【実施例】
【0059】
以下に実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0060】
[1.ナノ粒子[HSA]MIP-NGs,NIP-NGsの合成]
[1−1.実施例1:蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの合成]
水溶性モノマーとしてのN-イソプロピルアクリルアミド(NIPAm)407mg、架橋剤としてのN,N’-メチレンビスアクリルアミド(MBAA)30.8mg、機能性モノマーとしてのピロリジルアクリレート(PyA)70mg、蛍光性モノマーとしてのフルオレセインアクリルアミド(FAm)4mg、生体適合性モノマーとしてのメタクリロイロキシエチルホスホリルコリン(MPC)59mg、開始剤としての2,2’-アゾビス(2-メチルプロピオンアミジン)2塩酸塩(V-50)217mg、および標的タンパク質としてのヒト血清アルブミン(HSA, 血中に50-60%存在)13.2mgを、シュレンクフラスコ内で100 mLの10 mM PBS (pH 7.4)に溶解させ、窒素雰囲気下70℃で12時間、無乳化剤沈殿重合を行った。これにより、ヒト血清アルブミンを鋳型とする分子インプリントポリマー([HSA]MIP-NGs)を合成した。
【0061】
なお、ピロリジルアクリレートは以下の構造を有するモノマーであり、Inoue Y., Kuwahara A., Ohmori K., Sunayama H., Ooya T., Takeuchi T. Biosensors and Bioelectronics 48, 113-119 (2013)に記載の方法で、Boc-3-ヒドロキシピロリジンとアクリロイルクロリドとから中間体N-Boc-ピロリジルアクリレートを合成した後にBoc基を脱保護することにより得た。
【0062】
【化1】
【0063】
[1−2.比較例1:蛍光性リファレンスナノ粒子NIP-NGsの合成]
ヒト血清アルブミンを用いなかったことを除いて上記と同様の無乳化剤沈殿重合を行った。これにより、リファレンスナノ粒子(NIP-NGs)を合成した。
【0064】
[1−3.重合後のナノ粒子[HSA]MIP-NGs,NIP-NGsの平均粒子径測定]
得られたナノ粒子[HSA]MIP-NGs,NIP-NGsのDLS測定を行った。DLS測定には動的光散乱光度計(DLS)(マルバーン株式会社製データサイザー)を用い、温度条件は25℃とした。
結果、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsは、Z平均粒子径:44 nm、PDI: 0.38 nmであった。蛍光性リファレンスナノ粒子NIP-NGsは、Z平均粒子径:19 nm、PDI: 0.46 nmであった。いずれについても安定なナノ粒子を得ることに成功したことが示された。
【0065】
[2.ナノ粒子[HSA]MIP-NGs,NIP-NGsの精製]
[2−1.蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの精製]
重合後の蛍光性HSA認識ナノ粒子[HSA]MIP-NGsのナノゲルエマルションのUV-visスペクトルを測定したところ、フルオレセイン基に由来する510 nm程度の波長吸収とともに、モノマーおよびHSAに由来する200〜300 nmの波長吸収も観測された。
【0066】
そこで、重合によって得られたエマルションから、ナノ粒子([HSA]MIP-NGs,NIP-NGs)の精製を行った。精製は、サイズ排除クロマトグラフィを用いた分離によって行った。具体的には、内径1.2 cmのカラムに、高さ33 cmまでSephadex G-50 Medium を充填し、2 mLの得られたナノゲルエマルション([HSA]MIP-NGsまたはNIP-NGs)を導入した。溶離液には10 mM PBS buffer (pH 7.4)を使用した。フラクションは1.5 mLずつに分けて採取し、それぞれのフラクションのUV-vis測定を行うことによって、サイズ排除クロマト分離できているかどうかを確かめた。
【0067】
蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの分離の結果、5番目から10番目のフラクションでは、フルオレセイン基に由来する502nmの吸収が観測され、このうち7番目から10番目のフラクションでは、HSAに由来する260nmの吸収も併せて観測された。さらに、13番目から25番目のフラクションでは、モノマーに由来する241nmの吸収が観測された。
そこで、不純物(HSAおよびモノマー)の吸収が観測されず、かつフルオレセイン基に由来する502nmの吸収が最も大きく観測された6番目のフラクションを[HSA]MIP-NGsの精製物として採用した。この際、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの固形分濃度を測定すると、0.112 wt%であった。
図1(a)に、精製前における重合物のUV-visスペクトルを示し、
図1(b)に、精製後における6番目フラクションのUV-visスペクトルを示す。
