【実施例】
【0105】
実施例1.BMAAに対して産生される抗血清
BMAAを認識することが可能なポリクローナル抗体を、シアノバクテリア肝臓毒素ミクロシスチン−LRに対してポリクローナル抗体を産生し、評価するためのプロトコルから適合された方法によって産生した(Metcalf et al.2000,Water Research 32:2761−2769、Chu et al.1989,Appl Environ Microbiol 55(8):1928−1933)。簡潔に述べると、BMAA(分子量118Da)を、Harlow and Lane,Antibodies,A Laboratory Manualに開示されるように、抗体連結のための方法を適合することによって、巨大分子に複合し、哺乳類宿主に導入される場合、免疫反応を刺激した(Cold Spring Harbor Laboratory,1988)。BMAAのキラル中心でカルボキシルおよびアミン官能基を、それぞれ、グルタルアルデヒド(GLU)およびカルボジイミド(EDC)リンカーのために選択し、グルタルアルデヒド−BMAA(GLU−BMAA)およびカルボジイミド−BMAA(EDC−BMAA)を産生した。GLU−BMAAおよびEDC−BMAAを、それぞれ、キーホールリンペットヘモシアニン(KLH)またはウシ血清アルブミン(BSA)に複合し、以下のBMAA複合体: BSA−GLU−BMAA(BGB)、BSA−EDC−BMAA(BEB)、KLH−EDC−BMAA(KEB)、およびKLH−GLU−BMAA(KGB)を産生した。
【0106】
具体的には、グルタルアルデヒド結合BMAA複合体を、以下の通りに調製した。5mg/mL溶液のBMAAを、等容積で2倍濃度のPBSを50μLアリコートのBMAAに添加することによって調製した(水中の10mg/mL)。KLH−GLU−BMAA(KGB)において、KLHの溶液を、PBS中の10mg/mLの濃度で調製した。40μLのBMAAを、1mLのKLH溶液(10mg/mL)に添加し、次いで、960μLのPBSを添加した。PBS(約25%のストック)中の0.2%のグルタルアルデヒド溶液を調製した。等容積のグルタルアルデヒドを、一定に撹拌しながら、担体タンパク質BMAA溶液にゆっくりと添加し、次いで、室温で1時間、インキュベートした。PBS(pH7.4)中の1Mストックからのグリシンを、200mMの最終濃度まで、1時間、攪拌しながらインキュベートした。KGB複合体を、PBSに対して透析する(一晩で2Lを4回交換)ことによって、他の反応物から分離した。透析後、KLH複合体を含有する溶液のタンパク質濃度を決定し、KGBを、−20℃で、500μgのアリコート中に保存した。
【0107】
BSA−GLU−BMAA(BGB)については、同一の手順を使用し、10mg/mLのBSA溶液から開始した。透析後、BSA複合体を含有する溶液のタンパク質濃度を決定し、BGBを、−20℃で、500μgのアリコート中に保存した。
【0108】
EDC結合BMAA複合体を、以下の通りに調製した。50μLのBMAAストック(5mg/mL)を微小遠心管に添加した。11.1mg/mLの濃度で、PBS中のEDC(1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩の溶液を調製し、450μLのEDC溶液をBMAA溶液に添加し、0.1MのNaOHを用いてpH8まで調整した。混合物を、室温で5分間、インキュベートし、pHを確認し、必要ならば、NaOHで調整した。KLH−EDC−BMAA(KEB)については、10mg/mLの濃度で、1mLのKLH担体タンパク質を含有する溶液を、EDC−BMAA溶液に添加し、混合物を、室温で4時間、インキュベートした。100mMの最終濃度まで酢酸ナトリウム(pH4.2)を添加する(1.1Mのストックに対しては、150μLを添加した)ことによって、反応を停止した。混合物を、室温で1時間、インキュベートした。KEB複合体を、PBSに対して透析する(一晩で2Lを4回交換)ことによって、他の反応物から分離した。透析後、KLH複合体を含有する溶液のタンパク質濃度を決定し、KGBを、−20℃で、500μgのアリコート中に保存した。
【0109】
BSA−EDC−BMAA(BEB)については、同一の手順を使用し、10mg/mLのBSA溶液から開始した。BEB複合体を、上述のように透析することによって、他の反応物から分離し、BSA複合体を含有する溶液のタンパク質濃度を決定し、BEBを、−20℃で、500μgのアリコート中に保存した。
【0110】
抗血清を産生させるために免疫付与で用いる、KLH−BMAA複合体、即ち、KLH−EDC−BMAA(KEB)およびKLH−GLU−BMAA(KGB)を選択した。BSA−BMAA複合体、即ち、BSA−EDC−BMAA(BEB)およびBSA−GLU−BMAA(BGB)を、抗血清を試験し、イムノアッセイを展開するためのイムノアッセイプレートを被覆するために使用した。
【0111】
標準プロトコルに従って、New Zealand Whiteウサギに、KLH−EDC−BMAA(KEB)またはKLH−GLU−BMAA(KGB)を注射した(Metcalf et al.,2000)。簡潔に述べると、ウサギは、BMAA−KLH複合体(KEBまたはKGB)および完全フロインドアジュバントを含有する溶液の第1の皮下注射を受け、2週間後に、静脈内ブースター注射を行った。更なる抗原ブースター注射を、1ヶ月間隔で行い、各ブースター注射から1週間後に、血清の収穫があった(約20mLの血液)。収穫された血液は、赤血球から血清を分離する前に、凝固させ、一晩保存した。単離した血清は、PBSに対して透析する前に、3回の硫酸アンモニウム沈殿を行った。免疫前血清(「ヌル血清」)を含む各血清試料のアリコート(100μL)を、必要とされるまで、−20℃で保存した。1匹のウサギを、KGBで免疫付与し、血清は、8回の異なる時点(8回目の「採血」)で収穫した。合計2匹のウサギに、KEBで免疫付与し、第1のウサギは、2回目の採血後死亡し、第2のウサギは、次いで、KEBで免疫付与し、血清は、第2のウサギから5回の異なる時点(5回目の「採血」)で収穫した。KEBで免疫付与した2匹のウサギからの血清を用いた結果を区別するために、KEBで免疫付与した第1のウサギは、「KLH−EDC1−B MAA」抗血清として同定され、KEBで免疫付与した第2のウサギからの血清は、「KLH−EDC2−BMAA」抗血清として同定された。
【0112】
実施例2.BMAAに対して産生される抗血清の予備的特徴付け
予備的測定によって、免疫血清が、担体タンパク質および架橋剤との抗体反応に加えて、BMAAと反応する抗体を含むことが示された。
【0113】
抗体捕捉イムノアッセイ
ミクロシスチンに対して産生される抗血清を特徴付けることに成功したことを示すものと同様の抗体捕捉イムノアッセイ(Metcalf et al.,2000、Chu al.1989)を使用して、上述のように調製した、BMAA複合体に対して産生される抗血清を特徴付けた。ここで、ウサギ抗体の結合を、西洋ワサビペルオキシダーゼ(HRP)および発色合成HRP基質3,3’,5,5’−テトラメチルベンジジン(TMB)で標識された抗ウサギ二次抗体を用いて検出した。ウェルは、BMAA複合体(1ウェル当たり100μL)で被覆した後、プレートを洗浄し、PBS(Marvelブランド、1ウェル当たり180μL)中の1%(w/v)乾燥粉乳でブロックした。ブロックした後、更に洗浄し、次いで、一次抗体(PBS中)を適用する前に、プレートを、37℃で1時間、インキュベートした。一次抗体を添加し、インキュベートした後、各プレートを洗浄し、PBS中のヤギ抗ウサギIgG−HRP(Sigma)を、1/10000の希釈で、ウェル(1ウェル当たり100μL)に添加した。次いで、プレートを、37℃で1時間、インキュベートし、次いで、洗浄した。HRP基質TMBを、各ウェル(1ウェル当たり100μL)に添加し、プレートを、室温で30分間、展開させた。100μLの1MのHClを添加することによって、HRP−TMB反応が停止し、各プレートの450nm(A
450)での吸光度を、各ウェル中の結合抗体の量を決定するために測定した。
【0114】
ここで、BSA−BMAA複合体を、種々の被覆濃度でイムノアッセイプレートのウェル上で被覆し、同一の方法によって調製したBSA−BMAA複合体に対して産生される抗血清の試料を、イムノアッセイプレートに添加し(即ち、BEBに対して産生される抗血清を、BEBで被覆したウェルに添加し、BGBに対しても同一パターンである)、抗体を、プレート上で被覆したBSA−BMAA複合体に結合することによって捕捉し、ここで、抗体結合を、ヤギ抗ウサギIgG−HRP二次抗体、TMB基質、および各ウェルに対してA
450の測定を用いて、測定した。BMAAで被覆したウェルをまた、ウェルを被覆するために使用したBMAA複合体で免疫付与する前に、ウサギから得たヌル血清を用いてプローブし、ここで、ヌル血清を、上述のように精製した。
【0115】
