(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
以下、本発明に係る自動分析装置100の一実施の形態について、図面に基づき説明する。なお、本実施の形態を説明するための全図において同一機能を有するものは原則として同一の符号を付する。なお図面は実施形態を模式的に表したものであるため、現実のものと比較し省略もしくは簡略化する場合がある。また本発明は自動分析装置100に限らず、DNA等の分析装置においても適応可能である。
【0013】
図1は、本発明の一実例の形態に係る自動分析装置の全体構成を模式的に示した概略全体構成図である。
【0014】
本実施の形態に係る自動分析装置100は、検査に用いられる検体と試薬とを混合した反応液中を一定温度で一定時間反応させるヒートブロック1を有している。
【0015】
図示の自動分析装置100の場合は、上述したヒートブロック1に加えて、その作業台101上に、検体ラック搭載部102、検体分注機構103、検体分注チップおよび反応容器保持部材搭載部104、検体分注チップおよび反応容器廃棄孔105、検体分注チップおよび反応容器搬送機構106、検体チップ装着位置107、反応容器攪拌機構108、反応液吸引機構109、試薬分注機構110、試薬保管庫111、検出ユニット112が備えられた構成になっている。加えて、試薬保管庫111には、試薬ディスク3113、試薬容器114、試薬ディスク3カバー115が一体的に設けられており、試薬ディスク3カバー115には分注孔116が設けられている。
【0016】
ヒートブロック1は複数の反応容器2を一定温度で保持させるもので、自動分析装置100の作業台101上の所定位置に設けられ、反応容器2を回転運動により円周方向に移動させることが可能である。これにより、反応容器2を検体分注チップおよび反応容器搬送機構106、検体分注機構103、試薬分注機構110の作業位置に配置できるようになっている。
【0017】
検体ラック117搭載部102は、自動分析装置100の作業台101上の所定位置に設けられ、検体ラック117が複数搭載可能になっている。また制御信号に基づき検体ラック117をX軸方向に移動可能である。検体ラック117には、分析の対象としての抗原を含む検体がそれぞれ貯留された複数の検体容器118が配列収納されている。
【0018】
検体分注チップおよび反応容器保持部材搭載部104は、自動分析装置100の作業台101上の所定位置に設けられ、検体分注チップおよび反応容器保持部材119を複数架設している。また検体分注チップおよび反応容器保持部材119には未使用の検体分注チップ120および反応容器2が配列収納されている。
【0019】
検体分注機構103は、自動分析装置100の作業台101上の所定位置に設けられ、制御信号に基づいて検体チップ装着位置105から検体分注チップ120を装着し、検体容器118内の検体に検体分注チップ120を浸漬し、検体を検体分注チップ120内に吸引して採取する。また、制御信号に基づいて試薬が貯留された反応容器2内の試薬に検体分注チップ120を浸漬し、検体を反応容器2内に吐出して分注する。さらに制御信号に基づいて反応容器2内に貯留された検体と試薬の反応液を吸引した後に吐出する動作を繰り返すことで、反応容器2内の反応液を攪拌する。
【0020】
検体分注チップ120および反応容器搬送機構106は、検体分注チップ120および反応容器2を保持して移動させるもので、検体分注チップ120および反応容器2を、自動分析装置100の作業台101上で移動変位させる。検体分注チップおよび反応容器搬送機構106は、制御信号に基づいて、作業台101上の所望の三次元位置に検体分注チップ120および反応容器2を配置する。
【0021】
試薬保管庫111は、自動分析装置100の作業台101上の所定位置に設けられ、抗原抗体反応で用いる抗原と標識物質を含む試薬が貯留された複数の試薬容器114を低温で保持する。試薬容器114は試薬容器114を複数保持可能な試薬ディスク3上に収容される。試薬保管庫111は試薬の収容、取り出しを行うための試薬ディスク3カバー115を設けている。試薬ディスク3カバー115上には、試薬ディスク3カバー115を開閉しなくとも試薬分注機構110が試薬容器114内に貯留された試薬を吸引可能とするための分注孔116を設けている。試薬ディスク3113はZ方向(表裏方向)を軸に回転可能になっており、制御信号に基づいて検査で使用する試薬を分注孔116の直下に移動可能となっている。
