【実施例】
【0661】
参照による非限定的な開示と組み込み
本明細書に記載のある特定の化合物、組成物及び方法を、ある特定の実施形態に従って具体的に説明してきたが、以下の実施例は、本明細書に記載の化合物を例示するためにのみあり、これを限定するものではない。本出願に記載の参考文献の各々は、その全体が参照により本明細書に組み込まれる。
【0662】
以下の実施例は、本開示のある特定の実施形態を例証するものであり、限定するものではない。さらに、具体的実施形態を記載する場合、本発明者らは、それらの具体的実施形態の一般的応用を企図している。例えば、ある特定モチーフを有するオリゴヌクレオチドの開示は、そのモチーフまたは同様のモチーフを有する他のオリゴヌクレオチドの合理的裏付けになる。同様に、例えば、ある特定高親和性修飾がある特定位置に見られる場合は、別段の表示がある場合を除き、同じ位置での他の高親和性修飾も好適であるとみなされる。
【0663】
実施例1:ホスホラミダイト(化合物1、1a、及び2)の調製のための一般的方法
【0664】
【化125】
[この文献は図面を表示できません]
化合物1、1a、及び2を、本明細書に記載する当技術分野で周知の手順どおりに調製した(Seth et al.,Bioorg.Med.Chem.,2011,21(4),1122−1125,J.Org.Chem.,2010,75(5),1569−1581,Nucleic Acids Symposium Series,2008,52(1),553−554)、ならびに公開されたPCT国際出願(国際公開第WO2011/115818号、同第WO2010/077578号、同第WO2010/036698号、同第WO2009/143369号、同第WO2009/006478、及び同第WO2007/090071号)、ならびに米国特許第7,569,686号も参照のこと)。
【0665】
実施例2:化合物7の調製
【0666】
【化126】
[この文献は図面を表示できません]
化合物3(2−アセトアミド−1,3,4,6−テトラ−O−アセチル−2−デオキシ−β−Dガラクトピラノースまたはガラクトサミンペンタアセテート)は、市販のものである。化合物5を公開された手順(Weber et al.,J.Med.Chem.,1991,34,2692)に従って調製した。
【0667】
実施例3:化合物11の調製
【0668】
【化127】
[この文献は図面を表示できません]
化合物8及び9は、市販のものである。
【0669】
実施例4:化合物18の調製
【0670】
【化128】
[この文献は図面を表示できません]
化合物11を実施例3に例証される手順どおりに調製した。化合物14は、市販のものである。化合物17を、Rensen et al.(J.Med.Chem.,2004,47,5798−5808)によって報告された同様の手順を用いて調製した。
【0671】
実施例5:化合物23の調製
【0672】
【化129】
[この文献は図面を表示できません]
化合物19及び21は、市販のものである。
【0673】
実施例6:化合物24の調製
【0674】
【化130】
[この文献は図面を表示できません]
化合物18及び23を実施例4及び5に例証される手順どおりに調製した。
【0675】
実施例7:化合物25の調製
【0676】
【化131】
[この文献は図面を表示できません]
化合物24を実施例6に例証される手順どおりに調製した。
【0677】
実施例8:化合物26の調製
【0678】
【化132】
[この文献は図面を表示できません]
化合物24を実施例6に例証される手順どおりに調製する。
【0679】
実施例9:3’末端にGalNAc
3−1を含む共役ASO(化合物29)の一般的調製
【0680】
【化133】
[この文献は図面を表示できません]
【0681】
【化134】
[この文献は図面を表示できません]
保護されたGalNAc
3−1は以下の構造を有する。
【0682】
【化135】
[この文献は図面を表示できません]
共役基GalNAc
3−1(GalNAc
3−1
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を提供することができる。GalNAc
3−1
aは、以下の式を有する。
【0683】
【化136】
[この文献は図面を表示できません]
【0684】
固体支持体に結合された保護GalNAc
3−1(化合物25)を実施例7に例証される手順どおりに調製した。3’末端にGalNAc
3−1を含むオリゴマー化合物29を、自動DNA/RNA合成における標準的手順を用いて調製した(Dupouy et al.,Angew.Chem.Int.Ed.,2006,45,3623−3627を参照のこと)。ホスホラミダイト構築ブロック(化合物1及び1a)を実施例1に例証される手順どおりに調製した。他のホスホラミダイト構築ブロックを用いて既定の配列及び組成を有するオリゴマー化合物を調製することができるため、例証されるホスホラミダイトは、代表的なものであり、限定する意図はない。固体支持体に添加されるホスホラミダイトの順序及び量を調整して、本明細書に記載するギャップトオリゴマー化合物を調製することができる。そのようなギャップトオリゴマー化合物は、任意の所与の標的によって指示される既定の組成及び塩基配列を有しうる。
【0685】
実施例10:5’末端にGalNAc
3−1を含む共役ASO(化合物34)の一般的調製
【0686】
【化137】
[この文献は図面を表示できません]
Unylinker(商標)30は、市販のものである。5’末端にGalNAc
3−1クラスターを含むオリゴマー化合物34を、自動DNA/RNA合成における標準的手順を用いて調製する(Dupouy et al.,Angew.Chem.Int.Ed.,2006,45,3623−3627を参照のこと)。ホスホラミダイト構築ブロック(化合物1及び1a)を実施例1に例証される手順どおりに調製した。他のホスホラミダイト構築ブロックを用いて既定の配列及び組成を有するオリゴマー化合物を調製することができるため、例証されるホスホラミダイトは、代表的なものであり、限定する意図はない。固体支持体に添加されるホスホラミダイトの順序及び量を調整して、本明細書に記載するギャップトオリゴマー化合物を調製することができる。そのようなギャップトオリゴマー化合物は、任意の所与の標的によって決まる既定の組成及び塩基配列を有しうる。
【0687】
実施例11:化合物39の調製
【0688】
【化138】
[この文献は図面を表示できません]
【0689】
【化139】
[この文献は図面を表示できません]
化合物4、13、及び23を実施例2、4、及び5に例証される手順どおりに調製した。化合物35をRouchaud et al.,Eur.J.Org.Chem.,2011,12,2346−2353に公開された同様の手順を用いて調製する。
【0690】
実施例12:化合物40の調製
【0691】
【化140】
[この文献は図面を表示できません]
化合物38を実施例11に例証される手順どおりに調製する。
【0692】
実施例13:化合物44の調製
【0693】
【化141】
[この文献は図面を表示できません]
【0694】
【化142】
[この文献は図面を表示できません]
化合物23及び36を実施例5及び11に例証される手順どおりに調製する。化合物41を、国際公開第WO2009082607号に公開された同様の手順を用いて調製する。
【0695】
実施例14:化合物45の調製
【0696】
【化143】
[この文献は図面を表示できません]
化合物43を実施例13に例証される手順どおりに調製する。
【0697】
実施例15:化合物47の調製
【0698】
【化144】
[この文献は図面を表示できません]
化合物46は、市販のものである。
【0699】
実施例16:化合物53の調製
【0700】
【化145】
[この文献は図面を表示できません]
化合物48及び49は、市販のものである。化合物17及び47を実施例4及び15に例証される手順どおりに調製する。
【0701】
実施例17:化合物54の調製
【0702】
【化146】
[この文献は図面を表示できません]
化合物53を実施例16に例証される手順どおりに調製する。
【0703】
実施例18:化合物55の調製
【0704】
【化147】
[この文献は図面を表示できません]
化合物53を実施例16に例証される手順どおりに調製する。
【0705】
実施例19:固相技法による3’位にGalNAc
3−1を含む共役ASOの調製のための一般的方法(ISIS647535、647536、及び651900の調製)
別段の明示がある場合を除き、オリゴマー化合物の合成に用いるすべての試薬及び溶液を商業的供給源から購入する。標準のホスホラミダイト構築ブロック及び固体支持体を、例えば、T、A、G、及び
mC残基を含む、ヌクレオシド残基の組み込みのために用いる。無水アセトニトリル中のホスホラミダイトの0.1M溶液をb−D−2’−デオキシリボヌクレオシド及び2’−MOEに用いた。
【0706】
カラムに充填したGalNAc
3−1負荷VIMAD固体支持体(110μmol/g、Guzaev et al.,2003)でのホスホラミダイトカップリング法により、ASO合成を、ABI 394合成装置(1〜2μmolの規模)またはGE Healthcare Bioscience AKTAオリゴパイロット合成装置(40〜200μmolの規模)で実行した。このカップリングステップでは、固体支持体の負荷量に対して4倍量のホスホラミダイトを送達し、ホスホラミダイト縮合を10分間行った。他のすべてのステップは、製造業者から提供された標準のプロトコルに従った。トルエン中の6%ジクロロ酢酸溶液を用いて、ヌクレオチドの5’−ヒドロキシル基からジメチルトリチル(DMT)基を除去した。カップリングステップ中、無水CH
3CN中の4,5−ジシアノイミダゾール(0.7M)を活性化剤として用いた。ホスホロチオエート連結部を、3分間の接触時間で、1:1のピリジン/CH
3CN中のキサンタンヒドリドの0.1M溶液による硫化によって導入した。6%の水を含有するCH
3CN中の20%のtert−ブチルヒドロペルオキシドの溶液を酸化剤として用いて、12分間の接触時間で、ホスホジエステルヌクレオシド間連結部を得た。
【0707】
所望の配列が構築された後、シアノエチルホスフェート保護基を、45分間の接触時間で、トリエチルアミンとアセトニトリルの1:1(v/v)の混合物を用いて脱保護した。固体支持体に結合されたASOをアンモニア水(28〜30重量%)中に懸濁し、55℃で6時間加熱した。
【0708】
その後、非結合型ASOを濾過し、アンモニアを沸去した。残渣を強アニオン交換カラムでの高圧液体クロマトグラフィーによって精製した(GE Healthcare Bioscience、Source 30Q、30μm、2.54×8cm、A=30%CH
