【文献】
Erik Lindskog(CSR Technology),Client Positioning using Timing Measurements between Access Points,IEEE 802.11−13/0072r0,インターネット<URL:https://mentor.ieee.org/802.11/dcn/13/11−13−0072−00−000m−client−positioning−using−timing−measurements−between−access−points.pptx>,2013年 1月12日
(58)【調査した分野】(Int.Cl.,DB名)
前記1つまたは複数のネイバー記録要素に含まれる、2つ以上のアクセスポイントの間で送信される少なくとも1つの精密タイミング測定(FTM)メッセージを受信することをさらに備える、請求項1に記載の方法。
【発明を実施するための形態】
【0012】
[0021]後に続く説明は、本発明の主題の技法を実施する、例示的なシステムと、方法と、技法と、命令シーケンスと、コンピュータプログラム製品とを含む。しかしながら、説明する実施形態は、これらの具体的な詳細なしに実施され得ることを理解されたい。たとえば、例は、ワイヤレスローカルエリアネットワーク(WLAN)デバイスのための受動測位方式を参照するが、実施形態はそのように限定されない。他の実施形態では、受動測位方式は、他のワイヤレス規格およびデバイス(たとえば、WiMAX(登録商標)デバイス)によって実装され得る。他の事例では、よく知られている命令インスタンス、プロトコル、構造および技法は、説明をわかりにくくしないために詳細には示されていない。
【0013】
[0022]ワイヤレス通信ネットワークにおいて、(たとえば、屋内または屋外環境内で)ワイヤレス通信能力をもつ電子デバイスの位置を決定することは、通信デバイスのユーザ(たとえば、モバイルフォンユーザ)およびワイヤレス通信ネットワークの事業者にとって望ましい特徴であり得る。いくつかのシステムでは、通信デバイスの位置を決定するために、ラウンドトリップ時間(RTT)技法が実装され得る。たとえば、通信デバイスは、複数のアクセスポイントに要求メッセージを送信することができ、アクセスポイントの各々から応答メッセージを受信することができる。通信デバイスとアクセスポイントの各々との間のレンジは、要求メッセージと、対応する応答メッセージとの間のラウンドトリップ時間を測定することによって決定され得る。通信デバイスの位置は、RTT情報を、アクセスポイントの既知のロケーションと比較することによって決定され得る。いくつかのシステムでは、通信デバイスの位置を決定するために、到着時間差(TDOA)技法が実装され得る。たとえば、通信デバイスは、その位置を、アクセスポイントの各々から通信デバイスまでのレンジの間の差に基づいて決定することができる。ただし、RTT測位動作(またはTDOA測位動作)を開始する(たとえば、アクセスポイントに要求メッセージを送信する)責任は通常、通信デバイスにある。通信デバイスは、各アクセスポイントに要求メッセージを送信する際に積極的役割を果たすので、通信デバイスは大幅な量の帯域幅と電力とを消費し得る。さらに、ワイヤレス通信ネットワークが複数のそのような通信デバイスを、たとえば混雑した競技場または他の人気のある会場において備える場合、各通信デバイスは、RTT測位動作(またはTDOA測位動作)を実行するよう求められる場合があり、ワイヤレス通信ネットワークにおけるトラフィック負荷が増大する。
【0014】
[0023]通信デバイスの位置算出ユニットは、ワイヤレス通信ネットワークにおけるトラフィック負荷を削減するために、受動測位方式に基づいて通信デバイスの位置を決定するように構成され得る。ワイヤレス通信ネットワーク中のアクセスポイントは、ビーコン送信をブロードキャストし、ワイヤレス通信ネットワーク中の1つまたは複数の近隣アクセスポイント(すなわち、ターゲットアクセスポイント)と定期的に精密タイミングメッセージを交換するように構成され得る。アクセスポイントは、ビーコン送信にネイバー報告を含めてよい。ネイバー報告は、アクセスポイントのリストと、各アクセスポイントについての対応する位置情報(たとえば、緯度値、経度値、高度
、都市ロケーション情報)とを含み得る。ある実施形態では、アクセスポイントは、送信された精密タイミング測定(FTM)メッセージと、ターゲットアクセスポイントによって送信された対応する肯定応答(ACK)応答メッセージとの間の時間差に基づいて、1つまたは複数の近隣アクセスポイントに関連したRTTタイミング情報を決定することができる。位置算出ユニットは、FTMメッセージと対応するACKメッセージとをインターセプトすることができ、FTMメッセージと対応するACKメッセージとの間の到着時間差に基づいてTDOAタイミング情報を決定することができる。ネイバー報告は、ネイバー報告中の、各アクセスポイントに関連したRTTタイミング情報を備えるRTT測定情報を含み得る。位置算出ユニットは次いで、所定の数のネットワークアクセスポイントに関連したTDOAタイミング情報、RTTタイミング情報、および位置情報に少なくとも部分的に基づいて、通信デバイスの位置を決定することができる。
【0015】
[0024]ビーコンネイバー報告を使用する受動測位方式は、アクセスポイント位置情報を要求するために通信デバイスによって開始される送信をなくすことができる。これは、ワイヤレス通信ネットワークのトラフィック負荷に対する、通信デバイス送信の影響を最小限にし得る。さらに、ビーコンネイバー報告はネットワークにわたって提供され得る(たとえば、各アクセスポイントが期間ネイバー報告をブロードキャストし得る)ので、受動測位方式は、アクセスポイントネットワークの範囲内にあるより多数の通信デバイスが、それらの位置を、通信デバイスの各々からのロケーション要求を受信し処理することに関連したネットワーク帯域幅を消費せずに計算することを可能にし得る。
【0016】
[0025]
図1Aを参照すると、ビーコンネイバー報告を使用する受動測位方式の例示的ブロック図が示されている。受動測位方式は、3つのアクセスポイント102、104、106と、クライアント局120とを備えるワイヤレス通信ネットワーク100を含む。アクセスポイント102、104、106は、それら自体の位置を決定することが可能なアドバンストWLANアクセスポイント(たとえば、自己位置特定アクセスポイント)であってよい。アクセスポイントの各々は、ワイヤレス通信ネットワーク100中の(たとえば、互いの通信範囲内の)1つまたは複数の他のアクセスポイントを選択することができる。いくつかの実装形態において、アクセスポイントは、1つのアクセスポイントがマスタアクセスポイントとして指定され得るとともに、他のアクセスポイントがターゲットアクセスポイントとして指定され得るように配置され得る。クライアント局120は、WLAN通信能力をもつ、どの適切な電子デバイス(たとえば、ノート型コンピュータ、タブレットコンピュータ、ネットブック、モバイルフォン、ゲーム機、携帯情報端末(PDA)、在庫タグなど)であってもよい。さらに、
図1Aにおいて、クライアント局120は、1つまたは複数のアクセスポイント102、104、106の通信範囲内にある。
【0017】
