【実施例】
【0036】
以下に本発明の理解を容易にするために実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。実施例中、部及び百分率は特に断りのない限り重量基準で示す。また、各特性の測定は以下の方法により実施した。
【0037】
<繊維構造内のカルボキシル基の分布状態>
未叩解繊維の試料を、該繊維に含まれるカルボキシル基量の2倍に相当する硝酸マグネシウムを溶解させた水溶液に50℃×1時間浸漬することによりイオン交換処理を実施し、水洗、乾燥することにより、カルボキシル基の対イオンをマグネシウムとする。マグネシウム塩型とした繊維試料について、エネルギー分散型X線分光器(EDS)を用い、繊維断面の外縁から中心にかけて概ね等間隔で選んだ10点の測定点におけるマグネシウム元素の含有割合を測定する。得られた各測定点の数値から次式により変動係数CV[%]を算出する。
変動係数CV[%]=(標準偏差/平均値)×100
【0038】
<カルボキシル基量>
叩解した試料を約1g秤量し、1mol/l塩酸50mlに30分浸漬後、水洗し浴比1:500で純水に15分間浸漬する。浴pHが4以上となるまで水洗した後、熱風乾燥機にて105℃で5時間乾燥させる。乾燥した試料を約0.2g精秤し(W1[g])、これに100mlの水と0.1mol/l水酸化ナトリウム15ml、塩化ナトリウム0.4gを加えて攪拌する。次いで金網を用いて試料を漉しとり、水洗する。得られたろ液(水洗液も含む)にフェノールフタレイン液を2〜3滴を加え、0.1mol/l塩酸で常法に従って滴定を行い消費された塩酸量(V1[ml])を求め、次式により全カルボキシル基量を算出する。
全カルボキシル基量[mmol/g]=(0.1×15−0.1×V1)/W1
【0039】
<中和度>
叩解した試料を熱風乾燥機にて105℃で5時間乾燥して約0.2g精秤し(W2[g])、これに100mlの水と0.1mol/l水酸化ナトリウム15ml、塩化ナトリウム0.4gを加えて攪拌する。次いで金網を用いて試料を漉しとり、水洗する。得られたろ液(水洗液も含む)にフェノールフタレイン液を2〜3滴を加え、0.1mol/l塩酸で常法に従って滴定を行い消費された塩酸量(V2[ml])を求める。次式によって、試料に含まれるH型カルボキシル基量を算出し、その結果と上述の全カルボキシル基量から中和度を求める。
H型カルボキシル基量[mmol/g]=(0.1×15−0.1×V2)/W2
中和度[%]=[(全カルボキシル基量−H型カルボキシル基量)/全カルボキシル基量]×100
【0040】
<濾水度(CSF)>
JIS P 8121−2:2012 パルプ−ろ水度試験方法−第2部:カナダ標準ろ水度法に従って測定する。
【0041】
<収縮率>
叩解したサンプルを水スラリーとし、熊谷理機工業(株)製角型シートマシンを用いて坪量50g/m
2、サイズ25cm×25cmに抄紙する。次いで、105℃×1時間の条件で乾燥し、4つの辺の長さをそれぞれ測定する。測定値から一辺の長さの平均値(B[cm])を求め、次式によって収縮率を算出する。
収縮率(%)=(25−B)/25×100
【0042】
<水膨潤度>
叩解したサンプルを水スラリーとし、熊谷理機工業(株)製角型シートマシンを用いて坪量50g/m
2となるように抄紙を行い、105℃×1時間の条件で乾燥して評価用の紙を作成し、重量(W3[g])を測定する。かかる評価用の紙を純水に浸漬させた後、1200rpmにて5分間遠心脱水を行う。脱水後の重量(W4[g])を測定し、下記の式にて水膨潤度を算出する。
水膨潤度[倍]=(W4−W3)/W3
