬剤耐性選択を促進するため、pBR322などの細菌プラスミドの配列で修飾される。あるいは、ウシ乳頭腫ウイルス(BPV−1)、またはエプスタイン・バーウイルス(pHEBo、pREP由来およびp205)などのウイルスの誘導体は、真核生物細胞中のタンパク質の一過性発現のため、使用され得る。他のウイルス(レトロウイルスを含む)発現系の例は、下記、遺伝子治療送達系の説明中に見ることができる。プラスミドの製造および宿主生物の形質転換で使用される様々な方法は、当技術分野で周知である。一般的組み換え手順だけでなく、原核生物および真核生物細胞の両方のための他の適切な発現系については、Sambrook, Fritsch and Maniatis (Cold Spring Harbor Laboratory Press, 1989) Chapters 16および17によるMolecular Cloning: A Laboratory Manual, 2nd Ed., ed.参照。場合によっては、バキュロウイルス発現系の使用により、組み換え融合タンパク質を発現することが望ましいこともある。かかるバキュロウイルス発現系の例としては、pVL由来ベクター(pVL1392、pVL1393およびpVL941など)、pAcUW由来ベクター(pAcUW1など)、およびpBlueBac由来ベクター(pBlueBacIIIを含む−galなど)が挙げられる。
【0051】
さらに他の実施形態では、対象発現構築物は、対象遺伝子を、組み換えレトロウイルス、アデノウイルス、アデノ随伴ウイルス、および単純ヘルペスウイルス−1、または組み換え細菌もしくは真核生物プラスミドを含むウイルスベクターに挿入することにより誘導される。下記により詳しく述べるように、対象発現構築物のかかる実施形態では、様々な生体内および生体外遺伝子治療プロトコルの使用を、具体的に意図する。
【0052】
レトロウイルスベクターおよびアデノ随伴ウイルスベクターは、一般に、生体内、特にヒト中への外来遺伝子の導入のために選択される組み換え遺伝子送達系であると考えられている。これらのベクターは、遺伝子の細胞への効率的送達を提供し、導入された核酸は、宿主の染色体DNA中に安定に組み込まれる。レトロウイルスの使用用途の主要必要条件は、特に、細胞集団の野生型ウイルス拡散の可能性に関してその使用安全性を確認することである。複製欠損レトロウイルスのみ産生する専門化されたセルライン(「パッケージング細胞」と名付けられた)の開発は、遺伝子治療用レトロウイルスの利用を増加させ、欠損レトロウイルスは、遺伝子治療目的(レビューのため、Miller, A. D. (1990) Blood 76:271参照)のための遺伝子導入用途にはっきり特徴付けられる。従って、レトロウイルスコード配列(gag、pol、env)の一部を、本発明の融合タンパク質をコードする核酸により置換し、レトロウイルスを複製欠損にさせた、組み換えレトロウイルスを構築することができる。それから、複製欠損レトロウイルスは、標準技術により、ヘルパーウイルスの使用により標的細胞に感染するために使用され得るウイルス粒子中にパッケージ化される。組み換えレトロウイルスの製造およびかかるウイルスによる生体外または生体内感染のためのプロトコルを、Current Protocols in Molecular Biology, Ausubel, F. M. et al., (eds.) Greene Publishing Associates, (1989), Sections 9.10−9.14および他の標準実験マニュアルで見ることができる。
【0053】
臨床の場では、遺伝子送達系は、多くの方法のいずれかにより患者に導入され得、それらの各々は、当技術分野で知られている。例えば、遺伝子送達系の薬学的製剤は、全身に、例えば、静脈内注射により導入され得、標的細胞中の構築物の特異的形質導入は、遺伝子送達媒体、遺伝子の発現を制御する転写制御因子配列に起因する細胞型もしくは組織型発現、またはその組み合わせにより提供されたトランスフェクションの特異性から主に起こる。他の実施形態では、組み換え遺伝子の初期送達は、非常に局在性である動物中への導入により、より制限される。例えば、遺伝子送達媒体は、カテーテル(米国特許第5,328,470号参照)により、または定位的注入(例えば、Chen et al., (1994) PNAS USA 91: 3054−3057)により導入され得る。
【0054】
本発明のプロテオグリカンをコードする遺伝子は、構成的な、または誘導可能なプロモーターの制御下であり得る。これらは、当技術分野で周知である。
【0055】
化合物がバイグリカンタンパク質の生理活性を有するかどうかを決定する方法を記載する。バイグリカンタンパク質の生理活性とは、以下の1つまたは複数を指すことが意図されている:細胞膜の完全性を維持すること;細胞膜上のDAPCを安定化する能力;DAPCの1つ以上の成分と結合する能力;例えば、αジストログリカンと結合、αサルコグリカンなどのサルコグリカン成分と結合;αサルコグリカンのリン酸化;MuSKと結合;シナプス後の分化の刺激によるなどの神経筋接合部の形成の刺激;AChR凝集の刺激;MuSKリン酸化およびアグリン誘発MuSKリン酸化の増強の刺激。かかる方法は、1つ以上の上記活性を有する化合物の同定のため、化合物ライブラリーを検索するために、さらに適応される。
【0056】
細胞膜の崩壊、例えば、「漏れのある膜」の存在は、例えば、Tinsley et al. (1996) Nature 384: 349およびStraub et al. (1997) J. Cell Biol. 139: 375)に記載の、クレアチンキナーゼの放出またはエバンスブルー色素の吸収を測定するアッセイにより、決定され得る。
【0057】
本発明の化合物は、様々な動物、特に、ジストロフィン陰性であるmdxマウスでも試験され得る。
【0058】
治療方法
本発明は、筋疾患、神経筋疾患、および神経疾患を含む疾患の治療の治療および予防方法を提供する。治療方法は、疾病または障害の少なくとも1つの症状を排除または少なくとも減少すること、好ましくは、疾病または障害を治癒するよう意図される。予防方法としては、疾病または障害の出現を予防することを意図したもの、すなわち、疾病または障害の出現を抑制するよう意図される方法を含む。
【0059】
さらに、DAPCは他の細胞型でも見いだされるので、本発明は、いずれものDAPC異常に関連する疾病を治療する方法も提供する。例えば、DAPCは、脳内に存在し、加えて、アグリンが、アルツハイマー病患者の老人斑中に見られたので、神経系疾患も、本発明の方法に従って治療または予防され得る。神経系疾患が、本明細書に記載の方法に従って、治療または予防され得ることのさらなる適応は、筋ジストロフィー症の患者が、しばしば、末梢および中枢神経系疾患にも患っていることの観察に基づいている。従って、デュシェンヌ型筋ジストロフィーの患者の約3分の1は、精神病、特に、精神遅滞を有する。従って、ジストロフィン、およびそれ故、DAPCは、神経系で役割を果たしていると考えられる。
【0060】
デュシェンヌ型筋ジストロフィーの患者はまた、横隔膜に問題を有し、横隔膜中におけるジストロフィン、およびおそらくDAPCの役割を示している。従って、本発明の治療薬は、横隔膜異常に関連する疾患への応用も見いだされるはずである。
【0061】
治療または予防され得る疾病が、バイグリカンが異常であるものだけでなく、より一般的に、バイグリカンにより改善または治癒され得る欠損症に関するいずれもの疾病または状態も含むことに注目すべきである。特に、DAPCのいずれかの成分またはそれに関する成分における欠損または異常による結果としての、例えば、不安定な細胞膜に特徴付けられる疾病は、本発明のプロテオグリカンが、欠損した成分に起因する欠損を少なくとも部分的に治癒し得るという条件で、本発明の方法に従って治療または予防され得る。特に、本発明の方法に従って治療され得る疾病は、不安定なDAPCに関連するいずれもの疾病を含み、本発明のプロテオグリカンの存在により、より安定にされ得る。
【0062】
