【実施例】
【0038】
以下、本発明を実施例および比較例により具体的に説明するが、本発明はこれに限定されるものではない。
【0039】
<CNF合成触媒の調製>
硝酸コバルト六水和物(3N5、関東化学社製)6.17gを量り取り、質量比2:1の蒸留水とエタノール混合溶媒30gに溶解した。この硝酸コバルト水溶液に比表面積0.61m
2/gの酸化マグネシウム(DENMAG(登録商標)KMAOH−F、タテホ化学社製)を2.5g加え、湯浴で50℃に保持した状態で1時間撹拌した。撹拌後、エバポレータで水を蒸発させた。得られた固体成分を60℃で24時間真空乾燥し、その後400℃で5時間焼成処理を行った。焼成処理後、得られた固体成分をメノウ乳鉢で粉砕し、コバルト金属が50質量%担持したコバルト−酸化マグネシウム担持触媒を得た。
【0040】
<CNF-Aの合成>
原料の一酸化炭素は、(株)鈴木商館から購入した、G1グレード(純度99.95%)を使用した。
石英製の反応管内に、上記の触媒調製で得られた担持率50%のコバルト−酸化マグネシウム担持触媒を活性種の含有量が5mgとなるように仕込んだ触媒ホルダーを設置し、窒素を十分流して窒素置換した。さらに、窒素80%、水素20%の還元ガスを大気圧(101kPa)下、表1に示す680℃に昇温し、680℃に達してから30分間保持して触媒の還元を行った。引き続き、一酸化炭素ガス分圧を0.086MPaとし、水素ガス分圧を0.015MPaとした原料ガスを、一酸化炭素ガス流速が13NL/g−活性種・分となるように触媒層に通過させ、1時間反応を行った。その後、原料ガスを窒素ガスに切り替え、直ちに冷却した。以降、該製造条件で製造されたCNFをCNF−Aと呼ぶ。
【0041】
<CNF-Bの合成>
反応温度を700℃とした以外はCNF-Aの製造と同様の方法でCNFの合成を行った。以降、該製造条件で製造されたCNFをCNF−Bと呼ぶ。
【0042】
【表1】
【0043】
<触媒除去>
合成したCNFには担体として使用した酸化マグネシウムおよび活性種が含まれている。触媒活性が3g−CNF/g−触媒・h未満の場合には、合成により得られたCNF中の、酸化マグネシウムおよび活性種量が多くなり、導電性や分散性に影響を与える場合があるため、酸化マグネシウムと活性種の除去処理を行った。まず、2mol/L塩酸400mLに、合成したCNF2gを入れ、プライミクス社製のロボミックスFモデル、撹拌部にはモホミクサーMARK2−2.5型を使用し、回転速度7000rpmで10分間分散処理を行った。その後、CNF含有塩酸を遠心分離し、上澄みを捨て、蒸留水を加えて攪拌し、これを、上澄み中の塩化物イオンが、硝酸銀水溶液によって検出されなくなるまで繰り返した。その後、固形分を110℃で13時間減圧乾燥した。
酸化マグネシウムおよび活性種の除去処理を行った後、ラマン分光測定を行いD/G値を求め、さらに粉体抵抗率、比表面積およびメジアン径を測定した。結果を表2に示す。
【0044】
【表2】
【0045】
実施例及び比較例に使用したCNFもしくはカーボンブラックは、以下の方法に従い評価した。
【0046】
[比表面積]
CNF粉体の比表面積は、Mountech社製Macsorb HM model−1201を用い、JIS K6217−2に従いBET一点法で求めた。
【0047】
[平均繊維径]
前記方法で求めた比表面積の値を用いて、以下の式によりCNFの平均繊維径を算出した。なお、非特許文献Composites:PartA 41(2010)1345−1367に基づき、CNFの密度は、1.8g/cm
3と仮定した。算出結果を表2に示す。
平均繊維径(nm)=1000×4/(ρ×S)
但し、ρ:CNFの密度(g/cm
3)、S:CNFの比表面積(m
2/g)とする。