3CN水溶液中100mM酢酸アンモニウム、B=A中1.5M NaBr、60分後0〜40%のB、流量14mL/分−1、λ=260nm)。残渣を逆相カラムでのHPLCにより脱塩して、固体支持体への初期負荷量に基づいて15〜30%の単離収率で所望のASOを得た。ASOを、Agilent 1100 MSDシステムを用いたイオン対HPLC/MS分析によって特徴付けた。
【0709】
当技術分野で周知の標準のオリゴヌクレオチド合成手順を用いて共役体を含まないアンチセンスオリゴヌクレオチドを合成した。
【0710】
これらの方法を用いて、ApoC IIIを標的とする3個の別個のアンチセンス化合物を調製した。以下の表17に要約されるように、ApoC IIIを標的とする3個のアンチセンス化合物のそれぞれは、同一の核酸塩基配列を有し、ISIS 304801は、すべてがホスホロチオエート連結部である5−10−5MOEギャップマーであり、ISIS 647535は、GalNAc
3−1をその3’末端で共役させたことを除いて、ISIS 304801と同一であり、ISIS 647536は、その化合物の特定のヌクレオシド間連結部がホスホジエステル連結部であることを除いて、ISIS 647535と同一であった。表17にさらに要約されるように、SRB−1を標的とする2つの別個のアンチセンス化合物を合成した。ISIS 440762は、すべてがホスホロチオエートヌクレオシド間連結部である2−10−2 cEtギャップマーであり、ISIS 651900は、その3’末端にGalNAc
3−1を含めたことを除いて、ISIS 440762と同一であった。
【0711】
【表1】
[この文献は図面を表示できません]
下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「k」は、6’−(S)−CH
3二環式ヌクレオシド(例えば、cEt)を示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。上付き文字「m」は、5−メチルシトシンを示す。「GalNAc
3−1」は、先の実施例9に示された構造を有する共役基を示す。GalNAc
3−1が、ASOを共役体の残りの部分に連結させる切断可能なアデノシンを含み、「GalNAc
3−1
a」と指定されることに留意されたい。上述の表ではこの命名法を用いて、共役体の一部であるアデノシンを含む全核酸塩基配列を示す。したがって、上述の表において、「A
do」を省略して「GalNAc
3−1」で終了する配列を列記することもできる。下付き文字「a」を用いて切断可能なヌクレオシドまたは切断可能部分を欠く共役基の部分を示すこの慣例をこれらの実施形態の全体を通して用いる。切断可能部分を欠く共役基のこの部分は、本明細書において「クラスター」または「共役クラスター」または「GalNAc
3クラスター」と称される。特定の事例において、これは、そのクラスター及びその切断可能部分を別々に提供することによって共役基を説明するのに好都合である。
【0712】
実施例20:huApoC IIIトランスジェニックマウスにおけるヒトApoC IIIの用量依存的アンチセンス阻害
それぞれヒトApoC IIIを標的とし、かつ上に記載されるISIS 304801及びISIS 647535を別々に試験し、用量依存的試験において、ヒトApoC IIIトランスジェニックマウスにおけるヒトApoC IIIを阻害するそれらの能力について評価した。
処理
【0713】
ヒトApoCIIIトランスジェニックマウスを12時間の明暗周期で維持し、Teklad実験食餌を不断給餌した。実験開始前に動物を研究施設で少なくとも7日間順化させた。ASOをPBS中に調製し、0.2ミクロンのフィルターを通して濾過して滅菌した。注入のためにASOを0.9%PBS中に溶解した。
【0714】
ヒトApoC IIIトランスジェニックマウスに、ISIS 304801もしくは647535を、0.08、0.25、0.75、2.25、もしくは6.75μmol/kgで、または対照としてPBSを、週1回2週間、腹腔内に注入した。各処理群は、4匹の動物からなった。最終用量の投与から48時間後に血液を各マウスから採取し、マウスを屠殺し、組織を収集した。
ApoC III mRNA分析
【0715】
標準のプロトコルに従ってリアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いてマウスの肝臓におけるApoC III mRNAレベルを決定した。PBS処理対照に対して正規化する前に(Ribogreenを用いて)ApoC III mRNAレベルを全RNAとの比較で相対的に決定した。以下の結果は、PBS処理対照に対して正規化された各処理群のApoC III mRNAレベルの平均パーセントとして提示され、「%PBS」で表示される。各ASOの半数効果濃度(ED
50)も以下の表18に示される。
【0716】
例証されるように、PBS対照と比較して、両方のアンチセンス化合物がApoC III RNAを減少させた。さらに、GalNAc
3−1に共役されるアンチセンス化合物(ISIS 647535)は、GalNAc
3−1共役体を欠くアンチセンス化合物(ISIS 304801)よりもはるかに強力であった。
【0717】
【表2】
[この文献は図面を表示できません]
【0718】
ApoC IIIタンパク質分析(比濁アッセイ)
2013年3月29日の出版前にオンラインで公開されたGraham et al(Circulation Research)によって報告された手順を用いて、血漿ApoC IIIタンパク質分析を行った。
【0719】
マウスから単離した約100μLの血漿を、希釈することなく、Olympus臨床分析器及び市販の比濁ApoC IIIアッセイ(Kamiya、カタログ番号KAI−006、Kamiya Biomedical,Seattle,WA)を用いて分析した。アッセイプロトコルを供給業者が説明するとおりに実行した。
【0720】
以下の表19に示されるように、PBS対照と比較して、両方のアンチセンス化合物がApoC IIIタンパク質を減少させた。さらに、GalNAc
3−1に共役されるアンチセンス化合物(ISIS 647535)は、GalNAc
3−1共役体を欠くアンチセンス化合物(ISIS 304801)よりもはるかに強力であった。
【0721】
【表3】
[この文献は図面を表示できません]
【0722】
血漿トリグリセリド及びコレステロールを、Bligh and Dyerの方法(Bligh,E.G.and Dyer,W.J.Can.J.Biochem.Physiol.37:911−917、1959)(Bligh,E and Dyer,W,Can J Biochem Physiol,37,911−917,1959)(Bligh,E and Dyer,W,Can J Biochem Physiol,37,911−917,1959)を用いて抽出し、Beckmann Coulter臨床分析器及び市販の試薬を用いて測定した。
【0723】
トリグリセリドレベルを、PBSを注入したマウスとの比較で相対的に測定し、「%PBS」で表示する。結果が表20に提示される。例証されるように、両方のアンチセンス化合物がトリグリセリドレベルを低下させた。さらに、GalNAc
3−1に共役されるアンチセンス化合物(ISIS 647535)は、GalNAc
3−1共役体を欠くアンチセンス化合物(ISIS 304801)よりも実質的にはるかに強力であった。
【0724】
【表4】
[この文献は図面を表示できません]
【0725】
血漿試料をHPLCによって分析して、総コレステロールの量及びコレステロールの異なる画分(HDL及びLDL)の量を決定した。結果が表21及び22に提示される。例証されるように、両方のアンチセンス化合物が総コレステロールレベルを低下させ、LDLを低下させ、HDLを上昇させた。さらに、GalNAc
3−1に共役されるアンチセンス化合物(ISIS 647535)は、GalNAc
3−1共役体を欠くアンチセンス化合物(ISIS 304801)よりも実質的にはるかに強力であった。HDLレベルの増加及びLDLレベルの減少は、ApoC IIIのアンチセンス阻害の心臓血管の有益な影響である。
【0726】
【表5】
[この文献は図面を表示できません]
【0727】
【表6】
[この文献は図面を表示できません]
【0728】
薬物動態分析(PK)
ASOのPKも評価した。肝臓及び腎臓試料を切り刻み、標準のプロトコルを用いて抽出した。試料をIP−HPLC−MSを利用するMSD1で分析した。全長ISIS 304801及び647535の組織レベル(μg/g)を測定し、結果が表23に提供される。例証されるように、総全長アンチセンス化合物の肝臓濃度は、これら2つのアンチセンス化合物と同様であった。したがって、GalNAc
3−1共役アンチセンス化合物が肝臓でより活性であるが(上のRNA及びタンパク質データによって実証されるように)、肝臓内で著しく高い濃度では存在しない。実際には、計算されたEC
50(表23に提供される)は、共役化合物の力価の観察された増加が蓄積の増加に完全に起因するわけではないことを裏付ける。この結果は、共役体が、肝臓蓄積単独以外の機構によって、おそらくアンチセンス化合物の細胞への生産的な取り込みを改善することによって、力価を改善したことを示唆する。
【0729】
結果は、腎臓におけるGalNAc
3−1共役アンチセンス化合物の濃度が、GalNAc共役体を欠くアンチセンス化合物の濃度よりも低いことも示す。これは、いくつかの有益な治療的意味を有する。腎臓における活性が要求されない治療的指標において、腎臓への曝露は、腎毒性の危険性を有し、それに見合う利益がない。さらに、腎臓における高濃度は、典型的には、尿への化合物の損失をもたらし、より迅速なクリアランスをもたらす。したがって、非腎臓標的の場合、腎臓蓄積は望ましくない。これらのデータは、GalNAc
3−1共役が腎臓蓄積を減少させることを示唆する。
【0730】
【表7】
[この文献は図面を表示できません]
【0731】
ISIS 647535の代謝物も特定し、それらの質量を高分解能質量分析によって確認した。観察された代謝物の切断部位及び構造が以下に示される。標準的手順を用いて全長ASOの相対%を計算し、結果が表23aに提示される。ISIS 647535の主な代謝物は、全共役体を欠く全長ASO(すなわち、ISIS 304801)であり、これは、以下に示される切断部位Aでの切断に由来する。さらに、他の切断部位に由来するさらなる代謝物も観察された。これらの結果は、細胞内の酵素によって切断されうるか、またはサイトゾルの還元環境下で切断されうるか、またはエンドソーム及びリソソーム内の酸性pHに対して不安定な、GalNAc