[0026]ある実施形態では、アクセスポイント102は、他のアクセスポイント104、106のうちの1つまたは複数に、定期的FTMメッセージを送信する。アクセスポイント102、104、106の間の通信は、プログラムされたスケジュールに従えばよい。たとえば、第1のアクセスポイント102は、第2のアクセスポイント104と、設定された時間量(たとえば、AP1からAP2までの期間)だけ通信することができ、次いで、第1のアクセスポイント102は、第3のアクセスポイント106と、設定された時間量(たとえば、AP1からAP3までの期間)だけ通信するように切り替わる。通信期間中、アクセスポイントは、一連のFTMメッセージを送り、対応する数の肯定応答メッセージ(ACK)を受信することができる。FTMメッセージは、第1のアクセスポイントに関連付けられた識別子(たとえば、アクセスポイント102のネットワークアドレス)と、第2のアクセスポイントに関連付けられた識別子(たとえば、アクセスポイント104のネットワークアドレス)と、FTMメッセージの各々を識別するシーケンス番号と、FTMメッセージの各々が送信された瞬間を示すタイムスタンプと、イークAckメッセージが受信された瞬間を示すタイムスタンプとを備え得る。他の情報要素が、ネットワーク規格(たとえば、IEEE802.11)に基づいてFTMメッセージに含められ得る。FTMメッセージを受信したことに応答して、第2のアクセスポイント(たとえば、この例ではアクセスポイント104)は、対応する肯定応答ACK応答メッセージを生成し、送信すればよい。一実装形態では、ACKメッセージは、FTMメッセージの受信を示す。他の情報要素が、ネットワーク規格(たとえば、IEEE802.11)に基づいてACKメッセージに含められ得る。
【0018】
[0027]
図1Aの例において、第1のアクセスポイント102は、第2のアクセスポイント104とFTM/ACKメッセージ108を交換することができ、別のアクセスポイント106とFTM/ACKメッセージ110を交換することもできる。第2のアクセスポイント104は、別のアクセスポイント106とFTM/ACKメッセージ112を交換することもできる。アクセスポイント102、104、106の各々は、ネイバー報告を含むビーコン送信をブロードキャストすることもできる。
【0019】
[0028]クライアント局120は、アクセスポイント102、104、106に関連したTDOAタイミング情報を決定するために、FTMメッセージとACK応答メッセージとをインターセプトしてよい。破線114、116、118は、クライアント局120が、アクセスポイント102、104、106(たとえば、APクラスタ)の間で交換されるFTM/ACKメッセージ108、110、112をインターセプトすることを表す。クライアント局120は、アクセスポイント102、104、106の各々からビーコン送信も受信し得る。
【0020】
[0029]ある実施形態では、アクセスポイント102、104、106は、クライアント局120に定期的ビーコン送信をブロードキャストすることができる。ビーコン送信は、ネットワーク規格文書(たとえば、802.11、表8−24)において定義されるようなビーコンフレーム情報を含み得る。ビーコン送信は、ネイバー報告カウント値も含むことができる。ビーコン送信は、AP間シグナリングパラメータとネイバー報告とを定期的に含むこともできる。ネイバー報告は、各近隣アクセスポイントに関連した位置情報を含むことができ、近隣アクセスポイントについてのRTTおよび/またはTDOAタイミング情報も含むことができる。クライアント局120は、ビーコン送信を受信することができ、近隣アクセスポイントに関連したアクセスポイント位置情報と、TDOAタイミング情報と、RTTタイミング情報とを、所定の記憶場所、データ構造、または別の適切な記憶デバイスに記憶することができる。
【0021】
[0030]クライアント局120は、ビーコン送信に含まれるAP位置情報に少なくとも部分的に基づいて、位置を決定するように構成される。いくつかの実装形態において、クライアント局120は、AP位置情報を、TDOAタイミング情報、および/またはRTTタイミング情報と組み合わせて、クライアント局120と所定の数のアクセスポイントの各々との間のレンジに関して「測位方程式」を組み立てるのに使うことができる。たとえば、3つのターゲットアクセスポイントに関連したAP位置情報、TDOAタイミング情報、およびRTTタイミング情報が利用可能であると決定すると、クライアント局120は、クライアント局120の3次元位置を決定するために、3つの測位方程式を解けばよい。他の実装形態では、クライアント局120は、任意の適切な数のアクセスポイントに関連したAP位置情報、TDOAタイミング情報、およびRTTタイミング情報に基づいて位置を決定し得ることに留意されたい。たとえば、位置は、クライアント局120の2次元位置を決定するために、2つのターゲットアクセスポイントに関連したAP位置情報、TDOAタイミング情報、およびRTTタイミング情報からの2つの独立した測位方程式に基づき得る。
【0022】
[0031]
図1Bを参照すると、位置サーバを含むワイヤレスローカルエリアネットワークの例示的ネットワーク図が示されている。ネットワーク150は、アクセスポイント102、104、106と、位置サーバ152と、通信経路154とを含む。位置サーバ152は、少なくとも1つのプロセッサとメモリとを含むコンピューティングデバイスであり、コンピュータ実行可能命令を実行するように構成される。たとえば、位置サーバ152は、プロセッサと、非一時的メモリと、ディスクドライブと、ディスプレイと、キーボードと、マウスとを含むコンピュータシステムを備える。プロセッサは好ましくは、インテリジェントデバイス、たとえば、Intel(登録商標)CorporationまたはAMD(登録商標)によって製造されたものなどのパーソナルコンピュータ中央処理ユニット(CPU)、マイクロコントローラ、特定用途向け集積回路(ASIC)などであり得る。メモリは、ランダムアクセスメモリ(RAM)と読取り専用メモリ(ROM)とを含む。ディスクドライブは、ハードディスクドライブ、CD−ROMドライブ、および/またはジップドライブを含み、他の形のドライブを含み得る。ディスプレイは、液晶ディスプレイ(LCD)(たとえば、薄膜トランジスタ(TFT)ディスプレイ)であるが、他の形のディスプレイ、たとえば、陰極線管(CRT)が許容される。キーボードおよびマウスは、データ入力機構をユーザに提供する。位置サーバ152は、本明細書に記載される機能を実施するようにプロセッサを制御するための命令を含むプロセッサ可読、プロセッサ実行可能ソフトウェアコードを(たとえば、メモリに)記憶する。これらの機能は、ビーコンネイバー報告を使用する受動測位方式の実装形態を支援する。ソフトウェアは、ネットワーク接続を介してダウンロードされること、ディスクからアップロードされることなどによって、メモリ上にロードされ得る。さらに、ソフトウェアは直接実行可能でないことがあり、たとえば、実行の前にコンパイルを必要とする。アクセスポイント102、104、106は、通信経路154を介して位置情報を交換するために、位置サーバ152と通信するように構成される。通信経路154は、ワイドエリアネットワーク(WAN)であってよく、インターネットを含み得る。位置サーバ152は、APネイバー情報を記憶するためのデータ構造(たとえば、リレーショナルデータベース、フラットファイル)を含み得る。たとえば、位置サーバ152は、AP位置情報(たとえば、緯度/経度、x/y)と、RTT情報と、SIFS情報と、アクセスポイントに関連付けられた他の情報(たとえば、SSID、MACアドレス、不確実性値、カバレージエリアなど)とを含み得る。アクセスポイント102、104、106は、位置サーバ152と通信することができ、たとえば、クライアント局測位ソリューションにおける使用のために、APネイバー情報と、SIFS情報と、RTT情報とを取り出すことができる。位置サーバ152の構成は例示にすぎず、限定ではない。ある実施形態では、位置サーバ152は、アクセスポイントに直接接続されてよく、または機能性がアクセスポイントに含まれてよい。2つ以上の位置サーバが使われてよい。位置サーバ152は、追加ネットワーク上の他のアクセスポイントに関連した位置情報を含む1つまたは複数のデータベースを含み得る。ある例では、位置サーバ152は複数のサーバユニットからなる。
