(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6654596
(24)【登録日】2020年2月3日
(45)【発行日】2020年2月26日
(54)【発明の名称】半導体発光素子および半導体発光素子の製造方法
(51)【国際特許分類】
H01L 33/32 20100101AFI20200217BHJP
H01L 33/06 20100101ALI20200217BHJP
C30B 29/38 20060101ALI20200217BHJP
H01L 21/205 20060101ALI20200217BHJP
【FI】
H01L33/32
H01L33/06
C30B29/38 D
H01L21/205
【請求項の数】9
【全頁数】8
(21)【出願番号】特願2017-59404(P2017-59404)
(22)【出願日】2017年3月24日
(65)【公開番号】特開2018-163941(P2018-163941A)
(43)【公開日】2018年10月18日
【審査請求日】2017年12月8日
(73)【特許権者】
【識別番号】000226242
【氏名又は名称】日機装株式会社
(74)【代理人】
【識別番号】100105924
【弁理士】
【氏名又は名称】森下 賢樹
(72)【発明者】
【氏名】古澤 優太
【審査官】
山本 元彦
(56)【参考文献】
【文献】
特開2016−213448(JP,A)
【文献】
特開2010−212493(JP,A)
【文献】
特開2015−188048(JP,A)
【文献】
特開2002−231997(JP,A)
【文献】
特開2011−151275(JP,A)
【文献】
米国特許出願公開第2015/0069321(US,A1)
【文献】
特開2007−201195(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00−33/46
H01S 5/00−5/50
(57)【特許請求の範囲】
【請求項1】
窒化アルミニウム(AlN)で構成されるベース層と、
前記ベース層上に設けられ、AlN組成比が20%以上であるn型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型クラッド層と、
前記n型クラッド層上に設けられ、前記n型クラッド層より酸素(O)濃度が高い中間層と、
前記中間層上に設けられるAlGaN系半導体材料の活性層と、
前記活性層上に設けられるp型半導体層と、を備えることを特徴とする半導体発光素子。
【請求項2】
前記中間層は、前記n型クラッド層の表面を酸化させた酸化膜であることを特徴とする請求項1に記載の半導体発光素子。
【請求項3】
前記中間層は、インジウム(In)を含まないことを特徴とする請求項1または2に記載の半導体発光素子。
【請求項4】
前記中間層の酸素濃度は、2×1017/cm3以上であることを特徴とする請求項1から3のいずれか一項に記載の半導体発光素子。
【請求項5】
前記中間層の酸素濃度は、1×1019/cm3以下であることを特徴とする請求項4に記載の半導体発光素子。
【請求項6】
前記中間層の厚さは、10nm以下であることを特徴とする請求項1から5のいずれか一項に記載の半導体発光素子。
【請求項7】
前記活性層は、AlGaN系半導体材料の障壁層と、AlGaN系半導体材料の井戸層とが交互に積層された多重量子井戸構造を有することを特徴とする請求項1から6のいずれか一項に記載の半導体発光素子。
【請求項8】
基板上にn型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型クラッド層を形成する工程と、
前記n型クラッド層の表面を酸化させて前記n型クラッド層より酸素(O)濃度が高い中間層を形成する工程と、
前記中間層上にAlGaN系半導体材料の活性層を形成する工程と、
前記活性層上にp型半導体層を形成する工程と、を備えることを特徴とする半導体発光素子の製造方法。
【請求項9】
前記中間層は、酸素ガス(O2)を含む雰囲気ガス下において0℃以上900℃未満の温度で形成されることを特徴とする請求項8に記載の半導体発光素子の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体発光素子および半導体発光素子の製造方法に関する。