抗体捕捉イムノアッセイへの異なる実験的アプローチを用いて、BMAAを、ウェルの表面に直接結合し(即ち、BSAまたはKLH複合体を通さない)、抗BMAA抗体結合を、上述のように測定した。抗体捕捉におけるpHおよびプレート形式の効果は、異なるpH値を有する溶液を用いて、異なるpH値で異なる結合特性を有することが既知の種々の形式のマルチウェルプラスチックプレートに直接結合されるBMAAを伴って、測定した。BMAA(20μg/mL)を、以下の異なるpH値を有する緩衝剤中で溶解した。pH4で酢酸塩、pH7.4でPBS、pH9.6で炭酸塩。次いで、BMAA溶液を、pH特異結合特性を有することが既知のプレートの Nunc brand MAXISORP(商標)、Nunc brand MEDISORP(商標)、およびNunc brand MULTISORP(商標)プレート(Thermo Fisher Scientific)上で被覆した。次いで、BMAA複合体に対して産生される抗血清、またはヌル血清(免疫前血清)のアリコートを、1/1000の希釈で、それぞれ、各プレート形式/pHの組み合わせに対して各血清試料を試験した設計において、各ウェルに添加した。以下の血清試料を、異なるpH値で異なるプレート形式に結合するために、試験した。2匹の異なるウサギからの2つのヌル血清試料(NS1、NS2);異なるウサギにおけるKLH−EDC−BMAAに対して産生される2つの抗血清(EDC1−1は、ウサギが死亡する前に、第1のBMAA−EDC免疫付与ウサギからの第1の採血であり、EDC2−1は、第2のBMAA−EDC免疫付与ウサギからの第1の採血であった);ならびに同一のウサギから1ヶ月間隔で採取されたKLH−GLU−BMAA(Glu1、Glu2、Glu3、Glu4)に対して産生される抗血清の4回の連続的採血。ウェルの表面に直接結合したBMAAを伴う形式は、各ウェル中で有意に高い吸光度の測定値を得、ここで、BMAA複合体に対して抗血清を添加し、添加したヌル血清(NS)を有するウェルの吸光度の測定値と比較したが、この形式は、更なる研究では使用しなかった。
【0116】
BMAA複合体のBMAA部分に対して特異性のある検証
BMAA特異的抗体の存在を検証するため、即ち、抗血清を産生するための免疫反応を誘発するために使用するBMAA複合体のBMAA部分と反応する抗体の存在を検証するために、BMAA複合体に対して産生される抗血清を試験した。ここで、KLH−BMAA複合体に対して産生される抗血清を、「逆」の架橋結合の化学物質を用いて合成したBSA−BMAA複合体に結合する能力に関して試験した。KLHが複合した免疫原に対して産生されるウサギ抗血清は、BSAに対して抗体を有さないため、BSA−BMAA複合体を使用して、BMAA特異的抗体を検出した。更に、異なる架橋結合の化学物質(GLU、EDC)を用いた、担体タンパク質(KLH)にBMAAを複合した結果として、BMAA分子の構成の立体配座の変化が予想され得ることが理解された。故に、1つの架橋結合の化学物質を介して複合したBMAAに対して産生される抗血清は、「逆」の架橋結合の化学物質を介して複合したBMAAに対して低い反応性を示し得ることが予想された。
【0117】
KLH−BMAA複合体に対して産生される抗血清を、双方の架橋結合の化学物質を用いて調製したBSA−BMAA複合体に対して試験した場合、各抗血清は、「逆」の架橋結合の化学物質を介して複合したBSA−BMAAに対して陽性反応を示した。つまり、EDC結合BMAA複合体(KEB)に対して産生される抗血清は、GLU連結BSA−BMAA(BGB)に対して陽性反応を示した。同様に、GLU連結BMAA複合体(KGB)に対して産生される抗血清は、EDC結合BSA−BMAA(BEB)に対して陽性反応を示した。予想通りに、各抗血清は、抗血清を産生させるために使用したBMAA複合体と同一の架橋結合の化学物質を介して複合したBSA−BMAAに対して陽性反応を示した。KGBに対して産生される抗血清は、GLU架橋結合試料に反応するKEBに対して産生される抗血清と比較して、EDC架橋結合試料に対して更に強く反応すると考えられることが留意された。KEBで免疫付与した第1の動物は、本複合体(KLH−EDC2−BMAA)で免疫付与した第2の動物の抗血清よりも良好な反応を生じた抗血清(KLH−EDC1−BMAA)を生成した。
【0118】
これらの結果は、BMAA特異的抗体が、収穫した抗血清のIgGプール中に存在し、複合に使用する架橋結合法が、BMAAを認識する抗血清の能力における検出可能な負の効果がなかったことを示した。
【0119】
間接競合ELISAを用いて決定された遊離BMAAとの抗血清の反応性
遊離BMAAに結合するためのBMAA複合体に対して産生される抗血清の能力を、上述の抗体捕捉イムノアッセイから修正された間接競合ELISA形式を用いて決定した。つまり、抗体捕捉イムノアッセイを、ウェルに結合するBSA−BMAA複合体を有するプレートに対して、遊離BMAA(非結合および非複合)および抗血清を同時に各ウェルに添加することを除いて、溶液中の遊離BMAAおよびウェル上の結合BSA−BMAA複合体が、抗体結合に対して競合するように、上述のように、一般的に実行した。
【0120】
簡潔に述べると、各アッセイウェルは、100μLのPBS中のBSA−BMAA(BGBまたはBEB)を、pH7.4で添加することによって被覆し、37℃で1時間、2μg/mL、1μg/mL、または0.5μg/mLのBSA−BMAA濃度を用いて、インキュベートした。次いで、ウェルを、PBS(Marvel brand、1ウェル当たり180μL)中の1%(w/v)乾燥粉乳でブロックした。遊離BMAA(50μL/ウェルのL−BMAA、MilliQ水中の10μg/mL)およびKLHが複合したBMAAに対する抗血清(抗KEBまたは抗KGB、PBS中で希釈した50μL/ウェル)を含有する「一次抗体」溶液を、1/1000、1/5000、1/10000、1/50000、および1/1000000(即ち、1/1×10
6)の希釈で、抗血清を用いて、各ウェルに添加した。ウェル上で被覆したBSA−BMAAに結合する抗体を、1/10,000で、PBS(100μL/ウェル)中のヤギ抗ウサギIgG−HRP(Sigma)を用いて検出し、洗浄し、TMB基質(KPL Laboratories、100μL/ウェル)を添加した。次いで、100μL/ウェルで1MのH
2SO
4を添加することによって、HRP/TMB反応は停止し、結合抗体の量を、450nm(A
450)での吸光度を測定することによって決定した。抗体結合、即ち、抗原(遊離BMAA)への結合に対するBSA−BMAA複合体と競合する遊離BMAAの能力は、以下の等式を用いたA
450値の比率として計算した%B
0値として報告した。
【0121】
%B
0=(試験試料の吸光度/対照の吸光度)×100
「対照」値を、遊離BMAAを添加しなかったウェル中で測定した。100未満(<100)の%B
0値は、試験試料において、抗体の一部が、溶液中の遊離BMAAに結合し、ウェル上で被覆したBSA−BMAA複合体に対する抗体結合の量は、それによって減少した。つまり、<100の%B
0値は、抗血清中の抗体が、遊離BMAAを検出し、かつ結合したことを示した。
【0122】
予備的評価を、KLH−BMAA複合体に対して産生される抗血清、およびKLH−BMAA複合体と同一の架橋結合の化学物質および異なる架橋結合の化学物質を有するBSA−BMAA複合体で被覆したウェルを用いて行った。同一の架橋結合の化学物質を用いたアッセイは、(A)BGBで被覆したウェルに添加した3回目の採血からの抗KGB抗血清(GLU AS)、および(B)BEBで被覆したウェルに添加したEDCウサギ2の2回目の採血からの抗KEB抗血清(EDC2 AS)を用いて実行した。異なる架橋結合の化学物質を用いたアッセイを、(A)BEBで被覆したウェルに添加した3回目の採血からの抗KGB抗血清(GLU AS)、および(B)BGBで被覆したウェルに添加したEDCウサギ2の2回目の採血からの抗KEB抗血清(EDC2 AS)を用いて実行した。遊離BMAA、抗血清希釈、被覆濃度、および反応条件は、上述の通りであった。
【0123】
同一の架橋結合の化学物質を用いたアッセイでは、1/1000の希釈で、KGBに対して産生される抗血清(GLU AS)を除いて、遊離BMAAへの結合はほとんど検出されず、これは、2μg/mLのBGBで被覆したウェル中の98%の%B
0値があり、1/50,0000の希釈で、KEBに対して産生される抗血清(EDC2 AS)は、2μg/mLのBEBで被覆したウェル中の80%の%B
0値があったが、再現性が、問題であった。
【0124】
異なる架橋結合の化学物質を用いたアッセイでは、遊離BMAAへの結合の検出が向上した。<100%の%B
0値は、アッセイの大部分において測定され、抗血清中の抗体は、アッセイプレートウェル上で被覆したBSA−BMAA複合体に結合する代わりに、溶液中の遊離BMAAに結合することを示す。KGBに対して産生される抗血清(GLU AS)は、BEBで被覆したウェル中の80%の低%B
0値を有した。KEBに対して産生される抗血清(EDC2 AS)は、BGBで被覆したウェル中の70%の低%B
0値を有した。これらの結果は、KLH−BMAA複合体に対して産生される抗血清が、遊離BMAAを検出することができた、即ち、抗血清が遊離BMAAと特異に反応した抗体を含んだことを示した。
【0125】
KLHを用いた免疫沈降による抗血清の浄化
上述の実験が、KLH−BMAA複合体に対して産生される抗血清が、遊離BMAAを検出することができたことを示した後、浄化手順を、KLH担体タンパク質および架橋結合分子に対する抗体等の外来要素を除去するために開発した。該当するハプテンは、担体タンパク質に架橋結合し、ハプテン−架橋剤−担体タンパク質複合体を、免疫付与のために使用し、哺乳類の免疫系は、架橋結合分子および担体タンパク質を含む、複合体の全ての部分に対して抗体を産生し得ることが期待される。故に、多くの場合、非ハプテンエピトープに対する抗体を除去するか、または軽減するための更なる浄化ステップを実行することが効果的であると考えられ、それによって、抗血清の調製において、抗ハプテン抗体の相対存在量を増加する。好適な方法は、免疫親和性カラムの免疫沈降または使用を含む。
【0126】
KLHを用いた免疫沈降を、以下の通りに、KLHに対する抗体を除去するために実行した。1μgのKLHのアリコートを、安定化抗血清調製物(抗体溶液)に添加し、混合物を、37℃で30分間、反応させ、混合物は、遠心分離し、新たな1μgのKLHのアリコートを用いて、次の免疫沈降のために、浮遊物を未使用の管に移した。各免疫沈降で、1アリコートの抗血清を除去し、KLHに対する反応性およびBSA−BMAA複合体に対する反応性に対して試験した。双方の抗血清(即ち、GLU連結BMAAに対して産生される抗血清(KGB)およびEDC結合BMAAに対して産生される抗血清(KEB))を用いたKLH免疫沈降の結果によって、KLHに対する抗体のプールは、除去することができ、BSA−BMAA複合体に対する反応性は、部分的に精製された「KLHで浄化した(KLH−cleaned)」抗血清において維持されることが示された。