【0022】
試薬分注機構110は、自動分析装置100の作業台101上の所定位置に設けられ、制御信号に基づいて試薬保冷庫内の試薬ディスク3上に収容された試薬容器114内の試薬に、分注孔116を貫通してノズルを浸漬し、試薬を吸引して採取する。また、制御信号に基づいてヒートブロック1上に配備された空の反応容器2内に試薬を吐出して分注する。
【0023】
制御部121は、自動分析装置100の制御部は、操作者からのキーボードやタッチパネル等を介して入力された測定依頼を受けて分析計画を作成し、作成した分析計画を分析装置へ送信することにより、分析計画に基づいて、各機構に制御信号を送信することにより動作を制御する。制御部内には分析依頼情報や分析パラメータ、分析結果等を記憶する記憶部が併設されていても良い。
【0024】
より具体的には検体分注チップおよび反応容器搬送機構106は、検体分注チップおよび反応容器保持部材119の上方に移動し、下降して未使用の反応容器2を把持して上昇し、ヒートブロック1の反応容器設置孔10の上方に移動し、下降して反応容器2を設置する。
【0025】
試薬分注機構110は、試薬ディスク3カバー115の分注孔116の上方に回転移動して下降し、試薬分注機構110の先端を所定の試薬容器114内の試薬に接液させて、所定量の試薬を吸引する。次いで、試薬分注機構110を上昇させて、ヒートブロック1の試薬吐出位置の上方に移動して、反応容器2に試薬を吐出する。
【0026】
次いで、検体分注チップおよび反応容器搬送機構106は、検体分注チップおよび反応容器保持部材119の上方に移動し、下降して未使用の検体分注チップ120を把持して上昇し、検体分注チップ装着位置121の上方に移動し、下降して検体分注チップ120を設置する。検体分注機構103は、回転及び上下動作が可能であり、検体分注チップ装着位置121の上方に移動して下降し、検体分注機構103の先端に検体分注チップ120を装着する。検体分注チップ120を装着した検体分注機構103は、搬送ラックに載置された検体容器118の上方に移動して下降し、検体容器118に保持された検体を所定量吸引する。検体を吸引した検体分注機構103は、ヒートブロック1の検体吐出位置に移動して下降し、ヒートブロック1上の、試薬が分注された反応容器2に検体を吐出する。検体吐出の後、検体分注機構103は、検体分注チップ120及び反応容器2廃棄孔の上方に移動し、使用済みの検体分注チップ120を廃棄孔へと廃棄する。
【0027】
検体と試薬が吐出された反応容器2は、ヒートブロック1の回転によって、反応容器2搬送位置に移動し、検体分注チップ120及び反応容器2搬送機構によって、反応容器攪拌装置108へと搬送される。反応容器攪拌装置108は、反応容器2に自転と公転による回転運動を加えて反応容器2内の検体と試薬を混和する。攪拌の終了した反応容器2は、検体分注チップおよび反応容器搬送機構106によって、ヒートブロック1の反応容器搬送位置に戻される。反応液吸引機構109は回転と上下移動が可能であり、検体と試薬が分注、混和され、ヒートブロック1上で所定時間が経過した反応容器2の上方に移動し、下降し、反応容器2内の反応液を吸引する。反応液吸引機構109で吸引された反応液は、検出ユニット112へと送液され、測定対象物が検出される。制御部は、測定対象物の検出値に基づいて測定結果を導出して表示する。反応液が吸引された反応容器2は、ヒートブロック1の回転によって反応容器廃棄位置108に移動し、検体分注チップおよび反応容器搬送機構106によって、ヒートブロック1から検体分注チップおよび反応容器廃棄孔105の上方に移動し、廃棄される。
【0028】
次に、上述したように構成された本実施の形態に係る自動分析装置100において、反応容器2内に貯留された反応液を一定温度で保管するヒートブロック1の構成および作用について詳述する。
【実施例1】
【0029】