【0023】
[0032]さらなる参照
図1Aとともに
図2を参照すると、精密タイミング測定手順200の概念図の例が示されている。この一般的手法は、第1のアクセスポイント202(たとえば、AP1)と第2のアクセスポイント204(たとえば、AP2)とを含む。第1および第2のアクセスポイントは、アクセスポイント102、104、106のうちのどれであってもよい。一般的特徴として、アクセスポイントは複数の局にサービスし得るが、本明細書で使用する用語はそのように限定されない。本明細書に記載される関連動作は、局とアクセスポイントの両方において実施されてよく、したがって、これらの用語は交換可能に使われる。精密タイミング測定手順200により、第1のアクセスポイント202は、第2のアクセスポイント204とのレンジを取得することが可能になり得る。アクセスポイントは、この手順を、そのロケーションを取得するために、複数の他のアクセスポイントと一緒に実施することができる。FTMセッションとは、第1のアクセスポイント202と第2のアクセスポイント204との間の精密タイミング測定手順200のインスタンスであり、そのインスタンスの関連スケジューリングと動作パラメータとを含み得る。FTMセッションは概して、交渉、測定値交換および終了からなる。1つのアクセスポイントが、複数の同時FTMセッションに参加し得る。異なる基本サービスセット(BSS)および可能性としては異なる拡張サービスセット(ESS)のメンバであり、または可能性としてはBSSの外の応答局との同時FTMセッションが起こりる場合があり、各セッションは、独自のスケジューリングと、チャネルと、動作パラメータとを使う。応答アクセスポイントが、多数の開始側アクセスポイント(たとえば、競技場、モールまたは店にある複数の他のアクセスポイント104、106に測定値を提供する第1のアクセスポイント102)との重複FTMセッションを確立するよう求められる場合がある。1つのアクセスポイントが、データまたはシグナリングの交換のために特定のアクセスポイントに関連付けられるとともに、異なる応答アクセスポイントとの、同じまたは異なるチャネル上の複数の進行中のFTMセッションを有する場合がある。アクセスポイント両方の制約をサポートするために、交渉中、第1のアクセスポイント202は最初に、好ましい定期的時間ウィンドウ割振りを要求する。第2のアクセスポイント204はその後、そのリソース利用可能性および能力に基づいて割振り要求を受け付けるか、またはオーバーライドすることによって応答する。第1のアクセスポイントの202の活動のうちのいくつかは非決定性であってよく、FTMセッション(たとえば、関連付けられたAPとのデータ転送対話)よりも高い優先順位を有することができ、衝突が、第2のアクセスポイント204によって決定されるバーストインスタンスの開始において第1のアクセスポイント202が利用可能になるのを防止し得る。そのような例では、第1のアクセスポイント202は、第2のアクセスポイント204、および異なるチャネル上の第3のアクセスポイント(たとえば、アクセスポイント106)とのセッションを確立することができる。セッションの各々のバースト周期性は異なってよく、局の各々のクロックオフセットは異なってよい。したがって、時間とともに、いくつかの時間的衝突が起こり得る。これを克服するために、各バーストインスタンス中、開始局は、その利用可能性を、精密タイミング測定要求フレームの形のトリガフレームを送信することによって示せばよい。各バーストインスタンス中、応答局は、1つまたは複数の精密タイミング測定フレームを、交渉されたように送信する。
【0024】
[0033]ある例では、第1のアクセスポイントは、測定値交換についての開始局の利用可能性を記述するためのスケジューリングパラメータのセットを含み得る精密タイミング測定フレームを送ることができる。精密タイミング測定フレームは、精密タイミング測定値交換中に使われるべきパラメータを定義するための精密タイミング測定パラメータ要素を含み得る。たとえば、局は、連続するFTMメッセージの間の最短時間を示すための最小デルタFTM時間208を確立することができる。バーストインスタンスのタイミングは、AP間部分的タイマ同期機能(TSF)タイマ値210によって定義される。AP間部分的TSFタイマ値は、第1のバーストインスタンスの開始における部分的TSFタイマであり、バースト期間の境界である。AP間バーストタイムアウト値216は、バースト期間の境界において始まる各バーストインスタンスの持続時間である。AP間切替え期間214は、あるAP間バーストインスタンスの開始(たとえば、210)から、後に続くAP間バーストインスタンスの開始(たとえば、216)までの間隔である。AP間切替え期間の例示的な値は概して、ネットワークハードウェアおよび動作検討事項に基づいて、1マイクロ秒から数秒に渡る。各バーストインスタンスにおいて、連続する精密タイミング測定フレームは概して、少なくとも最小デルタFTM時間208だけ離間される。各バーストインスタンスにおいて、開始局は、それに宛てられた各精密タイミング測定フレームに対して精密タイミング測定を実施することができる。
【0025】
[0034]
図1Aおよび
図2をさらに参照しながら
図3Aを参照すると、ビーコン送信を含む第1のAP間シグナリング方式300の例が示されている。第1のAP間シグナリング方式300は、クラスタ中のアクセスポイント(たとえば、AP1、AP2、AP3、AP4、AP5)のリストをもつy軸302と、時間の進行、アクセスポイントの各々向けのビーコン送信306のためのタイムスロットの指示、アクセスポイントの各々向けのAP間FTM交換308のためのタイムスロットの指示、およびネイバー報告をもつビーコン送信310のためのタイムスロットを示すためのx軸304とを含む。第1のAP間シグナリング方式300はまた、AP間バーストタイムアウト312、AP1AP間部分的TSFタイマ値314、AP2AP間部分的TSFタイマ値316、AP3AP間部分的TSFタイマ値318の指示と、AP間切替え期間320の指示とを含む。AP間バーストタイムアウト312は、
図2に表されるFTMメッセージ交換の時間期間を表す。AP間FTM交換308の要素の各々は、図示されるアクセスポイントの間(たとえば、AP1−AP2間、AP1−A3間、AP2−AP3間など)のFTMメッセージ交換を表す。部分的TSF値314、316、318の各々は、第1のバーストインスタンスの時間における、それぞれの応答局のTSFタイマの部分的値を示す。図示される局の間(たとえば、AP1−AP2間、AP1−A3間、AP2−AP3間など)に正常トラフィック交換が起こるAP間切替え期間320。ビーコン送信306の各々は、ネイバー報告カウント値(たとえば、599、598、597...0)を含む。動作時、各アクセスポイント(たとえば、AP1、AP2、AP3、AP4、AP5)は、定期的ビーコン送信をブロードキャストする。ビーコン送信306は、確立されているメディアアクセス制御(MAC)制御フレームフォーマットに適合してよいが、ネイバー報告カウント値も含む。