図1ではいずれも、横軸に波長(nm)、縦軸に相対強度を表す。
なお、より高分子側で段数が働く充填材を用いれば、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsをHSAから完全分離することが可能と考えられる。
【0068】
[2−2.蛍光性リファレンスナノ粒子NIP-NGsの精製]
蛍光性リファレンスナノ粒子NIP-NGsについても同様に分取を行い、精製物を得た。この際、NIP-NGsの固形分濃度を測定すると、0.106 wt%であった。
【0069】
[2−3.精製後の蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの平均粒子径測定]
精製された蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの平均粒子径を、精製前と同様に測定した。結果、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの平均粒子径:23nm、PDI:0.45であった。
図2に、DLSにより得られた蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの粒子径分布を示す。
【0070】
[3.ナノ粒子[HSA]MIP-NGs,NIP-NGsの蛍光測定]
精製された蛍光性HSA認識ナノ粒子[HSA]MIP-NGsを1000分の1に希釈(溶媒10 mM PBS buffer (pH7.4))し、蛍光測定を行った。
【0071】
蛍光性HSA認識ナノ粒子[HSA]MIP-NGsについて、蛍光波長530 nmの際の励起スペクトルを測定したところ、500 nm付近に極大吸収を示した。そこで、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsについて、励起波長500 nm、25℃で蛍光スペクトルを測定したところ、526nmに極大吸収を示した。
蛍光性リファレンスナノ粒子NIP-NGsについても同様に蛍光スペクトルを測定しところ、同様の極大吸収を示した。
【0072】
したがって、ナノ粒子[HSA]MIP-NGs,NIP-NGsの蛍光顕微鏡下での観察が可能であることが明らかとなった。
【0073】
[4.蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの蛍光偏光解消測定]
精製された蛍光性HSA認識ナノ粒子[HSA]MIP-NGsを1000分の1希釈(溶媒10 mM PBS buffer (pH7.4))した。光源側に0°または90°、検出器側に0°または90°の偏光版を挿入し、蛍光測定を行った。具体的には、光源側0°−検出器側0°である場合の蛍光強度(I
00)、光源側0°−検出器側90°である場合の蛍光強度(I
09)、光源側90°−検出器側0°である場合の蛍光強度(I
90)、および光源側90°−検出器側90°である場合の蛍光強度(I
99)を測定した。極大波長は526nmであった。
【0074】
重合前の蛍光性モノマーであるフルオレセインアクリルアミドについても同様に蛍光測定を行った。極大波長は510nmであった。
【0075】
蛍光性HSA認識ナノ粒子[HSA]MIP-NGsおよびフルオレセインアクリルアミドそれぞれについて、極大波長における蛍光強度を以下の式に導入し、異方性を算出した(表1)。
【0076】
【数1】
【0077】
【表1】
【0078】
表1に示すように、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの異方性の値Aは0.205と算出された。一方、フルオレセインアクリルアミドの異方性の値Aは0.0144と算出された。このように、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの異方性の値Aはフルオレセインアクリルアミドの場合に比べ明らかに大きい。この結果は、蛍光分子がナノゲル粒子に取り込まれたことでサイズが大きくなったために、ブラウン運動による偏光解消が抑制されたことを明確に示している。
【0079】
[5.表面プラズモン共鳴を利用した蛍光性HSA認識ナノ粒子の標的分子認識能評価]
[5−1.HSA固定化金基板の作製]
まず、金基板を水およびエタノールで洗浄した後、UV-O3処理した。その後すぐに、11−メルカプトウンデカン酸(1mM, エタノール) 5mL中に浸漬し、24 h 25℃でインキュベーションを行うことにより、金基板表面に11−メルカプトウンデカン酸の自己組織化単分子(SAM)膜を形成した(SAM膜形成工程)。
【0080】
次に、得られたSAM膜形成基板を、エタノールで洗浄後、N−エチル−(ジメチルアミノプロピル)カルボジイミド(EDC)(100 mg/mL)およびN−ヒドロキシスクシンイミド(NHS)(100 mg/mL)を溶解させた水溶液0.3 mL中に室温で30分浸漬させた。これによって、カルボン酸をNHS修飾して活性化させた(活性化工程)。
【0081】