【0048】
[粉体抵抗率]
CNF粉体の体積抵抗率は、三菱化学アナリティック社製ロレスタGP:粉体抵抗測定システムMCP−PD51型を用い、23℃、相対湿度50%の雰囲気にて、荷重9.8MPaの条件下、四探針法にて求めた。測定には100mgのサンプルを用いた。
【0049】
[ラマン分光測定によるD/G値]
CNF粉体のラマン分光測定は、顕微レーザーラマン分光分析装置(Niolet Almega−XR型、サーモフィッシャーサイエンティフィック社製、レーザー532nm)を用い行った。Dバンド(D1:ピーク位置1330cm−1、D3:1500cm−1、D4:1150cm−1)とGバンド(G+:1600cm−1、G−:1570cm−1)の波形分離を行った後、Dバンドピークに由来する面積の総和とGバンドピークに由来する面積の総和の比(D/G値)を求めた。本D/G値が低いほどCNFの結晶性が高いことを示している。
(参考)
D1:グラファイト結晶構造内の点欠陥、結晶端由来の欠陥に由来
D3:アモルファスカーボンに由来
D4:ポリエンやイオン性不純物に由来
G+:グラファイトの結晶性ピーク:縦光学モード
G−:グラファイトの結晶性ピーク:横光学モード
【0050】
<分散性評価:レーザ回折・散乱法(ISO 13320:2009)による粒度分布測定>
分散性評価は、粒度分布測定装置(LS 13 320 ユニバーサルリキッドモジュール BECKMAN COULTER社製)にて行なった。
なお、1μm以下の分散粒子の割合およびメジアン径D50値の測定に先立ち、粒度分布測定装置の検定を行ない、下記各検定用試料の測定で得られたメジアン径D50値が以下の条件をすべて満足した場合、装置の測定精度は合格とし、実施例、比較例の粒度分布測定を実施した。
[水分散媒の調製]
蒸留水100mLにカルボキシメチルセルロースナトリウム(以下CMCNaと記載)0.10gを添加し、24時間以上常温で撹拌し溶解させ、CMCNa0.1質量%の水分散媒を調製した。
[CMCNa水溶液の調製]
蒸留水100mLにCMCNa2.0gを添加し、24時間以上常温で撹拌し溶解させ、CMCNa2.0質量%の水溶液を調製した。
【0051】
[検定用試料の調製および検定]
(1)ポリスチレン分散液による検定
粒度分布測定装置(LS 13 320 ユニバーサルリキッドモジュール BECKMAN COULTER社製)に付属された、測定精度確認用LATRON300LS(メジアン径D50値:0.297μm)水分散液を使用した。
光学モデルをポリスチレン1.600、水1.333とそれぞれの屈折率に設定し、モジュ−ル洗浄終了後に前記CMCNa水溶液を約1.0mL充填した。ポンプスピード50%の条件でオフセット測定、光軸調整、バックグラウンド測定を行った後、粒度分布計に、LATRON300LSを粒子によってビームの外側に散乱する光のパーセントを示す相対濃度が8〜12%、もしくはPIDS(偏光散乱強度差)が40%〜55%になるように加え、粒度分布測定を行った。粒度(粒子径)に対する体積%のグラフを得て、精度の確認を行った。測定で得られたメジアン径D50値は0.297μm±0.018μm以内、同D10値は0.245μm±0.024μm以内、同D90値は0.360μm±0.036μm以内の範囲に入ることを確認した。
【0052】
(2)アルミナ分散液による検定
バイアル瓶に電気化学工業(株)製のアルミナLS−13(メジアン径D50値:45μm)および昭和電工(株)製のアルミナAS−50(メジアン径D50値:6.7μm)をそれぞれ0.120g秤量し、前記水分散媒を12.0g添加し、バイアル瓶を良く振りアルミナ水分散液を作製した。