【0127】
15ラウンドのKLHを用いた免疫沈降を、KGBに対して産生される抗血清における、3回目の採血(GLU AS)を実行し、各ラウンドの免疫沈降後に、アリコートを採取し、異なる濃度で、KLHに対する反応性、および異なる濃度で、同一の架橋結合の化学物質、即ち、BGBを有する、BSA−BMAAに対する反応性に対して試験した。
【0128】
KLHを用いた15ラウンドの免疫沈降を、KGBに対して産生される抗血清における、第2のEDCウサギの2回目の採血(EDC2 AS)を実行し、各ラウンドの免疫沈降後、アリコートを採取し、異なる濃度で、KLHに対する反応性、および異なる濃度で、同一の架橋結合の化学物質、即ち、BEBを有する、BSA−BMAAに対する反応性に対して試験した。双方の抗血清については、KLHおよびBSA−BMAAに対する反応性の試験の結果によって、複数のラウンドの免疫沈降において、KLHに対する抗体を除去することができることが示されたが、部分的に精製された抗血清は、BSA−BMAA複合体に対する反応性の安定したレベルを示した。
【0129】
15ラウンドのKLHを用いた免疫沈降後、それぞれ部分的に精製された抗血清(「KLHで浄化した抗血清」)を、溶液(1μg/mL)中の遊離BMAAに対する反応性について試験し、これには、同一または異なる架橋結合の化学物質を有するBSA−BMAA複合体で被覆したアッセイウェルを用い、前述の遊離BMAAでの反応性について試験するための間接競合ELISA形式を用いた。本手順において、希釈した抗血清は、(1)抗血清を産生させるために使用するKLH−BMAAを複合させるために使用する架橋結合の化学物質と同一の架橋結合の化学物質を有するBSA−BMAA複合体、および(2)抗血清を産生させるために使用するKLH−BMAAを複合するために使用する架橋結合の化学物質と逆の架橋結合の化学物質のBSA−BMAA複合体を用いて被覆したウェル中の1μg/mLで、遊離BMAAを用いて試験した。1/1000〜1/1×10
6の希釈で、抗血清を試験した。部分的に精製された抗血清は、対照と比較して、80〜100%の%B
0値によって示されるように、遊離BMAAを検出した。部分的に精製された抗血清は、遊離BMAAと反応することができることが決定されたが、部分的に精製された抗血清は、BMAA複合体に対して更に高い親和性を有することが更に決定された。部分的に精製された抗血清は、対照と比較して、80〜100%の%B
0値を有する、遊離BMAAに対して反応性を示した。部分的に精製された抗血清は、遊離(複合しない)BMAAに対する親和性よりも高いBMAA複合体に対する親和性を有することが更に決定された。
【0130】
実施例3.構造的に類似したアミノ酸のBSA複合体を有する抗BMAA抗血清の反応性
BMAAは、アラニンの誘導体であり、グルタミン酸に類似した構造も有するため、BMAAに対して産生される抗血清を、BSA−アラニンおよびBSA−グルタミン酸複合体との反応性を示すかどうかを決定するために、実験を実行した。免疫沈降しない(「正常」)および部分的に精製された(「KLHで浄化した」)BMAA複合体に対して産生される抗血清のKGBおよびKEBを、BSA−アラニンおよびBSA−グルタミン酸複合体との反応性について試験した。アラニンおよびグルタミン酸を有する、以下のようなBSAとのGLUで連結した複合体、およびEDCで連結した複合体を調製し、試験した。BSA−GLU−アラニン(BGA)、BSA−EDC−アラニン(BEA)、BSA−GLU−グルタミン酸(BGG)、およびBSA−EDC−グルタミン酸(BEG)。
【0131】
「正常」およびKLHで浄化した抗血清の連続希釈は、上述のように調製し(KLHを用いて免疫沈降する前に、「正常」抗血清を得、KLHで浄化した抗血清は、15ラウンドのKLH免疫沈降後、それぞれ、抗KGB抗血清および抗KEB抗血清を含んだ)、種々のBSAアミノ酸複合体で被覆したウェルに抗血清を添加し、上述のELISA形式を用いて抗体結合を測定することによって、各複合体(BGA、BEA、BGG、BEG)に対する反応性について試験した。
【0132】
双方の正常およびKLHで浄化した抗血清は、BSA−グルタミン酸複合体およびBSA−アラニン複合体との幾つかの反応性を示したが、異なるパターンの反応性は、架橋結合の化学物質に応じて異なることが見出された。
【0133】
同一の架橋結合の化学物質を、抗血清を産生させるために使用したKLH複合体、および抗血清を試験するために使用したBSA複合体において使用した場合、双方の「正常」およびKLHで浄化した抗血清は、BSA−BMAA複合体との期待された反応性に加えて、BSA−アラニンおよびBSA−グルタミン酸複合体との反応性を示した。双方の正常およびKLHで浄化したKGBに対して産生される抗血清の試料(即ち、GLU連結BMAA)は、GLU連結アラニンまたはGLU連結グルタミン酸複合体に対してよりもGLU連結BMAA複合体に対してより高い親和性を有した。対照的に、双方の正常およびKLHで浄化したKEBに対する抗血清(即ち、EDC結合BMAA)は、全ての3つのEDC結合複合体に対して平等に認識された。
【0134】
対照的に、逆の架橋結合の化学物質を、抗血清を産生させるために使用するKLH複合体において使用した場合、BSA複合体を、抗血清(例えば、BEB、BEA、およびBEGとの反応性について試験された抗KGB抗血清)を試験するために使用し、抗血清は、複合体のいずれともほとんど反応性を示さなかった。
【0135】
抗血清が、同一の架橋結合の化学物質を有する(認識された)BSA−アミノ酸複合体との反応性を示したため、これらの組み合わせを、遊離BMAAとの反応性について試験するために、間接競合ELISA形式において使用した。つまり、間接競合ELISAを、BSA−アミノ酸複合体で被覆したウェル中の抗体結合を競合するための遊離BMAAの能力を測定するために使用した。各抗血清については、BSA−アミノ酸複合体を、抗血清を産生させるために使用するKLH−BMAA複合体と同一の架橋結合の化学物質を用いて架橋結合した。故に、正常およびKLHで浄化したKGBに対して産生される抗血清を、BGB、BGA、またはBGGで被覆したウェル中の遊離BMAA(1μg/mL)との反応性について試験した。正常およびKLHで浄化したKGBに対する抗血清を、BEB、BEA、またはBEGで被覆したウェル中の遊離BMAA(1μg/mL)との反応性について試験した。双方の架橋結合の化学物質については、正常(免疫沈降されない)抗血清は、80%〜100%の%B
0値で、溶液中の遊離BMAAを検出することができた。しかしながら、溶液中の遊離BMAAを検出するために正常(免疫沈降しない)抗血清と同様にKLHで浄化した抗血清は、行わなかったが、遊離BMAAは、幾つかのアッセイにおいて検出された。
【0136】
BSA−アラニンを用いた免疫沈降による更なる浄化
試験した3つのBSA−アミノ酸複合体(BSA−BMAA、BSA−アラニン、BSA−グルタミン酸)のうち、双方の架橋結合の化学物質(BGA、BEA)のBSA−アラニン複合体は、抗血清との最低の反応性を示した。したがって、KLHで浄化した抗血清を、BMAAのみに対して特異的な抗体において、高度に富化した抗血清調製物を作成するために、BSA−アラニンを用いた免疫沈降により、更に浄化した。次いで、上述のように調製したKLHで浄化した抗血清(15ラウンドの免疫沈降後、KGBに対して産生される抗血清の3回目の採血;15ラウンドのKLHを用いた免疫沈降後、KEBに対して産生される抗血清の第2のEDCウサギの2回目の採血)を、更なる14ラウンドのBSA−アラニンを用いた免疫沈降に供した。それぞれの免疫沈降(IP1〜IP14)後、各抗血清を、種々のBSA−アミノ酸複合体で被覆したウェルに抗血清を添加し、前述のELISA形式を用いて、抗体結合を測定することによって、BSA−BMAA複合体、BSA−アラニン複合体、およびBSA−グルタミン酸複合体との反応性について試験した。
【0137】
1/1000の希釈で(試験した最も濃縮した溶液)、BGAを用いた免疫沈降後、KGBに対する抗血清は、BGBに対して良好な反応性、および他のアミノ酸複合体BGAおよびBGGに対して低反応性を示し、これは、抗血清が、BMAAに対して特異的であることを示した。BGBとの反応性は、初めの8ラウンドの免疫沈降1〜8(IP1〜IP8)中、低下し、最終の6ラウンドの免疫沈降(IP9〜IP14)中、良好なレベルの反応性を維持したが、BGAおよびBGGとの反応性は、継続的なラウンドの免疫沈降と共に低下し続けた。本実験において観察された反応性の傾向は、GLUの架橋剤を認識する抗体が、BGAを用いた免疫沈降により除去されていることを示唆していた。
【0138】
1/1000の希釈で、BEAを用いて免疫沈降したKEBに対する抗血清は、免疫沈降が続行される場合、全てのBSA−アミノ酸複合体との反応性において減少を示した。この結果は、上記で報告される結果に一致しており、これは、特異的BSA−アミノ酸複合体を認識するためのKEBに対して産生される抗血清(双方の「正常」およびKLHで浄化した)の能力においてほとんど差異を示さない。
【0139】
BSA−アラニンを用いた免疫沈降後、抗血清を、前述の間接競合ELISA形式を用いて、1μg/mLで、遊離BMAAとのそれらの反応性について試験した。双方の免疫沈降した抗血清(KGBに対する抗血清およびKEBに対する抗血清)は、遊離BMAAとの反応性をほとんど示さなかった。
【0140】
実施例4.グルタルアルデヒドで連結した被覆形式を用いた抗BMAA抗血清の特異性および交差反応の試験