【背景技術】
【0002】
近年、深紫外光を出力する半導体発光素子の開発が進められている。深紫外光用の発光素子は、基板上に順に積層される窒化アルミニウムガリウム(AlGaN)系のn型クラッド層、活性層、p型クラッド層を有する。光出力向上のため、活性層とp型半導体層の間に窒化アルミニウム(AlN)の電子ブロック層を形成することが提案されている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2010−205767号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
深紫外光用の半導体発光素子では、さらなる光出力の向上が求められている。
【0005】
本発明はこうした課題に鑑みてなされたものであり、その例示的な目的のひとつは、半導体発光素子の光出力を向上させる技術を提供することにある。
【課題を解決するための手段】
【0006】
本発明のある態様の半導体発光素子は、n型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型クラッド層と、n型クラッド層上に設けられ、n型クラッド層より酸素(O)濃度が高い中間層と、中間層上に設けられるAlGaN系半導体材料の活性層と、活性層上に設けられるp型半導体層と、を備える。
【0007】
この態様によると、n型クラッド層と活性層との間に高酸素濃度の中間層を挿入することで、n型クラッド層の結晶構造の不均一性や揺らぎが活性層に伝播して活性層の結晶品質が低下するのを抑制できる。その結果、活性層の結晶構造を安定化させて発光素子の光出力を高めることができる。
【0008】
中間層は、少なくとも酸素(O)およびアルミニウム(Al)を含んでもよい。
【0009】
中間層のピークの酸素濃度は、2×10
17/cm
3以上であってもよい。
【0010】
中間層のピークの酸素濃度は、1×10
19/cm
3以下であってもよい。
【0011】
中間層の厚さは、10nm以下であってもよい。
【0012】
活性層は、AlGaN系半導体材料の障壁層と、AlGaN系半導体材料の井戸層とが交互に積層された多重量子井戸構造を有してもよい。
【0013】
本発明の別の態様は、半導体発光素子の製造方法である。この方法は、基板上にn型窒化アルミニウムガリウム(AlGaN)系半導体材料のn型クラッド層を形成する工程と、n型クラッド層の表面にn型クラッド層より酸素(O)濃度が高い中間層を形成する工程と、中間層上にAlGaN系半導体材料の活性層を形成する工程と、活性層上にp型半導体層を形成する工程と、を備える。
【0014】
この態様によると、n型クラッド層と活性層との間に高酸素濃度の中間層を設けることで、n型クラッド層の結晶構造の不均一性や揺らぎが活性層に伝播して活性層の結晶品質が低下するのを抑制できる。その結果、活性層の結晶構造を安定化させて発光素子の光出力を高めることができる。
【0015】
中間層は、n型クラッド層の表面を酸化させることにより形成されてもよい。
【0016】
中間層は、酸素ガス(O
2)を含む雰囲気ガス下において0℃以上900℃未満の温度で形成されてもよい。
【発明の効果】
【0017】
本発明によれば、半導体発光素子の光出力を向上させることができる。
【図面の簡単な説明】
【0018】
【
図1】実施の形態に係る半導体発光素子の構成を概略的に示す断面図である。
【
図2】半導体発光素子の酸素濃度分布を模式的に示すグラフである。
【
図3】半導体発光素子の製造方法を示すフローチャートである。
【発明を実施するための形態】
【0019】
以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。また、説明の理解を助けるため、各図面における各構成要素の寸法比は、必ずしも実際の発光素子の寸法比と一致しない。
【0020】
図1は、実施の形態に係る半導体発光素子10の構成を概略的に示す断面図である。半導体発光素子10は、中心波長λが約360nm以下となる「深紫外光」を発するように構成されるLED(Light Emitting Diode)チップである。このような波長の深紫外光を出力するため、半導体発光素子10は、バンドギャップが約3.4eV以上となる窒化アルミニウムガリウム(AlGaN)系半導体材料で構成される。本実施の形態では、特に、中心波長λが約240nm〜350nmの深紫外光を発する場合について示す。