3−1糖とASOとの間のエステル、ペプチド、ジスルフィド、ホスホラミデート、またはアシルヒドラゾンなどの他の切断可能な結合の導入も有用でありうることを示唆する。
【0732】
【表8】
[この文献は図面を表示できません]
【0733】
【化148】
[この文献は図面を表示できません]
【0734】
【化149】
[この文献は図面を表示できません]
【0735】
実施例21:単回投与試験におけるヒトApoC IIIトランスジェニックマウスにおけるヒトApoC IIIのアンチセンス阻害
それぞれヒトApoC IIIを標的とし、かつ表17に記載されるISIS 304801、647535、及び647536を、単回投与試験において、ヒトApoC IIIトランスジェニックマウスにおけるヒトApoC IIIを阻害するそれらの能力についてさらに評価した。
【0736】
処理
ヒトApoCIIIトランスジェニックマウスを12時間の明暗周期に維持し、Teklad実験食餌を不断給餌した。実験開始前に動物を研究施設で少なくとも7日間順化させた。ASOをPBS中に調製し、0.2ミクロンのフィルターを通して濾過滅菌した。注入のためにASOを0.9%PBS中に溶解した。
【0737】
ヒトApoC IIIトランスジェニックマウスに、ISIS 304801、647535、もしくは647536(上述のもの)、またはPBS処理対照を、以下に示される投与量で1回、腹腔内注入した。処理群は、3匹の動物から成り、対照群は、4匹の動物からなった。治療前及び最終用量後に血液を各マウスから採取し、血漿試料を分析した。最終投与の72時間後にマウスを屠殺した。
【0738】
試料を収集し、分析して、肝臓におけるApoC III mRNA及びタンパク質レベル、血漿トリグリセリド、ならびにHDL及びLDL画分を含むコレステロールを決定し、上述(実施例20)のように評価した。これらの分析からのデータは、以下の表24〜28に提示される。血清における肝臓トランスアミナーゼレベル、すなわちアラニンアミノトランスフェラーゼ(ALT)、及びアスパラギン酸アミノトランスフェラーゼ(AST)を、標準のプロトコルを用いて、生理食塩水を注入したマウスとの比較で相対的に測定した。ALT及びASTレベルは、アンチセンス化合物がすべての投与量で良好な耐性であったことを示した。
【0739】
これらの結果は、GalNAc
3−1共役体を欠くアンチセンス化合物(ISIS 304801)と比較して、3’末端にGalNAc
3−1共役体を含むアンチセンス化合物(ISIS 647535及び647536)の力価の改善を示す。さらに、GalNAc
3−1共役体及びいくつかのホスホジエステル連結部を含むISIS 647536は、同一の共役体を含むISIS 647535と同程度に強力であり、ASO内のすべてのヌクレオシド間連結部は、ホスホロチオエート連結部である。
【0740】
【表9】
[この文献は図面を表示できません]
【0741】
【表10】
[この文献は図面を表示できません]
【0742】
【表11】
[この文献は図面を表示できません]
【0743】
【表12】
[この文献は図面を表示できません]
【0744】
【表13】
[この文献は図面を表示できません]
【0745】
これらの結果は、GalNAc
3−1共役体がアンチセンス化合物の力価を改善することを裏付ける。これらの結果は、GalNAc
3−1共役アンチセンス化合物の同等の力価も示し、これらのアンチセンスオリゴヌクレオチドは、混成連結部(6個のホスホジエステル連結部を有するISIS 647536)及び同一のアンチセンス化合物の完全なホスホロチオエートバージョン(ISIS 647535)を有する。
【0746】
ホスホロチオエート連結部は、アンチセンス化合物にいくつかの特性を提供する。例えば、これらは、ヌクレアーゼ消化に抵抗し、タンパク質に結合し、腎臓/尿ではなく肝臓における化合物の蓄積をもたらす。これらは、肝臓における徴候を治療する際に特に望ましい特性である。しかしながら、ホスホロチオエート連結部は、炎症性応答とも関連している。したがって、化合物におけるホスホロチオエート連結部の数を減少させることにより、炎症の危険性の減少が見込まれるが、肝臓中の化合物の濃度も低下させ、腎臓及び尿中の濃度を増加させ、ヌクレアーゼの存在下で安定性を低下させ、全体の力価を低下させる。これらの結果は、特定のホスホロチオエート連結部がホスホジエステル連結部に置換されたGalNAc
3−1共役アンチセンス化合物が、肝臓における標的に対して、完全なホスホロチオエート連結部を有する対応物と同程度に強力であることを示す。そのような化合物は、より炎症誘発性が低いと見込まれる(PSの減少が炎症性効果の減少をもたらすことを示す実験を説明する実施例24を参照のこと)。
【0747】
実施例22:生体内におけるSRB−1を標的とするGalNAc
3−1共役修飾ASOの影響
それぞれSRB−1を標的とし、かつ表17に記載されるISIS 440762及び651900を、用量依存的試験において、Balb/cマウスにおけるSRB−1を阻害するそれらの能力について評価した。
【0748】
処理
6週齢の雄Balb/cマウス(Jackson Laboratory,Bar Harbor,ME)に、ISIS 440762、651900、またはPBS処理対照を、以下に示される投与量で1回、皮下注入した。各処理群は、4匹の動物からなった。最終投与の48時間後にマウスを屠殺して、標準のプロトコルに従ってリアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるSRB−1 mRNAレベルを決定した。PBS処理対照に対して正規化する前に(Ribogreenを用いて)SRB−1 mRNAレベルを全RNAとの比較で相対的に決定した。以下の結果は、PBS処理対照に対して正規化された各処理群のSRB−1 mRNAレベルの平均パーセントとして提示され、「%PBS」で表示される。
【0749】
表29に例証されるように、両方のアンチセンス化合物がSRB−1 mRNAレベルを低下させた。さらに、GalNAc
3−1共役体(ISIS 651900)を含むアンチセンス化合物は、GalNAc
3−1共役体を欠くアンチセンス化合物(ISIS 440762)よりもはるかに強力であった。これらの結果は、異なる標的に相補的であり、かつ異なる化学修飾ヌクレオシドを有するアンチセンスオリゴヌクレオチドを用いて、GalNAc
3−1共役体の力価利益が観察されることを実証し、この事例において、修飾ヌクレオシドは、拘束エチル糖部分(二環式糖部分)を含む。
【0750】
【表14】
[この文献は図面を表示できません]
【0751】
実施例23:ヒト末梢血単核細胞(hPBMC)アッセイプロトコル
BD Vautainer CPTチューブ法を用いてhPBMCアッセイを実行した。US HealthWorks clinic(Faraday & El Camino Real,Carlsbad)においてインフォームドコンセントを得た志願ドナー由来の全血試料を得て、4〜15個のBD Vacutainer CPT8mLチューブ(VWRカタログ番号BD362753)内に収集した。PBMCアッセイデータシートを用いて、各ドナーのCPTチューブ内の開始合計全血量の近似値を記録した。
【0752】
遠心分離の直前に、チューブを8〜10回、穏やかに反転させることによって、血液試料を再度混合した。CPTチューブを、水平(スイングアウト)ローター内で、室温(18〜25℃)で30分間、ブレーキオフで1500〜1800RCFで遠心分離した(2700RPM、Beckman Allegra 6R)。細胞を(Ficollとポリマーゲル層との間の)バフィーコート界面から回収し、50mLの滅菌円錐チューブに移し、最大5個のCPTチューブ/50mLの円錐チューブ/ドナーをプールした。その後、細胞をPBS(Ca
++、Mg
++を含まない;GIBCO)で2回洗浄した。チューブを最大50mLまで満たし、数回反転させて混合した。その後、試料を、室温で15分間、330×gで遠心分離し(1215RPM、Beckman Allegra 6R)、ペレットを乱すことなくできるだけ多くの上澄みを吸引した。チューブを穏やかに回転させて細胞ペレットを取り除き、細胞をRPMI+10%FBS+pen/strep(約1mL/10mLの開始全血量)中に再懸濁した。60μLの試料を、600μLのVersaLyse試薬(Beckman Coulter、カタログ番号A09777)を有する試料バイアル(Beckman Coulter)にピペット注入し、10〜15秒間穏やかにボルテックスした。試料を室温で10分間インキュベートし、計数前に再度混合した。PBMC細胞型を用いたVicell XR細胞生存率分析器(Beckman Coulter)で細胞懸濁液を計数した(1:11の希釈係数を他のパラメータと共に保存した)。生細胞/mL及び生存率を記録した。細胞懸濁液をRPMI+10%FBS+pen/strep中で1×10
7生PBMC/mLに希釈した。
【0753】
細胞を96ウェル組織培養プレート(Falcon Microtest)の50μL/ウェル中に5×10
5でプレーティングした。RPMI+10%FBS+pen/strep中で希釈した2倍濃度のオリゴ/対照の50μL/ウェルを実験テンプレートに従って添加した(合計100μL/ウェル)。プレートを振盪器に設置し、約1分間混合させた。37℃、5%CO
2で24時間インキュベートした後、プレートを400×gで10分間遠心分離し、その後、MSDサイトカインアッセイ(すなわち、ヒトIL−6、IL−10、IL−8、及びMCP−1)のために上澄みを除去した。
【0754】
実施例24:hPBMCアッセイにおけるGalNAc
3−1共役ASOの炎症誘発作用の評価
表30に列記されるアンチセンスオリゴヌクレオチド(ASO)を、実施例23に記載されるプロトコルを用いたhPBMCアッセイにおいて炎症誘発作用について評価した。ISIS 353512は、このアッセイにおいてIL−6放出に関する高レスポンダーとして知られる内部標準物である。hPBMCを新鮮な志願ドナーから単離し、0、0.0128、0.064、0.32、1.6、8、40、及び200μm濃度のASOで処理した。処理から24時間後、サイトカインレベルを測定した。
【0755】
IL−6のレベルを一次読み出しとして用いた。標準的手順を用いてEC
50及びE
maxを計算した。結果が2つのドナー由来のE
max/EC
50の平均比率として表され、「E
max/EC
50」で表示される。より低い比率は、炎症誘発応答の相対的減少を示し、より高い比率は、炎症誘発応答の相対的増加を示す。
【0756】