上述のように産生された抗血清を、酵素イムノアッセイのために、マイクロタイタープレートへのアミノ酸および他のハプテンを被覆するための代替的な方法である、Ordronneauらのイムノアッセイ法の適合(1991)を用いて試験した。Ordronneauらは、前述の方法には、アッセイ基質を使用したことを開示し、ここで、担体タンパク質は、基質に共役し、アミノ酸またはハプテンは、担体タンパク質に複合し、これは、再現性および精度において矛盾および問題を生じた。Ordronneauらは、グルタミン酸塩(Glu)に対するイムノアッセイを開発し、ここで、Gluは、担体タンパク質に共役する代わりにグルタルアルデヒドを介してプラスチック表面に直接連結し、Gluで被覆したイムノアッセイプレートは、Gluに対して産生される抗血清を試験するために使用した。
【0141】
Ordronneauらの方法を、本発明の抗血清を試験するためのグルタルアルデヒド連結BMAA(担体タンパク質ではない)で被覆したイムノアッセイプレートを調製するために使用した。KGBに対して産生される抗血清の第3の「採血」を、実験用に使用した。Ordronneauらの方法は、BMAAおよびグルタミン酸で被覆した、MAXISORP(商標)およびMULTISORP(商標)プレート、ならびに抗BMAA抗血清(抗KGB、3回目の採血)を用いて、1/1000〜1/100,000の種々の希釈で、BMAAの存在下で、0〜1mMの濃度で、またはグルタミン酸の存在下で、1nM〜1mMの濃度で、実行した。MULTISORP(商標)プレートは、更に高い吸光度値、ならびにより良好なグルタルアルデヒド結合およびその後のBMAA結合を示した。1/1000、1/2000、1/5000、および1/10000の希釈で、KGBに対して産生される抗血清は、高被覆濃度(100μMおよび1mM)でBMAAがプレートに添加されている場合、BMAAで被覆したプレートへの結合の増加を示し、これは、プレートに被覆したBMAAの増加をもたらし、抗体結合に使用可能であると推定された。グルタミン酸塩の濃度の増加による、抗体結合への影響は見られなかった。
【0142】
1/1000および1/2000の希釈で、KGBに対して産生される抗血清(抗KGB抗血清)を、BMAAに対する特異性を試験するために、BMAAおよび他のアミノ酸との交差反応について試験した。プレートを、グルタルアルデヒド連結を介して、BMAA、L−アラニン(L−Ala)、L−グルタミン(L−Gln)、L−チロシン(L−Tyr)、グリシル−グリシン(glygly)、L−グリシン(L−Gly)、L−ロイシン(L−leu)、L−フェニルアラニン(L−Phe)、ガンマ−アミノ酪酸(GABA)、L−グルタミン酸(L−Glu)、およびL−アスパラギン酸(L−Asp)を用いて、0.2mM、0.5mM、1mM、および10mMの被覆濃度で、被覆した。
図3に示されるように、双方の希釈(1/1000および1/2000)で、抗KGB抗血清は、BMAAの強い認識を示し、試験した他のアミノ酸との交差反応をほとんど示さなかった。1/1000の希釈で、抗KGB抗血清によるBMAAの認識(
図3A)は、0.1〜10mMのBMAA被覆濃度で増加し、即ち、シグナルの強度は、結合するBMAAが増加すると共に増加した。1/2000の希釈で、抗KGB抗血清によるBMAAの認識(
図3B)は、1mMのBMAA被覆濃度で、平坦域(plateau)に達し、これによって、飽和結合が、その濃度で達していることを示された。
【0143】
このイムノアッセイ形式では、双方の希釈で、抗KGB抗血清は、BMAAの強い認識を示し、試験した他のアミノ酸との交差反応をほとんど示さなかったが、1/1000で、抗KGB抗血清は、特に、10mMの被覆で、L−グリシンおよびグリシル−グリシンとのわずかな反応性を示し(
図3A)、これは、L−グリシンが、担体タンパク質に存在し得る任意の残りのグルタルアルデヒド基を不活性化するために、グルタルアルデヒドで架橋結合した免疫源複合体の手順中、使用する場合、全てが予期されないというわけではなかった。試験した全ての他のアミノ酸のうち、抗KGB抗血清のみが、10mMで、GABAと、および0.2mMで、アスパラギン酸とのわずかな反応性を示した。グルタルアルデヒドに結合すると、これらの分子の構造変化が、抗体によるその後の認識に影響し、「遊離」アミノ酸の更なる試験が、これらの所見の確認のために必要であり得るかどうかは決定されなかった。
【0144】
実施例5.異なる源からのBMAAに対する抗BMAA抗血清の特異性;異性体特異性の反応性の決定
上述の免疫付与およびイムノアッセイを、Sigma(現在は、Sigma−Aldrich Inc.;Cat.No.B107、ロット番号097H4746)から市販のBMAAを用いて行った。イムノアッセイを、BMAAの2つの新規の異なるバッチ:Sigmaから市販のBMAAの未使用のロット(Lot 065K4707)からのバッチ、およびUniversity of Portsmouth, UKにおいて、Peter Nunnから得られた合成BMAAのバッチを用いて、再度行った。新規のバッチのそれぞれからのBMAA、即ち、Sigma(Sigma−Aldrich、Lot 065K4707)からのBMAA、およびPeter Nunn(University of Portsmouth,UK)から得られた合成BMAAの未使用のバッチを用いたイムノアッセイを、異なるバッチからのBMAA等の種々の標的に結合するための種々の抗血清の能力を測定するために、グルタルアルデヒド捕捉(上述されるようなグルタルアルデヒドで連結した抗体捕捉形態)を用いて、実行した。
【0145】
簡潔に述べると、Nunc MULTISORP(商標)プレートのウェルを、蒸留水で洗浄した。各ウェルは、100mMのNaH
2PO
4(pH4.5)中の100μLの0.5%グルタルアルデヒドを受容し、プレートを、37℃で1時間、インキュベートした。プレートは、180μLの100mMのNaH
2PO
4(pH4.5)を用いて、2回洗浄した(即ち、プレートの各ウェルを、洗浄した)。100mMのNa
2HPO
4(pH8)で調製した、標的、例えば、BMAAの100μLのアリコートを、各ウェルに添加し、プレートを、37℃で1時間、インキュベートした。プレートは、各洗浄で180μLの100mMのNa
2HPO
4(pH8)を用いて、3回洗浄した。100mMのNa
2HPO
4(pH8)で調製した、0.1Mのエタノールアミンの100μLのアリコートを、各ウェルに添加し、プレートを、37℃で1時間、インキュベートした。プレートは、各洗浄で0.05%のTween20/PBS(PBST)を用いて、3回洗浄した。PBS中の1%の「Marvel」ブランドの乾燥粉乳の180μLのアリコートを、各ウェルに添加し、37℃で1時間、インキュベートした。プレートは、PBSTを用いて、3回洗浄した。PBS中の一次抗体の希釈物を調製し、100μLの(希釈された)一次抗体を、各ウェルに添加した。プレートを、37℃で1時間、インキュベートした。プレートは、PBSTを用いて、3回洗浄した。検出のために、100μLのIgG−HRP(1/10000、Sigmaヤギ抗ウサギIgG−HRP)を、各ウェルに添加し、プレートを、37℃で1時間、インキュベートした。プレートは、PBSTを用いて、3回洗浄した。定量化のために、HRP合成発色基質TMBを(1ウェル当たり100μL)添加し、色が、室温で30分間、発色することを可能にした。100μLの1MのH
2SO
4を添加することにより、反応を停止し、450nmでの吸光度を、プレートの各ウェルに対して測定した。
【0146】
ある実験では、KGBに対して産生される抗血清(抗KGB抗血清)の3回目の採血(KBG3)は、硫酸アンモニウムを用いた沈殿および100μLの抗血清への10μgのKLHの添加によるKLHを用いた免疫沈降、37℃で30分間のインキュベーション、ならびに2000xgで5分間の遠心分離、浮遊物の回収によって、ELISAを用いるか、または更なるラウンドのKLH免疫沈降において浄化される。1/1000、1/2000、1/4000、1/8000、1/16000、および1/32000の希釈で、KLHで浄化した抗KGB抗血清を、1μM〜5mMのBMAA被覆濃度で、BMAAの2つの新規のバッチのそれぞれからのグルタルアルデヒド連結BMAAを有するプレートに添加し、プレートへの抗体結合を測定した。双方のBMAAバッチについては、抗KGB抗血清は、増加するBMAA被覆濃度に伴って、シグナルの強度(反応性)が増大することを示し、これにより、抗KGB抗血清が、BMAAに対して特異的な抗体を含むことを確認した。ここで使用したイムノアッセイは、10μMのBMAAの検出限度を有し、最大反応性(最大吸光度)を、双方のBMAAバッチに対して0.5mMのBMAA被覆濃度で測定した。
【0147】
それぞれのBMAA被覆濃度に対する異なる抗血清希釈のシグナル強度(反応性)を、BMAAの2つの異なるバッチのそれぞれに対して決定し、相関係数を、y軸上にP.Nunnからの合成BMAAからの値に対する、x軸上にSigmaからのBMAAの未使用のロットからの値のプロットから計算した。分離回帰分析を実行し、相関係数を、抗KGB抗血清の1/1000の希釈、1/200の希釈、および1/4000の希釈に対して計算した。相関係数は、異なるBMAAバッチ間で正相関(>0.89)を示した。しかしながら、それぞれの抗KGB抗血清希釈に対する回帰線の傾きは、同一の抗血清希釈物および同一のBMAA被覆濃度を用いて得られたシグナルが、P.Nunn(University of Portsmouth,UK)からの合成BMAAを用いて得られたシグナルに比べて、SigmaからのBMAAの未使用のロットに対して2倍高かったことを示した。1/1000の希釈物は、0.65の回帰線の傾きを有し、1/2000の希釈物は、0.56の回帰線の傾きを有し、1/4000の希釈物は、0.49の回帰線の傾きを有する。
【0148】
