(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0028】
以下に、図面を参照して、本発明の実施の形態を説明する。ただし、本発明は、以下に説明する実施の形態によって限定されるものではない。
【0029】
[第1実施形態:リグニン骨格含有樹脂組成物]
本発明は、第1実施形態によれば、リグニン骨格含有樹脂組成物に関する。リグニン骨格含有熱樹脂組成物は、リグニン骨格を含有する樹脂を主剤として含む。リグニン骨格を含有する樹脂主剤は、フェノール化リグニンまたはその誘導体である。フェノール化リグニン誘導体は、フェノール化リグニンに反応性モノマー基が共有結合した誘導体である。
【0030】
本実施形態において、フェノール化リグニンは、下記一般式(I)で示されるフェノール含有モノマーを含む。
【化2】
式中、R
1〜R
5は、それぞれ独立して、H、OH、C
1〜C
6のアルキル基、C
1〜C
6のアルコキシ基、C
6〜C
10のアリール基から選択される一価の基であるか、または、R
1〜R
5のうち隣り合う置換基が共同して、置換もしくは非置換の芳香環を形成しており、R
1またはR
2の少なくとも一つが水酸基であり、R
6は、OCH
3またはHである。
【0031】
特には、式(I)中、
【化3】
で表される基が、それぞれ1以上の置換基を有していてもよいフェノール、ナフトール、アントロキノンオール、カテコール、レゾルシノール、ヒドロキノン、またはピロガロールから、水素原子が一つ脱離した基であって、かつ、R
1またはR
2の少なくとも一つが水酸基であることが好ましい。置換基としては、種類は特に限定されず、任意の置換基を有していてもよいが、好ましくは電子吸引性の基(ハロゲン原子等)以外の基である。具体的な置換基としては、C
1〜C
6のアルキル基、例えばメチル基、エチル基、プロピル基等、C
1〜C
6のアルコキシ基、例えばメトキシ基、エトキシ基、プロポキシ基等、及びC
6〜C
10のアリール基、例えばフェニル基等が挙げられるが、これらには限定されない。
【0032】
また、本発明のフェノール化リグニンにおいては、式(I)で表されるフェノール含有モノマーを一種のみ含んでもよく、二種以上含んでいてもよく、その比率は特に限定されない。
【0033】
本発明のフェノール化リグニンにおいては、式(I)で表されるフェノール含有モノマー以外に、式(I)の置換基の定義を充足しないフェノール含有モノマーを含んでいてもよい。式(I)の置換基の定義を充足しないフェノール含有モノマーとしては、式(I)中、(A)で表される基が、それぞれ1以上の置換基を有していてもよいフェノール、ナフトール、アントロキノンオール、カテコール、レゾルシノール、ヒドロキノン、またはピロガロールから、水素原子が一つ脱離した基であって、かつ、R
1、R
2が、いずれも水酸基ではない場合の基が挙げられる。なお、この場合の置換基は、R
1、R
2が、いずれも水酸基ではないことを除き、式(I)中、(A)で表される基について定義したのと同様の置換基であってよい。このような式(I)をみたさないフェノール含有モノマーを含む場合であっても、式(I)で表されるフェノール含有モノマーを、フェノール含有モノマーの全モル数に対して、モル分率で30%以上含むことが好ましい。リサイクル時の分解温度の観点からである。
【0034】
さらには、本発明のフェノール化リグニンにおいては、式(I)において、R
6が、OCH
3(メトキシ基)であるフェノール含有モノマーを、フェノール含有モノマー単位の全モル数に対して、モル分率で40%以上含むことが好ましい。樹脂の成形性を保持し、かつ、成形体の分解性を高めるためである。このようなフェノール化リグニンは、後述する製造方法において、出発物質を所定の植物から選択することにより、得ることができる。
【0035】
フェノール化リグニンは、上記のように、一種もしくは二種以上のフェノール含有モノマーが複数結合してなり、繰り返し単位の総数は、例えば、3〜10であり、1〜15であって良いが、特定の繰り返し単位の総数には限定されない。また、フェノール化リグニンの末端構造は、天然物由来であり、具体的に特定できない場合もある。
【0036】
次に、本実施形態に係るフェノール化リグニンを、製造方法の観点から説明する。植物原料からフェノール化リグニンを製造する工程は、特開2010-159381号公報に開示されている手法により実施することができる。具体的には、フェノール化リグニンは植物原料を出発原料として、得ることができる。植物原料として、基本骨格であるフェニルプロパン単位(C6-C3単位)が、シリンギル型であるものを、モル分率で40%以上含む植物を用いることが好ましい。例えば、ブナ、カバ、モウソウチクなどの広葉樹、イネ、ムギなどの草本植物が好ましい。シリンギル型のフェニルプロパン単位のモル分率が40%未満の原料では、熱溶融温度(軟化点)が100℃以上となり、熱流動性が得られず、成形が困難となる場合がある。このような原料を用いることにより、得られるフェノール化リグニンにおいて、上記一般式(I)中R
6がメトキシ基で示されるシリンギル型骨格を備えるフェノール含有モノマーがモル分率で40%以上含まれることになる。植物原料は、フェノール化に先立って、脱脂する工程により、リグニン以外のフェノール性化合物、例えば、ポリフェノール、カテキン等の不純物を除去することができる。
【0037】
フェノール化リグニンは、これら植物原料を、フェノール化合物により溶媒和する工程の後、フェノール化合物により溶媒和した植物原料に酸を添加し、混合する工程により得ることができる。フェノール化合物としては、1価のフェノール化合物、2価のフェノール化合物、または3価のフェノール化合物などを用いることができる。1価のフェノール化合物の具体例としては、1以上の置換基を有していてもよいフェノール、1以上の置換基を有していてもよいナフトール、1以上の置換基を有していてもよいアントロキノンオールなどが挙げられる。2価のフェノール化合物の具体例としては、1以上の置換基を有していてもよいカテコール、1以上の置換基を有していてもよいレゾルシノール、1以上の置換基を有していてもよいヒドロキノンなどが挙げられる。3価のフェノール化合物の具体例としては、1以上の置換基を有していてもよいピロガロールなどが挙げられる。置換基については、上記一般式(I)の、(A)で表される基について定義したものと同様である。
【0038】
所望の種類、モル分率のフェノール含有モノマーを含むフェノール化リグニンを得るためには、上記溶媒和する工程で用いるフェノール化合物の種類、及びそれらのモル分率を選択することができる。例えば、(A)で表される基がクレゾールであるフェノール含有モノマーと、(A)で表される基がキシレノールであるフェノール含有モノマーとを、X:Yのモル比で含むフェノール化リグニンを得るためには、溶媒和に用いるフェノール化合物を、クレゾールとキシレノールとのX:Yのモル比の混合物を用いることができる。
【0039】
植物原料に酸を添加し、混合する工程に用いる酸は、セルロースに対する膨潤性を有する酸が好ましい。酸の具体例としては、例えば濃度65質量%以上の硫酸(例えば、72質量%の硫酸)、85質量%以上のリン酸、38質量%以上の塩酸、p−トルエンスルホン酸、トリフルオロ酢酸、トリクロロ酢酸、ギ酸などを挙げることができるが、これらには限定されない。
【0040】
上記の方法により得られるフェノール化リグニンは、リグニン骨格を有し、かつフェノール性水酸基を多数備えるため、熱硬化性樹脂の主剤として機能する。例えば、フェノール化リグニンのフェノール性水酸基を反応基として、ホルムアルデヒドなどのアルデヒド化合物を硬化剤とし、リグニン骨格を含有するフェノール樹脂とすることができる。あるいは、フェノール化リグニンのフェノール性水酸基を反応基として、イソシアネート化合物を硬化剤とし、リグニン骨格を含有するウレタン樹脂とすることができる。