実例となる疾病および障害:特異的細胞型の細胞膜の不安定化または不適当な組織化により特徴付けられる疾病または障害は、筋ジストロフィー症(MD)、神経系合併症なく脱力および筋萎縮により特徴付けられる遺伝性変性ミオパチー群を含む。3つの主要型は、偽性肥大型(デュシェンヌ型、ベッカー型)、肢帯型、および顔面肩甲上腕型である。例えば、筋ジストロフィー症および筋萎縮症は、筋肉細胞膜の崩壊により特徴付けられ、すなわち、それらは、漏れのある膜により特徴付けられ、DAPCの成分、すなわち、ジストロフィンの変異に起因すると考えられる。サルコグリカンの変異も、筋ジストロフィー症および漏れのある膜をもたらすことが知られている。従って、本発明は、特定の筋ジストロフィーにおいて、ジストロフィンおよび/またはサルコグリカンまたはDAPCの他成分に関連する疾病を治療または予防する方法を提供する。
【0063】
ジストロフィン異常は、軽度のベッカー型筋ジストロフィー(BMD)および重度のデュシェンヌ型筋ジストロフィー(DMD)の両方の原因である。BMDでは、ジストロフィンは作られるが、大きさおよび/または量のどちらかに異常がある。患者は、軽度から中程度に弱くなる。DMDでは、タンパク質は作られず、患者は、13歳までに車椅子に束縛され、通常、20歳までに死亡する。
【0064】
本発明の方法に従って治療され得るジストロフィーの別の型は、早期臨床的発症の非常に支障をきたす筋疾患である先天性筋ジストロフィー(CMD)を含み、重度の新生児(仔)の筋緊張低下の最も頻繁な原因である。その徴候は、出生時または生後数ヶ月で認知され、運動機能の遅れ、重度および早期拘縮症ならびに関節変形を合併することが多い筋緊張低下から成る。血清クレアチンキナーゼは、疾病の早期段階では正常値の30倍まで上昇し、それから急速に減少する。筋肉生検の組織学的変化は、筋線維、少数のネクローシスのおよび再生線維の大きさの大きな変化、筋肉膜コラーゲン組織の著しい増加、および特異的超微細構造の特徴がないことから成る。CMD診断は、筋肉生検の臨床像および形態変化に基づいていたが、他の筋疾患が同様な臨床病理学的特徴を有して存在し得るので、断定できない。CMDとして分類される疾患群内で、様々な型が個別化されている。2つ以上の型は、西洋型および日本型、後者は、重度の精神障害に関連し、通常、フクヤマ先天性筋ジストロフィー(FCMD)と呼ばれる。
【0065】
先天性筋ジストロフィー(CMD)のひとつの型は、ラミニンα2鎖遺伝子の変異が原因であると、最近、特徴付けられた。ラミニンは、DAPCと関連するタンパク質である。従って、本発明は、DAPCに正常に関連する分子異常に関連する疾病を治療する方法も提供する。
【0066】
本発明の範囲内の他の筋ジストロフィーとしては、臨床的におよび遺伝的に不均一な分類の疾患である肢帯型筋ジストロフィー(LGMD)が挙げられる。これらのジストロフィーは、常染色体優性遺伝性あるいは劣性遺伝性形質のどちらかで遺伝される。常染色体優性遺伝型LGMD1Aは5q31−q33に位置づけられ(Speer, M. C. et al., Am. J. Hum. Genet. 50:1211, 1992; Yamaoka, L. Y. et al., Neuromusc. Disord. 4:471, 1994)、一方、常染色体劣性遺伝型に関する6つの遺伝子は、15q15.1(LGMD2A)(Beckmann, J. S. et al., C. R. Acad. Sci. Paris 312:141, 1991)、2p16−p13(LGMD2B)(Bashir, R. et al., Hum. Mol. Genet. 3:455, 1994)、13q12(LGMD2C)(Ben Othmane, K. et al., Nature Genet. 2:315, 1992; Azibi, K. et al., Hum. Mol. Genet. 2:1423, 1993)、17q12−q21.33(LGMD2D)(Roberds, S. L. et al., Cell 78:625, 1994; McNally, E. M., et. al., Proc. Nat. Acad. Sci. U.S.A. 91:9690, 1994)、4q12(LG1MD2E)(Lim, L. E., et. al., Nat. Genet. 11:257, 1994; Bonnemann, C. G. et al. Nat. Genet. 11:266, 1995)およびごく最近、5q33−q34(LGMD2F)(Passos−Bueno, M. R., et. al., Hum. Mol. Genet. 5:815, 1996)に位置づけられた。LGMD2C、2Dおよび2Eを有する患者は、それぞれ、γ−、α−、およびβ−サルコグリカンをコードする遺伝子の変異に起因するサルコグリカン複合体の成分欠損を有する。LGMD2Aに原因がある遺伝子は、筋特異的カルパインとして同定されたが、LGMD1A、2Bおよび2Fに原因がある遺伝子は、まだ分からない。
【0067】
本発明の方法に従って治療され得る筋ジストロフィーのさらに他の型としては、遠位筋力低下の遅い進行により特徴付けられる成人後期発症の常染色体優性遺伝型ミオパチーであるウェランダー型遠位型ミオパチー(WDM)が挙げられる。本障害は、遺伝性遠位型ミオパチーのモデル疾病と見なされている。この疾病は、染色体2p13に関連付けられる。別の筋ジストロフィーは、最近クローニングされた遺伝子ジスフェルリン、遺伝子記号DYSF(Weiler et al. (1999) Hum Mol Genet. 8: 871−7)の変異が原因である遠位型筋ジストロフィーである三好型ミオパチーである。さらの他のジストロフィー症としては、遺伝性遠位型ミオパチー、良性先天性筋緊張低下、中心コア病、ネマリンミオパチー、および筋細管(中心核)ミオパチーが挙げられる。
【0068】
本発明の方法に従って治療または予防され得る他の疾病としては、組織萎縮、例えば、萎縮症が、本発明の治療薬を用いた治療で止められるまたは遅延されるという条件で、筋ジストロフィー症に起因する筋萎縮以外の筋萎縮症により特徴付けられるものが挙げられる。さらに、本発明は、組織萎縮、例えば、筋萎縮症を回復する方法も提供する。
【0069】
筋萎縮症は、外傷性神経症;変性、代謝性または炎症性神経障害(例えば、ギランバレー症候群)、末梢神経障害、または環境有害物質または薬品が原因の神経障害が原因の除神経(その神経を有する筋肉による接触損失)に起因し得る。別の実施形態では、筋萎縮症は、運動神経障害が原因の除神経に起因する。かかる運動神経障害としては:筋萎縮性側索硬化症(ALSまたはルー・ゲーリック病)を含む成人運動ニューロン疾患;乳児性および若年性脊髄筋萎縮症、および多病巣性伝導ブロックを有する自己免疫性運動神経障害が挙げられるが、これに限定されない。別の実施形態では、筋萎縮症は、長期不使用に起因する。かかる不使用性萎縮症は、これに限定されないが:脳卒中が原因の麻痺、脊髄損傷;外傷が原因の骨格固定(骨折、捻挫または脱臼など)または長期床上安静を含む症状により発症する。さらに別の実施形態では、筋萎縮症は、これに限定されないが、がんおよび他の慢性疾患の悪液質、絶食または横紋筋融解症、これに限定されないが、甲状腺障害などの内分泌疾患および糖尿病を含む代謝ストレスまたは栄養不足に起因する。
【0070】
筋組織萎縮およびネクローシスは、患部組織線維症を伴うことが多いので、萎縮症またはネクローシスの回復または阻止は、線維症の阻害または回復ももたらす。
【0071】
加えて、本発明の治療薬は、後天性(中毒性または炎症性)ミオパチーに使用し得る。筋肉の炎症性疾患の結果として起こるミオパチーとしては、多発性筋炎および皮膚筋炎が挙げられるが、これに限定されない。中毒性ミオパチーは、これに限定されないが、アジオダロン(adiodarone)、クロロキン、クロフィブラート、コルヒチン、ドキソルビシン、エタノール、ヒドロキシクロロキン、有機リン酸類、ペルヘキシリンおよびビンクリスチンを含む、薬剤が原因であり得る。
【0072】
本発明の範囲内の神経筋ジストロフィー症は、筋緊張性ジストロフィーを含む。筋緊張性ジストロフィー(DM;またはシュタイネルト病)は、成人に発症する筋ジストロフィーの最もよく見られる型である常染色体優性遺伝型神経筋疾患である。DMの臨床像は確立しているが、例外的に可変である(Harper, P. S., Myotonic Dystrophy, 2nd ed., W. B. Saunders Co., London, 1989)。DMは、筋強直症、進行性脱力症および消耗を伴う筋肉の疾患と一般に見なされているにもかかわらず、様々な他の系の異常により特徴付けられる。DM患者はしばしば、心伝導系障害、平滑筋障害、過眠症、白内障、グルコース反応異常、ならびに、男性における早期脱毛および精巣萎縮を患っている(Harper, P. S., Myotonic Dystrophy, 2nd ed., W. B. Saunders Co., London, 1989)。診断が難しいことがある軽度の型は、中年または老年期に見られ、ほとんどまたは全く筋病変がなく、白内障により特徴付けられる。筋強直症および筋脱力症を示す典型的な型は、早期成人期および思春期に発症する。先天的に起こる最も重度の型は、全身性筋発育不全、精神遅滞、および新生児の高死亡率に関連する。この疾病および疾患遺伝子は、米国特許第5,955,265号にさらに記載されている。