図3Aに示すように、ビーコン送信は100msの間隔で行われ、ネイバー報告カウント値は各後続送信において減少する。したがって、この例では、10個のビーコン送信が、各アクセスポイントによって毎秒送られ、ネイバー報告カウント値は、各ビーコン送信に対して600とゼロとの間で毎分循環する。ビーコン間隔およびネイバー報告カウント値は例示にすぎないので、ネットワーク要件に基づいて他の値が使われてよい。ネットワーク報告カウント値が(たとえば、第600のビーコン送信において)ゼロに達すると、ネイバー報告をもつビーコン送信310がブロードキャストされる。ネイバー報告については以下でより詳しく説明するが、概して、ネイバー報告は、ブロードキャストエリア中のクライアント局に、受動測位算出を実施するために求められる情報を提供する。たとえば、ネイバー報告をもつビーコン送信310は、2013年、2014年9月3日に出願された、「Passive Positioning Schemes」と題する、同時係属中の米国特許仮出願第61/873,253号に記載されている受動測位方法において使われ得る。
【0026】
[0035]
図1A、
図2、および
図3Aをさらに参照しながら
図3Bを参照すると、ビーコン送信を含む第2のAP間シグナリング方式350の例が示されている。第2のAP間シグナリング方式350は、例示的なクラスタ中のアクセスポイント(たとえば、AP1、AP2)のリストをもつy軸302と、時間の進行、アクセスポイントの各々向けのビーコン送信306のためのタイムスロットの指示、アクセスポイントの各々向けのAP間FTM交換308のためのタイムスロットの指示、およびネイバー報告をもつビーコン送信310のためのタイムスロットを示すためのx軸304とを含む。2つのアクセスポイント(たとえば、AP1、AP2)のリストは例にすぎず、限定ではないので、クラスタは、図示されていない追加アクセスポイント(たとえば、AP3、AP4、AP5、およびAP6)を含む。第2のAP間シグナリング方式350は、第1のAP間シグナリング方式300と比較して、AP間FTM交換の順序とタイミングとを変えている。第2のAP間シグナリング方式350はまた、AP間バーストタイムアウト352、AP1AP間部分的TSFタイマ値364、AP2AP間部分的TSFタイマ値366の指示と、AP間切替え期間370の指示とを含む。AP間切替え期間370の持続時間は、250マイクロ秒前後であり得る。ビーコン送信306およびネイバー報告をもつビーコン送信310と比較した、AP間FTM交換308のシーケンスおよび/または相対時間は、ネットワーク制約に基づいて変わり得る。
【0027】
[0036]
図4を参照すると、AP間シグナリングパラメータフォーマット情報要素400が示されている。AP間シグナリングパラメータフォーマット情報要素400は、ビーコン送信の一部であり、定期的にブロードキャストされ得る。ある例では、AP間シグナリングパラメータフォーマット情報要素400は、ネイバー報告をもつビーコン送信310に含まれる。AP間シグナリングパラメータフォーマット情報要素400は、ビーコン送信に依存しない間隔でブロードキャストされ得る。AP間シグナリングパラメータフォーマット情報要素400は、要素IDフィールド(8ビット)と、長さフィールド(8ビット)と、N_AP受動フィールド(4ビット)と、AP間バーストタイムアウトフィールド(8ビット)と、最小デルタFTMフィールドと、AP間部分的TSFタイマフィールド(16ビット)と、AP間FTMチャネル離間/フォーマットフィールド(6ビット)と、AP間切替え期間フィールド(8ビット)とを含む64ビットのMACフレームフォーマットメッセージからなる。ElementIDおよび長さフィールドは、当技術分野で知られているメッセージ管理を可能にする。N_AP受動フィールドは、受動FTM交換中に訪問されるべきアクセスポイントの数の指示を含む。AP間バーストタイムアウトは、バーストインスタンスの持続時間を示す。バーストインスタンスについての典型的な値は、128ミリ秒と250マイクロ秒との間である。最小デルタFTMフィールドの例は、
図2に示され、連続するFTMメッセージの間の最短時間を表す。AP間部分的TSFタイマフィールドは、第1のAP間バーストインスタンスの時間における応答局TSFタイマの部分的値を示す。単位は、1TU、すなわち1024マイクロ秒である部分的TSFタイマと同じであり得る。AP間FTMチャネル離間/フォーマットフィールドは、FTMセッション中の精密タイミング測定フレームすべてによって使われる所望のパケット帯域幅/フォーマットを示す。AP間切替え期間フィールドは、(たとえば、
図3Aおよび
図3Bに示すように)あるAPから次のAPへの切替えの間の持続時間を示す。AP間シグナリングパラメータフォーマット情報要素400の他の例は、2つの連続するバーストインスタンスの間の間隔を示すための、バーストフィールド(5ビット)ごとのFTMを含み得る。
【0028】
[0037]
図3A、
図3Bおよび
図4をさらに参照しながら
図5を参照すると、ビーコン送信フレームの例が示されている。ネイバー報告フレームをもつビーコン送信500は、ビーコン要素502と、ネイバー報告カウント要素504と、AP間シグナリングパラメータ要素506と、ネイバー報告要素508とを含み得る。ビーコン要素502は、IEEE P802.11規格、表8−24に記載されるようなビーコンフレーム本体を含み得る。ビーコンフレーム本体は、ネイバー報告カウント要素504を含むように拡張され得る。ネイバー報告カウント要素504は、次のネイバー報告のブロードキャストに関する情報を提供する。
図3Aおよび
図3Bで説明したように、ある例では、ネイバー報告カウント要素は、各後続ビーコン送信とともに減少するカウントダウン値であり得る。AP間シグナリングパラメータ要素506は、
図4に記載されるフィールド(すなわち、AP間シグナリングパラメータフォーマット情報要素400)を含む。
【0029】
[0038]ネイバー報告要素508は、IEEE P802.11規格、