【0041】
あるいは、フェノール化リグニンの誘導体としたものを、主剤として用いることもできる。例えば、フェノール化リグニンに、エポキシ基を有する化合物を結合させたフェノール化リグニンのエポキシ誘導体(エポキシ化リグニンともいう)は、熱硬化性樹脂の主剤として機能し、任意選択的に硬化剤を用いて、エポキシ樹脂とすることができる。あるいは、フェノール化リグニンに、アクリル基もしくはメタクリル基を有する化合物を結合させたフェノール化リグニンのアクリル誘導体(アクリル化リグニンともいう)は、重合して、アクリル樹脂とすることができる。
【0042】
本発明においては、フェノール化リグニンと結合させる架橋剤の種類により、あるいはフェノール化リグニン誘導体の種類により、種々の樹脂組成物及び成形体を製造することができる。以下、各態様について説明する。
【0043】
[1]リグニン骨格含有エポキシ樹脂組成物
リグニン骨格含有樹脂組成物は、第1態様によれば、リグニン骨格含有エポキシ樹脂組成物である。本態様によるリグニン骨格含有エポキシ樹脂組成物は、一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニンのエポキシ誘導体(エポキシ化リグニン)を主剤として含む。リグニン骨格含有エポキシ樹脂組成物は、主剤としてのエポキシ化リグニン樹脂に加え、任意選択的に硬化剤、硬化促進剤及び他のエポキシ化合物とを含んでもよい。
【0044】
エポキシ化リグニン樹脂は、一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニンに、エポキシ基を備える化合物を結合させた重合性の化合物である。エポキシ基を備える化合物としては、エピクロロヒドリンが挙げられるが、これには限定されない。本態様による組成物には、フェノール化リグニンに結合されるエポキシ基を備える化合物の種類が異なる、2種以上のエポキシ化リグニンが含まれていてもよい。また、エポキシ化されるフェノール化リグニンは、先に記載したとおり、一般式(I)で示されるフェノール含有モノマーを含み、所定の条件を備えているものであれば、1種であってもよく、異なる合成方法(異なる植物原料、及び/または異なるフェノール化合物)で製造した2以上の混合物であってもよい。
【0045】
フェノール化リグニンをエポキシ化する工程は、先に記載したフェノール化リグニンを任意の方法でエポキシ化することにより実施することができる。エポキシ化する工程の一例として、ネットワークポリマー論文誌 Vol. 31 No. 4 (2010)「エポキシ化リグノフェノールによる常温硬化エポキシ樹脂の高性能化」に記載の手法を用いることができる。具体的には、フェノール化リグニンをエピクロルヒドリン溶媒に溶解する工程と、エピクロルヒドリン溶媒に溶解したフェノール化リグニンに、減圧下、かつ所定の温度条件下で水酸化ナトリウム溶液を混合する工程と、混合溶液を撹拌する工程とにより、リグニン骨格が変性しないエポキシ化リグノフェノールを得ることができる。このとき、減圧条件は、50〜150mmHgとすることができ、温度条件は、50〜70℃とすることができるが、これらの特定の条件には限定されない。また、撹拌時間は1〜5時間とすることができるが、特定の時間には限定されない。本方法によって、フェノール化リグニンに結合されるエポキシ基をもつ化合物は、一般的に、
【化4】
であるが、エポキシ基を備える構造であればよく、上記構造には限定されない。また、エピクロロヒドリンを用いてエポキシ化する場合、フェノール化リグニンを構成する1以上のフェノール性水酸基から、水素が脱離して上記式で表されるエポキシ基をもつ官能基が結合する。
【0046】
また、リグニン骨格含有エポキシ樹脂組成物には、リグニン由来ではない、すなわちリグニン骨格を備えるものではないエポキシ樹脂主剤や、一般式(I)を満たさないリグニン骨格を有するエポキシ樹脂主剤が混在してもよい。この場合のエポキシ樹脂主剤としては、一般的にエポキシ樹脂硬化物を得るために使用される任意のエポキシ樹脂主剤であってよく、例えば、ビスフェノールA型エポキシ、ビスフェノールF型エポキシ、ビスフェノールAD型エポキシ、ビフェニル型エポキシ、クレゾールノボラック型エポキシ、3官能以上の多官能型エポキシ、脂環式エポキシ樹脂等であってよいが、これらには限定されない。またこのうち、二種以上の混合物であってもよい。エポキシ樹脂主剤に、これらのエポキシ樹脂主剤が混在する場合、一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニンをエポキシ化して得られたエポキシ化リグニン樹脂は、主剤の総質量を100%とした場合に、質量%で50%以上含まれることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上である。もっとも好ましくは、主剤が100%エポキシ化リグニン樹脂からなるエポキシ樹脂組成物とするのが良い。従来、エポキシ樹脂主剤として、エポキシ化リグニン樹脂のみを用いたリグニン骨格含有エポキシ樹脂組成物は従来、成形不可能であった、本発明により初めてエポキシ化リグニンのみを主剤としたリグニン骨格含有エポキシ樹脂の硬化物からなる成形体を得ることができた。
【0047】
任意選択的に、当該樹脂組成物は、硬化剤、硬化促進剤(硬化触媒)、及び用途に合致した各種の添加剤を含んでもよい。
【0048】
任意選択的に添加してもよい硬化剤としては、エポキシ樹脂の硬化剤として一般的に用いられる、芳香族ポリアミン系硬化剤、酸無水物系硬化剤、フェノール樹脂系硬化剤を用いることができるが、これらには限定されない。特に、リグニン由来の環境調和型材料のみからなるエポキシ樹脂を得る観点からは、上記一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニン、あるいは、それ以外のリグニン骨格を持つフェノール化リグニンを硬化剤として用いることが好ましい。硬化剤を用いる場合には、その添加量は、主剤であるエポキシ化リグニン100質量部に対し、硬化剤が70〜110質量部とすることが好ましく、85〜100質量部とすることがさらに好ましい。なお、硬化剤は用いなくてもよい場合もある。
【0049】
同様に、任意選択的に添加してもよい硬化促進剤(触媒)としては、例えば、一般的に使用されている公知の硬化促進剤を、単体で、あるいは二種類以上を組み合わせて、必要に応じて配合することができる。この硬化促進剤としては、三級アミン化合物、イミダゾール類、有機スルフィン類、リン化合物、テトラフェニルボロン塩及びこれらの誘導体等を挙げることができるが、これらには限定されない。硬化促進剤の配合量は、硬化が達成される量であれば特に限定されないが、例えば、主剤であるエポキシ化リグニン100質量部に対し、0.5〜5質量部とすることが好ましく、2〜4質量部とすることがさらに好ましい。これらの中でも、イミダゾール系硬化促進剤を用いることが好ましい。
【0050】
本態様によるリグニン骨格含有エポキシ樹脂組成物には、その使用用途に合わせて、各種の添加剤を添加してもよい。例えば、モールド変圧器のモールド樹脂として用いる場合には、可とう性付与剤、難燃剤、着色剤酸化防止剤、無機充填剤等の添加剤をさらに添加することができる。
【0051】