【0073】
別の神経筋疾患は、デュシェンヌ型筋ジストロフィーの次に、子供に2番目に最もよく見られる神経筋疾患である脊髄筋萎縮症(「SMA」)である。SMAは、主に、乳児および幼児に発症する衰弱性神経筋疾患を表す。この障害は、脊髄の前角細胞としても知られる下位運動ニューロンの変性症が原因である。正常な下位運動ニューロンは、筋肉を収縮するように刺激する。ニューロン変性は刺激を減少させ、筋組織が萎縮する原因となる(例えば、米国特許第5,882,868号参照)。
【0074】
上記筋ジストロフィーおよびミオパチーは、骨格筋疾患である。しかしながら、本発明は、平滑筋の障害、例えば、肥大型心筋症、拡張型心筋症および拘束型心筋症を含む心筋症にも関する。少なくとも特定の平滑筋、例えば、心筋は、サルコグリカンに富む。サルコグリカンの変異は、心筋レベルの筋細胞膜の不安定性をもたらし得る(例えば、Melacini (1999) Muscle Nerve 22: 473参照)。例えば、サルコグリカンが変異している動物モデルは、心臓のクレアチンキナーゼ上昇を示す。特に、δサルコグリカン(Sgcd)ヌルマウスは、心筋および骨格筋の組織学的特徴としてネクローシスの局所域で心筋症を発症することが示された。動物は、骨格膜および心膜中に、サルコグリカン−サルコスパン(SG−SSPN)複合体が存在しないことも示した。血管性平滑筋SG−SSPN複合体の損失は、冠血管系の不規則性と関連があった。従って、血管性平滑筋中のSG−SSPN複合体の破壊は、血管機能を撹乱させ、心筋症を誘導し、筋ジストロフィーを悪化させる(Coral−Vazquez et al. (1999) Cell 98: 465)。
【0075】
δサルコグリカン陰性マウスと同様に、γ−サルコグリカン欠損マウスは、明白なジストロフィー筋変化が生後早期に現れた(Hack et al. (1998) J Cell Biol 142: 1279)。20週齢までに、これらのマウスは、心筋症を発症し、時期尚早に死亡した。さらに、γ−サルコグリカン欠損骨格筋内ではアポトーシス性筋核が豊富であり、プログラム細胞死が、筋線維破壊に寄与していることを示唆した。エバンスブルー色素を用いた生体染色により、γ−サルコグリカン欠損の筋肉は、ジストロフィン欠損の筋肉に見られるものと同様に、膜崩壊を起こすことが明らかになった。γ−サルコグリカン欠損は、α−およびεサルコグリカンの部分的保持を伴うβ−およびδ−サルコグリカンの続発性減少を生じさせ、一体としてのβ−、γ−、およびδ−サルコグリカンの機能を示した。細胞膜複合体の他成分は機能していたので、複合体は、本発明の治療薬の存在により、安定化させ得るはずである。
【0076】
動物モデルに加えて、ヒトの特定心筋症は、ジストロフィン、ジストログリカンまたはサルコグリカンの変異に関連付けられている。例えば、ジストロフィンは、X連鎖の拡張型心筋症の原因である遺伝子として同定された(Towbin J. A. (1998) Curr Opin Cell Biol 10: 131およびその参考文献)。この場合、ジストロフィン遺伝子は、臨床的に明らかな骨格筋ミオパチーのない心筋症をもたらす5'−変異を含んでいた(Bies et al. (1997) J Mol Cell Cardiol 29: 3175)。
【0077】
さらに、心筋症は、デュシェンヌ型筋ジストロフィー(変異ジストロフィンに関連)、または肢帯型筋ジストロフィーなどの他の型の筋ジストロフィーを有する対象でも見られた。例えば、常染色体優性遺伝の一症例、および、二名がαサルコグリカン欠損を有することが発見された進行型常染色体劣性遺伝または散発性患者の三名に、拡張型心筋症が存在した。これらの三名のうち二名の患者および3つの他の症例は、ジストロフィン異常症の特徴として知られるECG異常を示した。αサルコグリカンの非存在および拡張型心筋症の存在の間の強い関連性が分かった。6つの常染色体優性遺伝の症例では、経年的に重篤度が増加および筋脱力症が同時に存在する房室(AV)伝導障害があった。ペースメーカーの移植が、これらの患者のいくつかで必要であった(van der Kooi (1998) Heart 79: 73参照)。
【0078】
本発明の治療薬は、心筋症、例えば、ウイルス起源、例えば、エンテロウイルス感染、例えば、コクサッキーウイルスB3の拡張型心筋症を治療または予防するためにも使用され得る。精製コクサッキーウイルスプロテアーゼ2Aは、障害性ジストロフィン機能を引き起こす、生体外ならびに培養筋細胞および感染マウスの心臓内のコクサッキーウイルス感染中のジストロフィンを切断することが示された(Badorff et al. (1999) Nat Med 5: 320)。ジストロフィンの切断は、ジストロフィン関連糖タンパク質αサルコグリカンおよびβジストログリカンの破壊をもたらす。従って、例えば、ジストロフィンまたはそれに関連するタンパク質を破壊することにより、心筋症を引き起こすウイルスに感染している対象に本発明の治療薬を投与することにより、心筋症を予防または回復させ得るはずである。治療薬の投与は、病気に冒された心臓細胞の細胞膜を再安定化または再編成できるはずである。
【0079】
従って、本発明の治療薬は、心筋症などの平滑筋障害を予防または治療するため、および心臓平滑筋組織の萎縮症および/またはネクローシスを止めるためにも使用され得る。治療は、筋細胞の生存を促進するためにも使用され得る。本発明の治療薬は、心不全、例えば、うっ血性心不全を予防または治療するためにも使用され得る。DGCは、心不全に関係することが知られている。このように、ユートロフィン、nNOSおよびサルコグリカンの修復は、心不全の治療に有益であると期待される。さらに、本発明の治療薬は、心筋細胞のDAPCの安定化を助けると思われる。加えて、バイグリカンで処置したmdxマウスの心臓重量の正常化が観察された。
【0080】
本発明の方法に従って治療され得る神経障害としては、多発性筋炎、および神経性障害が挙げられる。治療され得る別の神経系疾患は、アルツハイマー病である。治療され得る別の神経系疾患は、筋萎縮性側索硬化症である。
【0081】
本発明の方法に従って治療され得る他の疾病としては、本発明のプロテオグリカンが異常レベルで存在しているか、または正常な対象のものと比較して異常な活性を有するものが挙げられる。例えば、疾病または障害は、バイグリカンレベル低下により引き起こされる得、例えば、不安定な細胞膜をもたらし得る。あるいは、疾病または障害は、バイグリカンの異常な高レベルまたは活性の結果として起こり、例えば、MuSKの過剰刺激作用またはAChRの過剰凝集をもたらす。
【0082】
本発明の範囲内であるさらに他の疾病または障害としては、本発明のプロテオグリカンおよび別の分子(DAPCまたはMuSKのもの以外)、例えば、C1qなどの補体因子の間の異常相互作用に関連するものが挙げられる。例えば、C1qは、バイグリカンと相互作用することが示された(Hocking et al. (1996) J. Biol. Chem. 271: 19571)。C1qの細胞表面への結合は、食作用の亢進およびスーパーオキシド産生の刺激作用を含む多くの生理活性を媒介する。従って、バイグリカンがC1qと結合するので、本発明のバイグリカンまたは別のプロテオグリカンもしくはそのコアは、1つ以上のかかる生理活性を阻害するために、細胞表面上のその受容体へのC1qの結合を阻害するために使用され得る。加えて、C1qまたは他の補体成分と細胞表面との間の相互作用を阻害する本発明の化合物は、細胞およびかかる細胞を含む組織の補体媒介のネクローシスを阻害するためにも使用され得る。
【0083】