光学モデルをアルミナ1.768、水1.333とそれぞれの屈折率に設定し、モジュ−ル洗浄終了後に前記CMCNa水溶液を約1.0mL充填した。ポンプスピード50%の条件でオフセット測定、光軸調整、バックグラウンド測定を行った後、粒度分布計に、調製した上記アルミナ水分散液を粒子によってビームの外側に散乱する光のパーセントを示す相対濃度が8〜12%、もしくはPIDSが40%〜55%になるように加え、粒度分布測定を行った。粒度(粒子径)に対する体積%のグラフを得て、精度の確認を行った。測定で得られたメジアン径D50値がLS−13の場合は48.8μm±5.0μm以内、AS−50の場合は、12.6μm±0.75μm以内の範囲に入ることを確認した。
【0053】
[測定前処理]
バイアル瓶にCNFを6.0mg秤量し、前記水分散媒6.0gを添加した。測定前処理に超音波ホモジナイザーSmurtNR−50((株)マイクロテック・ニチオン製)を用いた。
チップの劣化がないことを確認し、チップが処理サンプル液面から10mm以上つかるように調整した。TIME SET(照射時間)を40秒、POW SETを50%、START POWを50%(出力50%)とし、出力電力が一定であるオ−トパワ−運転による超音波照射により均一化させCNF水分散液を作製した。
【0054】
[CNFの粒度分布測定]
前記の方法により調製したCNF水分散液を用い、CNFの1μm以下の分散粒子の割合およびメジアン径D50値の測定を、以下の方法に従い実施した。LS 13 320 ユニバーサルリキッドモジュールの光学モデルをCNF1.520、水1.333とそれぞれの屈折率に設定し、モジュ−ル洗浄終了後にCMCNa水溶液を約1.0mL充填する。ポンプスピード50%の条件でオフセット測定、光軸調整、バックグラウンド測定を行った後、粒度分布計に、調製したCNF水分散液を粒子によってビームの外側に散乱する光のパーセントを示す相対濃度が8〜12%、もしくはPIDSが40%〜55%になるように加え、粒度分布計付属装置により78W、2分間超音波照射を行い(測定前処理)、30秒循環し気泡を除いた後に粒度分布測定を行った。粒度(粒子径)に対する体積%のグラフを得て、1μm以下の分散粒子の存在割合及びメジアン径D50値を求めた。
測定は、CNF1試料につき、採取場所を変え3測定用サンプルを採取して粒度分布測定を行い、1μm以下の分散粒子の存在割合及びメジアン径D50値をその平均値で求めた。
【0055】
<実施例1>
(正極スラリーの調製)
先ず、溶媒としてN-メチルピロリドン(関東化学株式会社製、以下、NMPと記載)、正極活物質としてLiCoO
2(平均一次粒子径20μm)、バインダーとしてポリフッ化ビニリデン(以下、PVdFと記載、分子量約30万)、導電剤として上記合成したCNF−Aをそれぞれ用意した。
次いで、PVdFが固形分で1質量部、CNFが固形分で1質量部となるように秤量して混合し、この混合物にNMPを添加し、均一になるまで攪拌した。
さらに、LiCoO
2粉末が固形分で98質量部となるように秤量し、上記混合物に添加し、均一になるまで攪拌し、正極スラリーを得た。
【0056】
(正極スラリーの評価)
[正極スラリーの固形物含有量]
調製した正極スラリー2mLをアルミ容器に入れ、これを、大気圧下、105℃において5時間放置し、NMPを蒸発させた。次に、NMPを蒸発後の質量と、蒸発前の質量比より固形分含有量を評価した。
固形分含有量=M2/M1×100(%)
但し、M1:NMP蒸発前の質量、M2:NMP蒸発後の質量
【0057】
(正極の作製)
次に、調製した正極スラリーを、アルミ箔上にアプリケータにて成膜し、乾燥機内に静置して80℃、10分、更に105℃、一時間で予備乾燥させた。次に、ロールプレス機にて0.2〜3ton/cmの線圧でプレスし、アルミ箔を含んだ膜の厚さが60μmになるように調製した。残留溶媒や吸着水分といった揮発成分を完全に除去するため、170℃で3時間真空乾燥して正極シートを得た。この正極シートから直径14mmの円形に打ち抜き、正極を得た。