本態様によるリグニン骨格含有エポキシ樹脂組成物を、半導体装置の封止材として用いる場合には、添加剤としては、無機充填材、難燃剤、樹脂を着色するための顔料、耐クラック性を向上するための可塑剤やシリコンエラストマーが挙げられるが、これらには限定されない。これらの添加量は、半導体装置及び/または封止材に要求される仕様に応じて、当業者が適宜決定することができる。
【0052】
本態様によるリグニン骨格含有エポキシ樹脂組成物は、硬化して成形体とすることができ、特にはモールド成形体のモールド樹脂として好適に用いることができる。
【0053】
[2]リグニン骨格含有アクリル樹脂組成物
リグニン骨格含有樹脂組成物は、第2態様によれば、リグニン骨格含有アクリル樹脂組成物である。本実施形態によるリグニン骨格含有アクリル樹脂組成物は、一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニンのアクリル誘導体(アクリル化リグニン樹脂ともいう)を主剤として含む。リグニン骨格含有アクリル樹脂組成物には、主剤としてのアクリル化リグニン樹脂に加え、任意選択的に(重合)開始剤及びその他のアクリルモノマーを含んでもよい。
【0054】
アクリル化リグニン樹脂は、一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニンにアクリル基もしくはメタクリル基を備える化合物を結合させた重合性の化合物である。本態様による組成物には、フェノール化リグニンに結合されるアクリル基もしくはメタクリル基を備える化合物が異なる、2種以上のアクリル化リグニンが含まれていてもよい。また、アクリル化されるフェノール化リグニンは、先に記載したとおり、一般式(I)で示されるフェノール含有モノマーを含み、所定の条件を備えているものであれば、1種であってもよく、異なる合成方法(異なる植物原料、及び/または異なるフェノール化合物)で製造した2以上の混合物であってもよい。
【0055】
フェノール化リグニンをアクリル化する工程は、一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニンを任意の方法でアクリル化することにより実施することができる。アクリル化する工程の一例として、引用することにより本明細書の一部をなすものとする米国特許番号5322753、5488137、5608010号(日本国特許第3164426号公報)記載の手法を用いることができる。具体的には、フェノール化リグニンと、アクリル酸クロライドをテトラヒドラフラン溶媒に溶解する工程と、テトラヒドラフラン溶媒に溶解したフェノール化リグニンに、減圧下、かつ所定の温度条件下で水酸化ナトリウム溶液を混合する工程と、混合溶液を撹拌する工程とにより、リグニン骨格が変性しないアクリル化リグノフェノールを得ることができる。このとき、減圧条件は、50〜150mmHgとすることができ、温度条件は、50〜70℃とすることができるが、これらの特定の条件には限定されない。また、撹拌時間は1〜5時間とすることができるが、特定の時間には限定されない。
【0056】
リグニン骨格含有アクリル樹脂組成物には、アクリルモノマーの重合反応を開始するための、開始剤を含んでもよい。開始剤としては、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オンなどが挙げられるが、これらには限定されない。また、その他の公知のアクリル重合開始剤を添加してもよい。なお、本発明において、重合開始剤を含め、架橋・重合反応を促進し得る化合物を総括して、触媒と指称する。
【0057】
また、リグニン骨格含有アクリル樹脂組成物には、上記アクリル化リグニンに加えて、リグニン骨格をもたないアクリルモノマーもしくはその誘導体が混在してもよい。この場合のアクリルモノマーとしては、一般的にアクリルポリマー成形体を得るために使用される任意のアクリルモノマーもしくはその誘導体であってよく、例えば、2−エチルヘキシルアクリレート、2−ヒドロキシエチルアクリレート、2−ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2−エチルヘキシルカルビトールアクリレート、3−メトキシブチルアクリレート、ベンジルアクリレート、シクロヘキシルアクリレート、イソアミルアクリレート、イソブチルアクリレート、メトキシトリエチレングリコールアクリレート、フェノキシテトラエチレングリコールアクリレート、セチルアクリレート、イソステアリルアクリレート、ステアリルアクリレート、スチレンモノマーなどが挙げられる。1,3−ブタンジオールジアクリレート、1,4−ブタンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ビスフェノールA−EO変性ジアクリレート、ビスフェノールF−EO変性ジアクリレート、ネオペンチルグリコールジアクリレートなどが挙げられる。またこのうち、二種以上の混合物であってもよい。樹脂組成物中に、一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニンをアクリル化したアクリル化リグニン以外のアクリルモノマーが混在する場合、アクリル化リグニンが、主剤の総質量を100%とした場合に、質量%で50%以上含まれることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上である。もっとも好ましくは、主剤が100%アクリル化リグニン樹脂からなるリグニン骨格含有アクリル樹脂組成物とするのが良い。
【0058】
本態様によるリグニン骨格含有アクリル樹脂組成物にも、用途に合わせて適宜、添加物を含んでいてもよい。リグニン骨格含有アクリル樹脂組成物も、リグニン骨格含有エポキシ樹脂組成物と同様の用途に用いることができ、リグニン骨格含有エポキシ樹脂組成物における添加物と同様の添加物を含んでもよいが、これらには限定されない。
【0059】
[3]リグニン骨格含有ウレタン樹脂組成物
リグニン骨格含有樹脂組成物は、第3態様によれば、リグニン骨格含有ウレタン樹脂組成物である。本態様による樹脂組成物は、先に記載した一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニンを主剤として含み、イソシアネート化合物を硬化剤として含む。フェノール化リグニンとイソシアネート化合物とは、反応して、ウレタン構造を形成することができる。リグニン骨格含有ウレタン樹脂組成物は、フェノール化リグニンと、硬化剤とに加え、任意選択的に、ウレタン化重合触媒と、各種添加剤とを含んでいてもよい。
【0060】
第3態様において、組成物に含まれるフェノール化リグニンは、先に記載したとおり、一般式(I)で示されるフェノール含有モノマーを含み、所定の条件を備えているものであれば、1種であってもよく、異なる合成方法(異なる植物原料、及び/または異なるフェノール化合物)で製造した2以上の混合物であってもよい。本態様においては、一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニン以外のポリオール成分を主剤として含んでいてもよい。ポリオールとしては、一般的にウレタン樹脂の主剤として用いられるものであればよく、例えばポリエーテルポリオール、ポリエステルポリオール、ポリアルキレンポリオール、ポリカーボネートポリオール等が挙げられるが、これらには限定されない。この場合、主剤である一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニンは、主剤の総質量を100%とした場合に、質量%で50%以上含まれることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上である。もっとも好ましくは、主剤が100%フェノール化リグニンからなるウレタン樹脂組成物とすることができる。