また、微生物、例えば、ウイルスによる細胞の感染を予防または阻害する方法も、本発明の範囲内である。例えば、ジストログリカンは、それにより特定の微生物が真核生物細胞に入る受容体であることが示された(Science (1998) 282: 2079)。従って、微生物が結合するジストログリカン分子上の部位を占有する本発明の治療薬を対象に投与することにより、微生物の細胞への侵入が阻害され得る。この方法は、例えば、オリベロス、およびモバラを含む他のアデノウイルスよる感染症だけでなく、ラッサ熱ウイルスおよびリンパ球性脈絡髄膜炎ウイルス(LCMV)感染症を予防または阻害するため使用され得る。可溶性αジストログリカンは、LCMVおよびLFV感染症の両方を遮断することが示された(Science (1998) 282: 2079)。
【0084】
例えば、筋ジストロフィー症などを有する患者から確立した細胞培養に加えて、様々な動物モデルは、疾病を治療するための最も適切な治療薬を選択するために使用され得る。特に、DAPC成分の変異または欠損に関連する筋ジストロフィー症または心筋症を予防または治療する用途の治療薬を同定するため、これらのタンパク質の変異型を有するまたはこれらのタンパク質をコードする遺伝子の無発現変異を有するマウスを使用し得る。例えば、δサルコグリカンなどの破壊されたサルコグリカンを有するマウスを使用し得る。かかるマウスは、例えば、Coral−Vazquez et al. (1999) Cell 98: 465に記載されている。あるいは、ジストロフィン欠損マウス(mdxマウス)、またはα−もしくはγサルコグリカン欠損マウスを使用し得る。かかるマウスは、本明細書中および参考文献中に記載されている。さらなるマウスは、当技術分野で公知の方法に従って作製され得る。例示の実施形態では、治療薬を同定するため、種々の治療薬を、δサルコグリカンヌルマウスに投与し、治療薬の効果を心機能の試験により評価する。この目的に使用され得る別の動物モデルは、ゲノム欠失が原因のδサルコグリカンを発現しない心筋症のハムスターである。このラットは、常染色体劣性心筋症の動物モデルであり、Sakamoto et al. FEBS Lett 1999 (1999) 44: 124にさらに記載されている。
【0085】
治療薬組成物の効果的用量および投与
上記疾病または障害を、本発明のバイグリカン治療薬の薬学的に効率的な量を対象に投与することにより、対象を治療または寛解し得る。疾病が、バイグリカンの高レベル活性に起因しているのか、または低レベル活性に起因しているのかどうかに依存して、アゴニストまたはアンタゴニストバイグリカン治療薬が、疾病を有する対象に投与される。当業者は、本発明のいずれもの疾病の治療用に投与するため、どの治療薬にすべきか予測できるだろうが、投与する適切な治療薬を決定するため、試験を実施し得る。かかる試験は、例えば、疾病の動物モデルを使用し得る。あるいは、疾病が、例えば、バイグリカンの変異が原因である場合では、変異の影響を決定するために、生体外試験を行うことができる。これは、この型の変異を有する対象にどの型の治療薬を投与すべきか決定することを可能にするだろう。
【0086】
本発明の治療薬を対象に投与する別の方法は、関心対象のプロテオグリカンを発現および分泌する細胞を準備し、これら細胞をマトリックスに挿入して、このマトリックスを所望の位置において対象に投与することによる。従って、本発明に従って人工的に造られた細胞は、治療薬タンパク質の産生のための宿主微生物または患者への移植前に、例えば、従来の生体適合性物質および方法を用いて、カプセル化してもよい。例えば、Hguyen et al, Tissue Implant Systems and Methods for Sustaining viable High Cell Densities within a Host、米国特許第5,314,471号(Baxter International, Inc.);Uludag and Sefton, 1993, J Biomed. Mater. Res. 27(10):1213−24(HepG2細胞/メタクリル酸ヒドロキシエチル−メタクリル酸メチル膜);Chang et al, 1993, Hum Gene Ther 4(4):433−40(hGHを発現するマウスLtk細胞/免疫制御型選択透過性アルギン酸マイクロカプセル;Reddy et al, 1993, J Infect Dis 168(4):1082−3 (alginate);Tai and Sun, 1993, FASEB J 7(11):1061−9(hGHを発現するマウス線維芽細胞/アルギン酸−ポリ−L−リジン−アルギン酸膜);Ao et al, 1995, Transplanataion Proc. 27(6):3349, 3350(アルギン酸);Rajotte et al, 1995, Transplantation Proc. 27(6):3389(アルギン酸);Lakey et al, 1995, Transplantation Proc. 27(6):3266(アルギン酸);Korbutt et al, 1995, Transplantation Proc. 27(6):3212(アルギン酸);Dorian et al, U.S. Pat. No. 5,429,821(アルギン酸);Emerich et al, 1993, Exp Neurol 122(1):37−47(ポリマーカプセル化したPC12細胞);Sagen et al, 1993, J Neurosci 13(6):2415−23(半透性ポリマー膜中にカプセル化し、ラット脊髄くも膜下腔中に移植したウシクロマフィン細胞);Aebischer et al, 1994, Exp Neurol 126(2):151−8(サルに移植した、ポリマー中にカプセル化したラットPC12細胞;Aebischer, WO 92/19595も参照);Savelkoul et al, 1994, J Immunol Methods 170(2):185−96(抗体を産生するカプセル化ハイブリドーマ;様々なサイトカインを発現するカプセル化しトランスフェクトしたセルライン);Winn et al, 1994, PNAS USA 91(6):2324−8(免疫隔離ポリマーデバイス中にカプセル化しラットに移植した、ヒト神経成長因子を発現する人工的に造られたBHK細胞);Emerich et al, 1994, Prog Neuropsychopharmacol Biol Psychiatry 18(5):935−46(ラットに移植されたポリマーカプセル化PC12細胞); Kordower et al, 1994, PNAS USA 91(23):10898−902(サルに移植された、hNGFを発現する、ポリマーカプセル化した人工的に造られたBHK細胞)およびButler et al国際特許公開第WO95/04521号(カプセル化デバイス)参照。それから、細胞は、動物宿主、好ましくは、哺乳類および、より好ましくは、それを必要とするヒト対象に、カプセル化形態で導入され得る。好ましくは、カプセル物質は半透性であり、カプセル化された細胞により産生される分泌タンパク質を宿主中に放出可能である。多くの実施形態では、半透性カプセル化は、カプセル化細胞が導入される宿主微生物から免疫的に隔離されたカプセル化細胞を提供する。それらの実施形態では、カプセル化される細胞は、宿主動物種のおよび/またはウイルスタンパク質または宿主動物種以外の動物種からのタンパク質から1つ以上のプロテオグリカンを発現し得る。
【0087】
あるいは、治療薬は、本発明のプロテオグリカンのコアをコードする核酸である。従って、それを必要とする対象は、特定の組織、例えば、ジストロフィーの組織を特異的に標的とし得る、関心のタンパク質をコードするウイルスベクターの用量を受け得る。ベクターは、そのままの形態で投与され得、またはウイルス粒子(本明細書にさらに記載)として投与され得る。この目的で、様々な技術が、生体内標的組織および細胞の修飾のため開発された。多くのウイルスベクターは、トランスフェクションおよび、場合によっては、ウイルスの宿主への組込みを可能とするよう、上記のように、開発された。例えば、Dubensky et al. (1984) Proc. Natl. Acad. Sci. USA 81, 7529−7533; Kaneda et al., (1989) Science 243, 375−378; Hiebert et al. (1989) Proc. Natl. Acad. Sci. USA 86, 3594−3598; Hatzoglu et al. (1990) J. Biol. Chem. 265, 17285−17293およびFerry, et al. (1991) Proc. Natl. Acad. Sci. USA 88, 8377−8381参照。ベクターは、注射、例えば、血管内もしくは筋肉内に、吸入、または他の非経口的方法で投与され得る。リポソームとの複合体により、または注射、カテーテルもしくは微粒子銃により、DNAを投与するなど非ウイルス性送達方法も使用され得る。