試験化合物に関して、炎症誘発性が最も低い化合物は、PS/PO連結ASO(ISIS 616468)であった。GalNAc
3−1共役ASO(ISIS 647535)は、その非共役対応物(ISIS 304801)よりもわずかに炎症誘発性が低かった。これらの結果は、いくつかのPO連結部の組み込みが炎症誘発反応を減少させ、GalNAc
3−1共役体の添加が化合物の炎症誘発性を高めず、炎症誘発応答を減少させうることを示す。したがって、混成PS/PO連結部及びGalNAc
3−1共役体の両方を含むアンチセンス化合物が、完全PS連結アンチセンス化合物(GalNAc
3−1共役体の有無にかかわらず)と比較して、より低い炎症誘発応答をもたらすことが予想されるであろう。これらの結果は、GalNAc
3−1共役アンチセンス化合物、特に減少したPS含有量を有するものの炎症誘発性がより低いことを示す。
【0757】
総合して、これらの結果は、GalNAc
3−1共役化合物、特にPS含有量を減らしたものを、対応物であるGalNAc
3−1共役体を欠く完全PSアンチセンス化合物よりも高い用量で投与することができることを示唆する。これらの化合物の半減期が実質的に異なることが予想されないため、そのようなより高い投与量は、結果として低頻度の投薬につながる。実際には、GalNAc
3−1共役化合物の方が力価が高く(実施例20〜22を参照のこと)、再投薬は化合物の濃度が所望のレベル未満に低下した時に必要になるが、その所望のレベルは力価に基づくことから、そのような投与の頻度はさらに低くなるだろう。
【0758】
【表15】
[この文献は図面を表示できません]
下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「k」は、6’−(S)−CH
3二環式ヌクレオシド(例えば、cEt)を示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。上付き文字「m」は、5−メチルシトシンを示す。「A
do’−GalNAc
3−1
a」は、示されるように、アンチセンスオリゴヌクレオチドの3’末端に結合される、実施例9に示される構造GalNAc
3−1を有する共役体を示す。
【0759】
【表16】
[この文献は図面を表示できません]
【0760】
実施例25:生体外におけるヒトApoC IIIを標的とするGalNAc
3−1共役修飾ASOの影響
上述のISIS 304801及び647535を生体外で試験した。トランスジェニックマウス由来の25,000細胞/ウェルの密度の初代肝細胞を、0.03,0.08、0.24、0.74、2.22、6.67、及び20μm濃度の修飾オリゴヌクレオチドで処理した。約16時間の処理期間後、RNAを細胞から単離し、mRNAレベルを定量的リアルタイムPCRで測定し、hApoC III mRNAレベルをRIBOGREENで測定された全RNA含有量に従って調整した。
【0761】
標準的方法を用いてIC
50を計算し、結果が表32に提示される。例証されるように、対照ISIS 304801と比較して、同程度の力価がISIS 647535で処理した細胞において観察された。
【0762】
【表17】
[この文献は図面を表示できません]
【0763】
この実験において、生体内で観察されるGalNAc
3−1共役の大きな力価利益は、生体外では観察されなかった。生体外での初代肝細胞におけるその後の自由取り込み実験は、GalNAc共役体を欠くオリゴヌクレオチドと比較して、さまざまなGalNAc共役体を含むオリゴヌクレオチドの力価の増加を示した(実施例60、82、及び92を参照のこと)。
【0764】
実施例26:ApoC III ASO活性へのPO/PS連結部の影響
ヒトApoC IIIトランスジェニックマウスに、ISIS 304801もしくはISIS 616468(両方ともに上述のもの)またはPBS処理対照を、25mg/kgで週1回2週間、腹腔内注入した。処理群は、3匹の動物から成り、対照群は、4匹の動物からなった。治療前及び最終服用後に血液を各マウスから採取し、血漿試料を分析した。最終投与の72時間後にマウスを屠殺した。
【0765】
試料を収集し、分析して、上述のように肝臓におけるApoC IIIタンパク質レベルを決定した(実施例20)。これらの分析からのデータが以下の表33に提示される。
【0766】
これらの結果は、完全PS(ISIS 304801)と比較して、ウイングにPO/PSを有するアンチセンス化合物(ISIS 616468)の力価の減少を示す。
【0767】
【表18】
[この文献は図面を表示できません]
【0768】
実施例27:化合物56
【0769】
【化150】
[この文献は図面を表示できません]
化合物56は、Glen Researchから市販されているか、またはShchepinov et al.,Nucleic Acids Research,1997,25(22),4447−4454によって報告された公開された手順に従って調製することができる。
【0770】
実施例28:化合物60の調製
【0771】
【化151】
[この文献は図面を表示できません]
化合物4を実施例2に例証される手順どおりに調製した。化合物57は、市販のものである。化合物60を構造分析で確認した。
【0772】
他の単保護された置換または無置換アルキルジオール、例えば限定するわけではないが、本明細書に提示されるものを用いて既定の組成を有するホスホラミダイトを調製することができるため、化合物57は、代表的なものであり、限定する意図はない。
【0773】
実施例29:化合物63の調製
【0774】
【化152】
[この文献は図面を表示できません]
化合物61及び62を、Tober et al.,Eur.J.Org.Chem.,2013,3,566−577、及びJiang et al.,Tetrahedron,2007,63(19),3982−3988によって報告された手順と同様の手順を用いて調製する。
【0775】
あるいは、化合物63を、Kim et al.の科学文献及び特許文献(Synlett,2003,12,1838−1840、及びKim et al.の公開されたPCT国際出願第WO2004063208号)に報告される手順と同様の手順を用いて調製する。
【0776】
実施例30:化合物63bの調製
【0777】
【化153】
[この文献は図面を表示できません]
化合物63aを、Hanessian et al.,Canadian Journal of Chemistry,1996,74(9),1731−1737によって報告された手順と同様の手順を用いて調製する。
【0778】
実施例31:化合物63dの調製
【0779】
【化154】
[この文献は図面を表示できません]
化合物63cを、Chen et al.,Chinese Chemical Letters,1998,9(5),451−453によって報告された手順と同様の手順を用いて調製する。
【0780】
実施例32:化合物67の調製
【0781】
【化155】
[この文献は図面を表示できません]
実施例2に例証される手順どおりに化合物64を調製した。化合物65を、Or et al.の公開されたPCT国際出願第WO2009003009号によって報告された手順と同様の手順を用いて調製する。他の保護基、例えば限定するわけではないが、本明細書に提示されるものを用いることができるため、化合物65に用いた保護基は、代表的なものであり、限定する意図はない。
【0782】
実施例33:化合物70の調製
【0783】
【化156】
[この文献は図面を表示できません]
実施例2に例証される手順どおりに化合物64を調製した。化合物68は、市販のものである。他の保護基、例えば限定するわけではないが、本明細書に提示されるものを用いることができるため、化合物68に用いた保護基は、代表的なものであり、限定する意図はない。
【0784】
実施例34:化合物75aの調製
【0785】
【化157】
[この文献は図面を表示できません]
化合物75をShchepinov et al.,Nucleic Acids Research,1997,25(22),4447−4454によって報告された公開された手順に従って調製する。
【0786】
実施例35:化合物79の調製
【0787】
【化158】
[この文献は図面を表示できません]
化合物76をShchepinov et al.,Nucleic Acids Research,1997,25(22),4447−4454によって報告された公開された手順に従って調製した。
【0788】
実施例36:化合物79aの調製
【0789】
【化159】
[この文献は図面を表示できません]
化合物77を実施例35に例証される手順どおりに調製する。
【0790】
実施例37:固体支持体による5’末端にホスホジエステル連結GalNAc
3−2共役体を含む共役オリゴマー化合物82の調製のための一般的方法(方法I)
【0791】
【化160】
[この文献は図面を表示できません]
【0792】
【化161】
[この文献は図面を表示できません]
GalNAc
3−2が、以下の構造を有する:
【0793】
【化162】
[この文献は図面を表示できません]
共役基GalNAc
3−2(GalNAc
3−2
a)のGalNAc
3クラスター部分を任意の切断可能部分と合わせて、さまざまな共役基を提供することができる。GalNAc
3−2
aは、以下の式を有する:
【0794】
【化163】
[この文献は図面を表示できません]
【0795】
VIMAD結合オリゴマー化合物79bを、自動DNA/RNA合成における標準的手順を用いて調製した(Dupouy et al.,Angew.Chem.Int.Ed.,2006,45,3623−3627を参照のこと)。ホスホラミダイト化合物56及び60を、それぞれ、実施例27及び28にそれぞれ例証される手順どおりに調製した。他のホスホラミダイト構築ブロック、例えば限定するわけではないが、本明細書に提示されるものを用いて、5’末端にホスホジエステル連結共役基を有するオリゴマー化合物を調製することができるため、例証されるホスホラミダイトは、代表的なものであり、限定する意図はない。固体支持体に添加されるホスホラミダイトの順序及び量を調整して、任意の既定の配列及び組成を有する本明細書に記載するオリゴマー化合物を調製することができる。
【0796】
実施例38:5’末端にホスホジエステル連結GalNAc
3−2共役体を含むオリゴマー化合物82の調製のための代替方法(方法II)
【0797】
【化164】
[この文献は図面を表示できません]
VIMAD結合オリゴマー化合物79bを、自動DNA/RNA合成における標準的手順を用いて調製した(Dupouy et al.,Angew.Chem.Int.Ed.,2006,45,3623−3627を参照のこと)。GalNAc