なお、遠心脱水はKUBOTA社製遠心脱水装置(KS−8000)を用い、ステンレスバスケットを装着したユニバーサルスイングロータ(RS3000/6)を使用することによって行う。
【0043】
<活性炭捕捉量>
固形分換算で1g相当の叩解したサンプルを純水1Lに加え撹拌する。その中に粉末活性炭(太平化学産業製ブロコールB印活性炭/平均粒子径90μm)を6g加えて30分撹拌する。その後目開き173μmのふるい(面積200cm
2)でろ過を行い、ふるい上のろ過物の105℃×5時間乾燥後の重量(A[g])を測定し、下記式によりサンプル1gあたりの活性炭捕捉量を算出した。
活性炭捕捉量(g/g)=(A−1)/1
【0044】
<紙力(接着性)>
叩解したサンプル/アクリル短繊維(繊度0.4dtex,繊維長3.0mm)=30/70の重量比率で水スラリーを作成し、熊谷理機工業(株)製角型シートマシンを用いて坪量50g/m
2となるように抄紙を行い、熱カレンダーで乾燥して評価用の紙を作成した。得られた紙を2cm(W)×10cm(L)の大きさに切断し、引っ張り試験機(エー・アンド・デイ社製RTA500(U−1573))を用いて、引っ張り速度2cm/分として破断強度を測定した。破断強度が大きいほど接着性に優れていると判断される。
【0045】
<鉛吸着性(イオン交換性)>
(試験液の調整)
1Lのメスフラスコに蒸留水0.5Lを入れ、硫酸マグネシウム七水和物84mg、塩化カルシウムに水和物100mg、炭酸水素ナトリウム166mgおよび次亜塩素酸ナトリウム(有効塩素6%以上)10.5mgを加えて、完全に溶解させる。次いで、9.3%硝酸鉛水溶液1.2mlを加え、蒸留水を標線手前まで加えた後、0.1N水酸化ナトリウム水溶液を加えてpH8.3〜8.8の範囲に調整する。十分に撹拌したのち、蒸留水を標線まで加えて1Lとする。
(鉛吸着試験)
上記のようにして調整した試験液200gに乾燥換算重量0.2gの叩解した試料を加え、20℃の恒温槽内において5時間静置する。次いで、ろ過を行い、ろ液中の鉛をICP質量分析法(JIS K 0102:2016 54.4)にて定量した。なお、ブランク条件の鉛濃度は70ppbであり、これよりもろ液中の鉛濃度が低いほど吸着性能が優れていると言える。
【0046】
<ゲル状アクリロニトリル系繊維の水分率>
ゲル状アクリロニトリル系繊維を純水中に浸漬した後、遠心脱水機(国産遠心機(株)社製TYPE H−770A)で遠心加速度1100G(Gは重力加速度を示す)にて2分間脱水する。脱水後重量を測定(W5[g]とする)後、該未乾燥繊維を120℃で15分間乾燥して重量を測定(W6[g]とする)し、次式により計算する。
ゲル状アクリロニトリル系繊維の水分率(%)=(W5−W6)/W5×100
【0047】
<実施例1>
アクリロニトリル90%及びアクリル酸メチル10%からなるアクリロニトリル系重合体10部を44%のチオシアン酸ナトリウム水溶液90部に溶解した紡糸原液を、−2.5℃の凝固浴に紡出し、凝固、水洗、12倍延伸して水分率が35%のゲル状アクリロニトリル系繊維を得た。該繊維を1.5%の水酸化ナトリウム水溶液中に浸漬し、絞った後に、湿熱雰囲気中で、123℃×25分間加水分解処理を行い、水洗後、105℃×1時間乾燥し、未叩解繊維を得た。該未叩解繊維を4mmにカットし、濃度1%の水スラリーとした後、ナイアガラビーター(熊谷理機工業製BE−23)を用いて、重錘2kgにて表1に記載の叩解時間で叩解処理を行い、実施例1の叩解状アクリロニトリル系繊維を得た。なお、4mmにカットした未叩解繊維の濾水度は760mlであった。