【0021】
本明細書において、「AlGaN系半導体材料」とは、主に窒化アルミニウム(AlN)と窒化ガリウム(GaN)を含む半導体材料のことをいい、窒化インジウム(InN)などの他の材料を含有する半導体材料を含むものとする。したがって、本明細書にいう「AlGaN系半導体材料」は、例えば、In
1−x−yAl
xGa
yN(0≦x+y≦1、0≦x≦1、0≦y≦1)の組成で表すことができ、AlN、GaN、AlGaN、窒化インジウムアルミニウム(InAlN)、窒化インジウムガリウム(InGaN)、窒化インジウムアルミニウムガリウム(InAlGaN)を含むものとする。
【0022】
また「AlGaN系半導体材料」のうち、AlNを実質的に含まない材料を区別するために「GaN系半導体材料」ということがある。「GaN系半導体材料」には、主にGaNやInGaNが含まれ、これらに微量のAlNを含有する材料も含まれる。同様に、「AlGaN系半導体材料」のうち、GaNを実質的に含まない材料を区別するために「AlN系半導体材料」ということがある。「AlN系半導体材料」には、主にAlNやInAlNが含まれ、これらに微量のGaNが含有される材料も含まれる。
【0023】
半導体発光素子10は、基板20と、バッファ層22と、n型クラッド層24と、中間層25と、活性層26と、電子ブロック層28と、p型クラッド層30と、n側電極32と、p側電極34とを備える。
【0024】
基板20は、半導体発光素子10が発する深紫外光に対して透光性を有する基板であり、例えば、サファイア(Al
2O
3)基板である。基板20は、第1主面20aと、第1主面20aの反対側の第2主面20bを有する。第1主面20aは、バッファ層22より上の各層を成長させるための結晶成長面となる一主面である。第2主面20bは、活性層26が発する深紫外光を外部に取り出すための光取出面となる一主面である。変形例において、基板20は、窒化アルミニウム(AlN)基板であってもよいし、窒化アルミニウムガリウム(AlGaN)基板であってもよい。
【0025】
バッファ層22は、基板20の第1主面20aの上に形成される。バッファ層22は、n型クラッド層24より上の各層を形成するための下地層(テンプレート層)である。バッファ層22は、例えば、アンドープのAlN層であり、具体的には高温成長させたAlN(HT−AlN;High Temparature AlN)層である。バッファ層22は、AlN層上に形成されるアンドープのAlGaN層を含んでもよい。変形例において、基板20がAlN基板またはAlGaN基板である場合、バッファ層22は、アンドープのAlGaN層のみで構成されてもよい。
【0026】
n型クラッド層24は、バッファ層22の上に形成される。n型クラッド層24は、n型のAlGaN系半導体材料層であり、例えば、n型の不純物としてシリコン(Si)がドープされるAlGaN層である。n型クラッド層24は、活性層26が発する深紫外光を透過するように組成比が選択され、例えば、AlNのモル分率が20%以上、好ましくは、40%以上または50%以上となるように形成される。n型クラッド層24は、活性層26が発する深紫外光の波長よりも大きいバンドギャップを有し、例えば、バンドギャップが4.3eV以上となるように形成される。n型クラッド層24は、AlNのモル分率が80%以下、つまり、バンドギャップが5.5eV以下となるように形成されることが好ましく、AlNのモル分率が70%以下(つまり、バンドギャップが5.2eV以下)となるように形成されることがより望ましい。n型クラッド層24は、1μm〜3μm程度の厚さを有し、例えば、2μm程度の厚さを有する。
【0027】
中間層25は、n型クラッド層24の上に形成される。中間層25は、n型クラッド層24よりも酸素(O)濃度の高い層であり、例えば、2×10
17/cm
3以上1×10
19/cm
3以下の酸素濃度を有する。中間層25は、少なくとも酸素(O)とアルミニウム(Al)を含み、例えば、酸化アルミニウム(Al
2O