3−2クラスターホスホラミダイト(化合物79)を実施例35に例証される手順どおりに調製した。この代替方法は、合成の最終ステップでのホスホジエステル連結GalNAc
3−2共役体のオリゴマー化合物への一段階導入を可能にする。他のホスホラミダイト構築ブロック、例えば限定するわけではないが、本明細書に提示されるものを用いて5’末端にホスホジエステル共役体を有するオリゴマー化合物を調製することができるため、例証されるホスホラミダイトは、代表的なものであり、限定する意図はない。固体支持体に添加されるホスホラミダイトの順序及び量を調整して、任意の既定の配列及び組成を有する本明細書に記載するオリゴマー化合物を調製することができる。
【0798】
実施例39:固体支持体による5’末端にGalNAc
3−3共役体(5’末端結合のためにGalNAc
3−1修飾されたもの)を含むオリゴマー化合物83hの調製のための一般的方法
【0799】
【化165】
[この文献は図面を表示できません]
【0800】
【化166】
[この文献は図面を表示できません]
化合物18を実施例4に例証される手順どおりに調製した。化合物83a及び83bは、市販のものである。ホスホジエステル連結ヘキシルアミンを含むオリゴマー化合物83eを標準のオリゴヌクレオチド合成手順を用いて調製した。保護されたオリゴマー化合物をアンモニア水で処理することにより、5’−GalNAc
3−3共役オリゴマー化合物(83h)を提供した。
【0801】
GalNAc
3−3が、以下の構造を有する:
【0802】
【化167】
[この文献は図面を表示できません]
【0803】
共役基GalNAc
3−3(GalNAc
3−3
a)のGalNAc
3クラスター部分を任意の切断可能部分と合わせて、さまざまな共役基を提供することができる。GalNAc
3−3
aは、以下の式を有する:
【0804】
【化168】
[この文献は図面を表示できません]
【0805】
実施例40:固体支持体による3’末端にホスホジエステル連結GalNAc
3−4共役体を含むオリゴマー化合物89の調製のための一般的方法
【0806】
【化169】
[この文献は図面を表示できません]
【0807】
【化170】
[この文献は図面を表示できません]
GalNAc
3−4が、以下の構造を有する:
【0808】
【化171】
[この文献は図面を表示できません]
式中、CMは、切断可能部分である。ある特定の実施形態において、切断可能部分は、以下のものである:
【0809】
【化172】
[この文献は図面を表示できません]
共役基GalNAc
3−4(GalNAc
3−4
a)のGalNAc
3クラスター部分を任意の切断可能部分と合わせて、さまざまな共役基を提供することができる。GalNAc
3−4
aは、以下の式を有する:
【0810】
【化173】
[この文献は図面を表示できません]
【0811】
保護されたUnylinker機能化固体支持体化合物30は、市販のものである。化合物84を、文献に報告される手順と同様の手順を用いて調製する(Shchepinov et al.,Nucleic Acids Research,1997,25(22),4447−4454、Shchepinov et al.,Nucleic Acids Research,1999,27,3035−3041、及びHornet et al.,Nucleic Acids Research,1997,25,4842−4849を参照のこと)。
【0812】
ホスホラミダイト構築ブロック(化合物60及び79a)を実施例28及び36に例証される手順どおりに調製する。他のホスホラミダイト構築ブロックを用いて、既定の配列及び組成を有する3’末端にホスホジエステル連結共役体を有するオリゴマー化合物を調製することができるため、例証されるホスホラミダイトは、代表的なものであり、限定する意図はない。固体支持体に添加されるホスホラミダイトの順序及び量を調整して、任意の既定の配列及び組成を有する本明細書に記載するオリゴマー化合物を調製することができる。
【0813】
実施例41:固相技法による5’位にホスホジエステル連結GalNAc
3−2(Bxがアデニンである実施例37を参照のこと)共役体を含むASOの調製のための一般的方法(ISIS 661134の調製)
別段の明示がある場合を除き、オリゴマー化合物の合成に用いるすべての試薬及び溶液を商業的供給源から購入する。標準のホスホラミダイト構築ブロック及び固体支持体を、例えば、T、A、G、及び
mC残基を含む、ヌクレオシド残基の組み込みのために用いる。ホスホラミダイト化合物56及び60を用いて、5’末端のホスホジエステル連結GalNAc
3−2共役体を合成した。無水アセトニトリル中のホスホラミダイトの0.1M溶液をb−D−2’−デオキシリボヌクレオシド及び2’−MOEに用いた。
【0814】
カラムに充填されたVIMAD固体支持体(110μmol/g、Guzaev et al.,2003)でのホスホラミダイトカップリング法により、ASO合成を、ABI 394合成装置(1〜2μmolの規模)またはGE Healthcare Bioscience AKTAオリゴパイロット合成装置(40〜200μmolの規模)で実行した。このカップリングステップについて、固体支持体の初期負荷量に対して4倍過剰のホスホラミダイトを送達し、ホスホラミダイトカップリングを10分間行った。すべての他のステップは、製造業者から提供された標準のプロトコルに従った。トルエン中の6%ジクロロ酢酸溶液を用いて、ヌクレオチドの5’−ヒドロキシル基からジメトキシトリチル(DMT)基を除去した。カップリングステップ中、無水CH
3CN中の4,5−ジシアノイミダゾール(0.7M)を活性化剤として用いた。ホスホロチオエート連結部を、3分間の接触時間で、1:1のピリジン/CH
3CN中のキサンタンヒドリドの0.1M溶液による硫化によって導入した。6%の水を含有するCH
3CN中の20%のtert−ブチルヒドロペルオキシドの溶液を酸化剤として用いて、12分間の接触時間で、ホスホジエステルヌクレオシド間連結部を提供した。
【0815】
所望の配列が構築された後、シアノエチルホスフェート保護基を、45分間の接触時間で、トルエン中の20%ジエチルアミン(v/v)を用いて脱保護した。固体支持体に結合されたASOをアンモニア水(28〜30重量%)中に懸濁し、55℃で6時間加熱した。その後、非結合型ASOを濾過し、アンモニアを沸去した。残渣を強アニオン交換カラムでの高圧液体クロマトグラフィーによって精製した(GE Healthcare Bioscience、Source 30Q、30μm、2.54×8cm、A=30%CH
3CN水溶液中100mM酢酸アンモニウム、B=A中1.5M NaBr、60分後0〜40%のB、流量14mL/分、λ=260nm)。残渣を逆相カラムでのHPLCにより脱塩して、固体支持体への初期負荷量に基づいて15〜30%の単離収率で所望のASOを得た。ASOを、Agilent 1100 MSDシステムを用いたイオン対HPLC/MS分析によって特徴付けた。
【0816】
【表19】
[この文献は図面を表示できません]
下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「k」は、6’−(S)−CH
3二環式ヌクレオシド(例えば、cEt)を示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。上付き文字「m」は、5−メチルシトシンを示す。GalNAc
3−2
aの構造が実施例37に示される。
【0817】
実施例42:固相技法による5’位にGalNAc
3−3共役体を含むASOの調製のための一般的方法(ISIS 661166の調製)
ISIS 661166の合成を、実施例39及び41に例証される手順と同様の手順を用いて実行した。
【0818】
ISIS 661166は、5’位がGalNAc
3−3共役体を含む5−10−5MOEギャップマーである。ASOを、Agilent 1100 MSDシステムを用いたイオン対HPLC/MS分析によって特徴付けた。
【0819】
【表20】
[この文献は図面を表示できません]
下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。上付き文字「m」は、5−メチルシトシンを示す。「5’−GalNAc
3−3a」の構造が実施例39に示される。
【0820】
実施例43:生体内におけるSRB−1を標的とする5’末端でのホスホジエステル連結GalNAc
3−2の用量依存的試験(Bxがアデニンである実施例37及び41を参照のこと)
5’末端にホスホジエステル連結GalNAc
3−2共役体を含むISIS 661134(実施例41を参照のこと)を、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。非共役ISIS 440762及び651900(3’末端にGalNAc
3−1共役体、実施例9を参照のこと)を比較のために試験に含め、先の表17に記載する。
【0821】
処理
6週齢の雄Balb/cマウス(Jackson Laboratory,Bar Harbor,ME)に、ISIS 440762、651900、661134、またはPBS処理対照を、以下に示される投与量で1回、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺して、リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるSRB−1 mRNAレベルを標準プロトコルに従って決定した。PBS処理対照に対して正規化する前に(Ribogreenを用いて)SRB−1 mRNAレベルを全RNAとの比較で相対的に決定した。以下の結果は、PBS処理対照に対して正規化された各処理群のSRB−1 mRNAレベルの平均パーセントとして提示され、「%PBS」で表示される。当該方法と同様の方法を用いてED
50を測定し、以下に提示する。
【0822】
表35に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でSRB−1 mRNAレベルを低下させた。実際には、5’末端にホスホジエステル連結GalNAc
3−2共役体(ISIS 661134)または3’末端に連結されたGalNAc
3−1共役体(ISIS 651900)を含むアンチセンスオリゴヌクレオチドは、非共役アンチセンスオリゴヌクレオチド(ISIS 440762)と比較して、力価の大幅な改善を示した。さらに、5’末端にホスホジエステル連結GalNAc
3−2共役体を含むISIS 661134は、3’末端にGalNAc