最後に、カルボン酸を活性化させた基板を、HSA (1mg/mL)を溶解させた10 mM PBS buffer (pH 7.4)中でインキュベーション(25℃、1.5 h)した。これによって、HSA固定化金基板を作製した(HSA固定化工程)。
【0082】
上記の各工程の処理が行われたことの確認は、X線光電子分光(XPS)測定によって行った。
SAM膜形成工程によって得られた基板のXPS測定の結果、S2p軌道に由来する軌道が明確に確認された。したがって、基板の表面がカルボキシル基修飾されていることが判った。
【0083】
活性化工程によって得られた基板のXPS測定の結果、N1s軌道由来のピークが出現した。したがって、表面にカルボキシル基が活性化されたNHS末端が存在していることが示唆された。(カルボジイミドは不安定のため不活性化していると考えられる)。
【0084】
HSA固定工程によって得られた基板のXPS測定の結果、N1s軌道のピークは極めて大きくなった(アミド結合由来のものと考えられる)。さらに、C1s軌道においてもカルボニルに起因するピークが明確に出現した。従って、HSAで修飾することに成功していることが判った。
【0085】
[5−2.HSA固定化金基板を用いたナノ粒子[HSA]MIP-NGs,NIP-NGsの吸着挙動の確認]
表面プラズモン共鳴法(SPR)センサー装置(ビアコア社製Biacore Q)を用い、HSA固定化基板に対する蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの吸着挙動について確認した。Running bufferに10 mM PBS (pH 7.4)を用い、温度25℃、Flow rate: 20μL/min、Injection volume: 20μLで測定を行った。蛍光性HSA認識ナノ粒子[HSA]MIP-NGsは、10 mM PBS buffer (pH 7.4)に分散させ,濃度を100, 200, 400, 800, 1600 ng/mLと変化させて測定に供した。
同様の操作により、蛍光性リファレンスナノ粒子NIP-NGsについても測定を行った。
【0086】
蛍光性HSA認識ナノ粒子[HSA]MIP-NGsおよび蛍光性リファレンスナノ粒子NIP-NGsそれぞれのHSA固定化基板に対する吸着挙動について、レゾナンスユニット変化量(ΔRU)と粒子濃度(ng/mL)との関係を、
図3に示す。
【0087】
図3に示すように、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsは、その濃度の上昇とともに吸着量が増大したことに対し、蛍光性リファレンスナノ粒子NIP-NGsでは、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsで観察されたような吸着挙動は観察されなかった。したがって、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの方が、HSAに対する吸着能が高いことが示された。このような、蛍光性リファレンスナノ粒子NIP-NGsおよび蛍光性HSA認識ナノ粒子[HSA]MIP-NGsそれぞれのHSAに対する吸着能を調べる実験を合計3回行い、効果の再現性を確認した。
【0088】
[6.in vivoでの血中滞留性評価]
精製した蛍光性HSA認識ナノ粒子[HSA]MIP-NGsを分散させた10 mM PBS (pH 7.4)を、ラットの尾の静脈にインジェクションした。ラットの耳の血管の蛍光動画を、共焦点レーザー顕微鏡(Nikon製)を用いて撮影した。10時間にわたり、動脈、静脈および組織中の蛍光強度を経時的に測定した。
積算時間1時間16分時の顕微鏡画像を
図4に示す。
図4中、四角で囲われた箇所(図中左から順に、組織、動脈、静脈の測定箇所を示す)で、蛍光強度の経時変化を調べた。静脈および組織中の蛍光強度の経時変化を
図5に示す。
図5は、横軸に時間(分)を表し、縦軸に相対強度(%)を表す。
【0089】
精製した蛍光性リファレンスナノ粒子NIP-NGsについても同様の操作を行い、蛍光強度の経時的測定を行った。積算時間1時間6分時の顕微鏡画像を
図6に示す。
図6中、四角で囲われた箇所(図中左から順に、静脈、動脈、組織の測定箇所を示す)で、蛍光強度の経時変化を調べた。静脈および組織中の蛍光強度の経時変化を
図7に示す。
図7は、横軸に時間(分)を表し、縦軸に相対強度(%)を表す。
【0090】
図5および
図7に示されるように、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの場合と蛍光性リファレンスナノ粒子NIP-NGsの場合とにおいて、組織中の蛍光強度はほとんど差が無かった。一方、静脈中の蛍光強度は、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsが蛍光性リファレンスナノ粒子NIP-NGsに比べて常に高い値を示した。つまり、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsの高い血中滞留性が示された。この結果は、蛍光性HSA認識ナノ粒子[HSA]MIP-NGsが[HSA]MIP-NGsが血中でHSAを認識し、HSAを身にまとうことでステルス性を具備したことを示唆する。