【0061】
硬化剤として用いられるイソシアネート化合物は、一般的に、ウレタン樹脂の硬化剤として用いられるものであればよく、特には限定されない。イソシアネートには、脂肪族系イソシアネート、脂環族系イソシアネートおよび芳香族系イソシアネートの他、それらの変性体が含まれる。脂肪族系イソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、リジンジイソシアネート、リジントリイソシアネート等が挙げられ、脂環族系イソシアネートとしては、例えば、イソホロンジイソシアネートが挙げられる。芳香族系イソシアネートとしては、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ポリメリックジフェニルメタンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオホスフェート等が挙げられる。イソシアネート変性体としては、例えば、ウレタンプレポリマー、ヘキサメチレンジイソシアネートビューレット、ヘキサメチレンジイソシアネート、トリマー、イソホロンジイソシアネートトリマー等が挙げられる。これらの1種のみを含んでもよく、2以上を含んでいてもよい。いずれのイソシアネート化合物であっても、架橋構造を形成し、硬化性のリグニン樹脂とすることができるが、例えば、電子機器のモールドとして使用する耐電圧、耐熱性の観点からは、脂環族系イソシアネートや芳香族系イソシアネートを用いることが好ましい。イソシアネート化合物からなる硬化剤の添加量は、主剤に対して、1.0〜10.0当量となるように添加することが好ましく、2.0〜5.5当量となるように添加することがさらに好ましい。
【0062】
本態様におけるウレタン構造含有リグニン樹脂の硬化反応において、上記重合反応においては、必要に応じて、例えば、アミン類や有機金属化合物などの公知のウレタン化触媒を添加してもよい。アミン類としては、例えば、トリエチルアミン、トリエチレンジアミン、ビス−(2−ジメチルアミノエチル)エーテル、N−メチルモルホリンなどの3級アミン類、例えば、テトラエチルヒドロキシルアンモニウムなどの4級アンモニウム塩、例えば、イミダゾール、2−エチル−4−メチルイミダゾールなどのイミダゾール類などが挙げられる。有機金属化合物としては、例えば、酢酸錫、オクチル酸錫、オレイン酸錫、ラウリル酸錫、ジブチル錫ジアセテート、ジメチル錫ジラウレート、ジブチル錫ジラウレート、ジブチル錫ジメルカプチド、ジブチル錫マレエート、ジブチル錫ジラウレート、ジブチル錫ジネオデカノエート、ジオクチル錫ジメルカプチド、ジオクチル錫ジラウリレート、ジブチル錫ジクロリドなどの有機錫系化合物、例えば、オクタン酸鉛、ナフテン酸鉛などの有機鉛化合物、例えば、ナフテン酸ニッケルなどの有機ニッケル化合物、例えば、ナフテン酸コバルトなどの有機コバルト化合物、例えば、オクテン酸銅などの有機銅化合物、例えば、オクチル酸ビスマス、ネオデカン酸ビスマスなどの有機ビスマス化合物などが挙げられる。
【0063】
ウレタン構造含有リグニン樹脂にも、その使用用途に合わせて、各種の添加剤を添加してもよい。例えば、モールド変圧器のモールド樹脂として用いる場合には、可とう性付与剤、難燃剤、着色剤酸化防止剤、無機充填剤等の添加剤をさらに添加することができる。また、半導体装置の封止材として用いる場合には、添加剤としては、無機充填材、難燃剤、樹脂を着色するための顔料、耐クラック性を向上するための可塑剤やシリコンエラストマーが挙げられるが、これらには限定されない。これらの添加量は、半導体装置及び/または封止材に要求される仕様に応じて、当業者が適宜決定することができる。
【0064】
本態様によるウレタン構造含有リグニン樹脂は、硬化して成形体とすることができ、特にはモールド成形体のモールド樹脂として好適に用いることができる。
【0065】
[4]リグニン骨格含有フェノール樹脂組成物
リグニン骨格含有樹脂組成物は、第4態様によれば、リグニン骨格含有フェノール樹脂組成物である。本態様による樹脂組成物は、先に記載した一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニンを主剤として含み、アルデヒド化合物を硬化剤として含む。フェノール化リグニンとアルデヒド化合物とは、反応して、アルデヒド化合物由来の架橋構造を形成し、フェノール樹脂を得ることができる。リグニン骨格含有フェノール樹脂組成物は、フェノール化リグニンと、硬化剤とに加え、任意選択的に、重合触媒と、各種添加剤とを含んでいてもよい。
【0066】
第4態様において、組成物に含まれるフェノール化リグニンは、先に記載したとおり、一般式(I)で示されるフェノール含有モノマーを含み、所定の条件を備えているものであれば、1種であってもよく、異なる合成方法(異なる植物原料、及び/または異なるフェノール化合物)で製造した2以上の混合物であってもよい。本態様においては、一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニン以外のフェノール性化合物を主剤として含んでいてもよい。フェノール性化合物としては、一般的にフェノール樹脂の主剤として用いられるものであればよく、例えば、フェノール、3,5−キシレノール、m−クレゾール、2,5−キシレノール、3,4−キシレノール、2,4−キシレノール、o−キシレノール、p−クレゾール等が挙げられるが、これらには限定されない。この場合、主剤である、一般式(I)で示されるフェノール含有モノマーを含むフェノール化リグニンは、主剤の総質量を100%とした場合に、質量%で50%以上含まれることが好ましく、より好ましくは70%以上、さらに好ましくは90%以上である。もっとも好ましくは、主剤が100%フェノール化リグニンからなるフェノール樹脂組成物とすることができる。
【0067】
硬化剤として用いられるアルデヒド化合物は、一般的に、フェノール樹脂の硬化剤として用いられるものであればよく、特には限定されない。アルデヒド化合物としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、アセトアルデヒド、プロピオンアルデヒド、ポリオキシメチレン、クロラール、ヘキサメチレンテトラミン、フルフラール、グリオキザール、n−ブチルアルデヒド、カプロアルデヒド、アリルアルデヒド、ベンズアルデヒド、クロトンアルデヒド、アクロレイン、テトラオキシメチレン、フェニルアセトアルデヒド、o−トルアルデヒド、サリチルアルデヒド、パラキシレンジメチルエーテル等が挙げられる。好ましくは、ホルムアルデヒド、パラホルムアルデヒド、トリオキサン、ポリオキシメチレン、アセトアルデヒド、パラキシレンジメチルエーテルである。これらを単独又は2種類以上組み合わせて使用することもできる。アルデヒド化合物からなる硬化剤の添加量は、主剤に対して、0.75〜1.5当量となるように添加することが好ましく、0.9〜1.2当量となるように添加することがさらに好ましい。
【0068】
本態様におけるフェノール構造含有リグニン樹脂の硬化反応において、上記重合反応においては、必要に応じて、フェノール樹脂の製造に用いることができる、公知の重合触媒を添加してもよい。触媒としては、例えば、水酸化ナトリウム、水酸化カリウム、ヘキサメチレンテトラミン、トリメチルアミン、塩酸、ぎ酸等が挙げられるが、これらには限定されない。
【0069】
リグニン骨格含有フェノール樹脂組成物には、その使用用途に合わせて、各種の添加剤を添加してもよい。例えば、モールド変圧器のモールド樹脂として用いる場合には、可とう性付与剤、難燃剤、着色剤酸化防止剤、無機充填剤等の添加剤をさらに添加することができる。