全ての源からのBMAAは、合成生成物であったが、それぞれの生成物は、異なる異性体の組成物であったことに留意すべきである。複合および免疫付与用に元の抗原として使用した、Sigma ロット番号097H4746からの合成BMAAは、94%を超えるL異性体を含有する場合、製造業者によって記載された。Peter Nunn(University of Portsmouth,UK)によって供給されたBMAAは、ほぼ等量で、L異性体のわずかに優位性がある、D形態とL形態の混合物を含有するものとして記載された(Peter Nunn、パーソナル通信)。回帰分析からの結果(上記参照)を、各生成物の異なる異性体の観点から評価し、これらの結果は、Sigma
ロット番号097H4746からのBMAAを用いて調製したKGBに対して産生される、主にL異性体(>94%のL異性体)の抗血清は、グルタルアルデヒドで捕捉されたL−BMAA異性体に優先的に結合することを示し、BMAAのD異性体との反応性をほとんど示さなかった。これらの条件下で、抗血清は、BMAAのL異性体に結合し、BMAAのD異性体には実質的に結合しなかった。
【0149】
精製されていないKGBに対して産生される抗血清(「正常」抗血清)の異性体特異性反応性が、明示された後、正常抗KGB抗血清の反応性を、部分的に精製された「KLHで浄化した」抗KGB抗血清および部分的に精製された「アラニンで浄化した」抗KEB抗血清と比較した。全ての抗血清を、1/1000および1/2000の希釈で、1μM〜5mMの被覆濃度で、ウェル中のBMAAへの結合を試験するために使用し、遊離BMAAは、500μMで存在した。双方の精製されていない「正常」抗KGB抗血清および部分的に精製されたKLHで浄化した抗KGB抗血清は、最大0.5mMのBMAAのBMAA被覆濃度の増加に伴って、BMAAで被覆したプレートへの結合の増加を示した。双方の希釈(1/1000および1/2000)の精製されていない「正常」抗KGB抗血清は、約0.5mMのBMAAの被覆濃度で結合のわずかな減少を示した。双方の希釈のKLHで浄化した抗KGB抗血清は、0.5mM〜5mMのBMAAの被覆濃度で、結合の安定期を示し、これは、約0.5mMを超えるBMAAの被覆濃度で、限定された抗体の抗体接近可能性および/または結合飽和を示し得る。対照的に、1/1000および1/2000の希釈で、アラニンで浄化した抗KEB抗血清は、1μM〜5mMのBMAAの任意の被覆濃度で、BMAA(即ち、BMAAで被覆したプレート)への検出可能な結合を示さなかった。
【0150】
精製されていない「正常」抗KGB抗血清(3回目の採血)を、上述の、間接競合結合アッセイに対して修正された、グルタルアルデヒド捕捉イムノアッセイを用いて、遊離BMAAに結合するその能力を決定するために試験した。試験ウェルは、50μM、200μM、500μM、1mM、および5mMのBMAAのグルタルアルデヒドで連結したBMAA被覆濃度で被覆した。500μMの濃度で、遊離BMAA、ならびに1/1000、1/2000、および1/4000の希釈で、正常抗KGB抗血清(3回目の採血)を、試験ウェルに添加し、ウェル中のグルタルアルデヒドで連結したBMAAへの抗体結合を決定し、遊離BMAAとの抗血清の反応性を決定するために、上述のように、%B
0値を計算した。本実験では、抗血清は、大部分のアッセイにおいて、遊離BMAA(即ち、%B
0<100)を検出する(と反応させる)ことができた。結果は、%B
0値が、BMAA被覆濃度の増加に伴って、あるいは抗血清濃度(低抗血清希釈)の増加に伴って、減少すると考えられる、一般的な傾向を示した。測定された最大%B
0値は、56%であり、これは、遊離BMAAへの抗体結合のため、ウェル上で被覆したBMAAへの抗体結合の44%の減少を示す。
【0151】
実施例6.抗BMAA抗体結合を検出するための増幅系
上述の実験は、BMAA複合体に対して産生される抗血清が、L−BMAAとの見かけの異性体特異性の反応性を有し、他のアミノ酸との交差反応がほとんどない抗体を含むことを構築し、抗血清は、約500μM(59μg/mL)の濃度で、遊離BMAAを検出するために使用することができた。下述されるように、実験は、抗血清の更なる精製を必要とせずに、遊離BMAAのシグナルおよび可検出性を向上するためのそれらの能力に対する種々の増幅系を評価するために実行した。
【0152】
抗BMAA抗体シグナルの増幅
イムノアッセイ感受性は、より多くの検出酵素を有する西洋ワサビペルオキシダーゼ(HRP)検出複合体を生成するために、VECTASTAIN(商標)ABC−ペルオキシダーゼキット(ウサギIgG用のVECTASTAIN(商標)ABC Eliteキット、Cat.No.PK−6101、Vector Laboratories,Burlingame CA)を使用することによって増加し、これにより、基質を添加すると、より強力な着色(更に強力なシグナル)、およびHRP共役IgG(IgG−HRP)を用いた標準アッセイと比較して、より高度な吸光度値をもたらした。抗体捕捉イムノアッセイにおいて、BMAA被覆濃度の増加に伴ってVECTASTAIN(商標)系を使用することによって、上記の実験に記載されるように、標準IgG−HRPを用いて測定されたシグナルと比較した場合、著しく強力な(増加した)シグナルの測定が可能であった。しかしながら、バックグラウンドシグナルはまた、VECTASTAIN(商標)系によって著しく増強され、これは、抗血清を評価する際に使用するべき適切な対照の開発を必要とする。
【0153】
VECTASTAIN(商標)系を、遊離BMAAを検出するための精製されていない正常抗KGB抗血清の能力における、異なるグルタルアルデヒド濃度、異なる遊離BMAA濃度、および異なる抗血清希釈の効果を測定するために、上述のグルタルアルデヒドで連結した抗体捕捉アッセイにおいて、間接競合アッセイ形式において使用する。BMAA被覆における効果について試験した2つのグルタルアルデヒド濃度は、0.2%のグルタルアルデヒドおよび0.5%のグルタルアルデヒドであった。ウェルは、100mM、50mM、および20mMのBMAAのBMAA被覆溶液を用いて、グルタルアルデヒド連結を通して、BMAAで被覆した。KGBに対して産生される抗血清の3番目の採血(KGB3)を、1/8000、1/16000、および1/20000の濃度で使用した。遊離BMAAを、1μg/mLおよび10μg/mLの濃度で、ウェルに添加し、対照ウェルは、添加した遊離BMAAがなかった。本実験の設計において、1/8000で抗血清を、双方のレベルの遊離BMAAとの反応性について試験し、即ち、本実験は、1/8000で抗血清を、1μg/mLの遊離BMAAでインキュベートし、1/8000で抗血清が、10μg/mLの遊離BMAAでインキュベートしたことを含んだ。1/16000の希釈および1/20000の希釈で、抗血清を、10μg/mLの遊離BMAAを用いてのみインキュベートした。VECTASTAIN(商標)増幅系は、結果を増幅するために、上述のように使用した。%B
0値を、ブランクの補正の有無にかかわらず計算した。
【0154】
全ての実験的設計からの結果は、抗KGB抗血清が、遊離BMAAと反応した抗体を含有したことを示し、即ち、%B
0<100は、遊離BMAAに結合した抗体が、ウェルを被覆するグルタルアルデヒドで連結したBMAAに結合しなかったことを示した。遊離BMAAの効果は、10μg/mLの遊離BMAAを用いてインキュベートした場合、1/16000および1/20000の希釈で、抗血清に対して最も顕著であった。ウェルを被覆するBMAAにおけるそれらの効果について試験した双方のグルタルアルデヒド濃度(即ち、0.2%および0.5%のグルタルアルデヒド)で、アッセイは、1μg/mLおよび10μg/mLの濃度で、遊離BMAAが、ブランクに対する%B
0値を補正する前および後の双方で、イムノアッセイによって検出することができたことを示した。
【0155】
イムノアッセイ感受性を変えるための更なる修正
精製されていない「正常」抗KGB抗血清を示した前述の標準イムノアッセイ系は、59μg/mLで遊離BMAAを検出することができ、VECTASTAIN(商標)増幅系の使用は、向上した検出を提供した。潜在的なBMAAイムノアッセイの感受性、特に、ビオチン化等の化学修飾を更に向上するために、更なる開発および修正が実行した。
【0156】
VECTASTAINと組み合わせたビオチン−アビジンの増幅 ビオチン−アビジン反応は、既知の最大親和性反応の1つであり、ビオチン化プローブは、アビジン系を用いて、酵素または固相に、迅速かつ特異的に付着させることができる。ビオチン化BMAAプローブを、下述のように、産生され、BMAAイムノアッセイの感受性および特異性を向上するために、VECTASTAIN(商標)キットからのアビジン−HRP複合体と組み合わせて使用した。
【0157】
直接ELISAを用いた抗BMAA抗血清とのビオチン−BMAAの反応性
ビオチン化BMAAを、ウェルが、種々の希釈で、抗血清で被覆したELISA設計を用いて試験し、種々の量のビオチン化BMAAを、ウェルに添加し、固定化抗体へのビオチン化BMAAの結合を測定した。アッセイの目的は、ビオチン−BMAA複合体が、BMAAイムノアッセイで用いるのに実現可能であるかどうかを決定することと、ビオチン化BMAAが、BMAA複合体に対して産生される抗血清に結合するかどうかを決定するであるため、ELISAは、直接的な抗体結合アッセイであり、遊離BMAAを使用しなかった。
【0158】
簡潔に述べると、KEBおよびKGBに対して産生される抗血清を、アッセイプレート上で被覆し、種々の希釈で、ビオチン−BMAAプローブを、抗血清で被覆したウェルに添加し、各ウェル中の固体化抗体へのビオチン−BMAA結合を、発色マーカー、例えば、HRPに複合したアビジンを用いて、測定した。
【0159】