【0091】
[7.肝臓における血中滞留性評価]
以下のとおり、実施例1の蛍光性HSA認識ナノ粒子[HSA]MIP-NGsと、比較例1の蛍光性リファレンスナノ粒子NIP-NGsとについて、肝臓における血中滞留性を共焦点レーザー顕微鏡を用いて確認した。
【0092】
[7−1.実験手順]
Balb/cマウス(メス,生後4週間)を使用し、肝臓を観察した。まず、マウスの腹部に脱毛クリームを塗り、脱毛した。その後、腹部から肝臓を観察できるように、電子メスとはさみとを用いて皮膚を裂いた。また,サンプルをインジェクションするために、尾静脈へのカテーテル挿入を行った。生理食塩水を1mLテルモシリンジで導入することによって、漏れが無いことを確認した。
【0093】
肝臓に焦点を合わせ、実施例1の蛍光性HSA認識ナノ粒子[HSA]MIP-NGsを200μLインジェクションし、共焦点レーザー顕微鏡による観察を行った。具体的には、インジェクション5分前より共焦点レーザー顕微鏡(Nikon)で動画撮影を開始し、15時間の撮影を行った。
比較例1の蛍光性リファレンスナノ粒子NIP-NGsについても同様の実験操作を行った。
【0094】
[7−2.蛍光性HSA認識ナノ粒子[HSA]MIP-NGsについての実験結果]
図8(a)に、実施例1の蛍光性HSA認識ナノ粒子[HSA]MIP-NGsをインジェクションしたマウスの肝臓の10分後の共焦点レーザー顕微鏡写真を示し、
図8(b)に、[HSA]MIP-NGsをインジェクションしたマウスの肝臓の14時間後の共焦点レーザー顕微鏡写真を示す。
【0095】
図8(a)に示すように、インジェクション直後(10分後)では、[HSA]MIP-NGs由来の蛍光がはっきりと肝臓内の血管で観察され、血管中を流れていることが観察できた。一方で、
図8(b)に示すように、インジェクション後14時間経過すると、その血管中の蛍光強度は弱くなっていたものの、血管の蛍光がはっきりと観察できた。さらに、[HSA]MIP-NGsが肝細胞に集積している様子が観察されなかったことから、[HSA]MIP-NGsは肝細胞に捕らわれることがない、血中滞留性に優れたナノ粒子であることが明らかとなった。
【0096】
[HSA]MIP-NGsの血管中の血中滞留性を調べるため、
図8(a)および
図8(b)中、円で囲った5か所の蛍光強度の経時変化を求めた。その結果を
図9に示す。
図9において、横軸に経過時間、縦軸に相対蛍光強度を示す。この図から半減期を見積もると、おおよそ5時間半以上の高い血中滞留性が示された。
【0097】
[7−3.蛍光性リファレンスナノ粒子NIP-NGsについての実験結果]
図10(a)に、比較例1の蛍光性リファレンスナノ粒子NIP-NGsをインジェクションしたマウス肝臓の10分後の共焦点レーザー顕微鏡写真を示し、
図10(b)に、NIP-NGsをインジェクションしたマウス肝臓の15時間後の共焦点レーザー顕微鏡写真を示す。
【0098】
図10(a)に示すように、インジェクション直後(10分後)では、血管が明瞭に見えているのに対し、
図10(b)に示すように、インジェクション後15時間経過すると血管はほとんど見えなくなり、代わりに細胞に多く取り込まれている様子が観察された。この細胞は肝細胞と考えられる。さらに、時間経過とともに蛍光を発する肝細胞数は増大している様子が観察された。
【0099】
NIP-NGsの血管中の血中滞留性を調べるため、
図10(b)の肝細胞が現れない場所であり且つ初期に血管が見えていた場所を5箇所(
図10に測定点1〜5として示す)選択し、当該場所、つまり血管中の蛍光強度の経時変化を測定した。その結果を
図11に示す。
図11に示されるように、[HSA]MIP-NGs(
図9参照)に比べてより速く血管中から消えていく傾向が観察され、その半減期も5箇所のうち4箇所(測定点2〜5)で2〜3時間であった。このデータからも、[HSA]MIP-NGsの方が、NIP-NGsよりも高い血中滞留性を示すことが明らかとなった。
【0100】
次に、NIP-NGsをインジェクションしたマウスの肝臓部位における肝細胞内の蛍光強度の経時変化を測定した。この測定においては、共焦点レーザー顕微鏡画像中において、時間経過と共に肝細胞が見えてくる5点のポイント(
図12に測定点1〜5として示す)を測定した。その測定結果を
図13に示す。
【0101】
図13に示すように、全ての測定点において、時間経過とともに肝細胞内の蛍光強度が経時的に増大している様子が観察された。これは、明らかに肝細胞へのナノ粒子の取り込みを示唆する結果であり、NIP-NGsが肝細胞へ取り込まれていること、つまり血中滞留性が低いことが改めて明らかとなった。一方、[HSA]MIP-NGsは肝細胞への取り込みが無かった(
図8参照)ことから、やはり血中において高いステルス性を獲得できたと考えられる。
【0102】
[8.実施例2:薬剤担持HSA認識ナノ粒子DOX1-[HSA]MIP-NGsの合成]
[8−1.アミド結合を有するDoxorubicin methacrylate (DOXMA-1)の合成]
【0103】
