【実施例】
【0064】
以下、実施例により、本発明の実施の形態を更に具体的に説明する。
(実施例1)
使用する基板は、SiO
2−TiO
2系のガラス基板(6インチ角、厚さが6.35mm)である。
そして、このガラス基板の端面を面取加工、及び研削加工、更に酸化セリウム砥粒を含む研磨液で粗研磨処理を終えたガラス基板を両面研磨装置のキャリアにセットし、研磨液にコロイダルシリカ砥粒を含むアルカリ水溶液を用い、所定の研磨条件で精密研磨を行った。精密研磨終了後、ガラス基板に対し洗浄処理を行った。
以上のようにして、EUV反射型マスクブランク用ガラス基板を作製した。この得られたガラス基板の主表面の表面粗さは、二乗平均平方根粗さ(RMS)で、0.10nm以下と良好であった。また、平坦度は、測定領域132mm×132mmで30nm以下と良好であった。
【0065】
次に、上記反射型マスクブランク用ガラス基板の転写パターンが形成される側と反対側の主表面(露光装置にセットする時に静電チャックされる面)に以下のようにしてCrN導電膜を形成した。
即ち、Crターゲットを使用し、アルゴン(Ar)と窒素の混合ガスを用いたDCマグネトロンスパッタリング法によりCrN導電膜(膜厚20nm、Cr:N=90:10 原子%比)を成膜した。
【0066】
次に、上記導電膜付きガラス基板をイオンビームスパッタリング装置にセットし、上記ガラス基板の転写パターンが形成される側の主表面(上記導電膜が形成されていない面)上に、以下のようにして多層反射膜、保護膜、および吸収体膜を連続して形成した。
【0067】
まず、基板上に形成される多層反射膜は、13〜14nmの露光光波長帯域に適した多層反射膜とするために、Mo膜/Si膜周期多層反射膜を採用した。多層反射膜は、MoターゲットとSiターゲットを使用し、イオンビームスパッタリングにより基板上に交互に積層して形成した。
まず、Si膜を4.2nm成膜し、続いて、Mo膜を2.8nm成膜し、これを一周期とし、同様にして40周期積層し、多層反射膜を形成した。
【0068】
この後、同じくイオンビームスパッタリングにより、上記多層反射膜上に保護膜を以下のように成膜した。
まず、Siターゲットを使用し、Si膜を4.0nm成膜した。続いて、RuNbターゲット(Ru:Nb=80:20 原子%比)を使用して、RuNb膜を2.5nm成膜した。
【0069】
ここで、反射率測定用に上記と同様にして作製したサンプルを装置から取り出し、この保護膜を有する多層反射膜に対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は65.3%であった。
【0070】
次に、同じくイオンビームスパッタリングにより、上記保護膜上に吸収体膜を以下のように成膜した。
まず、TaBターゲット(Ta:B=90:10 原子%比)を使用し、位相制御層のTaB膜を4.0nm成膜した。続いて、AlターゲットとTaBターゲット(Ta:B=90:10 原子%比)を使用し、高屈折率材料層のAl膜を3.5nm成膜した後、低屈折率材料層のTaB膜を3.5nm成膜し、これを一周期とし、同様にして5周期積層し、Al膜とTaB膜の交互積層膜からなる吸収体膜を形成した。
以上のようにして、本実施例の反射型マスクブランクを作製した。
なお、上記位相制御層のTaB膜の波長13.5nmにおける消衰係数kは0.03で、高屈折率材料層のAl膜の屈折率nは1.00、消衰係数kは0.03、低屈折率材料層のTaB膜の屈折率nは0.95、消衰係数kは0.03である。
【0071】
この反射型マスクブランクに対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は1.8%であった。
本実施例の反射型マスクブランクによれば、上記吸収体の総膜厚は39.0nmであり、後述の比較例の反射型マスクブランクにおける吸収体の総膜厚70nmと比べても、大幅に薄膜化することが可能である。
【0072】