図2は、本発明の一実施の形態に係る自動分析装置の主要部としてのヒートブロックの構成を模式的に示した概略構成図の一例である。
【0030】
図3は、
図2において示したA矢印方向に眺めたヒートブロックの側面構成において、断熱材を省略した概略正面図と、B方向に眺めたヒートブロックの上面構成を模式的に示した概略平面図である。
【0031】
図4は、
図3において示したC−C断面方向に眺めたヒートブロック1の断面構成を模式的に示した概略断面図である。
【0032】
一般的に、ヒートブロックの加熱にはヒータを用いる。ヒータは通電することで発熱する箔状の発熱抵抗体を備えている。発熱抵抗体は複数の絶縁膜に挟まれることにより、外部に対し電気的に絶縁されている。この絶縁膜は発熱抵抗体を挟むよう積層し接着された構造であるため、発熱抵抗体の周囲には少なからず接合面が形成される。発熱抵抗体の両端には、発熱抵抗体に電力を供給する給電線を取り付けるための電極部が存在する。ヒータの製造工程において、電極部に給電線を取り付けやすくするために、電極部は発熱抵抗体の他の領域と比較し、幅が広くなっている。
【0033】
発熱抵抗体の発熱量は、通電方向に垂直な発熱抵抗体の断面積に反比例する。すなわち、通電方向の長さが等しく幅が異なる発熱抵抗体に一定電流を通電した場合、より幅が狭い方が発熱量は大きく、単位面積当たりの発熱量(発熱密度)が高い。そのため、電極部は他の領域と比較し発熱密度が低くなる。例えば帯状ヒータをヒートブロックの外周に沿って取り付けた場合、帯状ヒータの長手方向の端部同士の対向面に、絶縁膜の接合部による非発熱領域と、電極部により発熱密度の低い領域が位置する。さらに帯状ヒータの長手方向の端部同士の対向面に、隙間が生じることがある。これより、ヒートブロックの外周方向に温度のばらつきが生じる可能性がある。
【0034】
本実施の形態に係わる自動分析装置では、ヒートブロック1は、反応液が貯留された反応容器2を複数格納するディスク3と、ディスク3を加熱する帯状ヒータ4、ヒートブロック1からの放熱を防ぐ断熱材5が設けられた構造になっている。
【0035】
ディスク3は、例えばアルミニウム合金や銅合金等の熱伝導率の高い材質を用いて形成されている。ディスク3は、反応容器2を格納する複数の反応容器設置孔10を、ディスク3の外周に沿って等間隔に設けている。ディスク3には、反応容器2を加熱するための帯状ヒータ4が外周に貼り付けられ、帯状ヒータ4の外側と、ディスク3の反応容器格納孔10近傍以外の上面と底面にはディスク3からの不要な放熱を防ぐための断熱材5が取り付けられている。断熱材5は、例えばポリエチレン等の熱伝導率の低い材質を用いて形成されている。ディスク3は回転軸9を介して自動分析装置100と連結され、駆動機構等の動作によって回転軸9を中心として回転可能になっている。これにより、反応容器設置孔10を任意の位置に移動させることで、検体分注チップおよび反応容器搬送機構106と接続が可能となり、反応容器2の設置や取り出しが可能となる。また検体分注機構103や試薬分注機構110、反応液吸引機構109と接続が可能となり、検体や試薬の分注、吸引を行うことができる。
【0036】
図示の例では、ディスク3は回転軸9を中心とした円板形状であり、回転軸9を中心として外周に沿って反応容器設置孔10を等間隔に設けており、ディスク3の側面に沿って帯状ヒータ4が巻きつけて配置される。帯状ヒータ4の側面およびディスク3の反応容器格納孔付近以外の上面と底面には断熱材5が配備されている。
【0037】
帯状ヒータ4は、ディスク4の外周に沿って取り付けられており、図示の例では帯状ヒータ4の端部同士が互いに対向するように配置されている。
【0038】
帯状ヒータ4は通電により発熱する発熱抵抗体6と、発熱抵抗体6を外部に対して電気的に絶縁する絶縁膜7と、発熱抵抗体6に電力を供給する第一の給電線8と第二の給電線8aから構成される。
【0039】
絶縁膜7は発熱抵抗体6をディスク3や断熱材5、外部に対して電気的に絶縁する。また絶縁膜7は、例えば
図4の、第一の絶縁膜7a、第二の絶縁膜7bのように構成され、発熱抵抗体6は第一の絶縁膜7a、第二の絶縁膜7bに挟まれており、第一の絶縁膜7a、第二の絶縁膜7bは接着剤等で直接接合されているため、発熱抵抗体6の周囲には絶縁膜7a、絶縁膜7bの接合領域7cが少なからず存在する。