【0088】
さらに別の実施形態では、細胞は、対象から得られ、生体外で修飾され、同じまたは異なる対象に導入される。治療薬化合物のさらなる投与方法を下記に記載する。
【0089】
毒性:本発明の化合物の毒性および治療有効性は、例えば、Ld50(集団の50%が死に至る用量)およびEd
50(集団の50%に対して治療効果がある用量)を測定するための、細胞培養または実験動物の医薬標準手順により測定し得る。毒性および治療有効性の間の用量比は、治療係数であり、比LD
50/ED
50として表すことができる。大きい治療係数を示す化合物が好ましい。毒性副作用を示す化合物も使用し得るが、かかる化合物を、病気に感染した組織の部位に標的化する送達系を設計し、感染していない細胞への潜在的障害を最小限にして副作用を減らすよう、注意すべきである。
【0090】
細胞培養アッセイおよび動物実験から得られたデータは、ヒトに使用するための用量の範囲を公式化するのに使用され得る。特に、治療薬が、AChR凝集を増強するために投与される場合、必要により刺激作用、または必要により阻害をもたらすだろう用量を確立することが望ましい。それから、試験は、医学的検査で継続され得る。かかる化合物の投薬量は、好ましくは、ほとんどまたは全く毒性のないED
50を含む血中濃度の範囲内である。投薬量は、使用される剤形および利用される投与経路に依存して、この範囲内で変わり得る。本発明の方法で使用されるいずれもの化合物に対して、治療効果用量は、最初、細胞培養アッセイから測定され得る。用量は、細胞培養で測定されたIC
50(すなわち、症状の半最大量阻害を達成する試験化合物濃度)を含む循環血漿濃度範囲を達成するため、動物モデルで公式化され得る。かかる情報は、有用なヒトの用量を、より正確に決定するために使用され得る。血漿レベルは、例えば、高速液体クロマトグラフィーにより測定され得る。
【0091】
薬学的組成物:本発明に記載の用途の薬学的組成物は、1つ以上の生理的に許容可能な担体または賦形剤を用いて、従来の方法で処方され得る。従って、化合物およびそれらの生理的に許容可能な塩および溶媒和物は、例えば、注入、吸入もしくはガス注入(口あるいは鼻のどちらかにより)または経口、口腔、非経口もしくは直腸内投与による投与用に処方され得る。
【0092】
かかる治療のため、本発明の化合物は、全身および局所または局在的投与を含む投与の様々な投入量のため処方され得る。技術および処方物は、一般に、Remmington’s Pharmaceutical Sciences, Meade Publishing Co., Easton, Pa.に見られ得る。全身投与のため、筋肉内、静脈内、腹腔内、および皮下を含む注射が好ましい。注射のため、本発明の化合物は、溶液で、好ましくは、ハンクス液またはリンゲル液など生理的適合性緩衝液で、処方され得る。加えて、化合物は、固形で処方され、使用直前に、再溶解または懸濁され得る。凍結乾燥形態も含まれる。
【0093】
経口投与のため、薬学的組成物は、例えば、薬剤を固めるなどの薬学的に許容可能な賦形剤(例えば、α化トウモロコシデンプン、ポリビニルピロリドンまたはヒドロキシプロピルメチルセルロース);充填剤(例えば、ラクトース、結晶セルロースまたはリン酸水素カルシウム);潤滑剤(例えば、ステアリン酸マグネシウム、タルクまたはシリカ);崩壊剤(例えば、ジャガイモデンプンまたはデンプングリコール酸ナトリウム);または湿潤剤(例えば、ラウリル硫酸ナトリウム)を用いて常法により製剤される錠剤またはカプセル剤の形をとり得る。錠剤は、当業者に周知の方法によりコーティングされ得る。経口投与用液体製剤は、例えば、液剤、シロップ剤または懸濁剤の形態をとり得、またはそれらは、使用前に、水または他の適切な媒体と一緒に構成するための乾燥製品として提供され得る。かかる液体製剤は、懸濁剤(例えば、ソルビトールシロップ、セルロース誘導体または水素化食用脂);乳化剤(例えば、レクチンまたはアカシア);非水性媒体(例えば、アチオンド油(ationd oil)、エステル油、エチルアルコールまたは分別植物油);および保存剤(例えば、p−ヒドロキシ安息香酸メチルもしくはプロピルまたはソルビン酸)などの薬学的に許容可能な添加剤を用いて、常法により調製し得る。製剤は、必要に応じて、緩衝塩、香味料、着色料および甘味料も含み得る。
【0094】
経口投与用製剤は、活性成分の徐放性が得られるように、適切に処方され得る。口腔投与のため、組成物は、常法で処方される錠剤またはトローチ剤の形態をとってもよい。吸入による投与のため、本発明に従った用途の化合物は、適切な噴霧剤、例えば、ジクロロジフルオロメタン、トリクロロフルオロメタン、ジクロロテトラフルオロエタン、二酸化炭素または他の適切な気体を使用して、加圧型包装または噴霧器からエアゾール・スプレーの体裁の形態で、便利に送達される。加圧型エアゾール剤の場合では、投薬単位は、計量された量を送達するためのバルブの提供により決定され得る。例えば、吸入器または注入器用途のゼラチンのカプセル剤およびカートリッジ剤は、化合物の混合粉体およびラクトースまたはデンプンなどの適切な粉体基剤を含んで処方され得る。
【0095】
化合物は、注射、例えば、ボーラス投与または持続点滴により、非経口投与のため、処方され得る。注射用処方物は、単位剤形、例えば、保存剤添加したアンプルまたはバイアル瓶の単位剤形で提供され得る。組成物は、油性または水性媒体中の懸濁剤、液剤または乳化剤のような形態をとり得、懸濁剤、安定剤および/または分散剤などの製剤化剤を含み得る。あるいは、活性成分は、使用前に、適当な媒体、例えば、滅菌パイロジェン非含有水で構成するため、粉末状であり得る。
【0096】
化合物は、例えば、カカオバターまたは他のグリセリドなどの通常の坐剤基剤を含む、坐剤または停留浣腸などの直腸組成物でも処方され得る。
【0097】
前述の処方物に加えて、化合物は、デポー製剤としても処方され得る。かかる長時間作用性処方物は、体内移植(例えば、皮下または筋肉内)または筋肉内注射により投与され得る。従って、化合物は、適当な重合体または疎水性物質(例えば、許容可能な油中の乳濁質として)もしくはイオン交換樹脂と一緒に、またはやや溶けにくい誘導体、例えば、やや溶けにくい塩として処方され得る。
【0098】
全身投与は、経粘膜的または経皮的手段によるものでもあり得る。経粘膜的または経皮的投与のため、浸透されるバリアに適切な浸透剤が、処方物中に使用される。かかる浸透剤は、一般に、当技術分野で公知であり、例えば、経粘膜投与のため、胆汁酸塩およびフシジン酸誘導体が挙げられる。加えて、界面活性剤が、浸透を促進するために使用され得る。経粘膜投与は、点鼻薬により、または座薬を用いて成される。局所投与のため、本発明のオリゴマーは、当技術分野で通常公知の軟膏、軟膏剤(salve)、ゲル剤、またはクリーム剤に処方される。洗浄液が、治癒を早めるように、外傷または炎症を局所的に治療するために使用され得る。
【0099】
臨床の場で、本発明のプロテオグリカンをコードする治療遺伝子用遺伝子送達系は、多くの方法のいずれかにより患者に導入され得、その各々は、当技術分野で知られている。例えば、遺伝子送達系の薬学的製剤は、例えば、静脈内注射により、全身に導入され得、標的細胞中のタンパク質特異的形質導入は、遺伝子送達媒体、受容体遺伝子の発現を制御する転写制御配列に起因する細胞型もしくは組織型発現、またはその組み合わせにより提供されるトランスフェクションの特異性から独占的に起こる。他の実施形態では、組み換え遺伝子の初回の送達は、非常に局在化された動物内への導入により、より限定される。例えば、遺伝子送達媒体は、カテーテル(米国特許第5,328,470号参照)または定位的注入(例えば、Chen et al. (1994) PNAS 91: 3054−3057)により導入され得る。本発明のプロテオグリカンをコードする遺伝子は、例えば、Dev et al. ((1994) Cancer Treat Rev 20:105−115)により記載された技術を用いて、エレクトロポレーション法により、遺伝子治療構築物中で送達され得る。
【0100】
