【実施例】
【0043】
以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。
【0044】
実施例1〜10及び比較例1〜8
(赤外線透過ガラスの作製及び得られたガラスの評価)
石英アンプルを用意し、内部を精製水で洗浄した。次にロータリー真空ポンプを作動させて真空下で石英アンプルをバーナーで熱して水分を蒸発させた。次に下記表1に示される組成となるように各成分の原料を混合して石英アンプル内部に入れ、ロータリー真空ポンプでアンプル内部を十分に真空にした後、H
2−O
2バーナーを用いて封管した。
【0045】
封管した石英アンプルを20℃/時間の昇温速度で950℃まで昇温後、同温度で8時間保持した。次に室温まで自然冷却して内容物をガラス化させた。
【0046】
内容物がガラス化されていることを確認するために、X線回折装置を用いて内容物のXRD測定を行った。その結果、実施例1〜10、比較例1〜3及び比較例8の内容物はガラス化していた。他方、比較例4〜7の内容物はガラス化しておらず結晶が生成していた。ガラス化したものを○とし、ガラス化していないものを×とし、表1に示す。
【0047】
図1に、実施例3(Ga
13Sb
24S
55Cs
4C
l4)、実施例5(Ga
5Sb
33S
57Sn
5)及び比較例7(Ga
2Sb
33S
53Sn
12)で得た内容物のX線回折パターンを示す。
【0048】
次にガラス化された内容物(以下「ガラス試料」という)について、ガラス転移温度、結晶化温度及び透過限界波長を測定し、結果を表1に示した。
【0049】
図2に、実施例3(Ga
13Sb
24S
55Cs
4C
l4)、実施例5(Ga
5Sb
33S
57Sn
5)及び比較例8(Ge
12Sb
23S
58Cs
4Cl
4)で得たガラス試料の可視域及び赤外域における透過スペクトルを示す。
図2の結果から明らかな通り、比較例8のガラス試料と比べて、実施例3及び実施例5のガラス試料は、長波長側の透過限界波長がより長波長側にシフトしており、大気の窓を十分にカバーできていることが分かる。また、実施例3のガラス試料は、ハロゲンとCsとを含有することにより可視域の一部に透過領域が確保されていることが分かる。
【0050】
【表1】
【0051】
【0052】
〔表1中、1)〜3)の意味は次の通りである。
1)○:ガラス化、×:ガラス化せず
2)△T=結晶化温度(Tc)−ガラス転移温度(Tg)
3)厚さ1mmのガラス試料を用いて測定した透過スペクトルのうち、最高の透過率の半分になる波長で定めた長波長側の赤外線透過限界波長〕
(赤外透過レンズの作製)
実施例4のガラス試料を窒素雰囲気中270℃においてモールド成型をし、非球面レンズを作製した。その結果、良好な非球面レンズが作製できた。他の実施例で得られたガラス試料を用いる場合にも、同様に良好な非球面レンズが作製できる。
【0053】
実施例11〜18
(赤外線透過ガラスの作製及び得られたガラスの評価)
石英アンプルを用意し、内部を精製水で洗浄した。次にロータリー真空ポンプを作動させて真空下で石英アンプルをバーナーで熱して水分を蒸発させた。次に下記表2に示される組成となるように各成分の原料を混合して石英アンプル内部に入れ、ロータリー真空ポンプでアンプル内部を十分に真空にした後、H
2−O
2バーナーを用いて封管した。
【0054】
封管した石英アンプルを20℃/時間の昇温速度で950℃まで昇温後、同温度で8時間保持した。次に室温まで自然冷却して内容物をガラス化させた。
【0055】
内容物がガラス化されていることを確認するために、X線回折装置を用いて内容物のXRD測定を行った。その結果、実施例11〜18全ての内容物はガラス化していた。
【0056】
次にガラス化された内容物(ガラス試料)について、ガラス転移温度、結晶化温度(結晶化の有無の判断も含む)及び透過限界波長を測定し、結果を表2に示した。
【0057】
結晶化温度Tcとガラス転移温度Tgの差△Tが大きいほど、ガラスは熱的な安定性が高くモールド成形性が良好であることを意味する。そして、△Tが200Kを超える場合には極めてモールド成形性が高いといえる。例えば、非特許文献(Adv. Mater. 19, 3796〜3800 (2007))によれば、△T=124Kのガラスでもガラス転移温度以上の温度で加圧成形(モールド成形)して光学的な特性(透過率)は全く変化しなかったと報告されているため、△Tが200K以上であればモールド成形性は極めて高いといえる。
【0058】
実施例11〜18で得られたガラスは、結晶化温度が測定される場合は△T>200Kであり、結晶化温度が測定されない場合(実施例13、16及び17)も含まれていた。結晶化温度が測定されない場合とは、600℃まで加熱した実験条件下において結晶化が認められなかった場合を意味する。当該結果から、実施例11〜18で得られたガラスは何れも極めてモールド成形性が高いといえる。
【0059】
このように、実施例11〜18で得られた本発明のガラスは、何れもモールド成形性が良好であり、表1の比較例8に示される従来のGe−Sb−S系ガラスの典型例(△T=224K)と比べても同等又はそれ以上の優れたモールド成形性を有することが分かる。
【0060】
実施例17及び18は、実施例16に対してGaの一部をGeに置き換えた例である。
【0061】
図3に、実施例16(Ga
13Sb
21S
58Sn
8)、実施例17(Ga
12Ge
1Sb
21S
58Sn
8)及び実施例18(Ga
10Ge
2Sb
21S
59Sn