【0040】
発熱抵抗体6は、通電により発熱するステンレス箔やニクロム箔等の材質で形成されている。発熱抵抗体6は、
図3の概略正面図に示すように、長手方向に一様厚の帯状に形成されている。発熱抵抗体6において、長手方向の一端に第一の電極部6aを有し、他端に第二の電極部6bを有している。また第一の端部6aには第一の給電線8が取り付けられ、第二の端部6bには第二の給電線8aが取り付けられている。
【0041】
図3の例では、第一の電極部6aと第二の電極部6bは、発熱抵抗体6の他の領域に対し幅が広い。また発熱抵抗体6の第一の電極部6a近傍と第二の電極部6b近傍は、発熱抵抗体6の他の領域に対し幅が狭い狭小部6cとなっている。
【0042】
さらに、発熱抵抗体6が帯状ヒータ4の長手方向端部で折り返すように形成され、狭小部6c同士が互いに隣接している。
【0043】
帯状ヒータ4の長さは、ディスク3に貼り付けた際に重ならないよう、ディスク3の外周長より短く形成されているため、帯状ヒータ4の長手方向の端部には少なからず隙間が発生する。また前述のとおり発熱抵抗体6の周囲には絶縁膜7の接合領域7cが存在するため、
図3に示すように帯状ヒータ4の端部の対向部に、幅W3の非発熱領域が発生する。
【0044】
図5は、
図3の概略正面図において発熱抵抗体6の狭小部6cの形状を変更した一例である。
【0045】
発熱抵抗体6の狭小部6cの幅は一様である必要はなく、例えば
図5に示すとおり、発熱抵抗体6に空隙が設けられ、幅が狭い狭小部6cとなっていてもよい。図面では、両端部領域に5個の穴を設けた形状が記載されている。なお、穴の個数や形状は
図5の態様に限らない。
【0046】
次に、上述した構成のヒートブロック1の作用・効果について、
図3に示したヒートブロック1の概略正面図と概略平面図を用いて詳述する。
【0047】
図3の概略正面図において、W1、W2、W3は帯状ヒータ4を長手方向に分割した場合の各範囲であり、W1は発熱抵抗体6の狭小部6cと第一の電極部6aもしくは第二の電極部6bが位置する範囲、W2は発熱抵抗体6が位置する範囲、W3は発熱抵抗体6が存在しない非発熱領域の範囲である。またW1、W2、W3はそれぞれ
図3の概略平面図中の回転軸9を中心としたディスク3の角度範囲θ1、θ2、θ3に対応している。またr1はディスク3外周の半径、r2は反応容器格納孔が配列されたピッチ半径を示す。
【0048】
発熱抵抗体6の発熱量は、ジュールの法則により電気抵抗値と電流値の2乗に比例する。また電気抵抗値は、通電方向に垂直な発熱抵抗体6の断面積に反比例する。すなわち、通電方向の長さが等しく幅が異なる発熱抵抗体6に通電した場合、より幅が狭い方が発熱量は大きく、単位面積当たりの発熱量(発熱密度)が高いといえる。第一の電極部6aおよび第二の電極部6bは他の発熱抵抗体6と比較し幅が広いため、他の発熱抵抗体6と比較し発熱密度が低くなっている。これに対し、狭小部6cは他の発熱抵抗体6と比較し幅が狭いため、他の発熱抵抗体6と比較し発熱密度が高くなっている。
【0049】
これより、
図3の範囲W1では、第一の電極部6aおよび第二の電極部6bの発熱密度の低い領域が存在するが、狭小部6cの発熱密度が高いため、範囲W2と比較し発熱密度が高くなる。
【0050】
材質と形状が同様な場合、発熱密度の高い箇所の方が温度上昇する。従って、帯状ヒータ4上において、
図3の概略平面図に示す角度範囲θ1の温度は、θ2やθ3と比較し高くなる。
【0051】
一方、帯状ヒータ4の発熱量は、物体内の温度勾配により熱伝導で伝熱されるため、帯状ヒータ4の外側に貼り付けた断熱材5を介して空気中に放出される熱量を除き、帯状ヒータ4より温度の低いディスク3の回転軸4の方向に伝熱する。範囲θ3は非発熱領域であるが、ディスク3の回転軸9の方向に伝熱が進むにつれて、温度の高いθ1から温度勾配により伝熱し、結果的に温度が上昇する。
【0052】
すなわち、非発熱領域の範囲θ3の温度低下を、θ1発熱密度を高くし補うことで、半径r2のピッチ円上に位置する各反応容器の温度分布を均一化する。
【0053】