【化2】
【0104】
抗がん剤であるDoxorubicin HCl 58 mg (0.10 mmol)をEt
3N 30 μL (0.40 mmol)を含んだMeOH 30 mLに溶解させ、Methacrylic acid 8.5μL (0.10 mmol)とDMT-MM 27.7 mg (0.10 mmol)とを溶解させたMeOH 10 mLを、滴下漏斗を用いて加えた。Overnight後、TLC (1-BuOH : AcOH : H
2O = 4 : 1 : 5)にてRf値=0.25に原料のスポットとRf値=0.75に目的物と思われるスポットが見られた。原料スポットが多く残っていたため、Methacrylic acid 19 μL (0.20 mmol)とDMT-MM 27.7 mg (0.10 mmol)とを溶解させたMeOH 10 mLをさらに加えて反応させた。EtOAcに溶媒置換後、重曹水にて三回、洗浄を行った。MgSO
4で脱水した後、減圧留去および真空乾燥を行い、
1H-NMRにて目的物の同定を行った。
【0105】
目的物であるDOX methacrylate(DOXMA-1)の合成の確認を
1H-NMRで確認した。具体的には、生成物のメタクリロイル基に由来するピークが新たに出現したことを確認した。
1H-NMR chart.1 (300 MHz, DMSO-d
6)
δ=14.04 (br, 1H), δ=13.28 (br, 1H), δ=7.94, 7.67, 7.33 (m, 3H), δ=5.60, 5.47 (m, 2H), δ=5.27 (d, 2H), δ=4.95 (br, 1H), δ=4.83 (m, 2H), δ=4.56 (m, 2H), δ=4.16 (m, 1H), δ=3.97 (s, 3H), δ=3.43 (s, 1H), δ=2.97 (br, 2H), δ=2.18 (m, 1H), δ=1.97 (m, 1H), δ= 1.78 (s, 3H), δ=1.47 (m, 1H), δ=1.17 (d, 3H)
【0106】
[8−2.薬剤担持HSA認識ナノ粒子DOX1-[HSA]MIP-NGsの合成]
得られたDOXMA-1を無乳化剤沈殿重合系で共重合させることで、薬物を担持しつつHSA認識空間をもつ[HSA]MIP-NGs(DOX1-[HSA]MIP-NGs)の合成を行った。共重合反応系を構築する具体的な成分および組成を下記表2に示す。重合はシュレンクフラスコ中で窒素雰囲気下、70℃で12時間反応させた。
【0107】
【表2】
【0108】
[9.薬剤担持HSA認識ナノ粒子DOX1-[HSA]MIP-NGsの精製および平均粒子径測定]
重合により得られたエマルションをSephadex G-100を用いてサイズ排除クロマトグラフィーを行って、薬剤担持HSA認識ナノ粒子DOX1-[HSA]MIP-NGsを精製した。その後、薬剤担持HSA認識ナノ粒子DOX1-[HSA]MIP-NGsを、動的光散乱法により粒子径を測定した。DLS測定の結果、Z平均粒子径は37 nm (PDI: 0.49)であった。
図14に、DLSにより得られた薬剤担持HSA認識ナノ粒子DOX1-[HSA]MIP-NGsの粒子径分布を示す。このことから、薬剤担持型の[HSA]MIP-NGsにおいても、実施例1の薬剤非担持型の[HSA]MIP-NGsと同様にナノサイズMIP粒子を得ることが出来たと考えられる。
【0109】
[10.表面プラズモン共鳴法(SPR)によるDOX1-[HSA]MIP-NGsのHSA結合実験]
実施例1の項目5−1と同様にしてHSA固定化金基板を作成し、得られたHSA固定化金基板を用いて、項目5−2と同様にして薬剤担持HSA認識ナノ粒子DOX1-[HSA]MIP-NGsの吸着挙動を確認した。
【0110】
薬剤担持HSA認識ナノ粒子DOX1-[HSA]MIP-NGsのHSA固定化金基板に対する吸着挙動について、吸着量(Absorption (RUmm
2/g-protein)と粒子濃度(NPs concentration(ng/nL))との関係(n=2)を
図15に示す。HSAに対する吸着量は、SPRセンサーチップ上に固定化されたHSA量で規定している。また、
図15においては、薬剤担持型のHSA認識ナノ粒子DOX1-[HSA]MIP-NGsの吸着挙動(HSA vs Dox MIP)とともに、実施例1の薬剤非担持型のHSA認識ナノ粒子[HSA]MIP-NGsの吸着挙動(HSA vs Non-Dox MIP)も併せて示している。
【0111】
図15に示すように、本実施例の薬剤担持型のHSA認識ナノ粒子DOX1-[HSA]MIP-NGsは、実施例1の薬剤非担持型のHSA認識ナノ粒子[HSA]MIP-NGsと同様の挙動を示したことを確認した。したがって、薬剤担持型のHSA認識ナノ粒子DOX1-[HSA]MIP-NGsは、実施例1の薬剤非担持型のHSA認識ナノ粒子[HSA]MIP-NGsと同様のHSA結合空間を持つことが示唆された。
【0112】
[11.薬剤非担持HSA認識ナノ粒子[HSA]MIP-NGsおよび薬剤担持HSA認識ナノ粒子DOX1-[HSA]MIP-NGsの細胞への取り込み観察]