3)、酸窒化アルミニウム(AlON)、酸窒化アルミニウムガリウム(AlGaON)などで構成される。中間層25は、シリコン(Si)を含んでもよい。中間層25は、活性層26へのキャリア注入を阻害しないように薄く形成されることが好ましく、10nm以下の厚さを有し、例えば、5nm、3nm、2mm、1nmまたは1nm未満の厚さを有する。中間層25は、原子1層〜10層程度の厚さを有してもよい。
【0028】
活性層26は、AlGaN系半導体材料で構成され、n型クラッド層24と電子ブロック層28の間に挟まれてダブルへテロ接合構造を形成する。活性層26は、単層または多層の量子井戸構造を有し、例えば、アンドープのAlGaN系半導体材料で形成される障壁層と、アンドープのAlGaN系半導体材料で形成される井戸層の積層体で構成される。活性層26は、波長355nm以下の深紫外光を出力するためにバンドギャップが3.4eV以上となるように構成され、例えば、波長310nm以下の深紫外光を発するようにAlN組成比が選択される。
【0029】
電子ブロック層28は、活性層26の上に形成される。電子ブロック層28は、p型のAlGaN系半導体材料層であり、例えば、AlNのモル分率が40%以上、好ましくは、50%以上となるように形成される。電子ブロック層28は、AlNのモル分率が80%以上となるように形成されてもよく、実質的にGaNを含まないAlN系半導体材料で形成されてもよい。電子ブロック層は、1nm〜10nm程度の厚さを有し、例えば、2nm〜5nm程度の厚さを有する。電子ブロック層28は、p型ではなく、アンドープの半導体層であってもよい。
【0030】
p型クラッド層30は、電子ブロック層28の上に形成されるp型半導体層である。p型クラッド層30は、p型のAlGaN系半導体材料層であり、例えば、p型の不純物としてマグネシウム(Mg)がドープされるAlGaN層である。p型クラッド層30は、300nm〜700nm程度の厚さを有し、例えば、400nm〜600nm程度の厚さを有する。p型クラッド層30は、実質的にAlNを含まないp型GaN系半導体材料で形成されてもよい。
【0031】
n側電極32は、n型クラッド層24の一部領域上に形成される。n側電極32は、n型クラッド層24の上にチタン(Ti)/アルミニウム(Al)/Ti/金(Au)が順に積層された多層膜で形成される。p側電極34は、p型クラッド層30の上に形成される。p側電極34は、p型クラッド層30の上に順に積層されるニッケル(Ni)/金(Au)の多層膜で形成される。
【0032】
図2は、半導体発光素子10の酸素濃度分布を模式的に示すグラフである。図示されるように、中間層25は、隣接するn型クラッド層24や活性層26と比べて高い酸素濃度を有し、2×10
17/cm
3以上1×10
19/cm
3以下のピーク濃度を有する。n型クラッド層24の酸素濃度が1×10
17/cm
3未満であることから、中間層25の酸素濃度はn型クラッド層24よりも高い。活性層26は、1×10
17/cm
3前後の酸素濃度を有し、n型クラッド層24よりも酸素濃度が高く、中間層25よりも酸素濃度が低い。なお、変形例において、n型クラッド層24の酸素濃度が活性層26の酸素濃度より高くてもよい。
【0033】
つづいて、半導体発光素子10の製造方法について説明する。
図3は、半導体発光素子10の製造方法を示すフローチャートである。まず、基板20を用意し、基板20の第1主面20aの上にバッファ層22およびn型クラッド層24を順に形成する(S10)。
【0034】
基板20は、サファイア(Al
2O
3)基板であり、AlGaN系半導体材料を形成するための成長基板である。例えば、サファイア基板の(0001)面上にバッファ層22が形成される。バッファ層22は、例えば、高温成長させたAlN(HT−AlN)層と、アンドープのAlGaN(u−AlGaN)層とを含む。n型クラッド層24は、n型のAlGaN系半導体材料で形成される層であり、有機金属化学気相成長(MOVPE)法や、分子線エピタキシ(MBE)法などの周知のエピタキシャル成長法を用いて形成できる。
【0035】
つづいて、n型クラッド層24の上に高酸素濃度の中間層25を形成する(S12)。中間層25は、n型クラッド層24の表面を酸化させることにより形成できる。例えば、n型クラッド層24の表面が露出した状態で、空気などの酸素ガス(O