次に、この反射型マスクブランクを用いて、半導体デザインルールにおけるDRAM hp10nm世代のパターンを有するEUV露光用反射型マスクを以下のようにして作製した。
まず、上記反射型マスクブランク上に電子線描画用レジスト膜を形成し、電子線描画機を使用して所定のパターン描画を行った。描画後、所定の現像処理を行い、上記反射型マスクブランク上にレジストパターンを形成した。
次に、このレジストパターンをマスクとして、塩素系ガス(Cl
2ガス)により、Al膜とTaB膜の交互周期(5周期)積層膜及び下層のTaB膜をドライエッチングし、吸収体膜に転写パターンを形成した。
さらに、吸収体膜パターン上に残ったレジストパターンを熱硫酸で除去し、本実施例の反射型マスクを得た。
【0073】
得られた反射型マスクの最終確認検査を行ったところ、半導体デザインルールにおけるDRAM hp10nm世代のパターンを設計通りに形成できていることが確認できた。
【0074】
以上のように、本実施例の反射型マスクブランク及びこの反射型マスクブランクを用いて作製した反射型マスクにおいては、吸収体膜に対するEUV光反射率を2%以下に抑えることができ、しかも従来よりも薄い吸収体膜の膜厚でEUV光に対する低い反射率(2%以下)が得られ、吸収体膜の薄膜化を実現できることが確認できた。
また、得られた本実施例の反射型マスクを用いて、半導体基板上へのEUV光によるパターン転写を行うと、半導体デザインルールにおけるDRAM hp10nm世代の半導体装置を製造することができる。
【0075】
(実施例2)
実施例1と同様にして準備した反射型マスクブランク用ガラス基板の転写パターンが形成される側と反対側の主表面に実施例1と同様にしてCrN導電膜を形成した。
次に、上記導電膜付きガラス基板をイオンビームスパッタリング装置にセットし、上記ガラス基板の転写パターンが形成される側の主表面上に、以下のようにして多層反射膜、保護膜、および吸収体膜を連続して形成した。
【0076】
まず、基板上に実施例1と同様のSi膜とMo膜の交互積層膜からなる多層反射膜を形成した。
この後、上記多層反射膜上に、実施例1と同様にしてSi膜とRuNb膜の積層膜からなる保護膜を形成した。
【0077】
ここで、反射率測定用に上記と同様にして作製したサンプルを装置から取り出し、この保護膜を有する多層反射膜に対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は65.3%であった。
【0078】
次に、同じくイオンビームスパッタリングにより、上記保護膜上に吸収体膜を以下のように成膜した。
まず、TaBターゲット(Ta:B=90:10 原子%比)を使用し、位相制御層のTaB膜を4.0nm成膜した。続いて、Si(アモルファス)ターゲットとTaBターゲット(Ta:B=90:10 原子%比)を使用し、高屈折率材料層のSi膜を2.7nm成膜した後、低屈折率材料層のTaB膜を4.4nm成膜し、これを一周期とし、同様にして6周期積層し、Si膜とTaB膜の交互積層膜からなる吸収体膜を形成した。
以上のようにして、本実施例の反射型マスクブランクを作製した。
なお、上記位相制御層のTaB膜の波長13.5nmにおける消衰係数kは0.03で、高屈折率材料層のSi膜の屈折率nは1.00、消衰係数kは0.002、低屈折率材料層のTaB膜の屈折率nは0.95、消衰係数kは0.03である。
【0079】
この反射型マスクブランクに対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は1.6%であった。
本実施例の反射型マスクブランクによれば、上記吸収体の総膜厚は46.6nmであり、後述の比較例の反射型マスクブランクにおける吸収体の総膜厚70nmと比べても、大幅に薄膜化することが可能である。
【0080】
次に、この反射型マスクブランクを用いて、半導体デザインルールにおけるDRAM hp10nm世代のパターンを有するEUV露光用反射型マスクを以下のようにして作製した。