【0070】
リグニン骨格含有フェノール樹脂組成物を、半導体装置の封止材として用いる場合には、添加剤としては、無機充填材、難燃剤、樹脂を着色するための顔料、耐クラック性を向上するための可塑剤やシリコンエラストマーが挙げられるが、これらには限定されない。これらの添加量は、半導体装置及び/または封止材に要求される仕様に応じて、当業者が適宜決定することができる。
【0071】
本実施形態によるフェノール樹脂組成物は、硬化して成形体とすることができ、特にはモールド成形体のモールド樹脂として好適に用いることができる。
【0072】
[第2実施形態:成形体、モールド変圧器、半導体装置、開閉装置]
本発明は、第2実施形態によれば、第1実施形態によるリグニン骨格含有樹脂組成物を硬化してなるリグニン樹脂成形体、あるいは金属材料及び/またはセラミック材料を含む部材をリグニン骨格含有樹脂組成物により封止したモールド成形体、特には電子機器に関する。モールド成形体は、典型的には、モールド変圧器、半導体装置、開閉装置であってよい。その他にも、モールド成形体の例としては、自動車、車両、航空機、船舶、自動販売機、空調機、発電機などの電気・電力機器、例えば、ガス絶縁開閉装置等があるが、特には限定されない。なお、本実施形態によるモールド成形体とは、金属材料及び/またはセラミック材料を含む部材と、リグニン骨格含有樹脂組成物の反応後生成物とが一体化した成形体であればよく、金属材料あるいはそのほかの材料の全体がリグニン樹脂組成物により完全に被覆され、封止された態様に限定されない。成形体の製造後に、樹脂成形体を構成する化合物が、本発明の第1実施形態の組成物に基づくことは、赤外吸収分光法、ガスクロマトグラフ質量分析計により分析することができる。
【0073】
樹脂組成物が熱硬化性樹脂の場合、樹脂成形体は、第1実施形態による樹脂組成物を、任意の方法で硬化し、成形することにより得ることができる。硬化条件は、例えば100〜250℃の温度で、3〜10時間程度硬化させることが好ましいが、特定の硬化条件には限定されない。また、二段階硬化とすることもでき、この場合は、例えば、100〜150℃の温度で、1〜5時間程度、次いで、150〜200℃の温度で、3〜5時間程度、硬化させることができる。なお、樹脂組成物が熱硬化性樹脂の場合は、成形体と硬化物は同じものを指称する。あるいは、樹脂組成物が熱可塑性樹脂の場合には、樹脂成形体は、所定の型、枠、あるいはケース等に、流体状の樹脂組成物の反応後生成物を流し込み、冷却することにより得ることができる。
【0074】
本実施形態によるモールド変圧器は、樹脂モールドコイルと、芯部に挿通された鉄心とを備えている。樹脂モールドコイルは、筒状の芯部と、芯部の外周に多層に巻回されたコイル導体と、コイル導体の層間を絶縁する絶縁シートと、コイル導体の周囲をモールドする熱硬化性樹脂を有する。この熱硬化性樹脂を、第2実施形態による樹脂組成物により構成することができる。なお、モールド変圧器は、詳細には、特開2015-211132号公報、特開2014-204002号公報等の構成であってよいが、特には限定されない。任意のモールド変圧器において、リグニン樹脂組成物をモールド樹脂として用いることができる。
【0075】
本実施形態による樹脂成形体は、一般的なモールド変圧器の使用温度条件下、かつ使用環境条件下で安定であり、長期間にわたって電気的絶縁性を確保することができる。具体的には、モールド変圧器のコイル導体の平均温度上昇は、常温から90〜95K程度であり、一般的に、使用環境がアルカリ性条件となることはない。一方、後述するリサイクル方法により、温和な条件下、例えば160℃以下、好ましくは150℃以下といった比較的低い温度にて、成形体を分解することができる。このため、従来、産業廃棄物として処分していたモールド変圧器から樹脂硬化物あるいは樹脂成形体を分解、除去し、少なくとも金属材料を含むその他の部材をリサイクルすることが可能になる。
【0076】
本実施形態による半導体装置は、積層基板上に実装された半導体素子と出力端子とを導電性接続部材にて接続してなり、これらを封止樹脂にて封止してなる。本実施形態においては、封止樹脂を、第1実施形態による樹脂組成物により構成することができる。半導体装置の構成としては、電性接続部材として、金属ワイヤ、リードフレーム、金属ピンを用いるものなどが知られており、また、半導体素子の種類や配置についても種々の形態が知られている。本発明の第1実施形態による樹脂組成物は、いずれの形態の半導体装置においても、封止樹脂として用いることができる。
【0077】
本実施形態による樹脂成形体は、また、200℃以上の高いガラス転移温度を確保することができる。ゆえに、発熱量が大きいSiC半導体素子などを用いる場合の封止材としても有用であり、長期間にわたって電気的絶縁性を確保することができる。半導体装置の使用時の封止樹脂温度は、局所的に200℃以上にまで上昇する場合があるが、封止樹脂が、アルカリ性の溶液に曝されることはない。ゆえに、通常の使用条件下で分解することもない。一方、後述するリサイクル方法により、比較的温和な条件下、例えば、160℃以下、好ましくは、150℃以下といった比較的低い温度にて、成形体を含む封止材を、分解、除去し、少なくとも金属材料を含むその他の部材を、リサイクルすることが可能になる。
【0078】
本実施形態による開閉装置は、容器内に複数の消弧室が配置されており、当該容器内および複数の消弧室内にSF6ガスなどの消弧性ガスが充填されている。そして、容器の外側が、本発明の第1実施形態による樹脂組成物でモールドされている。開閉装置は、詳細には、特開2017−21997号公報に開示された構成において、容器の外側が、本発明の第1実施形態による樹脂組成物でモールドされている態様であってよいが、これらには限定されない。任意の構成を備える開閉装置において、容器の外側を第1実施形態による樹脂組成物で覆い、絶縁性を確保することができる。本実施形態による開閉装置は、従来技術による開閉装置と比較して、装置全体が小型化し、省スペース化が可能になるといった利点がある。
【0079】
本実施形態による樹脂成形体は、200℃以上の高いガラス転移温度を確保することができるため、開閉装置の使用条件下で安定に存在し、長期間にわたって電気的絶縁性を確保することができる。開閉装置も、一般的に、使用環境がアルカリ性条件となることはない。一方、後述するリサイクル方法により、温和な条件下、例えば160℃以下、好ましくは150℃以下といった比較的低い温度にて、成形体を分解することができる。このため、使用済の開閉装置から樹脂硬化物あるいは樹脂成形体を分解、除去し、少なくとも金属材料を含むその他の部材をリサイクルすることが可能になる。
【0080】
[第3実施形態:モールド成形体に含まれる金属材料のリサイクル方法]
本発明は、第3実施形態によれば、モールド成形体に含まれる金属材料及び/またはセラミック材料のリサイクル方法に関する。この方法は、前記モールド成形体を、アルカリ溶液中で、120〜150℃で処理する工程を含む。具体的にリサイクル対象になるのは、例えば、第2実施形態において例示したモールド変圧器、半導体装置、開閉装置に含まれる部材であってよく、少なくとも金属材料及び/またはセラミック材料を含み、このほかに、ガラス、繊維材料等を含んでもよいが、これらには限定されない。また、このようなモールド成形体に一般に含まれている金属材料としては、Cu、Fe、Al、Ni、Sn、Au、Ag、Tiあるいはこれらの合金が挙げられるが、これらには限定されない。
【0081】