3−1共役体を含むISIS 651900と比較して、等効力であった。
【0823】
【表21】
[この文献は図面を表示できません]
3’GalNAc
3−1及び5’GalNAc
3−2の構造は、先の実施例9及び37に記載されている。
【0824】
薬物動態分析(PK)
高用量群(7mg/kg)でのASOのPKを調べ、実施例20に例証される方法と同一の方法で評価した。肝臓試料を切り刻み、標準のプロトコルを用いて抽出した。661134(5’GalNAc
3−2)及びISIS 651900(3’GalNAc
3−1)の全長代謝物を特定し、これらの質量を高分解能質量分析によって確認した。結果は、5’末端にホスホジエステル連結GalNAc
3−2共役体を含むASO(ISIS 661134)に対して検出された主な代謝物が、ISIS 440762であったことを示した(データ示されず)。検出可能なレベルでさらなる代謝物は観察されなかった。その対応物とは異なり、先の表23aに報告された代謝物と同様のさらなる代謝物が、3’末端にGalNAc
3−1共役体を有するASO(ISIS 651900)で観察された。これらの結果は、ホスホジエステル連結GalNAc
3−1またはGalNAc
3−2共役体を有することで、それらの力価を損なうことなくASOのPKプロファイルを改善しうることを示唆する。
【0825】
実施例44:SRB−1を標的とする3’末端にGalNAc
3−1共役体(実施例9を参照のこと)を含むASOのアンチセンス阻害へのPO/PS連結部の影響
それぞれSRB−1を標的とする、3’末端にGalNAc
3−1共役体を含むISIS 655861及び655862を、単回投与試験においてマウスにおけるSRB−1を阻害するそれらの能力について試験した。親非共役化合物ISIS 353382を比較のために試験に含めた。
【0826】
ASOは5−10−5MOEギャップマーであり、ギャップ領域は、10個の2’−デオキシリボヌクレオシドを含み、各ウイング領域は、5個の2’−MOE修飾ヌクレオシドを含む。ASOを先の実施例19に例証される方法と同様の方法を用いて調製し、以下の表36に示す。
【0827】
【表22】
[この文献は図面を表示できません]
下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。上付き文字「m」は、5−メチルシトシンを示す。「GalNAc
3−1」の構造が実施例9に示される。
処理
【0828】
6週齢の雄Balb/cマウス(Jackson Laboratory,Bar Harbor,ME)に、ISIS 353382、655861、655862、またはPBS処理対照を、以下に示される投与量で1回、皮下注入した。各処理群は、4匹の動物からなった。治療前及び最終服用後に血液を各マウスから採取し、血漿試料を分析した。最終投与の72時間後にマウスを屠殺して、リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるSRB−1 mRNAレベルを決定した。PBS処理対照に対して正規化する前に(Ribogreenを用いて)SRB−1 mRNAレベルを全RNAとの比較で相対的に決定した。以下の結果は、PBS処理対照に対して正規化された各処理群のSRB−1 mRNAレベルの平均パーセントとして提示され、「%PBS」で表示される。当該方法と同様の方法を用いてED
50を測定し、以下に報告する。
【0829】
表37に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、PBS処理対照と比較して、用量依存的様式でSRB−1 mRNAレベルを低下させた。実際には、3’末端にGalNAc
3−1共役体を含むアンチセンスオリゴヌクレオチド(ISIS 655861及び655862)は、非共役アンチセンスオリゴヌクレオチド(ISIS 353382)と比較して、力価の大幅な改善を示した。さらに、混成PS/PO連結部を有するISIS 655862は、完全PS(ISIS 655861)と比較して、力価の改善を示した。
【0830】
【表23】
[この文献は図面を表示できません]
【0831】
血清における肝臓トランスアミナーゼレベル、すなわちアラニンアミノトランスフェラーゼ(ALT)、及びアスパラギン酸アミノトランスフェラーゼ(AST)を、標準のプロトコルを用いて、生理食塩水を注入したマウスとの比較で相対的に測定した。臓器重量も評価した。結果は、PBS対照と比較して、ASOで処理したマウスにおいて、トランスアミナーゼレベル(表38)の増加も臓器重量(データ示されず)の増加も観察されなかったことを示した。さらに、混成PS/PO連結部を有するASO(ISIS 655862)は、完全PS(ISIS 655861)と比較して、同様のトランスアミナーゼレベルを示した。
【0832】
【表24】
[この文献は図面を表示できません]
【0833】
実施例45:PFPエステル(化合物110a)の調製
【0834】
【化174】
[この文献は図面を表示できません]
【0835】
【化175】
[この文献は図面を表示できません]
化合物4(9.5g、28.8mmole)を化合物103aまたは103b(38mmole)で個別に処理し、ジクロロメタン(200mL)中のTMSOTf(0.5当量)及びモレキュラーシーブで処理し、室温で16時間撹拌した。この時点で、セライトを通して有機層を濾過し、その後、重炭酸ナトリウム、水、及びブラインで洗浄した。その後、有機層を分離し、硫酸ナトリウム上で乾燥させ、濾過し、減圧下で還元した。結果として生じた油状物をシリカゲルクロマトグラフィー(2%→10%メタノール/ジクロロメタン)によって精製して、80%超の収率で化合物104a及び104bを得た。LCMS及びプロトンNMRは、その構造と一致した。
【0836】
化合物104a及び104bを化合物100a〜d(実施例47)と同一の条件で処理して、90%超の収率で化合物105a及び105bを得た。LCMS及びプロトンNMRは、その構造と一致した。
【0837】
化合物105a及び105bを、化合物901a〜dと同一の条件下、化合物90で個別に処理して、化合物106a(80%)及び106b(20%)を得た。LCMS及びプロトンNMRは、その構造と一致した。
【0838】
化合物106a及び106bを化合物96a〜d(実施例47)と同一の条件で処理して、107a(60%)及び107b(20%)を得た。LCMS及びプロトンNMRは、その構造と一致した。
【0839】
化合物107a及び107bを化合物97a〜d(実施例47)と同一の条件で処理して、40〜60%の収率で化合物108a及び108bを得た。LCMS及びプロトンNMRは、その構造と一致した。
【0840】
化合物108a(60%)及び108b(40%)を化合物100a〜d(実施例47)と同一の条件で処理して、80%超の収率で化合物109a及び109bを得た。LCMS及びプロトンNMRは、その構造と一致した。
【0841】
化合物109aを化合物101a〜d(実施例47)と同一の条件で処理して、30〜60%の収率で化合物110aを得た。LCMS及びプロトンNMRは、その構造と一致した。あるいは、化合物110bを化合物109bから開始して同様の方法で調製することができる。
【0842】
実施例46:PFPエステル(オリゴヌクレオチド111)との共役のための一般的手順;ISIS 666881(GalNAc
3−10)の調製
標準の固相オリゴヌクレオチド手順を用いて5’−ヘキシルアミノ修飾オリゴヌクレオチドを合成し、精製した。5’−ヘキシルアミノ修飾オリゴヌクレオチドを0.1M四ホウ酸ナトリウム(pH8.5、200μL)中に溶解し、DMSO(50μL)中に溶解した3当量の選択されたPFPエステル化GalNAc
3クラスターを添加した。ASO溶液への添加時にPFPエステルが沈殿した場合、すべてのPFPエステルが溶解した状態になるまでDMSOを添加した。室温で約16時間混合した後、反応が完了した。結果として生じた溶液を水で希釈して12mLにし、その後、質量カットオフが3000Daのスピンフィルター中、3000rpmで沈降させた。このプロセスを2回繰り返して、小分子不純物を除去した。その後、この溶液を凍結乾燥乾固させ、濃縮アンモニア水中に再溶解し、室温で2.5時間混合し、その後、真空内で濃縮して、アンモニアの大部分を除去した。共役オリゴヌクレオチドを精製し、RP−HPLCによって脱塩し、凍結乾燥させて、GalNAc
3共役オリゴヌクレオチドを得た。
【0843】
【化176】
[この文献は図面を表示できません]
【0844】
オリゴヌクレオチド111をGalNAc
3−10と共役する。共役基GalNAc
3−10(GalNAc
3−10
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を提供することができる。ある特定の実施形態において、切断可能部分は、以下のGalNAc
3−10で合成されたオリゴヌクレオチド(ISIS 666881)に示される−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−10(GalNAc
3−10
a−CM−)の構造は、以下に示される:
【0845】
【化177】
[この文献は図面を表示できません]
【0846】
この一般的手順に従って、ISIS 666881を調製した。標準の固相オリゴヌクレオチド手順を用いて5’−ヘキシルアミノ修飾オリゴヌクレオチド(ISIS 660254)を合成し、精製した。ISIS 660254(40mg、5.2μmol)を0.1M四ホウ酸ナトリウム(pH8.5、200μL)中に溶解し、DMSO(50μL)中に溶解した3当量のPFPエステル(化合物110a)を添加した。ASO溶液への添加時にPFPエステルが沈殿した場合、PFPエステルを完全に溶解するためにさらなるDMSO(600μL)が必要であった。室温で約16時間混合した後、反応が完了した。この溶液を水で希釈して全体積12mLにし、質量カットオフが3000Daのスピンフィルター中、3000rpmで沈降させた。このプロセスを2回繰り返して、小分子不純物を除去した。この溶液を凍結乾燥乾固させ、濃縮アンモニア水中に再溶解し、室温で2.5時間混合し、その後、真空内で濃縮して、アンモニアの大部分を除去した。共役オリゴヌクレオチドを精製し、RP−HPLCによって脱塩し、凍結乾燥させて、90重量%の収率でISIS 666881(42mg、4.7μmol)を得た。
【0847】
【表25】
[この文献は図面を表示できません]
大文字は、各ヌクレオシドの核酸塩基を示し、
mCは、5−メチルシトシンを示す。下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。共役基は、太字で表示されている。