8)で得たガラス試料の赤外域における透過スペクトルを示す。
図3中、網掛け部分は大気の透過率(大気の窓)であり、実施例16は長波長側において大気の窓をほぼカバーしているが、GaをGeで置換することによって徐々に透過限界波長が短波長にシフトすることが認められる。
【0062】
表2から明らかなように、実施例17で得られたガラスは結晶化温度が測定されないが、実施例18で得られたガラスは結晶化温度が測定されて△T=253Kであった。実施例18で得られたガラスは依然として優れたモールド成形性を示しているが、大気の窓のカバー性能を考慮すると、GaをGeで置き換える場合には、Geは2%以下であることが好ましい。
【0063】
【表2】
【0064】
〔表2中、1)〜3)の意味は表1と同じである。なお、実施例13、16及び17では結晶化温度は測定されなかった(結晶化が認められなかった)。〕
比較例3及び実施例19〜21
(赤外線透過ガラスの作製及び得られたガラスのハロゲン含有量に関する評価)
下記組成の赤外線透過ガラスをそれぞれ作製した。ガラスの作製方法は、前述の実施例及び比較例と同じである。
【0065】
比較例3(前出と同じ):Ga
12Sb
28S
60
実施例19:Ga
12Sb
25Cs
4X
4S
55(X=Cl,Br,I)
実施例20:Ga
13Sb
21Cs
8X
8S
50(X=Cl,Br,I)
実施例21:Ga
12Sb
17Cs
13X
13S
45(X=Cl,Br,I)
実施例19〜21については、比較例3の組成中のSbとSを、CsとXに置き換えた組成に相当し、ハロゲンはハロゲン化セシウムを原料とした。
【0066】
X(ハロゲン)の種類をCl,Br,Iに変えてそれぞれ3種類作製し、実施例19-1(X=Cl)、実施例19-2(X=Br)、実施例19-3(X=I)、実施例20-1(X=Cl)、実施例20-2(X=Br)、実施例20-3(X=I)、実施例21-1(X=Cl)、実施例21-2(X=Br)及び実施例21-3(X=I)とした。なお、実施例20-2は前述の実施例14に相当し、実施例21-1は前述の実施例12に相当するが、ここでは実施例20-2、実施例21-1と表記する。
【0067】
比較例3及び実施例19〜21で得られたガラスの△Tの変化を
図4に示す。
【0068】
図4の結果から明らかな通り、X=Clの場合には、Xの含有量が4%のときに比較例3と比べて△Tはやや減少するが、Xの含有量が8%、13%と増えるに従って増加した。X=Brの場合には、Xの含有量が4%、8%と増えるに従って△Tは増加したが、13%ではほぼ一定となった。X=Iの場合には、Xの含有量が4%、8%と増えるに従って△Tは徐々に増加したが、13%では減少した。
【0069】
上記の通り、ハロゲンとそれと対をなすカチオンとしてセシウムを加えることによってガラスの熱的安定性が高くなり、モールド成形性が向上する。しかしながら、概ね8〜10%を超えるとその効果は小さくなり、これを超えてハロゲンを含有すると却ってガラスの耐水性が低下する懸念がある。従って、ハロゲン含有量は10%以下が好ましい。
【0070】
次に、比較例3、実施例20-1及び実施例21-1で得られたガラスの短波長側透過スペクトルを
図5に示す。
【0071】
図5の結果から明らかな通り、比較例3で得られたガラスの透過限界波長(透過限界波長の意味は表1の注釈と同じ)が700nmであるのに対して、実施例20-1で得られたガラスの透過限界波長は655nm、比較例21-1で得られたガラスの透過限界波長は598nmであり、Cl含有量が増えるに従って透過限界波長は短波長側にシフトした。このような傾向はX=ClだけでなくBr、Iの場合でも同様に得られる。
【0072】
ガラスの透過限界波長が655nmや598nmであれば、これらのガラスは可視域を一部透過することが可能である。よって、ガラス中にハロゲンを含有させることによって赤外だけでなく可視域も一部透過するガラスが得られる。この点、ハロゲン含有量が増えるに従って可視光の透過性は向上するが、ハロゲン含有量が増加するとガラスの耐水性が低下する懸念がある。従って、バランスを考慮するとハロゲン含有量は10%以下であることが好ましい。
【0073】
試験例1
(実施例5及び比較例8で作製されたガラスの赤外線センサー用レンズとしての感度)
図6には、波長7.5μmから14μmまでの大気の窓の透過スペクトル(△)、人間の体温(36℃,309K)と同じ温度の黒体輻射のスペクトル(▲)比較例8で得られたガラスの透過スペクトル(□)及び実施例5で得られたガラスの透過スペクトル(○)が示されている。また、比較例8の透過スペクトル及び実施例5の透過スペクトルにそれぞれ大気の窓のスペクトルと黒体輻射のスペクトルを乗じて得た相対的な透過スペクトル(比較例8:■、実施例5:●)が併せて示されている。但し、各ガラスの透過スペクトルは、ガラス表面に反射防止膜を蒸着し、反射による損失が無視できるとして算出されたスペクトルを示している。
【0074】
人間から放出され、大気中を透って上記各ガラスで作製された赤外線センサー用レンズを透過した波長7.5μmから14μmまでの赤外線の相対的なスペクトルは、■と●で表される。
図6から明らかなように、11μmから14μmの間で相対強度に大きな差が認められる。この差は赤外線センサー用レンズとしての最終的な感度に対応すると考えられる。厳密には赤外線センサーの検出器の感度の波長依存性にも依るが、各ガラスの透過光の相対強度の積分値は、比較例8のガラスが226、実施例5のガラスが296と算出され、実施例5のガラスの方が30%以上感度が向上することが分かる。