本発明のナノ粒子の細胞内への取り込みを観察し、DDSにおける有用性を確認した。
【0113】
[11−1.繊維芽細胞NIH/3T3への取り込み]
共焦点観察用ガラスディッシュに血清D-MEM培地を用いて繊維芽細胞であるNIH/3T3を細胞数24万 cells/dishとなるように播種し、24時間CO
2インキュベーター内で静置した。その後、精製した実施例1の薬剤非担持型のHSA認識ナノ粒子[HSA]MIP-NGsを、その濃度が100 μg/mLとなるように200 μL添加し、さらに24時間CO
2インキュベーター内で静置した。なお、サンプルは観察前に血清D-MEM培地による洗浄を行っている。
【0114】
細胞を、共焦点レーザー顕微鏡を用いて観察した。観察条件は以下の通りである。
共焦点レーザー顕微鏡:オリンパス社製IX81
対物レンズ: 100×(oil)
使用フィルター: FITC
【0115】
観察結果を、
図16の「Without Dox」に示す。
図16中、「FITC」はナノ粒子の蛍光画像であり、「Bright」は明視野像である。
【0116】
図16の「Without Dox」に示すように、細胞内に明確に薬剤非担持型のHSA認識ナノ粒子[HSA]MIP-NGs由来の蛍光が観察された。つまり、薬剤非担持型のHSA認識ナノ粒子[HSA]MIP-NGsが細胞内に取り込まれていることが明らかになった。
【0117】
同様の実験および観察を、薬剤担持型のHSA認識ナノ粒子DOX1-[HSA]MIP-NGsについても行った。その観察結果を、
図16の「With Dox」に示す。
図16の「With Dox」に示すように、薬剤担持型のHSA認識ナノ粒子DOX1-[HSA]MIP-NGsについても、細胞内に取り込まれていることが明らかになった。
【0118】
[11−2.ヒト乳がん細胞Helaへの取り込み]
ヒト乳がん細胞であるHelaについても上記項目11−1と同様に、薬剤非担持型のHSA認識ナノ粒子[HSA]MIP-NGsおよび薬剤担持型のHSA認識ナノ粒子DOX1-[HSA]MIP-NGsの取り込みを観察した。
【0119】
観察結果を、
図17の「Without Dox」([HSA]MIP-NGs)および「With Dox」(DOX-[HSA]MIP-NGs)に示す。
図17に示すように、ヒト乳がん細胞であるHelaへも、薬剤非担持型のHSA認識ナノ粒子[HSA]MIP-NGsおよび薬剤担持型のHSA認識ナノ粒子DOX1-[HSA]MIP-NGsが取り込まれていることが明らかになった。
【0120】
[12.実施例3:別のタンパク質を認識するナノ粒子[MSA]MIP-NGsの合成]
標的タンパク質を、ヒト血清アルブミン(HSA)に替えてマウス血清アルブミン(MSA)としたことを除いて、項目1−1(実施例1)と同様に蛍光性MSA認識ナノ粒子[MSA]MIP-NGsを合成した。共重合反応系を構築した具体的な成分および組成を下記表3に示す。
【0121】
【表3】
【0122】
得られた蛍光性MSA認識ナノ粒子[MSA]MIP-NGsを、Sephadex G-50に替えてSephadex G-100を用いたことを除いて上記項目2と同様に精製し、DLS測定によって粒子径を求めた。
【0123】
図18に、DLSにより得られた蛍光性MSA認識ナノ粒子[MSA]MIP-NGsの粒子径分布を示す。このことから、本実施例においても、実施例1の[HSA]MIP-NGsおよび実施例2の薬剤担持型の[HSA]MIP-NGsと同様にナノサイズMIP粒子を得ることが出来たと考えられる。
【0124】
[13.表面プラズモン共鳴法(SPR)による[MSA]MIP-NGsの結合特性]
実施例1の項目5−1と同様にしてHSA固定化金基板を作成し、HSAに替えてMSA(マウス血中アルブミン)を用いたことを除いて同様にしてMSA固定化金基板を作成し、HSAに替えてIgGを用いたことを除いて同様にしてIgG固定化金基板を作成した。
各種タンパク質固定化金基板のそれぞれに対し、項目5−2と同様にして蛍光性MSA認識ナノ粒子[MSA]MIP-NGsの吸着挙動を確認した。
【0125】
蛍光性MSA認識ナノ粒子[MSA]MIP-NGsの各固定化金基板に対する吸着挙動について、ナノ粒子の吸着量(NPs Absorption (RU×mm
2/pmol-protein)と粒子濃度(NPs concentration(ng/mL))との関係を
図19に示す。
図19に示すように、蛍光性MSA認識ナノ粒子[MSA]MIP-NGsは、実施例1の蛍光性HSA認識ナノ粒子[HSA]MIP-NGsと同様にIgGおよびFibrinogenに対する結合能が低い。その一方、高濃度領域でMSAに対する結合量がHSAに対する結合量に比べて高い値を示しているため、MSAに対する認識空間が形成されていることが示唆された。したがって、HSA以外のタンパク質についても本発明のナノ粒子が得られることが示された。
【0126】
[14.実施例4:非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsの合成]