処理する工程に先だって、任意選択的に、モールド成形体を、粉砕機を用いて粉砕する工程を含んでもよい。この場合、粉砕する大きさはリサイクル対象となる物質の種類や大きさ、形状などにより適宜選択してもよい。また、金属微粒子を含む場合などは、モールド成形体を粒径約100μmφ以下程度に粉砕してもよい。
【0082】
処理する工程においては、モールド成形体、もしくは粉砕したモールド成形体を、アルカリ金属化合物水溶液中に好ましくは浸漬し、浸漬した状態で所定の温度に加熱することで樹脂成形体を容易に分解させることができる。アルカリ金属化合物としては、リチウム、ナトリウム、カリウム、セシウム等のアルカリ金属を含む化合物やリチウム、ナトリウム、カリウム,セシウム等の水素化物、水酸化物、塩化物を用いることができる。また、この水溶液は、樹脂成形体10gに対し、アルカリ金属化合物0.5〜5.0当量、水を1000gとすることができる。典型的には、水酸化ナトリウム水溶液を用いることができるが、これらには限定されない。
【0083】
このときの処理温度は、100〜150℃、処理時間は1〜5時間とすることが好ましい。加熱の手段は特には限定されないが、オートクレーブ等であってよい。さらに、加熱中に、アルカリ金属化合物水溶液を撹拌することが好ましい。かかる操作により、金属材料及び/またはセラミック材料や、ガラス、繊維材料等に強固に付着した樹脂成形物を分解し、除去することができる。残存した金属材料及び/またはセラミック材料等は、任意の公知の方法により分離、分別し、再利用することができる。
【実施例】
【0084】
以下に、本発明の実施例を挙げて、本発明をより詳細に説明する。しかし、本発明は、以下の実施例の範囲に限定されるものではない。
【0085】
(リグニン骨格含有エポキシ樹脂成形体(硬化物))
[実施例1]
(リグノフェノールの合成)
植物原料として、リグニン分子構造中にシリンゴールをモル分率で42%含む稲藁を用い、特開2010−159381号公報に開示されている以下の手法により合成した。具体的には、稲藁脱脂粉末100gに、この稲藁中のリグニンC9単位あたり3molのp−クレゾールを含むアセトン溶液を加えて一夜放置して、稲藁粉末にp−クレゾールを含浸させた。その後、木粉をバットに薄く広げて、アセトン臭がなくなるまで、ドラフト中で放置して、アセトンを留去した。稲藁脱脂粉末中のリグニンのC9単位量は、稲藁脱脂粉末中のリグニンの元素分析に基づいて算出した。
【0086】
次に、この全量に72%硫酸400mlを加え、30℃の水浴に浸して60分間激しく攪拌した、所定時間経過後、攪拌を停止し、反応を停止させるために、反応溶液を冷却下の大過剰のイオン交換水に激しく攪拌しながら加え、全量を4000mlとした。約60分後、攪拌を停止し、不溶解物を遠心分離により分離した。この不溶解物をpH7付近になるまで、繰り返しイオン交換水で洗浄した後、沈殿物を60℃の乾燥機中で乾燥、さらに、五酸化二リン上で減圧乾燥した。乾燥させた沈殿物はアセトン300mlで抽出し、遠心分離後、上澄液をリグノクレゾール−アセトン溶液として得た。このリグノクレゾール−アセトン溶液を少量ずつ大過剰のジエチルエーテルに滴下した。沈殿区分を遠心分離にて回収し、ジエチルエーテルにて洗浄後、溶媒を留去、乾燥して稲藁由来のリグノクレゾールを得た。
【0087】
(エポキシ化リグニンの合成)
上記で合成したリグノクレゾール50g、エピクロロヒドリン1000gを反応器内で混合し、リグノクレゾールがエピクロロヒドリン(溶媒兼反応試薬)に完全に溶解するまで、撹拌した。溶解後、反応器内が100mmHgになるように減圧し、オイルバスにより反応器内が55〜60℃になるように調節し、反応器内を還流させた。反応器内の温度、圧力が一定になった後、20%NaOH水溶液17.5gを滴下漏斗により少量ずつ滴下し、エポキシ化反応を開始した。滴下開始から、2時間反応させた後、得られた溶液をろ過し、ろ液をエバポレーション、真空乾燥により溶媒留去、乾固し、エポキシ化リグニンを得た。実施例1で得られたエポキシ化リグニンは、リグノクレゾール中のいくつかのOH基に、エポキシ基が結合した構造を備え、エポキシ化合物として架橋性を有するものであった。
【0088】
(リグニン骨格含有エポキシ樹脂成形体の作製)
上記で合成したエポキシ化リグニン50gをアセトン200mLに溶解し、これに硬化触媒(硬化促進剤)として2−エチル−4−メチルイミダゾール(2E4MZ)を4phr加え撹拌した。この混合溶液をエバポレーション、真空乾燥により溶媒を留去、乾固し、エポキシ化リグニンと硬化触媒の混合物を得た。この混合物を任意の型に入れ、100℃で2時間(前硬化)、140℃で4時間(後硬化)し、エポキシ化リグニンの硬化物であるリグニン骨格含有エポキシ樹脂成形体を得た。
【0089】
(熱流動性の評価)
エポキシ化リグニンの成形流動性を確認する為、熱機械分析(SIIナノテクノロジー株式会社製、TMA−6100)を用い、昇温速度5℃/min、荷重1.0g、大気雰囲気下で軟化点温度の測定を行い、100℃以下での熱流動性の有無を確認した。
【0090】
(分解性の評価)
上記で作成したリグニン骨格含有エポキシ樹脂成形体を、Φ10mm×厚み3mmのサイズの試験片とした。試験片を、1.0N水酸化ナトリウム水溶液中に浸漬し、オートクレーブにて所定の温度(110、120、130、140、150℃)で1時間加熱し、成形体(硬化物)の分解性を評価した。
【0091】
[実施例2]
実施例1において、リグノフェノールの合成の際に加えるp-クレゾール3molを、p−クレゾール2molと2,6−キシレノール1molとの混合物に変更した以外は、実施例1と同様にしてエポキシ化リグニンを調製した。実施例2で得られたエポキシ化リグニンは、リグノクレゾール及び/またはリグノキシレノール中のいくつかのOH基に、エポキシ基が結合した構造を備え、エポキシ化合物として架橋性を有するものであった。このエポキシ化リグニンを用いて、実施例1と同様にリグニン骨格含有エポキシ樹脂成形体を作製した。そして、実施例1と同様にして、熱流動性・分解性の評価を行った。
【0092】
[実施例3]
実施例1において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール1molと2,6−キシレノール2molとの混合物に変更した以外は、実施例1と同様にしてリグニン骨格含有エポキシ樹脂成形体を作製した。そして、実施例1と同様にして、熱流動性・分解性の評価を行った。
【0093】
[実施例4]
実施例1において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール0.9molと2,6−キシレノール2.1molとの混合物に変更した以外は、実施例1と同様にしてリグニン骨格含有エポキシ樹脂成形体を作製した。そして、実施例1と同様にして、熱流動性・分解性の評価を行った。
【0094】
[実施例5]
実施例1において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール0.75molと2,6−キシレノール2.25molとの混合物に変更した以外は、実施例1と同様にしてリグニン骨格含有エポキシ樹脂成形体を作製した。そして、実施例1と同様にして、熱流動性・分解性の評価を行った。
【0095】
[実施例6]
実施例1において、植物原料を、シリンゴールを含まないベイツガ(針葉樹)に変更した以外は、実施例1と同様にして、リグニン骨格含有エポキシ樹脂成形体の作製を試みた。
【0096】
(リグニン骨格含有ウレタン樹脂成形体(硬化物))
[実施例7]
(リグノフェノールの合成)
リグノフェノールの合成は、実施例1と同様に行い、稲藁由来のリグノクレゾールを得た。