まず、上記反射型マスクブランク上に電子線描画用レジスト膜を形成し、電子線描画機を使用して所定のパターン描画を行った。描画後、所定の現像処理を行い、上記反射型マスクブランク上にレジストパターンを形成した。
次に、このレジストパターンをマスクとして、フッ素系ガス(CF
4ガス)により、Si膜とTaB膜の交互周期(6周期)積層膜及び下層のTaB膜をドライエッチングし、吸収体膜に転写パターンを形成した。
さらに、吸収体膜パターン上に残ったレジストパターンを熱硫酸で除去し、本実施例の反射型マスクを得た。
【0081】
得られた反射型マスクの最終確認検査を行ったところ、半導体デザインルールにおけるDRAM hp10nm世代のパターンを設計通りに形成できていることが確認できた。
【0082】
以上のように、本実施例の反射型マスクブランク及びこの反射型マスクブランクを用いて作製した反射型マスクにおいては、吸収体膜に対するEUV光反射率を2%以下に抑えることができ、しかも従来よりも薄い吸収体膜の膜厚でEUV光に対する低い反射率(2%以下)が得られ、吸収体膜の薄膜化を実現できることが確認できた。
また、得られた本実施例の反射型マスクを用いて、半導体基板上へのEUV光によるパターン転写を行うと、半導体デザインルールにおけるDRAM hp10nm世代の半導体装置を製造することができる。
【0083】
(実施例3)
実施例1と同様にして準備した反射型マスクブランク用ガラス基板の転写パターンが形成される側と反対側の主表面に実施例1と同様にしてCrN導電膜を形成した。
次に、上記導電膜付きガラス基板をイオンビームスパッタリング装置にセットし、上記ガラス基板の転写パターンが形成される側の主表面上に、以下のようにして多層反射膜、保護膜、および吸収体膜を連続して形成した。
【0084】
まず、基板上に実施例1と同様のSi膜とMo膜の交互積層膜からなる多層反射膜を形成した。
この後、上記多層反射膜上に、実施例1と同様にしてSi膜とRuNb膜の積層膜からなる保護膜を形成した。
【0085】
ここで、反射率測定用に上記と同様にして作製したサンプルを装置から取り出し、この保護膜を有する多層反射膜に対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は65.3%であった。
【0086】
次に、同じくイオンビームスパッタリングにより、上記保護膜上に吸収体膜を以下のように成膜した。
まず、W(タングステン)ターゲットを使用し、位相制御層のW膜を4.2nm成膜した。続いて、Si(アモルファス)ターゲットとW(タングステン)ターゲットを使用し、高屈折率材料層のSi膜を2.5nm成膜した後、低屈折率材料層のW膜を4.7nm成膜し、これを一周期とし、同様にして4周期積層し、Si膜とW膜の交互積層膜からなる吸収体膜を形成した。
以上のようにして、本実施例の反射型マスクブランクを作製した。
なお、上記位相制御層のW膜の波長13.5nmにおける消衰係数kは0.04で、高屈折率材料層のSi膜の屈折率nは1.00、消衰係数kは0.002、低屈折率材料層のW膜の屈折率nは0.93、消衰係数kは0.04である。
【0087】
この反射型マスクブランクに対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は1.6%であった。
本実施例の反射型マスクブランクによれば、上記吸収体の総膜厚は33.0nmであり、後述の比較例の反射型マスクブランクにおける吸収体の総膜厚70nmと比べても、大幅に薄膜化することが可能である。
【0088】
次に、この反射型マスクブランクを用いて、半導体デザインルールにおけるDRAM hp10nm世代のパターンを有するEUV露光用反射型マスクを以下のようにして作製した。
まず、上記反射型マスクブランク上に電子線描画用レジスト膜を形成し、電子線描画機を使用して所定のパターン描画を行った。描画後、所定の現像処理を行い、上記反射型マスクブランク上にレジストパターンを形成した。