蛍光性モノマーFAmを使用しなかったことを除いては基本的に実施例2と同様に無乳化剤沈殿重合系で共重合を行い、非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsを合成した。共重合反応系を構築する具体的な成分および組成を下記表4に示す。重合はシュレンクフラスコ中で窒素雰囲気下、70℃で12時間反応させた。
【0127】
【表4】
【0128】
[15.非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsの精製および平均粒子径測定]
重合により得られたエマルションをSephadex G-100を用いてサイズ排除クロマトグラフィーを行って、非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsを精製した。その後、非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsを、動的光散乱法により粒子径を測定した。DLS測定の結果、Z平均粒子径は17 nm (PDI: 0.46)であった。
図20に、DLSにより得られた非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsの粒子径分布を示す。また、
図21に、非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsのUV-Visスペクトルを示す。これらの結果から、ドキソルビシン由来の吸収領域が存在し、抗がん剤が粒子内に封入されていることが示唆された。
【0129】
[16.実施例5:非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsの合成]
[16−1.ヒドラゾン結合を有するDoxorubicin methacrylate (DOXMA-2)の合成]
【0130】
【化3】
【0131】
(i) Ethyl Glycinate Methacrylate の合成
Ethyl glycinate hydrochloride (5.0 g, 36 mmol)およびtriethylamine (10 mL, 72 mmol)をDCM(50 mL)に溶解した後、窒素雰囲気・氷冷下においてMethacryloyl chloride (3.78 g, 36 mmol)をDCM (30 mL)に溶解した溶液を滴化した。室温でover nightの反応を行い、その後、食塩水、クエン酸水溶液、および炭酸ナトリウム水溶液で三回ずつ洗浄し、再度食塩水で一回洗浄した。洗浄後、シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル= 100:00 - 50:50)によって精製を行った。減圧乾燥後、真空乾燥を行って、
1H-NMRにて目的物の同定を行った。
【0132】
目的物であるEthyl Glycinate Methacrylateの合成の確認を
1H-NMRで確認した。
1H-NMR (300 MHz, DMSO-d
6) :
δ=8.35 (br, 1H), δ=5.71 (s, 1H), 5.39 (s, 1H), δ=4.07 (q, 2H), δ= 3.82 (m, 2H), δ= 1.85 (s, 3H), δ= 1.09 (t, 3H)
【0133】
(ii) Methacryloyl glycine hydrazide の合成
Ethyl glycinate methacrylate(0.5 g, 3.0 mmol)およびhydrazine hydrate (200 mg, 6.0 mmol)を無水メタノール(10 mL)中に混合し、室温でovernight反応させた。その後、溶媒を減圧除去後、シリカゲルクロマトグラフィー(EtOAc: MeOH= 100:00 - 50:50)によって精製を行った。減圧乾燥後、真空乾燥を行い、
1H-NMRにて目的物の同定を行った。
【0134】
目的物であるMethacryloyl glycine hydrazideの合成の確認を
1H-NMRで確認した。
1H-NMR (300 MHz, DMSO-d
6):
δ=9.00 (br, 1H), δ=8.10 (br, 1H), δ=5.72 (s, 1H), δ=5.33 (s, 1H), δ=4.16 (b, 2H), δ= 3.65 (m, 2H), δ= 1.87 (s, 3H)
【0135】
(iii) Methacryloyl glycine hydrazone-DOX(DOXMA-2) の合成
Methacryloyl glycine hydrazide(14.5 mg, 0.1 mmol)およびDOX hydrochloride(29 mg, 0.05 mmol)を無水メタノール(10 mL)中に混合し、室温でovernight反応させた。その後、溶媒を減圧除去後、MALDI-TOF-MSによって反応の進行を確認した。
【0136】
目的物であるMethacryloyl glycine hydrazone-DOX(DOXMA-2)の反応進行をMALDI-TOF-MSで確認した。
MALDI-TOF-MS (matrix:CHCA): m/z=724.04 [M+Na].