図8−255に記載されるようなMACフレームフォーマットであってよい。ネイバー報告要素508は、ネイバー報告フレームをもつビーコン送信500に含まれ、したがって、クライアント局に定期的に与えられる。ネイバー報告要素508は、複数のネイバー記録要素510(たとえば、510a、510b、510c)を含むことができ、複数のネイバー記録要素の各々は、近隣局に関連した情報を含む。ネイバー報告要素は、ネイバーの各々についての位置情報(たとえば、緯度、経度、高度)を含み得る。ネイバー報告要素は、受動測位および/または受動測距を実施するための近隣局の十分なリストのみを含むように制限され得る。例示的なネイバー記録要素510はまた、基本サービスセット識別(BSSID)フィールド512と、BSSID情報フィールド514と、動作クラスフィールド516と、チャネル番号フィールド518と、物理タイプフィールド520と、訪問インデックス522とを含み得る。他のサブ要素フィールドが含まれてもよい。BSSIDフィールド512は、報告されるBSSのBSSIDを表す。BSSID情報フィールド514は、ネイバーサービスセット遷移候補を決定するのに使われ得る。動作クラスフィールド516は、動作周波数範囲(たとえば、2.4GHz、5GHz)、ならびにチャネル離間を示すのに使われ得る。チャネル番号フィールド518は、チャネル中心周波数情報を提供するのに使われ得る。物理タイプフィールド520は、BSSIDによって起訴されるAPのPHYタイプ(たとえば、ODFM、HT、DMG)を示す。訪問インデックス522は、優先度(たとえば、順序)と、対応するアクセスポイントの各々がどのように訪問されるか、とを示す。このインデックスは、ネイバー報告要素508が受信されたとき、追加シグナリングを防止することができる。たとえば、AP1は、部分的TSFタイマ時間期間に、AP2に対して訪問をする(たとえば、FTMパケットを送る)ことができる。AP1は次いで、固定時間量だけAP3を訪問し、次いで、AP4を訪問し得る。概して、訪問先APが同じチャネル上にある場合、訪問元APはFTMパケットを送るだけである。訪問先APが異なるチャネル上にある場合、訪問元APは新たなチャネルに行き、そのAPにFTMパケットを送り、次いで、クライアント局にサービスするために元のチャネルに戻る。訪問の順序は、ネットワーク記録要素中の訪問インデックスの順序に基づき得る。
【0030】
[0039]ネイバーカウント値をもつビーコン送信550は、ビーコン要素502と、ネイバー報告カウント要素504とを含む。ネイバーカウント値をもつビーコン送信550は、ネイバー報告カウント要素504の値が各送信とともに削減されるように、
図3Aおよび
図3Bで説明したように定期的に行われる。その効果は、ネイバー報告のブロードキャストを予期するためのタイマを受信局に提供することである。減分カウンタは例にすぎず、限定ではないので、他のタイマおよび/またはカウンティングプロセスが使われてよい。
【0031】
[0040]動作時、
図1A〜
図5をさらに参照しながら
図6Aを参照すると、ネイバー報告を含むビーコン送信を生成するためのプロセス600は、図示される段階を含む。ただし、プロセス600は、例にすぎず、限定的なものではない。プロセス600は、たとえば、段階を追加、除去、または並べ替えることによって改変できる。たとえば、ネイバー報告カウント値を決定し、減分することは、プロセス600における異なる時点において起こり得る。
【0032】
[0041]段階602において、アクセスポイントが、ビーコン送信を生成するように構成される。ビーコン送信は、ネイバー報告カウント値を記録するための追加フィールドをもつMACフレームフォーマットであってよい。ビーコン報告は、メモリにあらかじめ記憶されているビーコン要素502を含んでよく、ネイバー報告カウントフィールドは、ビーコン送信が生成されるとアップデートされ得る。ある例では、100ミリ秒ごとにビーコン送信が生成される。時間は、ネットワーク中のナンバーアクセスポイント、クライアント局の数、ならびにアクセスポイントおよびクライアント局のハードウェア性能などのネットワークパラメータに基づいて修正されてよい(たとえば、10、50 100、500、1000ミリ秒)。段階604において、アクセスポイントは、ネイバー報告カウント値を決定するように構成される。ネイバー報告カウント値は整数値であってよく、ブロードキャストエリア中のクライアント局にネイバー情報が与えられる前にブロードキャストされるべき後続ビーコン送信の数を表し得る。最大ネイバー報告カウント値は、ビーコン送信の頻度、ならびに他のネットワークパラメータに基づいて確立され得る。たとえば、ビーコン送信が100ミリ秒ごとにブロードキャストされるとき、最大ネイバー報告カウント値は、クライアント局にネイバー報告情報を毎分一度提供するために600であり得る。
【0033】
[0042]段階606において、アクセスポイントは、ネイバー報告カウント値がゼロよりも大きいかどうか決定するための論理演算を実施するように構成される。ネイバー報告カウント値がゼロよりも大きい場合、プロセスは段階608に続き、アクセスポイントは、少なくともビーコンフレームとネイバー報告カウント値とを含むビーコン送信をブロードキャストする。たとえば、ビーコン送信は、100msごとにブロードキャストされるネイバーカウント値をもつビーコン送信550であり得る。ビーコン送信がブロードキャストされた後、段階610において、アクセスポイントは、プロセスが反復して段階602に戻ったとき、後続ビーコン送信が、前に送信されたビーコン送信よりも1だけ小さいネイバー報告カウント値を有するように、ネイバー報告カウント値を1だけ減分するように構成される。
【0034】
[0043]段階612において、ネイバー報告カウント値がゼロに等しいとアクセスポイントが決定した場合、アクセスポイントは、少なくともビーコンフレームとネイバー報告とを含むビーコン送信をブロードキャストするように構成される。たとえば、ビーコン送信は、
図5において説明したようにネイバー報告フレームをもつビーコン送信500となる。アクセスポイントは次いで、段階614において、ネイバー報告カウント値を所定の値にリセットするように構成される。ネイバー報告カウント値は、任意の値(たとえば、1、2、20、200、400、1000、10,000)にリセットされてよい。上の例に対しては、600という値が使われた。ネイバー報告カウント値は他の値に設定されてよく、ネットワーク中の各アクセスポイントは異なる値を有してよい。たとえば、位置サーバ152は、ネットワークリソースに対する負荷を評価し、第1のアクセスポイント102が、第2のアクセスポイント104の2倍のレートでネイバー報告情報をブロードキャストするべきであると決定することができる。ビーコン送信のタイミング、および対応するネイバー報告情報は、ネットワーク150の動作要件および能力に基づいて修正されてよい。
【0035】
[0044]動作時、
図1A〜
図5をさらに参照しながら
図6Bを参照すると、ビーコン送信を定期的にブロードキャストするためのプロセス650は、図示される段階を含む。ただし、プロセス650は、例にすぎず、限定的なものではない。プロセス650は、たとえば、段階を追加、除去、または並べ替えることによって改変できる。
【0036】
[0045]段階652において、ワイヤレストランシーバ(たとえば、アクセスポイント)が、ネイバー報告カウント値をもつビーコン送信を第1の間隔で定期的にブロードキャストするように構成される。ビーコン送信は、ネイバー報告カウント値を示すデータフィールドをもつMACフレームフォーマットであってよい。ネイバー報告カウント値は整数値であってよく、アクセスポイントは、第1の間隔に基づいてネイバー報告カウントを減少させるように構成され得る。ある実施形態では、ネイバー報告カウント値は、クライアント局にとってネイバー報告要素が利用可能になるときを近似的に示すためのどのデータであってもよい。第1の間隔の持続時間は、ネットワーク能力および性能要件に基づいて確立され得る。前に論じたように、第1の間隔についての例示的な値は、ほぼ100ミリ秒である。マイクロ秒から分まで渡る他の値が使われてよい。ある例では、ネイバー報告カウント値をもつビーコン送信は、AP間シグナリングパラメータフォーマット情報要素400も含む。
【0037】