次に、このレジストパターンをマスクとして、塩素系ガス(SF
6)と酸素との混合ガスにより、Si膜とW膜の交互周期(4周期)積層膜及び下層のW膜をドライエッチングし、吸収体膜に転写パターンを形成した。
さらに、吸収体膜パターン上に残ったレジストパターンを熱硫酸で除去し、本実施例の反射型マスクを得た。
【0089】
得られた反射型マスクの最終確認検査を行ったところ、半導体デザインルールにおけるDRAM hp10nm世代のパターンを設計通りに形成できていることが確認できた。
【0090】
以上のように、本実施例の反射型マスクブランク及びこの反射型マスクブランクを用いて作製した反射型マスクにおいては、吸収体膜に対するEUV光反射率を2%以下に抑えることができ、しかも従来よりも薄い吸収体膜の膜厚でEUV光に対する低い反射率(2%以下)が得られ、吸収体膜の薄膜化を実現できることが確認できた。
また、得られた本実施例の反射型マスクを用いて、半導体基板上へのEUV光によるパターン転写を行うと、半導体デザインルールにおけるDRAM hp10nm世代の半導体装置を製造することができる。
【0091】
(比較例1)
実施例1と同様にして準備した反射型マスクブランク用ガラス基板の転写パターンが形成される側と反対側の主表面に実施例1と同様にしてCrN導電膜を形成した。
次に、上記導電膜付きガラス基板をイオンビームスパッタリング装置にセットし、上記ガラス基板の転写パターンが形成される側の主表面上に、多層反射膜および保護膜を連続して形成した。
【0092】
まず、基板上に実施例1と同様のSi膜とMo膜の交互積層膜からなる多層反射膜を形成した。
続いて、上記多層反射膜上に、実施例1と同様にしてSi膜とRuNb膜の積層膜からなる保護膜を形成した。
【0093】
ここで、多層反射膜付き基板を装置から取り出し、この保護膜を有する多層反射膜に対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は65.3%であった。
【0094】
次に、上記のようにして作製した多層反射膜付き基板の保護膜上に、吸収体膜として、TaBSiN膜(膜厚60nm、Ta:B:Si:N=70:3:10:17 原子%比)とTaBSiON膜(膜厚10nm、Ta:B:Si:O:N=40:3:10:37:10 原子%比)の積層膜をDCマグネトロンスパッタリング法によって成膜した。上記吸収体の総膜厚は70nmである。
以上のようにして、本比較例の反射型マスクブランクを作製した。
この反射型マスクブランクに対し、13.5nmのEUV光を入射角6.0度で反射率を測定したところ、反射率は0.4%であった。
【0095】
次に、この反射型マスクブランクを用いて、半導体デザインルールにおけるDRAM hp10nm世代のパターンを有するEUV露光用反射型マスクを以下のようにして作製した。
まず、上記反射型マスクブランク上に電子線描画用レジスト膜を形成し、電子線描画機を使用して所定のパターン描画を行った。描画後、所定の現像処理を行い、上記反射型マスクブランク上にレジストパターンを形成した。
次に、このレジストパターンをマスクとして、フッ素系ガス(CF
4ガス)により上層のTaBSiON膜を、塩素系ガス(Cl
2ガス)により下層のTaBSiN膜をドライエッチングし、吸収体膜に転写パターンを形成した。
さらに、吸収体膜パターン上に残ったレジストパターンを熱硫酸で除去し、本比較例の反射型マスクを得た。
【0096】
得られた反射型マスクの最終確認検査を行ったところ、半導体デザインルールにおけるDRAM hp10nm世代のパターンを設計通りに形成できていることが確認できた。
但し、得られた本比較例の反射型マスクを用いて、半導体基板上へのEUV光によるパターン転写を行うと、吸収体膜の膜厚が70nmと厚いため、シャドウイングや高アスペクト比によるパターン欠陥を生じる可能性がある。