【0097】
(リグニン骨格含有ウレタン樹脂成形体の作製)
上記で合成したリグノクレゾール50gを主剤とし、イソシアネート硬化剤としてジフェニルメタンジイソシアネート ミリオネートMTL(東ソー株式会社製)を15g加え、NCO/OH当量比が1となるように配合した。更に、重合触媒としてジオクチル錫ジラウレート ネオスタンU810(日東化成株式会社性)0.03gを加え撹拌し、リグニン骨格含有ウレタン樹脂組成物を調製した。これを任意の型に入れ、100℃で30時間加熱し、リグニン骨格含有ウレタン樹脂成形体を得た。得られたリグニン骨格含有ウレタン樹脂成形体は、リグノフェノールに含まれるOH基のいくつかが、イソシアネート基と結合し、ウレタン結合を形成したウレタン構造を備えるものであった。
【0098】
(熱流動性及び分解性の評価)
リグノクレゾールの成形流動性は、実施例1と同様に軟化点温度の測定により実施した。また、リグニン骨格含有ウレタン樹脂成形体の分解性も、実施例1と同様に評価した。
【0099】
[実施例8]
実施例7において、リグノフェノールの合成の際に加えるp-クレゾール3molを、p−クレゾール2molと2,6−キシレノール1molとの混合物に変更した以外は、実施例7と同様にしてリグニン骨格含有ウレタン樹脂成形体を作製した。そして、実施例7と同様にして、熱流動性・分解性の評価を行った。
【0100】
[実施例9]
実施例7において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール1molと2,6−キシレノール2molとの混合物に変更した以外は、実施例7と同様にしてリグニン骨格含有ウレタン樹脂成形体を作製した。そして、実施例7と同様にして、熱流動性・分解性の評価を行った。
【0101】
[実施例10]
実施例7において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール0.9molと2,6−キシレノール2.1molとの混合物に変更した以外は、実施例7と同様にしてリグニン骨格含有ウレタン樹脂成形体を作製した。そして、実施例7と同様にして、熱流動性・分解性の評価を行った。
【0102】
[実施例11]
実施例7において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール0.75molと2,6−キシレノール2.25molとの混合物に変更した以外は、実施例7と同様にしてリグニン骨格含有ウレタン樹脂成形体を作製した。そして、実施例7と同様にして、熱流動性・分解性の評価を行った。
【0103】
(リグニン骨格含有アクリル樹脂成形体)
[実施例12]
(リグノフェノールの合成)
リグノフェノールの合成は、実施例1と同様に行い、稲藁由来のリグノクレゾールを得た。
【0104】
(アクリル化リグニンの合成)
上記で合成したリグノクレゾール50gをテトラヒドラフラン400mlに溶解し、これを5℃に冷却、窒素雰囲気化中で12%NaOH水溶液120gを滴下した。この溶液に塩化アクリロイル22gを60分かけて滴下し、その後2時間撹拌し、反応を終了させた。この反応液を水に注ぎ、トルエン溶媒にて抽出した。この抽出液を炭酸ナトリウム水溶液と水で洗浄した。その後、溶液からトルエンを除去し、カラムクロマト処理にて精製した。この溶液にn−ヘキサンを加えて結晶化させ、真空乾燥により溶媒留去、乾固し、アクリル化リグニンを得た。得られたアクリル化リグニンは、リグノクレゾール中のいくつかのOH基からHが離脱して、アクリロイル基(H
2C=CH−C(=O)−)が結合した構造を備え、アクリルモノマーとして架橋性を有するものであった。
【0105】
(リグニン骨格含有アクリル樹脂成形体の作製)
上記で合成したアクリル化リグニン50gをテトラヒドロフラン200mLに溶解し、これに熱重合触媒としてパーブチルO(日本油脂株式会社製)を3phr加え撹拌した。この混合溶液をエバポレーション、真空乾燥により溶媒を留去、乾固し、アクリル化リグニンと熱重合触媒の混合物を得た。この混合物を任意の型に入れ、100℃で16時間加熱し、アクリル化リグニンの重合体であるリグニン骨格含有アクリル樹脂成形体を得た。
【0106】
(熱流動性及び分解性の評価)
アクリル化リグニンの成形流動性は、実施例1と同様に軟化点温度の測定により実施した。また、リグニン骨格含有アクリル樹脂成形体の分解性も、実施例1と同様に評価した。
【0107】
[実施例13]
実施例12において、リグノフェノールの合成の際に加えるp-クレゾール3molを、p−クレゾール2molと2,6−キシレノール1molとの混合物に変更した以外は、実施例12と同様にしてリグニン骨格含有アクリル樹脂成形体を作製した。そして、実施例12と同様にして、熱流動性・分解性の評価を行った。
【0108】
[実施例14]
実施例12において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール1molと2,6−キシレノール2molとの混合物に変更した以外は、実施例12と同様にしてリグニン骨格含有アクリル樹脂成形体を作製した。そして、実施例12と同様にして、熱流動性・分解性の評価を行った。
【0109】
[実施例15]
実施例12において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール0.9molと2,6−キシレノール2.1molとの混合物に変更した以外は、実施例12と同様にしてリグニン骨格含有アクリル樹脂成形体を作製した。そして、実施例12と同様にして、熱流動性・分解性の評価を行った。
【0110】
[実施例16]
実施例12において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール0.75molと2,6−キシレノール2.25molとの混合物に変更した以外は、実施例12と同様にしてリグニン骨格含有アクリル樹脂成形体を作製した。そして、実施例12と同様にして、熱流動性・分解性の評価を行った。
【0111】
(リグニン骨格含有フェノール樹脂成形体(硬化物))
[実施例17]
(リグノフェノールの合成)
リグノフェノールの合成は、実施例1と同様に行い、稲藁由来のリグノクレゾールを得た。
【0112】
(リグニン骨格含有フェノール樹脂成形体の作製)
上記で合成したリグノクレゾール50gをテトラヒドラフラン400mlに溶解し、アミン系硬化剤としてヘキサメチレンテトラミン(和光純薬工業株式会社製)を17g加え撹拌した。この混合溶液をエバポレーション、真空乾燥により溶媒を留去、乾固し、フェノール化リグニンと硬化剤の混合物を得た。これを任意の型に入れ、120℃で5時間、150℃で3時間加熱し、リグニン骨格含有フェノール樹脂成形体を得た。得られたリグニン骨格含有フェノール樹脂成形体は、リグノクレゾールに含まれるOH基のいくつかが、ヘキサメチレンテトラミンと結合し、リグノクレゾール間に、ヘキサメチレンテトラミン由来の架橋構造を備えるものであった。
【0113】
(熱流動性及び分解性の評価)
リグノクレゾールの成形流動性は、実施例1と同様に軟化点温度の測定により実施した。また、リグニン骨格含有フェノール樹脂成形体の分解性も、実施例1と同様に評価した。
【0114】
[実施例18]
実施例17において、リグノフェノールの合成の際に加えるp-クレゾール3molを、p−クレゾール2molと2,6−キシレノール1molとの混合物に変更した以外は、実施例17と同様にしてリグニン骨格含有フェノール樹脂成形体を作製した。そして、実施例17と同様にして、熱流動性・分解性の評価を行った。
【0115】