【0137】
[16−2.非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsの合成]
薬剤モノマーとして上述のようにして得られたDOXMA-2を使用し、かつ、蛍光モノマーFAmを加えなかったことを除いては基本的に実施例と同様に無乳化剤沈殿重合系で共重合を行い、非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsを合成した。共重合反応系を構築する具体的な成分および組成を下記表5に示す。重合はシュレンクフラスコ中で窒素雰囲気下、70℃で12時間反応させた。
【0138】
【表5】
【0139】
[17.非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsの精製および平均粒子径測定]
重合により得られたエマルションをSephadex G-100を用いてサイズ排除クロマトグラフィーを行って、非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsを精製した。その後、非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsを、動的光散乱法により粒子径を測定した。DLS測定の結果、Z平均粒子径は81 nm (PDI: 0.45)であった。
図22に、DLSにより得られた非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsの粒子径分布を示す。
図23に、非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsのUV-Visスペクトルを示す。これらの結果から、ドキソルビシン由来の吸収領域が存在し、抗がん剤が粒子内に封入されていることが示唆された。
【0140】
[18.MTT試験]
[18−1.sample]
96マイクロウェルプレートに無血清D-MEM培地を用いてNIH/3T3細胞を5000 cells/wellとなるように各ウェルに100 μLずつ播種し、24時間 CO
2インキュベーター内で静置した。その後、カラムクロマトおよびフィルトレーションを施した実施例4の非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsおよび実施例5の非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsを、それぞれ、濃度が0-100μg/mLとなるように10 μLずつ添加し、さらに24時間CO
2インキュベーター内で静置した。
【0141】
さらにMTT試薬を5mg/mLとなるようにPBS bufferに溶解させたものを各ウェルに10 μLずつ添加し、2時間の呈色反応を行った。その後、PBS buffer 200 μLを加えて1分間静置し、溶媒除去した後に0.04 M HCl / イソプロピルアルコール200 μLを各ウェルに添加してから振とう器で10分間振動させてホルマザンの溶解を行った。これを用いて吸光度の測定を行った。
【0142】
[18−2.blank-A]
NIH/3T3細胞を加えなかったことを除いて、上記の項目18−1と同様の操作を行って吸光度の測定を行った。
【0143】
[18−3.control]
実施例4の非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsおよび実施例5の非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsを加えなかったことを除いて、上記の項目18−1と同様の操作を行って吸光度の測定を行った。
【0144】
[18−4.blank-B]
NIH/3T3細胞と、実施例4の非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsおよび実施例5の非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsと、の両方を加えなかったことを除いて、上記の項目18−1と同様の操作を行って吸光度の測定を行った。
【0145】
[18−5.細胞生存率]
吸光度の測定を行った各試料の分類と内訳とを下記表6に示す。
【0146】
【表6】
【0147】
これらの吸光度から、以下の式に基づいて細胞生存率を算出した。
【0148】
【数2】
【0149】
実施例4の非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsの濃度(MIP-NGs concentration(μg/mL))と細胞生存率(Cell viability(%))との関係を
図24に示す。実施例5の非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsの濃度(MIP-NGs concentration(μg/mL))と細胞生存率(Cell viability(%))との関係を
図25に示す。
【0150】
図24および
図25に示されるように、本発明のナノ粒子の濃度上昇に伴い、細胞生存率が減少することが示された。たとえば、実施例4の非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX1-[HSA]MIP-NGsが100 μg/mLの濃度の場合に細胞生存率64%、実施例5の非蛍光性薬剤担持HSA認識ナノ粒子NF-DOX2-[HSA]MIP-NGsの濃度の場合に細胞生存率7%と、それぞれ低い細胞生存率を示した。
【0151】
[18−6.まとめ]
以上の結果から、本発明の抗がん剤担持ナノ粒子が細胞に対して毒性を示すことが明らかになった。一方、抗がん剤を担持しないナノ粒子においては、細胞毒性がほとんど観察されなかったことから、抗がん剤を担持させることで、細胞毒性を生じさせることが可能になったと考えられる。したがって、本発明の抗がん剤担持ナノ粒子が、坑がん作用を持つナノキャリアとしての有用であることが示された。
【0152】
本発明の好ましい実施形態は上記の通りであるが、本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨から逸脱することのない様々な変形がなされる。