DNAを筋肉細胞に送達する好ましい方法は、米国特許第5,858,351号に記載のものなど、組み換えアデノ随伴ウイルスベクターの使用を含む。あるいは、遺伝子は、Wolff et al. (1990) Science 247:1465−1468; Acsadi et al. (1991) Nature 352:815−818;Barr and Leiden (1991) Science 254:1507−1509に記載されているように、プラスミドDNAの直接的注射により筋肉に送達された。しかしながら、この投与方法は、結果的に、概して持続性だが、概して低レベルの発現になる。低いが持続性の発現レベルは、本発明の方法を実践のため効果的であると期待される。
【0101】
本発明の遺伝子治療構築物または化合物の薬学的製剤は、許容可能な希釈剤中の遺伝子送達系から本質的に成り得、または遺伝子送達媒体または化合物が埋め込まれた徐放性マトリックスを含み得る。あるいは、完全遺伝子送達系が、組み換え細胞、例えば、レトロウイルスベクターから無傷で産生され得る場合、薬学的製剤は、遺伝子送達系を産生する1つ以上の細胞を含み得る。
【0102】
組成物は、必要により、活性成分を含む1つ以上の単位剤形を含み得る包装またはディスペンサーデバイス中で提供され得る。包装は、例えば、ブリスター包装などの金属またはプラスチックホイルを含む。包装またはディスペンサーデバイスには投与指示書が添付されうる。
【0103】
診断方法
細胞膜の完全性の維持に重要なDAPCタンパク質複合体の少なくとも1つの成分にバイグリカンが結合するという観察に少なくとも基づいて、本発明は、対象が、細胞膜不安定性、特に、筋ジストロフィー症などのDAPC異常または不安定と特徴付けられるまたは関連する疾病または状態を有するまたはかかりそうであるかどうかを決定する診断方法を提供する。さらに、プロテオグリカンバイグリカン量が上昇し、それにより、代償機序であると考えられることが、ジストロフィンを欠損する筋ジストロフィーの動物モデルで観察された。
【0104】
さらに、バイグリカンが、MuSKと結合し、リン酸化して、アグリン誘発MuSKリン酸化を増強し、およびバイグリカンが、アグリン媒介AChR凝集を刺激するという観察に少なくとも基づいて、本発明は、対象が、シナプスまたは神経筋接合部の異常、例えば、神経系または神経筋疾患により特徴付けられる疾病または状態を有するまたはかかりそうであるかどうかを決定するための診断方法も提供する。
【0105】
従って、対象における本発明のプロテオグリカンのレベルまたは活性異常の同定は、対象が、DAPC異常または不安定に関係する疾病または状態を有するまたはかかりそうであることを示すであろう。例えばジストロフィン陰性マウスで見られるように、例えばもし細胞が別のDAPC成分またはそれに関連する分子の欠損を補償するならば、疾病は、本発明の高レベルのプロテオグリカンにより特徴付けられ得る。あるいは、本発明のプロテオグリカンの高レベルまたは活性が、少なくとも疾病の原因の一部であり得る。
【0106】
加えて、本発明のプロテオグリカンのレベルまたは活性の上昇は、例えば、AChR凝集の過剰刺激および/またはMuSKの活性化による、神経系または神経筋疾患の原因に関連するか、または少なくとも一部であり得る。
【0107】
疾病は、本発明のプロテオグリカンのレベルまたは活性の低下にも起因または関連しているようであり、DAPCが、本発明のプロテオグリカンの正常な量または活性を有する対象の細胞のものより不安定になる原因となり得る。従って、対象の細胞中の本発明のプロテオグリカンのレベルまたは活性の低下は、結果的に、漏れのある膜をもたらすことになる。
【0108】
本発明のプロテオグリカンのレベルまたは活性の低下は、結果的に、不十分なAChR凝集および/または不十分なMuSK活性化ももたらし、それにより、シナプス異常または神経筋接合部異常をもたらす。従って、かかる状態は、神経系または神経筋疾患をもたらし得、例えば、組織萎縮症をもたらし得る。
【0109】
本明細書で使用されるとき、「診断アッセイ」という語は、筋疾患、神経筋疾患または神経障害などの疾病にかかる個体を同定するための、本明細書に記載の方法の特異的使用を表す。かかる診断アッセイは、胎児(仔)が、1つ以上のこれらの障害にかかるかどうかを決定するために使用され得る出生前診断アッセイとして、特に有用である。出生前診断のため、例えば、試料を、胎児(仔)から筋組織の生検により、または妊娠中の母親の胎盤の生検により得られ得る。
【0110】
ひとつの実施形態では、方法は、罹患していない対象のものと比較して本発明のプロテオグリカンのレベルまたは生理活性を決定すること、またはプロテオグリカンもしくはそれをコードする遺伝子が変異またはグリカン側鎖異常を含むかどうかを決定することを含む。
【0111】
患者試料は、細胞、組織または体液のいずれでもあり得るが、好ましくは、筋肉組織、脳脊髄液、血液、または血清もしくは血漿などの血液分画である。本明細書で使用されるとき、「試料」という語は、ヒト対象であり得る対象から得られた検体を表す。一般に、例えば、障害の傾向があると疑われる個体の筋肉または胎盤の生検により得られ得る組織試料は、適当な試料である。多くの場合、組織分析より検査され得る組織切片として試料を準備することが有用である。あるいは、タンパク質または核酸は、試料から抽出され得、当技術分野で周知であり、下記に詳述される、ゲル電気泳動法および適切な「ブロッティング」法などの方法を使用して検査され得る。
【0112】
試料は、正常な対象から、または、筋疾患、神経筋疾患もしくは神経系障害などの障害の傾向があることが疑われる試験対象から得られ得、本発明のプロテオグリカンの発現または局在化の変化、または本発明のプロテオグリカンをコードするmRNAの発現変化について検査されている。
【0113】
正常な対象から得られる試料は、試験対象から得られる試料との比較に有用な「対照」試料として使用され得る。対照試料は、例えば、筋疾患、神経筋疾患または神経系障害などの障害を示さず、且つその傾向のない、年齢および性別を一致させた個体から得られる、筋肉試料または胎盤試料であり得る。対照試料は、本発明のプロテオグリカンの発現レベルおよび発現パターン、ならびに一般のヒト集団の特徴であるプロテオグリカンmRNAの発現レベルを示し、集団のヒトに期待される正常発現レベルまたは局在化パターンから有意に逸脱しない。統計的に有意な数の対照試料が検査された後、試料単位当たりの本発明のプロテオグリカンの発現量は対照試料について正常であると決定されることが期待される。本明細書で使用されるとき、対照試料の本発明のプロテオグリカンの「正常」な量とは、障害、例えば、筋疾患、神経筋疾患または神経系障害などの障害の傾向のない個人に期待される範囲内である量を意味する。
【0114】
試験対象から得られた試料中の本発明のプロテオグリカンの発現変化は、例えば、免疫組織化学的に染色した対照試料の顕微鏡写真を、試験対象から得られた試料と目視比較することにより、定性的に同定され得る。あるいは、本発明のプロテオグリカンの発現変化は、例えば、濃度測定分析を用いて、定量的に測定され得る。本発明のタンパク質のプロテオグリカンの発現変化は、ゲル電気泳動の方法および、必要により、免疫ブロット解析を用いても、決定され得る。かかる方法は、当技術分野で周知である。
【0115】
ジストロフィンおよびジストロフィン関連タンパク質のレベルの決定方法は、従来技術により実行される。かかる技術は、例えば、米国特許第5,187,063号;同第5,260,209号;および同第5,308,752号(これらの開示は、参照することにより本明細書に組み入れられるものとする)に記載されている。国際特許公開第WO89/06286号も、ジストロフィンをコードする核酸配列だけでなく、かかる従来技術も開示している。
【0116】
試料中の本発明のプロテオグリカンの局在化の変化も、決定され得る。本明細書で使用されるとき、「局在化」という語は、試料中の本発明のプロテオグリカンの沈着パターンを表す。本発明のプロテオグリカンの局在化も、定性的にまたは定量的に決定され得る。局在化の「変化」は、対照試料で観察される局在化パターンと異なる、試料中の本発明のプロテオグリカンの沈着パターンを表す。
【0117】