[実施例19]
実施例17において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール1molと2,6−キシレノール2molとの混合物に変更した以外は、実施例17と同様にしてリグニン骨格含有フェノール樹脂成形体を作製した。そして、実施例17と同様にして、熱流動性・分解性の評価を行った。
【0116】
[実施例20]
実施例17において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール0.9molと2,6−キシレノール2.1molとの混合物に変更した以外は、実施例17と同様にしてリグニン骨格含有フェノール樹脂成形体を作製した。そして、実施例17と同様にして、熱流動性・分解性の評価を行った。
【0117】
[実施例21]
実施例17において、リグノフェノールの合成の際に加えるp−クレゾール3molを、p−クレゾール0.75molと2,6−キシレノール2.25molとの混合物に変更した以外は、実施例17と同様にしてリグニン骨格含有フェノール樹脂成形体を作製した。そして、実施例17と同様にして、熱流動性・分解性の評価を行った。
【0118】
[比較例1]
実施例1において、リグノフェノールの合成の際に加えるp−クレゾール3molを、2,6−キシレノール3molに変更した以外は、実施例1と同様にして比較例のリグニン骨格含有エポキシ樹脂成形体を作製した。そして、実施例1と同様にして、熱流動性・分解性の評価を行った。
【0119】
[比較例2]
実施例7において、リグノフェノールの合成の際に加えるp−クレゾール3molを、2,6−キシレノール3molに変更した以外は、実施例7と同様にして比較例のリグニン骨格含有ウレタン樹脂成形体を作製した。そして、実施例7と同様にして、熱流動性・分解性の評価を行った。
【0120】
[比較例3]
実施例12において、リグノフェノールの合成の際に加えるp−クレゾール3molを、2,6−キシレノール3molに変更した以外は、実施例12と同様にして比較例のリグニン骨格含有アクリル樹脂成形体を作製した。そして、実施例12と同様にして、熱流動性・分解性の評価を行った。
【0121】
[比較例4]
実施例17において、リグノフェノールの合成の際に加えるp−クレゾール3molを、2,6−キシレノール3molに変更した以外は、実施例17と同様にして比較例のリグニン骨格含有フェノール樹脂成形体を作製した。そして、実施例17と同様にして、熱流動性・分解性の評価を行った。
【0122】
[比較例5]
BisフェノールAエポキシJER828(ジャパンエポキシレジン社製) 50gと硬化触媒としてイミダゾール(2E4MZ)を4phr加え撹拌した。この混合物を任意の型に入れ、100℃で2時間(前硬化)、140℃で4時間(後硬化)し、リグニン骨格を含まないエポキシ樹脂成形体を得た。
【0123】
[比較例6]
ポリオキシプロピレングリコール サンニックスPP1000(三洋化成工業株式会社製)50gに、ポリイソシアネート硬化剤としてジフェニルメタンジイソシアネート ミリオネートMTL(東ソー株式会社製)を14g加え、NCO/OH当量比が1となるように配合した。更に、重合触媒としてジオクチル錫ジラウレート ネオスタンU810(日東化成株式会社性)0.03gを加え撹拌し、ウレタン樹脂組成物を調整した。これを任意の型に入れ、100℃で30時間加熱し、リグニン骨格を含まないウレタン樹脂成形体を得た。
【0124】
[比較例7]
ノナンジオールジアクリレートFA129AS (日立化成株式会社製) 50gに熱重合触媒としてパーブチルO(日本油脂株式会社製)を3phr加え撹拌した。この混合物を任意の型に入れ、100℃で16時間加熱し、リグニン骨格を含まないアクリル樹脂成形体を得た。
【0125】
[比較例8]
フェノールノボラックTD−2131 (DIC株式会社製) 50gをテトラヒドラフラン400mlに溶解し、アミン系硬化剤としてヘキサメチレンテトラミン(和光純薬工業株式会社製)を15g加え撹拌した。この混合溶液をエバポレーション、真空乾燥により溶媒を留去、乾固し、フェノール樹脂と硬化剤の混合物を得た。これを任意の型に入れ、120℃で5時間、150℃で3時間加熱し、リグニン骨格を含まないフェノール樹脂成形体を得た。
【0126】
結果を下記表1に示す。表1中、熱流動性は、成形(硬化)前の樹脂組成物における軟化点温度が100℃以下のものを「○」、100℃以下で軟化が確認できなかったものを「×」とした。また、分解性については、成形体重量(硬化物重量)減少率が、10%以上のものを「○」、10%未満のものを「×」とした。なお、成形体重量減少率(%)は、試験片を水酸化ナトリウム水溶液に浸漬し、加熱を開始する時点を0として、(処理開始1時間後における成形体(固形分)質量)/(処理前の成形体総量)*100により定義される。また、表中、リグノクレゾール含有率とは、式(I)における(A)で表される基がクレゾールであるフェノール含有モノマーのモル量と、式(I)における(A)で表される基がキシレノールであるフェノール含有モノマーのモル量の総量を100とした場合に、式(I)における(A)で表される基がクレゾールであるフェノール含有モノマーのモル分率を%で表した量をいうものとする。同様に、リグノキシレノール含有率とは、式(I)における(A)で表される基がクレゾールであるフェノール含有モノマーのモル量と、式(I)における(A)で表される基がキシレノールであるフェノール含有モノマーのモル量の総量を100とした場合に、式(I)における(A)で表される基がキシレノールであるフェノール含有モノマーのモル分率を%で表した量をいうものとする。
【0127】
【表1】
【0128】
実施例1〜5、7〜21はいずれも、100℃以下の低温で熱流動性があり、成形性が良好で成形体の作製が可能であった。さらに、実施例1〜4、7〜10、12〜15、17〜20はいずれも、アルカリ性溶液下において、120〜150℃の低温化で良好な分解性を示した。実施例5、11、16、21についても、アルカリ性溶液下において、160℃における加熱では、分解性を示した。また、実施例6では100℃以下では熱流動性が無く、成形体作製が不可能であった。また、比較例1〜8では110〜150℃の温度範囲内で成形体を分解することはできなかった。なお、硬化しなかった実施例6を除き、全ての実施例、比較例において、エポキシ、アクリル、ウレタン、フェノール樹脂成形体は、市販のエポキシ、アクリル、ウレタン、フェノール樹脂成形体のガラス転移温度より約20℃高く、十分な耐熱性を備えるものであった。
【0129】
本実施例において作成した樹脂組成物である、エポキシ、ウレタン、アクリル、フェノール樹脂は、いずれも耐熱性に優れ、工業的に有用な樹脂として広く使用されている。しかし、分解しにくく、製品のリサイクルの観点からは、扱いにくい場合があった。本発明においては、一般式(I)で表されるフェノール含有モノマーを含むフェノール化リグニンを主鎖構造に含み、かつ、エポキシ、ウレタン、アクリル、フェノール樹脂の特徴を備える架橋構造を含むリグニン骨格含有樹脂、及びその組成物により、樹脂成形体とした場合の耐熱性と、アルカリ性溶液による比較的温和な条件における分解性を実現することができた。理論に拘束される意図はないが、本発明に係るリグニン骨格含有樹脂のアルカリ性溶液下における分解性は、一般式(I)で表されるフェノール含有モノマーの、R
1またはR
2に存在するOH基に依存するため、いずれも同様の条件で分解するといえる。一方、耐熱性はリグニン骨格に加え、各架橋構造により増強されるため、各架橋基特有の優れた耐熱性を発揮するといえる。