[0046]段階654において、ワイヤレストランセイバは、ネイバー報告要素をもつビーコン送信を第2の間隔で定期的にブロードキャストするように構成される。第2の間隔の持続時間は、第1の間隔の持続時間よりも大きい。ある例では、ネイバー報告要素をもつビーコン送信は、ネイバー報告カウント値をもつビーコン送信の代わりにブロードキャストされる。ネイバー報告要素をもつビーコン送信は、AP間シグナリングパラメータフォーマット情報要素400を含み得る。ビーコン送信はMACフレームフォーマットであってよい。ネイバー報告要素は複数のネイバー記録要素を含み得る。ネイバー記録要素の各々の中の訪問インデックスは、優先度と、対応するアクセスポイントの各々がどのように訪問されるか、とを示し得る。上の例において、第2の間隔の持続時間は1分程度である。つまり、100msおきにビーコン送信が送られるとき、600個のビーコン送信ごとである。ただし、第1および第2の間隔はそのように限定されないので、ネットワーク能力および性能予想に基づいて他の持続時間が使われてよい。たとえば、小規模ネットワークにおけるネイバー報告要素は、より頻繁にブロードキャストされてよく、というのは、わずかなネイバー記録要素からなるネイバー報告は、利用可能帯域幅に対してほとんど要望を課さないからである。遅延およびクライアント局の予想される移動性など、他の性能問題も、第1および第2の間隔の持続時間を決定するのに使われ得る。
【0038】
[0047]動作時、
図1A〜
図5をさらに参照しながら
図7を参照すると、クライアント局の位置を決定するためのプロセス700は、図示される段階を含む。ただし、プロセス700は、例にすぎず、限定的なものではない。プロセス700は、たとえば、段階を追加、除去、または並べ替えることによって改変できる。たとえば、位置算出が、クライアント局120上のプロセッサ(すなわち、ローカル)によって、または位置サーバ152中のプロセッサ(すなわち、リモート)によって行われてよい。段階714においてクライアント局の現在の位置を表示することは随意である。
【0039】
[0048]段階702において、クライアント局120が、アクセスポイントからビーコン送信を受信するように構成される。ビーコン送信は、ビーコンフレーム要素とネイバー報告カウント要素とを含み得る。ビーコンフレーム要素は、一般的ネットワーク情報に関連したフィールドを含み得る。段階704において、クライアント局120は、受信したビーコン送信を評価し、ネイバー報告カウント要素の値を決定するように構成される。ネイバー報告カウント値は、整数か、または論理比較演算において使うことができる他の値であってよい。たとえば、段階706として、ネイバー報告カウント値がゼロよりも大きいかどうか決定するために、論理比較がクライアント局120によって実施される。ネイバー報告カウント値がゼロよりも大きい場合、クライアント局120は、ネットワークを監視し続け、プロセスが反復すると、段階702において別のビーコン送信を受信することができる。
【0040】
[0049]段階708において、段階706における論理演算の結果が失敗である場合、クライアント局は、ネイバー報告を受信するように構成される。ネイバー報告はビーコン送信に含められてよい。たとえば、段階702において受信されたビーコン送信は、前に論じたネイバー報告フレームをもつビーコン送信500であり得る。ネイバー報告を受信することは、ビーコン送信を受信することと、受信フレームを解析することと、フレーム中のそれぞれのフィールドを記憶することとを含み得る。段階710において、クライアント局120は、ネイバー報告中の1つまたは複数のアクセスポイントのロケーションを決定するように構成される。ある例では、ネイバー報告は1つまたは複数のネイバー記録要素510を含み、各記録要素は、アクセスポイントに関連付けられたロケーション情報を含む。記録要素は、ネイバーについてのRTTおよびRSSI情報も含み得る。ネイバー記録要素は、位置算出において、ネイバーの重要度に基づいてインデックス付けされ得る。たとえば、ネイバーは、位置算出を向上させようとして、地理的配向(すなわち、三角測量)に基づいてインデックス付けされ得る。
【0041】
[0050]段階712において、クライアント局120、または位置サーバ152は、1つまたは複数のアクセスポイントのロケーションに少なくとも部分的に基づいて、クライアント局の現在の位置を決定するように構成され得る。前に記載されたように、受動測位方式において、クライアント局120は、アクセスポイント(たとえば、108、110、112)の間を流れるFTMメッセージに関連した情報を受信し、捕捉するように構成される。クライアント局120は、ネイバー報告に含まれる情報を、FTMメッセージ情報(たとえば、RTT、RSSI、TOA、およびTDOAデータ)とともに、クライアント局の現在の位置を決定するのに使用するように構成された測位ユニットを含む。クライアント局の現在の位置は、ローカルに、または位置サーバ152上に、もしくは他のネットワークリソース上に記憶されてよく、位置情報サービスとともに使われ得る。随意には、クライアント局120は、段階714においてクライアント局の現在の位置を表示するように構成され得る。
【0042】
[0051]実施形態は、完全にハードウェアの実施形態、完全にソフトウェアの実施形態(ファームウェア、常駐ソフトウェア、マイクロコードなどを含む)、または、本明細書では「回路」、「モジュール」、もしくは「システム」とすべてが全般に呼ばれ得る、ソフトウェアの態様とハードウェアの態様を組み合わせた実施形態という、形式をとり得る。さらに、本発明の主題の実施形態は、媒体で具体化されるコンピュータ使用可能プログラムコードを有する任意の有形の表現媒体で具体化されるコンピュータプログラム製品の形態をとることができる。説明した実施形態は、すべての想到できる変形が本明細書に列挙されているわけではないので、現在記載されているかどうかにかかわらず、実施形態に従ってプロセスを実行する(たとえば、実施する)ために、コンピュータシステム(または他の電子デバイス)をプログラムするために使用され得る命令を記憶する機械可読媒体を含み得る、コンピュータプログラム製品またはソフトウェアとして提供され得る。機械可読媒体は、機械(たとえば、コンピュータ)によって読取り可能な形態(たとえば、ソフトウェア、処理アプリケーション)で情報を記憶または送信するための任意の機構を含む。機械可読媒体は、非一時的プロセッサ可読記憶媒体、機械可読記憶媒体、または機械可読信号媒体とすることができる。機械可読記憶媒体は、たとえば、限定はしないが、磁気記憶媒体(たとえば、フロッピー(登録商標)ディスケット)、光学記憶媒体(たとえば、CD−ROM)、光磁気記憶媒体、読取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、消去可能プログラマブルメモリ(たとえば、EPROMおよびEEPROM(登録商標))、フラッシュメモリ、または電子命令を記憶することに適した他のタイプの有形の媒体を含み得る。機械可読信号媒体は、コンピュータ可読プログラムコードが組み込まれた伝搬されるデータ信号、たとえば、電気信号、光信号、音響信号、または他の形式の伝搬される信号(たとえば、搬送波、赤外線信号、デジタル信号など)を含み得る。機械可読信号媒体上で実施されるプログラムコードは、ワイヤライン、ワイヤレス、光ファイバケーブル、RF、または他の通信媒体を含むがこれに限定されない任意の適切な媒体を使用して送信され得る。
【0043】