ビオチン化BMAAを以下の通りに調製した。1.18mg/mLの濃度で、PBS中のBMAAの溶液を調製した。ビオチン(リンカーを有する)溶液を、PBS中の6.99mg/mLの溶液を調製するために、十分なEZ−link Sulfo−NHS−LC−LC−ビオチンを用いて、調製した。混合および標識のために、1mLのBMAAを、1mLのビオチン溶液と混合し、成分を、ELISAにおいて使用する前に、室温で反応させた。1MのBMAA−ビオチン(ビオチン化BMAA)のストック溶液を調製し、体積基準で希釈した。1Mで、ビオチン−BMAAのストック溶液を、1/100(0.01M)、1/500(0.002M)、1/1000(0.001M)、1/5000(0.0002M)、1/10000(0.0001M)、1/50000(0.00002M)、および1/100000(0.00001M)(vol/vol)の希釈で使用した。
【0160】
以下の抗血清を使用した。抗KEB抗血清、KEBで免疫付与した第2のウサギからの6番目の採血(EDC6、ウサギKLH−EDC2−BMAAからの6番目の採血);抗KGB抗血清、9番目の採血(GLU9)。各抗血清は、単一の収穫(単一の「採血」)を示し、硫酸アンモニウム沈殿によって初期部分精製に供した。抗血清は、下述されるように、ELISAにおいて使用する前に、PBS中で1/1000、1/5000、および1/10000に希釈した。
【0161】
ELISAについては、ウェルは、100μLのアリコートの希釈された抗血清を添加し、プレートを37℃で1時間インキュベートすることによって、抗血清で被覆した。プレートは、PBSTを用いて3回洗浄した。プレートのウェルを、PBS中の180μLの1%のMarvel乾燥粉乳でブロックし、プレートを37℃で1時間インキュベートした。その後、プレートにビオチンBMAA複合体を添加する前に、プレートは、PBSTを用いて3回洗浄した。PBSTを用いて3回洗浄する前に、プレートを37℃で1時間インキュベートした。VECTASTAIN(商標)増幅キットを用いて供給された100μLのアリコートのアビジン−HRP複合体を、各ウェルに添加し、次いで、37℃で1時間インキュベートした。室温で30分間、TMB基質(1ウェル当たり100μL)を添加する前に、プレートは、PBSTを用いて3回洗浄した。1MのH
2SO
4(100μL)を添加することによって、反応を停止し、450nmでの吸光度を各ウェルに対して測定した。
【0162】
固定化抗体(抗血清)へのBMAA結合は、強力なシグナル用量反応を示し、シグナル強度の低下(A
450 BMAA−ビオチンプローブへの抗体結合を示す)は、BMAA−ビオチンプローブの「用量」が低下する際に、低下した。全ての希釈(1/1000、1/5000、および1/10000)で、双方の抗血清(抗KEBおよび抗KGB)は、BMAA−ビオチンの低下(即ち、BMAA−ビオチン希釈の増加)に伴って、シグナル強度が低下する同一のシグナル用量パターンを示した。
【0163】
異なる検出プローブ:単一の(増幅していない)アビジン−HRPプローブ
別の実験では、異なる市販の単一の(増幅していない)HRP−アビジンプローブを、VECTASTAIN(商標)HRP−アビジン複合体を使用するための代替物として、抗KGB抗血清からの固定化抗体に結合したBMAA−ビオチンプローブを検出するために使用した。上述のように、ELISAが実行した。簡潔に述べると、抗KGB抗血清(9回目の採血、上記参照)を、1/1000の希釈で、アッセイプレート上で被覆し、上述のように、1/100(0.01M)〜1/100000(0.00001M)の希釈で、ビオチン−BMAAをウェルに添加した。市販の単一のHRP−アビジンプローブ(Sigma−Aldrich,Cat.No.1−3151、250μg/mL)を、固定化抗体へのビオチン−BMAAの結合を検出する能力について試験した。アビジン−HRPを、異なる強度の溶液:アビジン−HRPで希釈された(vol/vol)、1/1000、1/2000、1/4000、および1/6000を提供するために希釈した。各ビオチン−BMAA濃度を、アビジン−HRPのそれぞれの希釈を用いて測定した。
【0164】
強力なシグナル用量反応を、単一のアビジン−HRPプローブを用いて、観察した。各ビオチン−BMAA濃度(希釈)については、最強シグナルが、1/1000の希釈で、即ち、HRP−アビジンプローブの最大濃度で、HRP−アビジンプローブを用いたアッセイにおいて見られた。各ビオチン−BMAA希釈については、シグナル強度は、HRP−アビジン濃度に伴って低下した、即ち、シグナルは、HRP−アビジンプローブが、次第に希釈されると共に低下した。
【0165】
ビオチン−BMAAの存在下で、遊離BMAAとの抗BMAA抗血清の反応性
アッセイウェルを異なる希釈で、ビオチン−BMAAで被覆し、市販の単一のHRP−アビジンプローブを、異なる希釈で、5μg/mLの濃度で、遊離BMAAとの抗KGBおよび抗KEB抗血清の反応性を検出するための間接競合ELISA形式において使用した。双方の抗KGBおよび抗KEB抗血清は、5μg/mLの遊離BMAAとの反応性を示し、%B
0<100の測定値によって立証されるように、最強の反応は、78%の低%B
0値を有する抗KGB抗血清で見られた。
【0166】
実施例7.免疫ブロットにおけるBSA−BMAA複合体を検出するための抗BMAA抗体の使用
BMAAが、種々の方法で、ペプチドおよびタンパク質と会合され得、これには、ペプチドの表面への物理的付着もしくは会合、および/またはポリペプチド鎖へのBMAAの取り込みが含まれることを理解されたい。上述の実験は、KLH−BMAA複合体に対して産生される抗血清(抗KGBおよび抗KEB抗血清)は、複合および遊離形式でのBMAA(即ち、複合したBMAAおよび遊離BMAA)を認識することが可能な抗体を含有することを示した。したがって、上述のように、BMAA複合体に対して産生される抗血清を、免疫ブロット(ウエスタンブロット)におけるポリペプチドとのBMAAの会合を検出するために使用した。ある実験では、抗血清は、種々のタンパク質調製の免疫ブロット(ウエスタンブロット)をプローブし、これらの抗血清を、タンパク質会合BMAAを認識することができるかどうかを決定するために使用した。
【0167】
上述の実験において立証されるように、抗KGBおよび抗KEB抗血清は、BMAA−BSA複合体を認識することが可能であった。したがって、抗KGBおよび抗KEB抗血清を、BSAおよび種々のBSA−BMAA複合体のウエスタンブロットをプローブするために使用した。以下の試料を、SDSゲル電気泳動法に供し、ウエスタンブロット(免疫ブロット)分析のために細胞膜に移した。BSA−GLU−BMAA(BGB)、BSA−EDC−BMAA(BEB)、および複合していないBSA(天然タンパク質)。BSA−BMAA複合体のプローブブロットへのKLHで複合したBMAAに対して産生される抗血清を用いた免疫ブロットからの結果は、免疫ブロットにおける高分子量タンパク質(例えば、BSA)の表面に化学結合した(複合した)BMAAの検出についての期待できる兆候を示した。
【0168】
タンパク質は、ポリアクリルアミドゲル(1レーン当たり10μgのタンパク質)上に充填され、BioRad Mini−PROTEAN(登録商標)II(BioRad,Hercules CA)を用いて、200Vで約40分間、4%のスタッキングゲル、次いで、12%の分離ゲルを通して電気泳動に供した。
【0169】
タンパク質を、以下の通りに、室温で一晩、ポリアクリルアミドゲルからニトロセルロース膜に転移した(BioRad Mini Trans−Blot(登録商標)、BioRad,Hercules CA)。転移緩衝液(3.03gのトリス、14.4gのグリシン、200mLのメタノール;水を用いてILまで作製)を調製し、4℃で保存した。各ニトロセルロース膜を、タンパク質が転移するゲルの寸法に適合するように切断した。ゲル、ニトロセルロース膜、ろ紙、および転移緩衝液中のファイバーパッドに浸漬することによって、転移する前に、全ての構成成分を予め湿らせ、平衡化した。「サンドイッチ」を、清浄表面上の外側(灰色)があるホルダーカセットを開口し、カセットの灰色側に予め湿らせたファイバーパッドを置き、ファイバーパッド上に1枚のろ紙を置き、気泡を除去するように十分注意し、ゲル上に予め湿らせたニトロセルロース膜を置き、気泡を除去するように十分注意し、ニトロセルロース膜上にろ紙を置き、最後にファイバーパッドを添加し、ホルダーカセットを閉口することによって調製した。冷却ユニットを添加し、転移緩衝液で完全にタンクを充填した後、30Vで、90mAで、一晩(約18時間)、転移を行った。転移が完了したと見なした後、転移の質およびタンパク質バンドの位置は、Ponceau Sを用いた可逆的に染色することによって、視覚化することができた。必要に応じて、細胞膜は、本ステップ中、印を付けた。
【0170】
免疫ブロット分析については、細胞膜を、転移ユニットから除去し(または、適切な場合、Ponceau Sの脱染色溶液から除去し)、0.1%の乾燥粉乳(Marvel ブランド)/PBST中で、1時間インキュベートした。次いで、細胞膜を、PBSTを用いて、1回の洗浄当たり5分間、3回(3×5)、洗浄した。必要に応じ、ニトロセルロース膜を、試料レーンに対応するストリップに切断した。細胞膜を、種々の希釈で、2時間、一次抗体を用いてインキュベートし、次いで、PBSTを用いて、1回の洗浄当たり5分間、3回(3×5)、洗浄した。本明細書に記載の実験では、抗KGB抗血清の9回目の採血(GLU9 AS)および抗KEB抗血清の第2のEDCウサギの6回目の採血(EDC6 AS)を、1/100、1/200、および1/500の希釈で、一次抗体として使用した。二次抗体標識のために、細胞膜を、IgG−HRP(1:250)を用いて、2時間インキュベートし、次いで、PBSTを用いて、1回の洗浄当たり5分間、3回(3×5)、洗浄した。ペルオキシダーゼ基質を、5mLの冷却メタノール中の15mgの4−クロロナフタールの溶液と、25mLのPBS中の15μLのH
2O