本発明のプロテオグリカンをコードする発現mRNAのレベルを決定し、筋疾患、神経筋疾患または神経系障害などの障害の傾向のある個体を同定するために使用し得る。試料中のプロテオグリカンmRNAの発現レベルを決定する方法は、当技術分野で周知であり、例えば、プロテオグリカンmRNAが、試験試料中、正常レベルで発現されるかどうかを決定するため使用され得るノーザンブロット解析を含む。ノーザンブロット解析は、細胞中で発現されるプロテオグリカンmRNAが、全長転写であるかどうかを決定するためにも使用され得る。例えば、組織試料から得られたRNA試料は、本発明のプロテオグリカンをコードするmRNAにハイブリダイズする核酸プローブと接触され得る。当業者は、プローブが、DNAまたはRNAプローブであり得、プロテオグリカンをコードするcDNAから作製され得、またはオリゴヌクレオチドとして合成され得ることを知っているはずである。加えて、熟練技術者は、かかるハイブリダイズが、経験的に決定され得るストリンジェントな条件下で実施されるべきである(例えば、Sambrook et al., Molecular Cloning: A laboratory manual (Cold Spring Harbor Laboratory Press 1989)(参照することにより、本明細書に組み入れられるものとする)参照)ことを認識しているはずである。無傷全RNAおよびポリA+mRNAを単離およびノーザンブロット解析を実施する方法は、当技術分野で周知である(Sambrook et al., 1989)。
【0118】
試料中の本発明のプロテオグリカンをコードするmRNAの発現レベルを決定する高感度な方法は、当技術分野で周知である逆転写酵素ポリメラーゼ連鎖反応(RT−PCR)である(例えば、H. A. Erlich, PCR Technology: Principles and applications for DNA amplification (Stockton Press, 1989)(参照することにより、本明細書に組み入れられるものとする)参照;第8章参照)。RT−PCR法は、ノーザンブロット解析による検出シグナルを上手く得られない試料を検査するのに特に有用である。PCR解析に関与する増幅工程によって、まれなプロテオグリカンmRNAが試料中に同定され得る。
【0119】
本発明のプロテオグリカンのレベルを決定する方法は、例えば、本発明のプロテオグリカンに結合する抗体を使用し得る。抗体は、関心の組織、例えば、筋組織の抗原レベルの決定のための通常のアッセイと関連して使用され得る。抗体結合に基づいて、筋組織内に存在するタンパク質レベルの決定を可能とするいずれの方法も、本発明と関連して有用である。好ましい方法としては、ウェスタンブロッティング法、免疫細胞化学的解析および酵素結合免疫吸着検定法(ELISA)が挙げられる。
【0120】
溶解可能な細胞外マトリックスを必要とするアッセイ(例えば、ELISAおよびウェスタンブロッティング法)のため、生検により得られる筋肉量は、分析に十分な量で、本発明のプロテオグリカンの抽出を可能にするのに十分でなくてはならない。例示の実施形態では、筋肉組織は、手動またはモーター駆動ガラスホモジナイザー、ワーリングブレードブレンダーホモジナイザー、または超音波プローブなどの装置を用いて、機械的粉砕によりホモジナイズされる。ホモジナイゼーションを、例えば、実施例にさらに記載されるように、約11または12のpHを有する緩衝液中で、実行できる。緩衝液は、プロテアーゼ阻害薬、例えば、1mMのPMSF、0.75mMのベンズアミジン、1μg/mlのアプロチニン、1μg/mlロイペプチン、1μg/mlのペプスタチンAをさらに含む。それから、インキュベーションを、例えば、2時間、氷浴上で実行する。遠心分離に続き、それから、この方法で溶解した細胞外マトリックスを、例えば、ウェスタンブロッティング法またはELISA解析フォーマットで使用するため、常法により処理できる。
【0121】
上記のように調製した溶解された細胞外マトリックスを、3〜12%SDSポリアクリルアミドゲル上で成分を最初分離して、ウェスタンブロッティング法により解析(Laemmli (1970) Nature 227, 680)でき、引き続き、ニトロセルロース膜などの固形支持体に転移させて、最初のタンパク質分離の正確な複製を形成するが、転移タンパク質をさらなる試験に利用できるようにする。転移タンパク質成分を有するこの固形支持体は、免疫ブロット法と呼ばれる。転移タンパク質の検出を、アミドブラックまたはクーマシーブリリアントブルーなどの一般的タンパク質色素の使用により、実行できる。本発明のプロテオグリカンに特異的である抗体を、検出可能なレポーター基で標識化でき、固形支持体に転移されるタンパク質を染色するため使用する。あるいは、本発明のプロテオグリカンに特異的な標識化していない抗体を、結合に適切な条件下、免疫ブロット法でインキュベートする。筋組織試料へのこれらの抗体の特異的結合を、従来技術により、標識化した二次抗体の使用により、検出できる。
【0122】
本発明の方法は、酵素結合免疫吸着検定法(ELISA)フォーマットでも実施され得る。このフォーマットでは、本発明のプロテオグリカンに対する抗体を、固形支持体、ほとんどの場合、ポリスチレンマイクロタイタープレートに吸着させる。支持体を、抗体でコーティングし、洗浄した後、溶解した試料を添加する。もし存在すれば、本発明のプロテオグリカンは、吸着された抗体に結合するだろう。次に、関心のプロテオグリカンにも結合する結合体を添加する。結合体は、本発明のプロテオグリカンに結合し、酵素が共有結合する抗体分子であり得る。酵素に対する発色基質の添加後、生成する発色反応生成物の強度は、結合した酵素の量、従って、間接的に、結合した本発明のプロテオグリカンの量に比例するだろう。顕色染料の強度が本発明のプロテオグリカンの量に比例するので、本発明のプロテオグリカン濃度の標準的系列により生成した染料強度の決定は、未知試料中の本発明のプロテオグリカン量の算出を可能にするだろう。Voller, A., Bidwell, D. E. and Bartlett, A., The Enzyme Linked Immunoadsorbent Assay (ELISA):A guide with abstracts of microplate applications, Dynatech Laboratories, Alexandria, Va. (1979)に記載のように、このアッセイの多様なものが存在する。
【0123】
あるいは、組織検体(例えば、ヒト生検試料)は、免疫ペルオキシダーゼ染色法などの免疫組織化学的技術で、モノクローナル抗体またはポリクローナル抗体を用いることにより、DAPC複合体の成分の存在について試験し得る。加えて、免疫蛍光技術を使用して、ヒト組織検体を検査することができる。典型的なプロトコルでは、凍結され未固定の組織生検試料のクリオスタット切片を含むスライドを、空気乾燥し、それから、室温で加湿されたチャンバー内で、本発明のプロテオグリカンに対する抗体調製物(一次抗体)と共にインキュベートする。スライドに、一次抗体に対する蛍光標識化抗体の調製物を重ねる。標識化した二次抗体も検出に有用である。試料中の染色パターンおよび強度を蛍光顕微鏡により決定できる。
【0124】
特定の疾病または障害、例えば、遺伝性疾患または遺伝的障害は、変異タンパク質を必ずしもコードしない、特定の遺伝子の多型部位の特定のアレル変異体と関連する。従って、対象の一塩基多型(「SNP」)などの遺伝子の多型部位の特定アレル変異体の存在は、対象を特定の疾病または障害にかかりやすくし得る。遺伝子の多型部位、例えば、本発明のプロテオグリカンをコードする遺伝子は、個体の集団の遺伝子のヌクレオチド配列を決定することにより、同定され得る。もし、多型部位、例えばSNPが、同定されるならば、そのとき、特定の疾病との関連は、個体、例えば、筋疾患、神経筋疾患または神経系障害などの特定障害にかかった個体の特定集団を試験することにより、決定され得る。多型部位は、遺伝子のいずれかの領域、例えば、エキソン、エキソンの翻訳または非翻訳領域、イントロン、およびプロモーター領域に位置し得る。
【0125】
本発明のプロテオグリカンをコードする遺伝子は、多型部位、つまり特定の疾病もしくは状態またはかかる疾病もしくは状態にかかる可能性の増加と関連し得る特定のアレルを含む可能性が高い。従って、本発明は、対象の本発明のプロテオグリカンをコードする遺伝子の多型部位のアレルまたはアレル変異体のアイデンティティを決定し、それにより、対象が、多型部位の特定のアレル変異体と関連する疾病または障害を有するまたはかかるリスクがあるかどうかを決定する方法を提供する。
【0126】