【0848】
実施例47:GalNAc
3−8を含むオリゴヌクレオチド102の調製
【0849】
【化178】
[この文献は図面を表示できません]
【0850】
【化179】
[この文献は図面を表示できません]
【0851】
【化180】
[この文献は図面を表示できません]
三酸90(4g、14.43mmol)をDMF(120mL)及びN,N−ジイソプロピルエチルアミン(12.35mL、72mmole)中に溶解した。トリフルオロ酢酸ペンタフルオロフェニル(8.9mL、52mmole)をアルゴン下で滴加し、反応物を室温で30分間撹拌させた。Boc−ジアミン91aまたは91b(68.87mmol)をN,N−ジイソプロピルエチルアミン(12.35mL、72mmole)とともに添加し、反応物を室温で16時間撹拌させた。この時点で、DMFを減圧下で75%超、減量し、その後、混合物をジクロロメタン中に溶解した。有機層を重炭酸ナトリウム、水、及びブラインで洗浄した。その後、有機層を分離し、硫酸ナトリウム上で乾燥させ、濾過し、減圧下で減量して、油状物とした。結果として生じた油状物をシリカゲルクロマトグラフィー(2%→10%メタノール/ジクロロメタン)によって精製して、約80%の収率で化合物92a及び92bを得た。LCMS及びプロトンNMRは、その構造と一致した。
【0852】
化合物92aまたは92b(6.7mmole)を20mLのジクロロメタン及び20mLのトリフルオロ酢酸で、室温で16時間処理した。結果として生じた溶液を蒸発させ、その後、メタノール中に溶解し、DOWEX−OH樹脂で30分間処理した。結果として生じた溶液を濾過し、減圧下で減量して油状物とすることで、85〜90%の収率の化合物93a及び93bを得た。
【0853】
化合物7または64(9.6mmole)をDMF(20mL)中のHBTU(3.7g、9.6mmole)及びN,N−ジイソプロピルエチルアミン(5mL)で15分間処理した。これに、化合物93aまたは93b(3mmole)のいずれかを添加し、室温で16時間撹拌させた。この時点で、DMFを減圧下で75%超、減量し、その後、混合物をジクロロメタン中に溶解した。有機層を重炭酸ナトリウム、水、及びブラインで洗浄した。その後、有機層を分離し、硫酸ナトリウム上で乾燥させ、濾過し、減圧下で減量して、油状物とした。結果として生じた油状物をシリカゲルクロマトグラフィー(5%→20%メタノール/ジクロロメタン)によって精製して、20〜40%の収率で化合物96a〜dを得た。LCMS及びプロトンNMRは、その構造と一致した。
【0854】
化合物96a〜d(0.75mmole)をラネーニッケル上で3時間、エタノール(75mL)中で個別に水素化した。この時点で、セライトを通して触媒を濾去し、エタノールを減圧下で除去して、80〜90%の収率で化合物97a〜dを得た。LCMS及びプロトンNMRは、その構造と一致した。
【0855】
化合物23(0.32g、0.53mmole)をDMF(30mL)中のHBTU(0.2g、0.53mmole)及びN,N−ジイソプロピルエチルアミン(0.19mL、1.14mmole)で15分間処理した。これに、化合物97a〜d(0.38mmole)を個別に添加し、室温で16時間撹拌させた。この時点で、DMFを減圧下で75%超、減量し、その後、混合物をジクロロメタン中に溶解した。有機層を重炭酸ナトリウム、水、及びブラインで洗浄した。その後、有機層を分離し、硫酸ナトリウム上で乾燥させ、濾過し、減圧下で減量して、油状物とした。結果として生じた油状物をシリカゲルクロマトグラフィー(2%→20%メタノール/ジクロロメタン)によって精製して、30〜40%の収率で化合物98a〜dを得た。LCMS及びプロトンNMRは、その構造と一致した。
【0856】
化合物99(0.17g、0.76mmole)をDMF(50mL)中のHBTU(0.29g、0.76mmole)及びN,N−ジイソプロピルエチルアミン(0.35mL、2.0mmole)で15分間処理した。これに、化合物97a〜d(0.51mmole)を個別に添加し、室温で16時間撹拌させた。この時点で、DMFを減圧下で75%超、減量し、その後、混合物をジクロロメタン中に溶解した。有機層を重炭酸ナトリウム、水、及びブラインで洗浄した。その後、有機層を分離し、硫酸ナトリウム上で乾燥させ、濾過し、減圧下で減量して、油状物とした。結果として生じた油状物をシリカゲルクロマトグラフィー(5%→20%メタノール/ジクロロメタン)によって精製して、40〜60%の収率で化合物100a〜dを得た。LCMS及びプロトンNMRは、その構造と一致した。
【0857】
化合物100a〜d(0.16mmole)を、10%Pd(OH)
2/C上で3時間、メタノール/酢酸エチル(1:1、50mL)中で個別に水素化した。この時点で、セライトを通して触媒を濾去し、有機物を減圧下で除去して、80〜90%の収率で化合物101a〜dを得た。LCMS及びプロトンNMRは、その構造と一致した。
【0858】
化合物101a〜d(0.15mmole)をDMF(15mL)及びピリジン(0.016mL、0.2mmole)中に個別に溶解した。トリフルオロ酢酸ペンタフルオロフェニル(0.034mL、0.2mmole)をアルゴン下で滴加し、反応物を室温で30分間撹拌させた。この時点で、DMFを減圧下で75%超、減量し、その後、混合物をジクロロメタン中に溶解した。有機層を重炭酸ナトリウム、水、及びブラインで洗浄した。その後、有機層を分離し、硫酸ナトリウム上で乾燥させ、濾過し、減圧下で減量して、油状物とした。結果として生じた油状物をシリカゲルクロマトグラフィー(2%→5%メタノール/ジクロロメタン)によって精製して、約80%の収率で化合物102a〜dを得た。LCMS及びプロトンNMRは、その構造と一致した。
【0859】
【化181】
[この文献は図面を表示できません]
【0860】
実施例46に例証される一般的手順を用いて、GalNAc
3−8共役基を含むオリゴマー化合物102を調製した。共役基GalNAc
3−8(GalNAc
3−8
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を提供することができる。好ましい一実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。
【0861】
GalNAc
3−8(GalNAc
3−8
a−CM−)の構造は、以下に示される:
【0862】
【化182】
[この文献は図面を表示できません]
【0863】
実施例48:GalNAc
3−7を含むオリゴヌクレオチド119の調製
【0864】
【化183】
[この文献は図面を表示できません]
【0865】
【化184】
[この文献は図面を表示できません]
文献(J.Med.Chem.2004,47,5798−5808)に記載される手順に従って化合物112を合成した。
【0866】
化合物112(5g、8.6mmol)を1:1メタノール/酢酸エチル(22mL/22mL)中に溶解した。炭素(0.5g)上水酸化パラジウムを添加した。反応混合物を室温で12時間、水素下で撹拌した。セライトパッドを通して反応混合物を濾過し、そのパッドを1:1メタノール/酢酸エチルで洗浄した。濾液と洗浄物を合わせ、濃縮乾固させて、化合物105a(定量的)を得た。この構造を、LCMSによって確認した。
【0867】
化合物113(1.25g、2.7mmol)、HBTU(3.2g、8.4mmol)、及びDIEA(2.8mL、16.2mmol)を無水DMF(17mL)中に溶解し、反応混合物を室温で5分間撹拌した。これに、無水DMF(20mL)中の化合物105a(3.77g、8.4mmol)の溶液を添加した。反応物を室温で6時間撹拌した。溶媒を減圧下で除去して、油状物を得た。残渣をCH
2Cl
2(100mL)中に溶解し、飽和NaHCO
3水溶液(100mL)及びブライン(100mL)で洗浄した。有機相を分離し、乾燥させ(Na
2SO
4)、濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィーによって精製し、ジクロロメタン中の10〜20%MeOHで溶出して、化合物114(1.45g、30%)を得た。この構造を、LCMS及び
1H NMR分析によって確認した。
【0868】
化合物114(1.43g、0.8mmol)を1:1メタノール/酢酸エチル(4mL/4mL)中に溶解した。パラジウム炭素(湿性、0.14g)を添加した。反応混合物を水素でフラッシュし、室温で12時間、水素下で撹拌した。セライトパッドを通して反応混合物を濾過した。このセライトパッドをメタノール/酢酸エチル(1:1)で洗浄した。濾液と洗浄物を一つに合わせ、減圧下で蒸発させて、化合物115(定量的)を得た。この構造を、LCMS及び
1H NMR分析によって確認した。
【0869】
化合物83a(0.17g、0.75mmol)、HBTU(0.31g、0.83mmol)、及びDIEA(0.26mL、1.5mmol)を無水DMF(5mL)中に溶解し、反応混合物を室温で5分間撹拌した。これに、無水DMF中の化合物115(1.22g、0.75mmol)の溶液を添加し、反応物を室温で6時間撹拌した。溶媒を減圧下で除去し、残渣をCH
2Cl
2中に溶解した。有機層を飽和NaHCO
3水溶液及びブラインで洗浄し、無水Na
2SO
4上で乾燥させ、濾過した。有機層を濃縮乾固させ、得られた残渣をシリカゲルカラムクロマトグラフィーによって精製し、ジクロロメタン中の3〜15%MeOHで溶出して、化合物116(0.84g、61%)を得た。この構造を、LC MS及び
1H NMR分析によって確認した。
【0870】
【化185】
[この文献は図面を表示できません]
【0871】
化合物116(0.74g、0.4mmol)を1:1メタノール/酢酸エチル(5mL/5mL)中に溶解した。パラジウム炭素(湿性、0.074g)を添加した。反応混合物を水素でフラッシュし、室温で12時間、水素下で撹拌した。セライトパッドを通して反応混合物を濾過した。このセライトパッドをメタノール/酢酸エチル(1:1)で洗浄した。濾液と洗浄物を一つに合わせ、減圧下で蒸発させて、化合物117(0.73g、98%)を得た。この構造を、LCMS及び
1H NMR分析によって確認した。
【0872】
化合物117(0.63g、0.36mmol)を無水DMF(3mL)中に溶解した。この溶液に、N,N−ジイソプロピルエチルアミン(70μL、0.4mmol)及びトリフルオロ酢酸ペンタフルオロフェニル(72μL、0.42mmol)を添加した。反応混合物を室温で12時間撹拌し、飽和NaHCO
3水溶液に注いだ。この混合物をジクロロメタンで抽出し、ブラインで洗浄し、無水Na