【0048】
<実施例2〜5>
実施例1の処方において、水酸化ナトリウム水溶液の濃度を4.0%に変更することおよび表1に記載の叩解時間で叩解処理すること以外は同様にして、実施例2〜5の叩解状アクリロニトリル系繊維を得た。
【0049】
<実施例6〜8>
実施例1の処方において、水酸化ナトリウム水溶液の濃度を実施例6では7.5%、実施例7では10.0%、実施例8では20.0%に変更することおよび表1に記載の叩解時間で叩解処理すること以外は同様にして、実施例6〜8の叩解状アクリロニトリル系繊維を得た。
【0050】
<実施例9>
実施例5の処方において、加水分解処理工程と水洗工程の間に、純水中で硝酸によりpHを3.5に調整し、60℃で30分間保持する工程を挿入すること以外は同様にして、実施例9の叩解状アクリロニトリル系繊維を得た。
【0051】
<比較例1>
実施例2の処方において、叩解処理を実施しないこと以外は同様にして、比較例1の繊維を得た。
【0052】
<比較例2、3>
アクリロニトリル95%及びメタクリル酸2%及びアクリル酸メチル3%からなるアクリロニトリル系重合体10部を44%のチオシアン酸ナトリウム水溶液90部に溶解した紡糸原液を、常法に従って紡出し、凝固、水洗、延伸した後、乾燥せずに4mmにカットを行い、実施例1と同様の方法で叩解処理を行い、比較例2および3の繊維を得た。
【0053】
<比較例4>
比較例2において延伸後に105℃×1時間乾燥させたこと以外は同様に処理を行い、比較例4の繊維を得た。
【0054】
<比較例5>
実施例1において、ゲル状アクリロニトリル系繊維の代わりに、該繊維に対して、乾熱処理(110℃)と湿熱処理(60℃)を2回交互に行うことにより得られた緻密化繊維を用いて、加水分解処理以降の処理を同様に行い、比較例5の繊維を得た。叩解前の繊維のカルボキシル基の分布状態のCV値は大きく、繊維表層部位のみにカルボキシル基が導入されている芯鞘構造であった。
【0055】
上述の実施例、比較例において得られた繊維の評価結果を表1に示す。なお、表中の「−」は測定していないことを示す。
【0056】
【表1】
【0057】
表1に示すように、実施例1〜8においては、未叩解繊維の叩解性が良好であり、得られる叩解状アクリロニトリル系繊維も収縮率が低く、形態安定性に優れており、また、鉛吸着性からイオン交換能を有していることも分かる。なお、実施例5の中和度を低下させた実施例9では濾水度が低くなる結果となり、中和度の高い方が叩解性が良好となることが示された。
【0058】
一方、叩解処理を行っていない比較例1は紙力が測定できないほど弱く、活性炭捕捉量も低く実用性の低いものであった。これに対して、わずかに叩解処理を施した実施例2では紙力を有しており、本発明においてはわずかな叩解でもバインダー性が得られることが示された。
【0059】
また、カルボキシル基を含有するモノマーを共重合したポリマーからアクリロニトリル系繊維を作成した比較例2および3では収縮率が高く、形態安定性に問題があった。さらに、かかる比較例2と濾水度が同じである実施例1を比較すると、本発明の実施例1の方が、紙力(接着性)および活性炭捕捉量が良好であり、本発明の繊維が、接着性、粒子捕捉性にも優れていることが分かる。
【0060】
また、カルボキシル基を含有するモノマーを共重合したポリマーから得られたアクリロニトリル系繊維に乾燥処理を施した比較例4、および、カルボキシル基を有する部分が繊維構造内に存在していない(繊維表層部位のみカルボキシル基が導入されている)原料繊維を用いた比較例5では叩解が進行せず、紙を作成することもできなかった。