2の溶液を混合することによって調製した。抗体結合を視覚化するために、発色ペルオキシダーゼ基質を、2つの溶液を一緒に混合し、洗浄した細胞膜に適用することによって調製した。バンドを展開させる際(通常、約5〜10分間)に、反応を監視した。水を添加することによって、更なる展開を停止した。次いで、細胞膜(全細胞膜および/またはストリップ)を、ブロット乾燥させた。
【0171】
全ての転移したBSA含有タンパク質を視覚化するためのニトロセルロース膜のPonceau S染色からの結果は、同一の細胞膜上の転移したタンパク質への抗体結合を示す免疫ブロット(ウエスタンブロット)の結果と比較した。ウエスタンブロットからの結果は、Ponceauブロットとの類似性および差異を示した。抗KGB抗血清(9回目の採血、Glu9 AS)が、ブロットをプローブするための一次抗体として使用した場合、抗血清調製の全ての強度(1/100、1/200、および1/500の希釈)は、BGB試料(
図4、ブロットA、B、およびCのレーン1)と反応すると考えられたが、BEB試料(
図4、ブロットA、B、およびCのレーン2)、または天然BSA(
図4、ブロットA、B、およびCのレーン3)と反応するとは考えられなかった。抗KGB抗血清を用いた、BGB複合体は、試料に対して以前に観察されたPonceau染色と一致した抗体染色を示し、ここで、BGB試料は、191、85、および70kDaに対応する位置(
図4、ブロットA、B、およびCのレーン1)でバンドの強い染色を示した。天然BSA対照との反応性の不足は、抗KGB抗血清の反応性が、BMAAおよび/またはGLU架橋剤に対して特異的であり、BSAとの特異的な反応性がなかったことを示す。EDCで架橋結合した複合体(BSA−EDC−BMAA、BEB)との反応性の欠如は、抗KGB抗血清がBEBを認識することができたことを前述のイムノアッセイの結果が示したため(上述参照)、解釈し難く、これは、抗KGB抗血清が、ウエスタンブロット上でBEBにおけるエピトープを認識することが期待され得ることを示唆した。
【0172】
抗KEB抗血清(6回目の採血、EDC6 AS)が、ブロットをプローブするための一次抗体として使用した場合、抗血清調製の全ての強度(1/100、1/200、1/500)は、BEB(
図4、ブロットD、E、およびFのレーン2)およびBGB試料(
図4、ブロットD、E、およびFのレーン3)と反応し、ゲルを通して観察された染色および強く染色するバンドは、191、167、60、53、35、29、21、および10kDaに対応する位置で同定されると考えられた。1/100の希釈で、抗KEB抗血清は、天然BSA(
図4、ブロットD、レーン1)とわずかな反応を示したが、1/200および1/500の希釈(
図4、ブロットE、レーン1およびブロットF、レーン1)では反応は見られなかった。双方のBSA−BMAA複合体(BEBおよびBGB)との抗KEB抗血清の反応性は、以前のELISA結果に従って、抗KEB抗血清が双方のBEBおよびBGBを認識することができたことを示している(上記参照)。
【0173】
実施例8.キリンドロスペルモプシス ラキボルスキイ株CR3からのシアノバクテリアタンパク質調製剤の免疫ブロット分析
免疫ブロット分析を、キリンドロスペルモプシス ラキボルスキイ株CR3からのシアノバクテリアタンパク質調製において行い、これは、タンパク質分画中のBMAA(タンパク質結合BMAA)に加えて、大量の細胞質BMAA(遊離BMAA)を含有することが以前より知られていた(Cox et al. (2005) Proc Natl Acad Sci USA 102:5074−5078)。キリンドロスペルモプシス
ラキボルスキイ株CR3(「CR3」)は、University of Dundeeでの大量培養から収穫され、以下の通りに調製した。175mLのフィラメント状のシアノバクテリアの後期対数増殖期(late log phase)培養の試料を除去し、ガス胞は、機械的衝撃(作業台上で充填した遠心分離管を激打すること)によって崩壊させた。フィラメントを、3500rpmで、10分間遠心分離した(Heraeus Labofuge 400)。浮遊物を除去し、ペレットを再懸濁し、4000rpmで、更に遠心分離するために1.5mLの微小遠心管に移した(2.5分間、Eppendorf centrifuge 5415D)。浮遊物を再度除去し、ペレットを、pH7.5で、1mLの最終容量まで、50mMのトリス緩衝液中で再懸濁した。懸濁液を、約1分間、氷上で超音波処理し、細胞を分解し、タンパク質を放出した。懸濁液を、再度遠心分離し、浮遊物のタンパク質濃度を、色素結合タンパク質(Sigma)を用いて、595nmで吸光度を測定して分析した(Bradford,1976,Anal Biochem 72:248−254)。次いで、懸濁液を、1mMの最終濃度までのEDTAおよび10%(v/v)の濃度までのグリセロールを添加することによって修正した。
【0174】
電気泳動法および免疫ブロット分析前に、CR3タンパク質調製の一部の試料を、BMAAが、シアノバクテリアタンパク質調製物中に存在する任意のタンパク質と反応するかどうかを試験するための試料を調製するために、遊離BMAAで予めインキュベートした(BMAAを「添加した」)。天然BSAを対照として使用した。
【0175】
SDS−PAGEを、上述のように、1レーン当たり28μgのタンパク質(28μgのCR3全タンパク質抽出物)を充填し、4%のスタッキングおよび12%の分離ゲルを用いて行い、ニトロセルロース膜に転移させた。タンパク質が、ニトロセルロース膜に転移した後、抗KGB抗血清(9回目の採血、KGB9)および抗KEB抗血清(6回目の採血、KEB6)を、CR3タンパク質のウエスタンブロットをプローブするために一次抗体として使用した。
図5に示されるように、双方の抗KGBおよび抗KEB抗血清は、CR3タンパク質調製においてタンパク質上の1つ以上のエピトープと反応した(全てのブロットのレーン2)。双方の抗血清は、CR3タンパク質と反応したが、反応プロファイルは異なった。抗KGB抗血清は、10〜120kDaの範囲の分子量を有するタンパク質と反応した。抗KEB抗血清は、21〜196kDaの範囲の分子量を有するタンパク質と反応した。遊離BMAAとのCR3タンパク質調製物の予めインキュベート(「添加」)は、抗血清反応性における検出可能な効果がなかった(全てのブロットのレーン3)。これらの結果は、CR3シアノバクテリアタンパク質調製物が、抗BMAA抗血清によって認識されるエピトープを持つタンパク質を含有したことを示した。
【0176】
BSA対照は、試験した最高の抗血清希釈(1/100)で、双方の抗血清とのわずかな反応性を示したが、抗血清濃度が低下した際には、この反応性は、見られなかった。この結果は、一次抗体が、高濃度で存在する場合、一部は、BSAに対して非特異的結合を示した(
図5、全てのブロットのレーン1)。
【0177】
実施例9.免疫ブロットにおける非特異的反応性の試験
免疫ブロット上で観察された反応性の一部(上記参照)が、非特異的反応性のためによるものである可能性を試験するために、免疫ブロット分析を、低希釈のBMAAに対して産生される抗血清(抗KGBおよび抗KEB)、およびヌル(免疫前)血清を用いて実行した(
図6)。キリンドロスペルモプシス ラキボルスキイ株CR3(「CR3」)抽出物および天然BSAの試を、非特異的反応性について評価した。SDS−PAGEのために、28μgのタンパク質(CR3 全タンパク質抽出物)または10μgのBSAを、各レーンにおいて充填し、ゲル組成物、走行条件、転移条件、および免疫ブロット条件は、上述の通りであった。
【0178】
抗KGB抗血清(KGB9)を、1/200、1/500、1/1000、および1/2000の希釈で、一次抗体として使用した。抗KEB抗血清(EDC6)を、1/200、1/500、1/1000、および1/2000の希釈で、一次抗体として使用した。免疫付与前にウサギから回収したヌル血清(NS)を、1/200の希釈で、一次抗体として使用した。
【0179】
双方の抗血清は、全ての希釈で、CR3抽出物においてタンパク質との反応性およびBSA試料とのごくわずかな反応性を示した。抗KGBおよび抗KEB抗血清について見られる反応性パターンの比較は、抗KEB抗血清が、多数のタンパク質バンドと反応し、これらのバンドの染色は、更に顕著であることを示した一方、抗KGB 抗血清は、1つのタンパク質複合体のみと反応すると考えられた。抗KEB抗血清は、全ての希釈で、ブロット上で可視的な異なるバンドを有する、約66kDaの平均分子量に対応する領域において、CR3タンパク質と反応した。1/200の希釈で、抗KEB抗血清は、約54〜66kDaの分子量に対応する領域において、BSAとの反応性を示した。抗KGB抗血清は、約50kDaの平均分子量に対応する領域において、CR3タンパク質との強力な反応性を示した。ヌル血清はまた、約50kDaの平均分子量に対応する、同一の領域において、CR3タンパク質との反応性を示した。
【0180】
CR3抽出物では、NSは、50〜60kDaのバンドと反応した(レーン2、12)。しかしながら、染色の強度を比較した場合、抗KGB抗血清が、著しく高い染色強度を示し、CR3試料において、多くのタンパク質バンドを認識したことは明らかであった。この差異はまた、抗KEB抗血清およびヌル血清(NS)を比較した場合、見られたが、対比は、あまり劇的ではない。この実験では、ヌル血清を用いた前回の実験が、異なるBMAA複合体で免疫付与する前に異なるウサギから採取したヌル血清間の差異を示さなかったので、ヌル血清(NS)を、1匹のウサギから回収し、その結果、BMAAまたはBMAA複合体とのいずれのウサギ特異的反応性も前兆候はなかった。これらの結果から、バンドが、ヌル血清(NS)対照でインキュベートした細胞膜に出現し始める場合、着色反応が停止したので、ヌル血清(NS)を、ウエスタンブロットに対する対照指標として使用した。つまり、特異反応は、恐らく完了し、いかなる更なる着色が、恐らく、非特異反応によるものであることを理解されるため、バンドがNSを用いてプローブした試料中に出現し始める場合、着色反応を停止する。