【0058】
(正極の評価)
[正極の極板抵抗]
作製した正極をステンレス製のセルにはさみ、交流インピーダンス測定機(ソーラトロン社製)を用いて、振幅電圧10mV、周波数範囲1Hz〜100kHzにて交流インピーダンスを測定した。得られた抵抗成分値を極板抵抗とした。
【0059】
(負極の作製)
厚さ0.5mmのLi金属を直径15mmの円形に打ち抜き、負極とした。
【0060】
(リチウムイオン二次電池の作製)
リチウムイオン二次電池は2032型コインセルで作製した。コインセルはリチウム金属を対極とするハーフセルを用いた。
得られた正極と負極の間に、厚み20μm、直径16mmのポリプロピレン/ポリエチレン多層微多孔膜セパレーターを挿入した。次いで、電解質としてLiPF
6を1mol/Lの濃度で溶解した非水溶液系の電解液(エチレンカーボーネート/ジエチルカーボネート=1/2(質量比)混合液)を1mL注入した後、コインをしめて密閉し、2032型コインセルのリチウム二次電池を作製した。作製したリチウムイオン二次電池について、以下の方法により電池性能を評価した。
【0061】
(リチウムイオン二次電池の評価)
[放電レート特性(高率放電容量維持率)]
作製したリチウムイオン二次電池を、25℃において4.2V、0.2ItA(0.666mA)制限の定電流定電圧充電をした後、0.2ItAの定電流で2.5Vまで放電した。
次いで、放電電流を0.2ItA、0.5ItA、1ItA、2ItA、3ItA、5ItAと変化させ、各放電電流に対する放電容量を測定した。各測定における回復充電は4.2Vの定電流定電圧充電を行った。そして、0.2ItA放電時に対する5ItA放電時の高率放電容量維持率を計算した。
【0062】
<実施例2>
導電剤をCNF−Bとした以外は、実施例1と同様にして正極スラリーを作製した。結果を表2に示す。
【0063】
<比較例1>
導電剤をCNano社製CNF(Flotube9000)とした以外は、実施例1と同様にして正極スラリーを作製した。このCNFはD/G値が1.7、メジアン径D50値が43μmであり、極板抵抗は実施例1、2に劣る結果となった。結果を表2に示す。
【0064】
<比較例2>
導電剤をNanocyl社製CNF(NC7000)とした以外は、実施例1と同様にして正極スラリーを作製した。このCNFはD/G値が1.8、メジアン径D50値が15μmであり、極板抵抗は実施例1、2に劣る結果となった。結果を表2に示す。
【0065】
<比較例3>
導電剤をカーボンブラックーA(比表面積133m
2/g、DBP吸油量267mL/100g)とした以外は、実施例1と同様にして正極スラリーを作製した。このCBはD/G値が1.7、粉体抵抗率が0.088Ωcmであり、極板抵抗は実施例1、2に劣る結果となった。結果を表2に示す。
【0066】
<比較例4>
導電剤をカーボンブラックーB(比表面積39m
2/g、DBP吸油量177mL/100g)とした以外は、実施例1と同様にして正極スラリーを作製した。このCBはD/G値が2.4、粉体抵抗率が0.063Ωcmであり、極板抵抗は実施例1、2に劣る結果となった。結果を表2に示す。
【0067】
表2に示すように、実施例1、2の電極材料を使用した正極は、比較例1〜4の電極材料を使用した正極に比べて極板抵抗が低かった。さらに、実施例1、2の電極材料を使用したリチウムイオン二次電池は、放電レート特性も比較的良好であり、これにより本発明の実施例の電極材料は放電による電圧の低下を抑えることができ且つ放電電流の増加による容量の低下を抑えることができる。