[0052]実施形態の動作を実施するためのコンピュータプログラムコードは、Java(登録商標)、Smalltalk、C++などのオブジェクト指向プログラミング言語、および「C」プログラミング言語または同様のプログラミング言語などの従来の手続き型プログラミング言語を含む、1つまたは複数のプログラミング言語のいずれかの組合せで書かれることが可能である。プログラムコードは、完全にユーザのコンピュータで、一部をユーザのコンピュータで、スタンドアロンソフトウェアパッケージとして、一部をユーザのコンピュータで、および一部をリモートコンピュータで、または完全にリモートコンピュータもしくはサーバで、実行することができる。後者のシナリオでは、リモートコンピュータは、ローカルエリアネットワーク(LAN)、パーソナルエリアネットワーク(PAN)、または、ワイドエリアネットワーク(WAN)を含む任意のタイプのネットワークを通してユーザのコンピュータに接続され得る、または、外部コンピュータへの接続が(たとえば、インターネットサービスプロバイダを使用するインターネット通して)行われ得る。
【0044】
[0053]
図8Aを参照することは、ビーコンネイバー報告を使用する受動測位において使用するための電子デバイス800の一実施形態のブロック図である。いくつかの実装形態において、電子デバイス800は、ノート型コンピュータ、タブレットコンピュータ、ネットブック、モバイルフォン、スマートフォン、ゲーム機、携帯情報端末(PDA)、または在庫タグなどのデバイスで実施されるクライアント局120であってよい。電子デバイス800は、ワイヤレストランシーバおよび測位能力をもつホームノードB(HNB)デバイス(たとえば、あるタイプのアクセスポイント)など、他の電子システムであってよい。電子デバイス800は、プロセッサユニット802(複数のプロセッサ、複数のコア、複数のノードを含む場合、および/またはマルチスレッドを実施する場合などもある)を含む。電子デバイス800は、メモリユニット806を含む。メモリユニット806は、システムメモリ(たとえば、キャッシュ、SRAM、DRAM、ゼロキャパシタRAM、ツイントランジスタRAM、eDRAM、EDO RAM、DDR RAM、EEPROM、NRAM、RRAM(登録商標)、SONOS、PRAM、その他の中の1つもしくは複数)、または、マシン可読媒体のすでに上述された可能な実現例の中のいずれかの1つもしくは複数であり得る。電子デバイス800はまた、バス810(たとえば、PCI、ISA、PCI−Express、HyperTransport(登録商標)、InfiniBand(登録商標)、NuBus、AHB、AXIなど)と、ワイヤレスネットワークインターフェース(たとえば、WLANインターフェース、Bluetooth(登録商標)インターフェース、WiMAXインターフェース、ZigBee(登録商標)インターフェース、ワイヤレスUSBインターフェースなど)およびワイヤードネットワークインターフェース(たとえば、Ethernet(登録商標)インターフェースなど)のうちの少なくとも1つを含むネットワークインターフェース804とを含む。
【0045】
[0054]電子デバイス800は、通信ユニット808も含む。通信ユニット808は、測位ユニット812と、受信機814と、送信機816と、1つまたは複数のアンテナ818とを備える。送信機816、アンテナ818、および受信機814は、ワイヤレス通信モジュール(トランシーバ820である、送信機816と受信機814とを有する)を形成する。送信機816および受信機814は、1つまたは複数のクライアント局および他のアクセスポイントと、対応するアンテナ818を介して双方向に通信するように構成される。いくつかの実施形態では、電子デバイス800は、測位決定能力をもつWLAN局(たとえば、あるタイプのアクセスポイント)として構成され得る。測位ユニット812は、アクセスポイントに関連したTDOAタイミング情報を決定するために、アクセスポイントの間で交換されるFTM要求/応答メッセージを検出することができる。測位ユニット812は、
図1A〜
図7を参照して上述したように、TDOAタイミング情報、およびAP位置情報に少なくとも部分的に基づいて、電子デバイス800の位置を決定することができる。いくつかの実施形態では、アクセスポイント102、104、106は、
図8Aの電子デバイス800として構成されてもよい。本実施形態では、アクセスポイントは、それらの処理能力を、上述したそれらのそれぞれの動作を実行するのに使うことができる。これらの機能性のうちの任意のものは、ハードウェア内および/またはプロセッサユニット802上に、部分的に(または、全体的に)実装され得る。たとえば、その機能性は、特定用途向け集積回路によって、プロセッサユニット802において実施されたロジックにおいて、周辺デバイスもしくはカード上のコプロセッサにおいて、またはその他において実装され得る。さらに、実現形態は、より少数の構成要素、または
図8Aに示されない追加の構成要素(たとえば、ビデオカード、オーディオカード、追加のネットワークインターフェース、周辺デバイスなど)を含み得る。プロセッサユニット802、メモリユニット806、およびネットワークインターフェース804は、バス810に結合されている。バス810に結合されているものとして示されているが、メモリユニット806は、プロセッサユニット802に結合され得る。
【0046】
[0055]
図8Bを参照すると、アクセスポイント(AP)850の例は、プロセッサ851と、ソフトウェア854を含むメモリ852と、送信機856と、アンテナ858と、受信機860とを含むコンピュータシステムを備える。いくつかの実施形態では、アクセスポイント102、104、106は、
図8BのAP850として構成されてもよい。送信機856、アンテナ858、および受信機860は、ワイヤレス通信モジュール(トランシーバである、送信機856と受信機860とを有する)を形成する。送信機856はアンテナ858のうちの1つに接続されており、受信機860はアンテナ858のうちの別の1つに接続されている。他の例示的なAPは、たとえば、1つだけのアンテナ858を有する、ならびに/あるいは複数の送信機856および/または複数の受信機860を有する、異なる構成を有してよい。送信機856および受信機860は、AP850が、アンテナ858を介してクライアント局120と双方向に通信できるように構成されている。プロセッサ851は、好ましくは、インテリジェントハードウェアデバイス、たとえば、ARM(登録商標)、Intel(登録商標)Corporation、またはAMD(登録商標)製のものなどの中央処理ユニット(CPU)、マイクロコントローラ、特定用途向け集積回路(ASIC)などである。プロセッサ851は、AP850内に分散され得る複数の別々の物理エンティティを備え得る。メモリ852は、ランダムアクセスメモリ(RAM)と読取り専用メモリ(ROM)とを含む。メモリ852は、プロセッサ可読であるソフトウェア854と、実行されると、プロセッサ851に、本明細書に記載の様々な機能(説明は、機能を実行するプロセッサ851のみを参照する場合があるが)を実施させるように構成されたプロセッサ可読命令を含むプロセッサ実行可能ソフトウェアコードとを記憶するプロセッサ可読記憶媒体である。代替的に、ソフトウェア854は、プロセッサ851によって直接実行可能でなくてもよいが、コンパイルおよび実行されると、プロセッサ851に機能を実施させるように構成される。
【0047】