【0181】
抗KEB抗血清は、多種多様のCR3タンパク質バンドと反応すると考えられ、バンドが、抗KGB反応タンパク質よりも更に画定されたため、下述の分析における抗KGB抗血清よりも更なる希釈で、抗KEB抗血清を使用し得ると判断された。更に、より濃縮した抗血清溶液(例えば、1/100の希釈)が、非特異的結合の増加をもたらすと考えられたため、一次抗体の低濃度(高希釈)は、BMAA含有タンパク質の特異的検出の可能性を向上させるために、下述の分析において使用した。
【0182】
実施例10.他のシアノバクテリア株からのタンパク質調製物の免疫ブロット分析
タンパク質抽出物を、タンパク質プロファイルと抗血清反応性を比較するために、抗KGBおよび抗KEB抗血清を用いて、免疫ブロット分析用に追加のシアノバクテリア株から調製した。全タンパク質抽出物を、ミクロキスティス(Microcystis)株PCC7820、スピルリナ(Spirulina)株PCC8005、およびバルチックノドゥラリア(Baltic Nodularia)から調製した。キリンドロスペルモプシス ラキボルスキイ株CR3(「CR3」)からのタンパク質調製物は、比較用の分析および陽性対照として含まれた。各株からの試料を、SDS−PAGE用のゲル(29μgのタンパク質/レーン)上に充填し、ゲル組成物(例えば、4%のスタッキング、12%の分離)、走行条件、転移条件、および免疫ブロット条件は、上述の通りであった。
【0183】
SDS−PAGEゲルは、各シアノバクテリアタンパク質調製物に対するタンパク質プロファイルを示すために、クマシー染色を用いてタンパク質を染色した。SDSゲルを、更に感受性が高い硝酸銀染色で染色し、感受性の低いクマシーブルーと比較した場合、追加のタンパク質バンドが見られ、これは、クマシー染色では見られなかったが、免疫ブロット(ウエスタンブロット)分析によって潜在的に検出可能であった、抽出物において、様々なタンパク質の存在を示した。タンパク質が、SDS−PAGEゲルからニトロセルロース膜に転移した後、タンパク質転移は、タンパク質を視覚化するためにPonceau Sを用いて細胞膜を可逆的に染色することによって評価された。SDS−PAGEゲルを、タンパク質が、ゲル中に存在し(前)、ゲルからニトロセルロース膜に転移した(後)ことを確認するために、転移前後、タンパク質について試験し。
【0184】
4つのシアノバクテリアタンパク質抽出物のブロットを、BMAA複合体に対して産生される抗血清が、これらの抽出物において、タンパク質と反応するかどうかを決定するため、および任意の特定のシアノバクテリアタンパク質が、BMAAに会合したものであると考えられるかどうか間接的に調査するために、抗KEB抗血清および抗KGB抗血清を用いてプローブした。4つのシアノバクテリアタンパク質抽出物のブロットをまた、非特異的反応性について試験するために、ヌル血清(NS)を用いてプローブした。タンパク質株からの染色パターンおよび結果、ならびに免疫ブロットを比較した。
【0185】
抗BMAA抗血清を用いてプローブした免疫ブロットを、ヌル血清を用いてプローブした免疫ブロットと比較した場合、抗BMAA抗血清で見られた反応は、異なるパターンおよび更に高いシグナル強度を示した。シアノバクテリアタンパク質調製物で抗BMAA抗血清の反応の強度は、各株に対して異なり、キリンドロスペルモプシス ラキボルスキイCR3が、最も強い(濃い色)反応を示し、ミクロキスティスPCC7820が、次に強く、次いで、スピルリナPCC8005、最も弱い(淡い色)反応が、バルチックノドゥラリアで見られた。免疫ブロットを、ヌル血清を用いてプローブした場合、約59kDaの分子量を有するタンパク質に対応するバンドが観察された。免疫ブロットを、抗BMAA抗血清でプローブした場合、バンドが、以下の通りに、各株において標識された。CR3のために、約243、149、129、および114KDaの分子量を有するタンパク質に対応するバンドが標識され、約42〜104kDaの分子量を有するタンパク質に対応する「塗布標本」が標識された。PCC8005のために、約249、129、44、および29kDaの分子量を有するタンパク質に対応するバンドが標識された。バルチックノドゥラリアのために、136、123、44、および30kDaの分子量を有するタンパク質に対応するバンドが標識された。PCC7820のために、約69〜106kDaの分子量を有するタンパク質に対応する「塗布標本」が標識された。
【0186】
実施例11.市販の生物を用いた抗BMAA抗血清の反応性
シアノバクテリアが、抗BMAA抗血清の反応性の株特異性のある差異を示したため(上記参照)、他の生物を、抗BMAA抗血清とのそれらの潜在的な反応性を解明するために、免疫ブロット分析によって評価した。パン酵母(サッカロマイセスセレヴィシエ)の市販の栄養補助食品および「緑藻類」(クロレラ種)の食物栄養補助食品を、免疫ブロットによって抗BMAA抗血清とのそれらの反応性について試験した。クロレラ食物栄養補助食品からのタンパク質調製物は、抗BMAA抗血清と強く反応し、パン酵母(サッカロマイセスセレヴィシエ)調製物は、わずかな反応性を示した。
【0187】
実施例12.大腸菌、テトラセルミス、およびクロレラとの抗BMAA抗血清の反応性
上述の試験した市販の製品の起源が構築され得なかったため、更なる研究を、公知の歴史と共に純粋な株を用いて実行した。更に、ある生物のこれらの純粋な株を、シアノバクテリアとの比較のために、見込まれる「陰性対照」として試験した。シアノバクテリアとの可能なBMAA会合の状況が、より良好に理解され得るように、大腸菌(株HK29;Dr.H.K.Young,University of Dundee)、緑藻クロレラブルガリス(Chlorella vulgaris)および緑藻テトラセルミス種の純粋株を、可能な陰性対照として得た。
【0188】
大腸菌(株HK29)、クロレラブルガリス、およびテトラセルミス種の純粋株を、得、収穫し、全タンパク質抽出物を調製した。各株からの試料を、SDS−PAGE用のゲル(29μgのタンパク質/レーン)上に充填し、ゲル組成物(例えば、4%のスタッキング、12%の分離)、走行条件、転移条件、および免疫ブロット条件は、上述の通りであった。キリンドロスペルモプシス ラキボルスキイCR3のタンパク質調製物を比較用として含んだ。
【0189】
図7に示されるように、CR3タンパク質試料との期待された反応性のパターンが見られ、他の生物からのタンパク質試料は、ブロットをプローブするために使用する抗血清との幾つかの反応性を示した。1/500もしくは1/1000で、抗KEB抗血清、あるいは、1/500(試験した希釈のみ)で、抗KGB抗血清は、いずれも、緑藻類、クロレラ、およびテトラセルミスのいずれのタンパク質との検出可能な反応性を示さなかった。
【0190】
1/500の希釈で、抗KEB抗血清(EDC6 AS)は、約124、89、59、および35kDaの分子量を有するタンパク質に対応するCR3試料中のバンドが標識され(
図7、レーン6)、1/1000の希釈で、抗KEB抗血清は、約121、94、79kDaの分子量を有するタンパク質に対応するCR3中のバンドが標識された(
図7、レーン12)。1/500で、抗KEB抗血清は、約124、97、86、79、73、59、50、46、38、35、27、24、22、16、12、11、および9kDaの分子量を有するタンパク質に対応する大腸菌試料中のバンドの強力な標識を示した(
図7、レーン7)。1/1000の希釈で、抗KEB抗血清は、約109、98、88、61、48、43、38、27、25、23、16、14、13、および9kDaの分子量を有するタンパク質に対応する大腸菌試料中のバンドが弱く標識されたが、バンドは、1/500で、抗血清を有するものよりもはるかに低い強度で標識された(
図7、レーン13)。
【0191】
1/500の希釈で、抗KGB抗血清は、約84〜36kDaの範囲の分子量を有するタンパク質に対応する「塗布標本」のCR3試料においてバンドが標識された(
図7、レーン16)。1/500の希釈で、抗KGB抗血清は、約66、58、49、44、および24kDaの分子量を有するタンパク質に対応する、大腸菌試料において、バンドの強力な標識を示した(
図7、レーン17)。
【0192】
ヌル血清(1/500の希釈で)は、CR3との反応性をほとんど示さなかった(
図7、レーン2)。大腸菌試料では、ヌル血清は、約91、13、および12kDaの分子量を有するタンパク質に対応するバンドが標識された(
図7、レーン3)。クロレラでは、ヌル血清は、約11kDaの分子量を有するタンパク質に対応するバンドが標識された(
図7、レーン4)。テトラセルミスでは、ヌル血清は、約10kDaの分子量を有するタンパク質に対応するバンドが標識された(
図7、レーン5)。
【0193】
大腸菌株HK29のタンパク質との抗KEBおよび抗KGB抗血清の反応性は、同一量の全タンパク質抽出物が、各レーンに充填された場合、以前試験したシアノバクテリア株のいずれかのタンパク質との抗血清の反応性よりも強力であった。大腸菌調製における広範な特異タンパク質バンドは、双方の抗血清によって染色された。大腸菌株HK29の試料を、収穫し、HPLCによるBMAA分析のためにフリーズドライした。
【0194】
変性SDS−PAGEを使用して、上記で試験した全ての生物からのタンパク質を分離したため、ならびに免疫ブロット上で抗KGBおよび抗KEB抗血清が標識された種々の異なるタンパク質バンドが、種々の生物からのタンパク質を分離し、変性したため、合成免疫複合体との反応性の分析によって立証されるように、およびBMAA複合体に対して産生される抗血清が、生きている生物からのタンパク質抽出物と反応することを示す結果によって実証されるように、上記の実験は、BMAAがポリペプチド鎖に取り込まれることを示唆した。
【0195】
種々の修正は、添付の請求項に定義されるように、本発明の精神および範囲から逸脱されることなく、好ましい実施形態になされ得る。