典型的な実施形態では、本発明のプロテオグリカンをコードする遺伝子のセンスまたはアンチセンス配列もしくはその自然発生変異体、または対象のプロテオグリカン遺伝子と自然に関連する5'もしくは3'フランキング配列もしくはイントロン配列もしくはその自然発生変異体にハイブリダイズ可能であるヌクレオチド配列の領域を含む核酸プローブを含む核酸組成物を提供する。細胞の核酸はハイブリダイズしやすくされ、プローブは試料の核酸と接触され、試料核酸へのプローブのハイブリダイズが検出される。かかる技術は、mRNA転写レベルを決定するだけでなく、欠失、置換、その他を含むゲノムレベルあるいはmRNAレベルのどちらかで、変化またはアレル変異体を検出するために使用され得る。
【0127】
次の実施例は、本発明の利点および特徴をさらに例示するために提供されるが、本発明の範囲の限定を意図するものではない。それらは、使用され得るものの典型例であるが、当業者に公知の他の手順、方法、または技術を代わりに使用してもよい。
【実施例】
【0128】
実施例1
T2−rhBGNの産生
T2−rhBGNを発現する安定なCHOクローンは、本明細書中、MおよびDまたはM−rhBGNおよびD−rhBGNと呼ばれる、2つの型の混合物を産生する。
【0129】
T2−rhBGNを、陰イオン交換および疎水性相互作用(HIC)の組み合わせにより、CHOクローン57および171ならびにHEK293クローン2の条件培地から精製した。CHOクローン57から精製したHICプールの分析超遠心(AUC)で、2つの沈降ピーク:沈降係数:s
20,w≒2.88を有するM、および係数:s
20,w≒4.28を有するDに分割した(
図1)。3つの濃度(0.2、0.2、および2mg/ml)において沈降物の分析は、HICプールで、M〜D交換の解離定数が約50μMであることを示した。実験を、ベックマン社OptimaXL−1分析超遠心で、20℃において実施した。スピンアナリティカルチャコールエポン12mmダブルセクターセンターピースを、45,000rpmにおいて、8ホールAN50Tiローターで使用した。放射(radial)吸収スキャンを、λ=280nmにおいて測定した。Sedfit 12.44を、68%信頼限界を用いてデータ解析に使用した(analyticalultracentrifugation.com)。沈降係数を、実験用緩衝液密度およびSEDNTERP(sednterp.unh.edu)で算出した緩衝液粘度を用いて、標準s
20,w条件に補正した。緩衝液:20mM トリス、pH8、0.5MのNaCl;粘度=0.01002ポアズ;密度=1.004989g/mL。偏比容、v−bar=0.74413mL/g(Sednterpを用いて、アミノ酸組成物から算出)。
【0130】
サイズ排除クロマトグラフィー(SEC)により、HICプールのさらなる分析は、HICプールが、MおよびDに相当する2つの識別可能なピークに分割したことを示した(
図2)。20mMトリス、pH8.0、0.5MのNaCl中のクローン57HICプールを、20mMトリス、pH8.0、1MのNaClで平衡化したSuperdex200 10/300GL(GEヘルスケア社)に適用した。最初のSEC分析(
図1a)では、T2−rhBGNは、約18.7ml(D)および20.4ml(M)に溶離した2つに分離し、部分的に重複したピークに分割した。これらの2つのピークに相当するフラクションを、各々、SECカラムに再度通した。極めてよく分割したピークが、同じ溶離プロファイルで観察された(
図1b)。これらの分析は、MおよびDがSECにより濃縮され得、2つ型の間でほとんど交換されないことを示している。
【0131】
実施例2
M−およびD−rhBGNは化学的に異なる
2回のサイズ排除カラムで、CHOクローン57HICプールから精製したM型およびD型を、キャピラリー電気泳動法により、さらに分析した(
図3)。製造者のプロトコルに従って、非還元条件下、アジレント社Bioanalyzer2100およびアジレント社Protein80アッセイキットを用いて実行した。D−rhBGNの見掛けの分子量および移動度(それぞれ、65.5kd、31.00)は、M−rhBGNのもの(それぞれ、60kd、30.44)より大きく、2つの型の示差翻訳後修飾を示している。
【0132】
M型およびD型を、N結合型糖鎖プロファイリング分析により特徴付けた(
図4)。約250μgのM−およびD−rhBGNを、37℃で終夜、トリプシンで糖ペプチドに消化した。糖ペプチドを、C18カートリッジで精製し、20%、40%、および100%イソプロパノールのシーケンシャル溶出で溶離し、合わせて、乾燥した。N−グリカンを、PNGaseFを用いて、酵素的切断により遊離し、それから、C18sep−pakカートリッジで、混在物を精製した。炭化水素フラクションを、5%酢酸で溶離し、凍結乾燥により乾燥した。遊離したN結合型糖鎖を、前述した方法に基づいて、完全メチル化した(Anumula and Taylor, 1992)。グリカンを、窒素ガスで乾燥し、MALDI−TOF分析によりプロファイルした。MALDI/TOF−MSを、マトリックスとして、α−ジヒドロキシ安息香酸(DHBA、20mg/mLの50%メタノール:水の溶液)を用いて、リフレクター陽イオンモードで実施した。全スペクトルを、エービーサイエックス社5800MALDI/TOF−TOFを使用して得た。各グリカンの%を、各試料で算出した。MおよびDは、様々な量の複合型グリカン、分岐およびシアル酸を示した。
【0133】
実施例3
M−rhBGNはバイオアッセイで極めて活性である
2回のSECにより、CHOクローン171から精製したM−rhBGNを、培養H2K筋管中のアグリン誘発AChRクラスター化を増強するバイグリカンの能力を、(Amenta et al., J. Neuroscience, 2012)に記載の方法に基づいて測定する、バイグリカン活性の生体外バイオアッセイにより分析した(
図5)。M−rhBGNは、強く広範な用量反応を示した。活性を、0.016〜0.512μg/mlの間の最大活性の≧50%の30倍の範囲で観察した(
図5)。
【0134】
実施例4
D−rhBGNは低い生理活性を示す
D−rhBGNを含むSECフラクションを、上記バイオアッセイにより分析した。
図5に示されるように、試験した全濃度範囲(0.004〜0.512μg/ml)に渡って、低い活性のみ(最大の≦25%)であった。
【0135】
実施例5
M−rhBGNの生体内有効性の評価
サイズ排除クロマトグラフィーにより、HEK−293クローン2から精製されたM−rhBGNの生体内有効性を、mdxマウスの生体内有効性モデルで評価した(
図6)。P18雄mdxマウスに、指示用量のM−rhBGNまたは媒体のみを、P18およびP25において、腹腔内注射した。横隔膜を、P32において回収して、液体窒素冷却イソペンタン中で急速冷凍した。冷凍切片を、前述のように調製し(Mercado et. al., 2006)、H&E染色した。切片を、ニコン社EclipseE800顕微鏡を用いて観察し、切片のモンタージュ写真を、NIS Elementsを用いて得た。中央部の核を有する筋線維のパーセンテージを、実験条件が分からない作業者により、点数化した。筋肉の中央腹部からの切片中の全筋線維をカウントした。M−rhBGNでは、中心核を有する筋線維のパーセンテージが減少した(
*p<0.05、事後ダネット多重比較法を用いた一元配置分散分析、n=7〜10動物/群)。20倍の範囲(0.5〜10mg/kg)に渡って、統計的有意な応答があった。
【0136】
実施例6
M−およびD−rhBGNの構造評価
サイズ排除クロマトグラフィーにより、CHOクローン57から精製したM−およびD−rhBGNの構造を、円二色性(CD)を用いて評価した(
図7)。これら2つの試料を、近紫外および遠紫外CDにより分析した。CD測定を、近紫外CD用2cmセルおよび遠紫外CD用0.02cmセルを用いて、室温で実行した。溶媒スペクトル(20mMトリス、0.5MのNaCl、pH8.0)を差し引いた後、試料スペクトルを、タンパク質濃度、セル光路長および平均残基重量(112.2)を用いて、平均残基楕円率(アミノ酸当たりのCD強度)に変換した:なお、この計算は、異なるタンパク質濃度用に正規化する。近紫外および遠紫外CDスペクトルは、M−およびD−rhBGNに差があり、それらが異なる構造を有することを示している。
【0137】
本発明は、上記実施例を参照して記載されているが、本発明の精神と範囲内で、修正および変形が包含されるものと理解されるだろう。従って、本発明は、次の請求の範囲によってのみ限定されるものである。