図6は、
図3の概略正面図において、給電線8の取り付け状態を変更した場合の一例を示す概略正面図である。
【0054】
本実施の形態に係わる自動分析装置では、帯状ヒータ4の第一の給電線8は、第一の電極部6aから第二の電極部6bの方向に延びるよう取り付けられ、第二の給電線8aは、第二の電極部6bから第一の電極部6aの反対方向に延びるよう取り付けられている。
【0055】
これにより、帯状ヒータ4と第一の給電線8と第二の給電線8aを束ねた状態で、且つヒートブロックの外形からはみ出ること無く、電源へ配線することが可能となる。また、ヒートブロック内に保持された複数の反応液間の温度のばらつきを低減するための他の方式としては、ヒートブロックの厚さを増やし、帯状ヒータの両端部を厚み方向に延長することもできるが、ヒートブロックの厚さが増すことで全体のサイズや重量が増加してしまう。これに対して本願発明によれば、ヒートブロックの大きさを大きく変更することなく、ヒートブロックを均一に加温することが可能となる。
【0056】
なお、本実施例ではヒートブロックを円盤形状として説明したが、本発明はこれに限られるものではない。たとえば直方体のブロックの周囲にヒーターを取り付けるようにしてもよい。
【実施例2】
【0057】
次に、本発明の別の実施の形態に係る自動分析装置について、
図7、
図8に基づいて説明する。なお、説明に当たって前述の自動分析装置と同様な構成については、図中に同一符号を付し、その詳細な説明は省略する。
図7は、実施例2に係る自動分析装置100の主要部としてのヒートブロック1の構成を模式的に示した概略構成図の一例である。
【0058】
図8は、
図7において示したA矢印方向に眺めたヒートブロック1の側面構成において、断熱材5を省略した概略正面図と、B方向に眺めたヒートブロック1の上面構成を模式的に示した概略平面図である。
【0059】
本実施の形態に係る自動分析装置100では、発熱抵抗体6の第一の電極部6a近傍と第二の電極部6b近傍に幅が狭い狭小部6cを有し、第一の電極部6aおよび第二の電極部6bと狭小部6cが、帯状ヒータ4の長手方向に垂直な方向に並ぶように配置されている。
【0060】
発熱抵抗体6は、
図8の概略正面図に示すように、絶縁膜7の長手方向に沿って一様厚の帯状に形成されている。発熱抵抗体6の狭小部6cの幅Aはその他の領域の幅Bに対して狭く形成されている。なお、幅Aは、通電方向に対し一様である必要はない。
【0061】
ここで、発熱抵抗体6において、第一の給電線8が取り付けられる第一の端部より発熱抵抗体6の端部側、また第二の給電線8aが取り付けられる第二の端部より発熱抵抗体6の端部側は通電しないため発熱しない。したがって、ヒートブロック1の周方向においては非発熱な領域が存在する。
【0062】
次に、上述した構成のヒートブロック1の作用・効果について、
図8に示したヒートブロック1の概略正面図と概略平面図を用いて詳述する。
【0063】
図8の概略正面図において、W1、W2、W3は帯状ヒータ4を長手方向に分割した場合の各範囲であり、W1は狭小部6cの範囲、W2は発熱抵抗体6の範囲、W3は非発熱領域の範囲である。またW1、W2、W3はそれぞれ
図8の概略平面図中の回転軸9を中心としたディスク3の角度範囲θ1、θ2、θ3に対応している。またr1はディスク3外周の半径、r2は反応容器格納孔が配列されたピッチ半径を示す。
【0064】
図8で示した発熱抵抗体6の幅Bはほぼ一様である。一方、
図8のW1の範囲には狭小部6cが位置しているため、範囲W2と比較し発熱密度が高くなる。
【0065】
ディスク3の外周において、
図8の概略平面図に示す角度範囲θ1の温度は、θ2やθ3と比較し高くなり、領域θ1から領域θ2と領域θ3に向かった周方向の熱伝導が発生する。一方、範囲θ3は非発熱領域の範囲であるため、帯状ヒータ4による温度上昇は発生しないが、範囲θ1より温度が低いため、温度勾配によりθ2の領域から伝熱し、結果的に温度が上昇する。
【0066】
すなわち、非発熱領域の範囲θ3の温度低下を、θ1発熱密度を高くし補うことで、半径r2のピッチ円上に位置する各反応容器の温度分布を均一化する。
【0067】
図9は、