2)を含む雰囲気ガス下に置くことで、n型クラッド層24の表面を酸化させることができる。
【0036】
中間層25の厚さを10nm以下にするため、n型クラッド層24などのAlGaN系半導体材料層の形成時よりも低い温度でn型クラッド層24の酸化処理を行うことが望ましい。n型クラッド層24の酸化処理は、900℃未満とすることが好ましく、例えば100℃以下の温度や、0℃〜30℃程度の室温下であってもよい。中間層25を100℃以下の低温で酸化させる場合、空気などの酸素を含む雰囲気中で1時間以上、例えば、2時間、4時間、8時間、12時間または24時間程度、酸化処理を進めればよい。
【0037】
中間層25は、n型クラッド層24とは別の層として形成されてもよく、n型クラッド層24の上に少なくとも酸素(O)およびアルミニウム(Al)を含む層を成長させて形成してもよい。中間層25は、例えば、酸素(O)、アルミニウム(Al)、ガリウム(Ga)、窒素(N)などを供給するための原料ガスを用いて形成されてもよい。この場合、MOVPE法やMBE法などの周知のエピタキシャル成長法を用いて形成できる。
【0038】
次に、中間層25の上に活性層26を形成する(S14)。例えば、中間層25の上に障壁層と井戸層とを交互に積層させることにより、量子井戸構造を有する活性層26が形成される。活性層26は、AlGaN系半導体材料で形成され、MOVPE法やMBE法などの周知のエピタキシャル成長法を用いて形成できる。
【0039】
次に、活性層26の上にp型半導体層を形成する(S16)。例えば、活性層26の上に電子ブロック層28を形成し、つづいて、p型クラッド層30を形成する。電子ブロック層28およびp型クラッド層30は、AlN系半導体材料またはAlGaN系半導体材料で形成される層であり、MOVPE法やMBE法などの周知のエピタキシャル成長法を用いて形成できる。
【0040】
つづいて、n側電極32およびp側電極34を形成する(S18)。まず、p型クラッド層30の上にマスクを形成し、マスクが形成されていない露出領域の活性層26、電子ブロック層28およびp型クラッド層30を除去する。活性層26、電子ブロック層28およびp型クラッド層30の除去は、プラズマエッチングにより行うことができる。n型クラッド層24の露出面上にn側電極32を形成し、マスクを除去したp型クラッド層30の上にp側電極34を形成する。n側電極32およびp側電極34は、例えば、電子ビーム蒸着法やスパッタリング法などの周知の方法により形成することができる。これにより、
図1に示す半導体発光素子10ができあがる。
【0041】
本実施の形態によれば、n型クラッド層24と活性層26の間に高酸素濃度の中間層25を設けることで、活性層26の結晶品質を高めて半導体発光素子10の光出力を高めることができる。例えば、出力波長270nmの発光素子の場合、中間層25を設けた実施例では、中間層25を設けていない比較例に対して、1.5倍〜2.5倍程度の光出力を得ることができる。本実施の形態に係る一実施例によれば、100mAの通電時において、260nm〜270nmの出力波長、3.4mW〜3.7mWの発光出力が得られた。また、900℃未満での酸化処理をして中間層25の厚さを10nm以下にすることにより、900℃以上での酸化処理をして比較的厚い高酸素濃度領域を設ける場合と比べて1.2倍〜2.8倍程度の光出力を得ることができた。
【0042】
本実施の形態によれば、n型クラッド層24の結晶構造の不均一性やゆらぎを中間層25にて遮断し、活性層26における結晶構造の不均一性やゆらぎの発生を抑制することができる。その結果、活性層26のAlN組成や厚さを均一化することができ、半導体発光素子10の発光特性を安定化させることができる。特に、活性層26が多重量子井戸構造で構成される場合、複数の井戸層のそれぞれのAlN組成や厚さのばらつきを抑制し、半導体発光素子10の全体としての発光特性を改善させることができる。
【0043】
以上、本発明を実施の形態にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。
【符号の説明】
【0044】
10…半導体発光素子、22…バッファ層、24…n型クラッド層、25…中間層、26…活性層。