[0056]様々な実装形態および活用を参照して実施形態が説明されたが、これらの実施形態は例示であり、本発明の主題の範囲はそれらに限定されないということが理解されよう。概して、本明細書に記載されるワイヤレス通信デバイスについてのビーコンネイバー報告を使用する受動測位のための技法は、どの1つのハードウェアシステムまたは複数のハードウェアシステムとも矛盾しない機構を有して実装され得る。多くの変形、修正、追加、改善が可能である。
【0048】
[0057]複数の事例は、本明細書に記載される構成要素、動作または構造に、単一の事例としてもたらされ得る。最後に、様々な構成要素、動作、データストアの間の境界は、ある程度任意であり、特定の動作が特有の例示的な構成に照らして示される。機能性の他の割振りは、予見され、本発明の主題の範囲内に属し得る。一般に、例示的な構成で別個の構成要素として示される構造および機能性は、組み合わせられた構造または構成要素として実施され得る。同様に、単一の構成要素として示される構造および機能性は、別個の構成要素として実施され得る。これらおよび他の変形、修正、追加、および改善は、本発明の主題の範囲内に属し得る。
【0049】
[0058]特許請求の範囲を含めて、本明細書で使用される場合、別段に明記されていない限り、機能または動作が項目または状態「に基づく」という文は、その機能または動作が、述べられた項目または状態に基づき、述べられた項目または状態に加えて1つまたは複数の項目および/または状態に基づき得ることを意味する。
【0050】
[0059]さらに、複数の発明が開示され得る。
以下に、本願出願の当初の特許請求の範囲に記載された発明を付記する。
[C1]
ブロードキャストエリアにネットワーク情報を提供するためのワイヤレストランシーバであって、
メモリと、
前記メモリに結合された少なくとも1つのプロセッサとを備え、前記プロセッサは、
ネイバー報告カウント値をもつビーコン送信を第1の間隔で定期的にブロードキャストし、
ネイバー報告要素をもつ前記ビーコン送信を第2の間隔で定期的にブロードキャストするように構成される、ワイヤレストランシーバ。
[C2]
前記ネイバー報告カウント値は整数値である、C1に記載のワイヤレストランシーバ。
[C3]
前記少なくとも1つのプロセッサは、アクセスポイント間(AP間)シグナリングパラメータフォーマット情報要素をブロードキャストするようにさらに構成される、C1に記載のワイヤレストランシーバ。
[C4]
前記ネイバー報告カウント値をもつ前記ビーコン送信および前記ネイバー報告要素をもつ前記ビーコン送信は、メディアアクセス制御(MAC)制御フレームフォーマットを備える、C1に記載のワイヤレストランシーバ。
[C5]
前記ネイバー報告要素をもつ前記ビーコン送信は、緯度値と経度値とを含む、C1に記載のワイヤレストランシーバ。
[C6]
前記ネイバー報告要素をもつ前記ビーコン送信は都市ロケーションを含む、C1に記載のワイヤレストランシーバ。
[C7]
前記ネイバー報告要素をもつ前記ビーコン送信は、1つまたは複数のアクセスポイントが訪問されるべき順序を示すための訪問インデックスを含む、C1に記載のワイヤレストランシーバ。
[C8]
アクセスポイントをもつネットワークネイバー報告をブロードキャストするための方法であって、
ビーコン送信を生成することと、
ネイバー報告カウント値を決定することと、
前記ネイバー報告カウント値がゼロよりも大きい場合、
少なくともビーコンフレームと前記ネイバー報告カウント値とを含む前記ビーコン送信をブロードキャストし、
前記ネイバー報告カウント値を減分することと、
前記ネイバー報告カウント値がゼロに等しい場合、
少なくとも前記ビーコンフレームとネイバー報告とを含む前記ビーコン送信をブロードキャストし、
前記ネイバー報告カウント値をリセットすることとを備える、方法。
[C9]
前記ネイバー報告は1つまたは複数のネイバー記録要素を備える、C8に記載の方法。
[C10]
前記1つまたは複数のネイバー記録要素は、緯度値と、経度値と、Z軸情報とを含む、C9に記載の方法。
[C11]
前記1つまたは複数のネイバー記録要素は都市ロケーションを含む、C9に記載の方法。
[C12]
1つまたは複数のアクセスポイントは、前記ネイバー報告に含まれる訪問インデックスに基づく順序で訪問されることになる、C9に記載の方法。
[C13]
アクセスポイント間(AP間)シグナリングパラメータ要素を含む前記ビーコン送信をブロードキャストすることをさらに備える、C8に記載の方法。
[C14]
前記AP間シグナリングパラメータ要素はAP間精密タイミング測定(FTM)バーストタイムアウト値を含む、C13に記載の方法。
[C15]
前記AP間シグナリングパラメータ要素は最小デルタ精密タイミング測定(FTM)値を含む、C13に記載の方法。
[C16]
前記ネイバー報告カウント値をリセットすることは、前記ネイバー報告カウント値を、200と1000との間の値に設定することを含む、C8に記載の方法。
[C17]
前記ビーコン送信は、少なくとも100ミリ秒ごとに生成され、ブロードキャストされる、C8に記載の方法。
[C18]
クライアント局をもつ現在の位置を決定するための方法であって、
前記クライアント局をもつネットワークビーコン送信を受信することと、
前記ネットワークビーコン送信に基づいてネイバー報告カウント値を決定することと、
前記ネイバー報告カウント値がゼロに等しい場合、ネイバー報告を受信することと、
前記ネイバー報告中のアクセスポイントのロケーションを決定することと、
前記ネイバー報告中の前記アクセスポイントの前記ロケーションに少なくとも部分的に基づいて、前記クライアント局の前記現在の位置を算出することとを備える、方法。
[C19]
ワイヤレスネットワーク中の2つ以上のアクセスポイントの間で送信される少なくとも1つの精密タイミング測定(FTM)メッセージを受信することをさらに備える、C18に記載の方法。
[C20]
前記ネイバー報告カウント値がゼロに等しい場合、アクセスポイント間(AP間)シグナリングパラメータ要素を受信することをさらに備える、C18に記載の方法。
[C21]
ワイヤレストランシーバをもつブロードキャストエリアにネットワーク情報を提供するためのプロセッサ可読命令を備える非一時的プロセッサ可読記憶媒体であって、前記命令は、
ネイバー報告カウント値をもつビーコン送信を第1の間隔で定期的にブロードキャストするためのコードと、
ネイバー報告要素をもつ前記ビーコン送信を第2の間隔で定期的にブロードキャストするためのコードとを備える、非一時的プロセッサ可読記憶媒体。
[C22]
アクセスポイント間(AP間)シグナリングパラメータフォーマット情報要素をブロードキャストするためのコードをさらに備える、C21に記載の非一時的プロセッサ可読記憶媒体。
[C23]
前記ネイバー報告カウント値をもつ前記ビーコン送信および前記ネイバー報告要素をもつ前記ビーコン送信は、メディアアクセス制御(MAC)制御フレームフォーマットを備える、C21に記載の非一時的プロセッサ可読記憶媒体。
[C24]
前記ネイバー報告要素をもつ前記ビーコン送信は、緯度値と経度値とを含む、C21に記載の非一時的プロセッサ可読記憶媒体。
[C25]
前記ネイバー報告要素をもつ前記ビーコン送信は都市ロケーションを含む、C21に記載の非一時的プロセッサ可読記憶媒体。
[C26]
前記ネイバー報告要素をもつ前記ビーコン送信は、1つまたは複数のアクセスポイントが訪問されるべき順序を示すための訪問インデックスを含む、C21に記載の非一時的プロセッサ可読記憶媒体。