図8の概略正面図において、給電線8の取り付け状態を変更した場合の一例を示す概略正面図である。
【0068】
本実施の形態に係わる自動分析装置では、帯状ヒータ4の第一の給電線8は、第一の電極部6aから第二の電極部6bの方向に延びるよう取り付けられ、第二の給電線8aは、第二の電極部6bから第一の電極部6aの反対方向に延びるよう取り付けられている。
【0069】
これにより、帯状ヒータ4と第一の給電線8と第二の給電線8aを束ねた状態で、且つヒートブロックの外形からはみ出ること無く、電源へ配線することが可能となる。
【実施例3】
【0070】
次に、本発明のさらに別の実施の形態に係る自動分析装置100について、
図10、
図11に基づいて説明する。なお、説明に当たって前述の自動分析装置100と同様な構成については、図中に同一符号を付し、その詳細な説明は省略する。
【0071】
図10は、さらに別の実施の形態に係る自動分析装置100の主要部としてのヒートブロック1の構成を模式的に示した概略構成図の一例である。
【0072】
図11は、
図10において示したA矢印方向に眺めたヒートブロック1の側面構成において、断熱材5を省略した概略正面図と、B方向に眺めたヒートブロック1の上面構成を模式的に示した概略平面図である。
【0073】
本実施の形態に係る自動分析装置100では、発熱抵抗体6は幅が一様であり、第一の電極部6aと第一給電線との接合部と、第二の電極部6bと第二給電線との接合部が、帯状ヒータ4の長手方向に垂直な方向に並んでいる位置より発熱抵抗体6の端部側に位置するように配置されている。
【0074】
次に、上述した構成のヒートブロック1の作用・効果について、
図11に示したヒートブロック1の概略正面図と概略平面図を用いて詳述する。
【0075】
図11の概略正面図において、帯状ヒータ4の全範囲において発熱抵抗体6の幅Aは一様であるため、発熱抵抗体6の発熱密度も一様である。
【0076】
図11の概略平面図において、第一の電極部6aと第一給電線との接合部と、第二の電極部6bと第二の給電線8aとの接合部は、ヒートブロックの周方向で同じ角度で重なっている。発熱抵抗体6は通電により発熱するため、接合部より発熱抵抗体6の端部側は非発熱領域となる。
【0077】
ここで、ヒートブロック1の周方向において、全ての角度で帯状ヒータ4の発熱抵抗体6が備えられており、かつ全ての角度で発熱抵抗体6が通電により発熱するため、半径r2のピッチ円上に位置する各反応容器の温度分布を均一化する。
【0078】
次に、本発明の効果を更に具体的に説明するために、
図2、
図3、
図4に示す自動分析装置の主要部としてのヒートブロック1の作用について説明する。
【0079】
図12は、実施例1に係るヒートブロック1における温度分布を模式的に示した説明図である。
図12に示す温度分布図において、縦軸は温度を示している。横軸は回転軸9を中心にy=0の位置をθ=0°とし、時計回りに360°までの角度を示している。また、非発熱領域の範囲W3(θ3)の中心は、横軸において90°上に位置する。
図12において、実線はディスク3上の反応液設置孔が位置するピッチ円r2上における温度分布、一点鎖線は帯状ヒータ4上での発熱抵抗体6の温度分布を示している。
【0080】
帯状ヒータ4上の温度分布において、発熱密度の高い範囲θ1では範囲θ2およびθ3と比較し温度が高くなる。これに対し、ディスク3上の反応液設置孔が位置するピッチ円r2上における温度分布において、温度のばらつきが抑えられ、全ての角度において概ね一様な温度分布となる。
【0081】
このように、範囲θ3の温度低下を、発熱密度の高い発熱θ1の発熱で補うことで、温度分布の均一化を行う。
【0082】
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれている。例えば、上記した実施例では本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。例えば上記ディスク3は円板形状ではなく、多角形形状に置くことも可能であり、反応容器設置孔10は不等間隔で設置することも可能であり、帯状ヒータ4は馬蹄形でディスク3の裏側に設置することも可能である。