2SO
4上で乾燥させた。このジクロロメタン溶液を濃縮乾固させ、シリカゲルカラムクロマトグラフィーで精製し、ジクロロメタン中の5〜10%MeOHで溶出して、化合物118(0.51g、79%)を得た。この構造を、LCMSと、
1Hならびに
1H及び
19F NMRによって確認した。
【0873】
【化186】
[この文献は図面を表示できません]
【0874】
実施例46に例証される一般的手順を用いて、GalNAc
3−7共役基を含むオリゴマー化合物119を調製した。共役基GalNAc
3−7(GalNAc
3−7
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。
【0875】
GalNAc
3−7(GalNAc
3−7
a−CM−)の構造は、以下に示される:
【0876】
【化187】
[この文献は図面を表示できません]
【0877】
実施例49:GalNAc
3−5を含むオリゴヌクレオチド132の調製
【0878】
【化188】
[この文献は図面を表示できません]
化合物120(14.01g、40mmol)及びHBTU(14.06g、37mmol)を無水DMF(80mL)中に溶解した。トリエチルアミン(11.2mL、80.35mmol)を添加し、5分間撹拌した。反応混合物を氷浴中で冷却し、無水DMF(20mL)中の化合物121(10g、mmol)の溶液を添加した。さらなるトリエチルアミン(4.5mL、32.28mmol)を添加し、反応混合物をアルゴン雰囲気下で18時間撹拌した。TLC(1:1の酢酸エチル:ヘキサン;Rf=0.47)によって反応を監視した。溶媒を減圧下で除去した。残渣をEtOAc(300mL)中に取り込み、1M NaHSO
4(3×150mL)、飽和NaHCO
3水溶液(3×150mL)、及びブライン(2×100mL)で洗浄した。有機層をNa
2SO
4で乾燥させた。乾燥剤を濾去し、有機層を回転蒸発によって濃縮した。粗混合物をシリカゲルカラムクロマトグラフィーによって精製し、ヘキサン中の35〜50%EtOAcを用いて溶出して、化合物122(15.50g、78.13%)を得た。この構造を、LCMS及び
1H NMR分析によって確認した。質量(m/z)589.3[M+H]
+。
【0879】
水(20mL)及びTHF(10mL)中のLiOH(92.15mmol)の溶液を、メタノール(15mL)中に溶解した化合物122の冷溶液(7.75g、13.16mmol)に添加した。反応混合物を室温で45分間撹拌し、TLC(1:1のEtOAc:ヘキサン)によって監視した。反応混合物を減圧下で濃縮して、半分の体積にした。残りの溶液を氷浴中で冷却して、濃縮HClを添加して中和した。反応混合物を希釈し、EtOAc(120mL)で抽出し、ブライン(100mL)で洗浄した。エマルジョンが生じたが、一晩静置すると濁りがなくなった。有機層を分離し、乾燥させ(Na
2SO
4)、濾過し、蒸発させて、化合物123(8.42g)を得た。質量が大きすぎる原因はおそらく残留塩である。LCMSは、この構造と一致した。この生成物をさらに精製することなく使用した。M.W.計算値:574.36、M.W.実測値:575.3[M+H]
+。
【0880】
【化189】
[この文献は図面を表示できません]
【0881】
文献(J.Am.Chem.Soc.2011,133,958−963)に記載される手順に従って化合物126を合成した。
【0882】
【化190】
[この文献は図面を表示できません]
【0883】
【化191】
[この文献は図面を表示できません]
【0884】
化合物123(7.419g、12.91mmol)、HOBt(3.49g、25.82mmol)、及び化合物126(6.33g、16.14mmol)をDMF(40mL)中に溶解し、結果として生じた反応混合物を氷浴中で冷却した。これに、N,N−ジイソプロピルエチルアミン(4.42mL、25.82mmol)、PyBop(8.7g、16.7mmol)、続いて、Bopカップリング試薬(1.17g、2.66mmol)をアルゴン雰囲気下で添加した。氷浴を除去し、溶液を室温まで温めた。1時間後に反応が完了したことを、TLC(89:10:1のDCM:MeOH:AA)によって決定した。反応混合物を減圧下で濃縮した。残渣をEtOAc(200mL)中に溶解し、1M NaHSO
4(3×100mL)、飽和NaHCO
3水溶液(3×100mL)、及びブライン(2×100mL)で洗浄した。有機相を分離し、乾燥させ(Na
2SO
4)、濾過し、濃縮した。残渣を50%ヘキサン/EtOAC:100%EtOAcの勾配でのシリカゲルカラムクロマトグラフィーによって精製して、白色の泡状物として化合物127(9.4g)を得た。LCMS及び
1H NMRは、その構造と一致した。質量(m/z)778.4[M+H]
+。
【0885】
トリフルオロ酢酸(12mL)をジクロロメタン(12mL)中の化合物127(1.57g、2.02mmol)の溶液に添加し、室温で1時間撹拌した。反応混合物を減圧下でトルエン(30mL)と共蒸発乾固させた。得られた残渣をアセトニトリル(30mL)及びトルエン(40mL)と2回共蒸発させて、トリフルオロ酢酸塩として化合物128(1.67g)を得て、さらに精製することなく次のステップで使用した。LCMS及び
1H NMRは、その構造と一致した。質量(m/z)478.2[M+H]
+。
【0886】
丸底フラスコ内で、化合物7(0.43g、0.963mmol)、HATU(0.35g、0.91mmol)、及びHOAt(0.035g、0.26mmol)を一つに合わせ、減圧下、P
2O
5上で4時間乾燥させ、その後、無水DMF(1mL)中に溶解し、5分間撹拌した。これに無水DMF(0.2mL)及びN,N−ジイソプロピルエチルアミン(0.2mL)中の化合物128(0.20g、0.26mmol)の溶液を添加した。反応混合物をアルゴン雰囲気下、室温で撹拌した。30分間後に反応が完了したことを、LCMS及びTLC(7%MeOH/DCM)によって決定した。反応混合物を減圧下で濃縮した。残渣をDCM(30mL)中に溶解し、1M NaHSO
4(3×20mL)、飽和NaHCO
3水溶液(3×20mL)、及びブライン(3×20mL)で洗浄した。有機相を分離し、Na
2SO
4上で乾燥させ、濾過し、濃縮した。残渣をジクロロメタン中の5〜15%MeOHを用いたシリカゲルカラムクロマトグラフィーによって精製して、化合物129(96.6mg)を得た。LC MS及び
1H NMRは、この構造と一致する。質量(m/z)883.4[M+2H]
+。
【0887】
20mLのシンチレーションバイアル内で化合物129(0.09g、0.051mmol)をメタノール(5mL)中に溶解した。これに、少量の10%Pd/C(0.015mg)を添加し、反応容器をH
2ガスでフラッシュした。反応混合物を室温で18時間、H
2雰囲気下で撹拌した。セライトパッドを通して反応混合物を濾過し、このセライトパッドをメタノールで洗浄した。濾液洗浄物を一つにプールし、減圧下で濃縮して、化合物130(0.08g)を得た。LCMS及び
1H NMRは、その構造と一致した。この生成物をさらに精製することなく使用した。質量(m/z)838.3[M+2H]
+。
【0888】
10mLの先の尖った丸底フラスコに、化合物130(75.8mg、0.046mmol)、0.37Mピリジン/DMF(200μL)、及び撹拌子を添加した。この溶液に、0.7Mトリフルオロ酢酸ペンタフルオロフェニル/DMF(100μL)を撹拌しながら滴加した。1時間後に反応が完了したことを、LC MSによって決定した。溶媒を減圧下で除去し、残渣をCHCl
3(約10mL)中に溶解した。有機層をNaHSO
4(1M、10mL)、飽和NaHCO
3水溶液(10mL)、及びブライン(10mL)にそれぞれ3回分配した。有機相を分離し、Na
2SO
4上で乾燥させ、濾過し、濃縮して、化合物131(77.7mg)を得た。LCMSは、この構造と一致した。さらに精製することなく使用した。質量(m/z)921.3[M+2H]
+。
【0889】
【化192】
[この文献は図面を表示できません]
【0890】
実施例46に例証される一般的手順を用いて、GalNAc
3−5共役基を含むオリゴマー化合物132を調製した。共役基GalNAc
3−5(GalNAc
3−5
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。
【0891】
GalNAc
3−5(GalNAc
3−5
a−CM−)の構造は、以下に示される:
【0892】
【化193】
[この文献は図面を表示できません]
【0893】
実施例50:GalNAc
4−11を含むオリゴヌクレオチド144の調製
【0894】
【化194】
[この文献は図面を表示できません]
【0895】
【化195】
[この文献は図面を表示できません]
化合物134の合成。Merrifieldフラスコに、アセトニトリル、ジメチルホルムアミド、ジクロロメタン、及びアセトニトリルで洗浄したアミノメチルVIMAD樹脂(2.5g、450μmol/g)を添加した。この樹脂は、アセトニトリル(4mL)中で膨潤した。20(1.0mmol、0.747g)、TBTU(1.0mmol、0.321g)、アセトニトリル(5mL)、及びDIEA(3.0mmol、0.5mL)を添加して、化合物133を100mLの丸底フラスコ内で事前に活性化した。この溶液を5分間撹拌させ、その後、振盪しながらMerrifieldフラスコに添加した。懸濁液を3時間振盪させた。反応混合物を排出し、樹脂をアセトニトリル、DMF、及びDCMで洗浄した。DCM中500nm(消光係数=76000)でDMTカチオンの吸光度を測定することにより新たな樹脂負荷量を定量化し、238μmol/gであると決定した。無水酢酸溶液中で10分間3回懸濁することにより、この樹脂をキャップした。
【0896】
反復Fmocベース固相ペプチド合成法を用いて、固体支持体に結合された化合物141を合成した。少量の固体支持体を回収し、アンモニア水(28〜30重量%)中に6時間懸濁した。切断された化合物をLC−MSによって分析した。観察された質量は、その構造と一致した。質量(m/z)1063.8[M+2H]
+。
【0897】
固相ペプチド合成法を用いて、固体支持体に結合された化合物142を合成した。
【0898】
【化196】
[この文献は図面を表示できません]
【0899】
DNA合成装置において標準の固相合成を用いて、固体支持体に結合された化合物143を合成した。
【0900】
固体支持体に結合された化合物143をアンモニア水(28−30重量%)中に懸濁し、55℃で16時間加熱した。溶液を冷却し、固体支持体を濾過した。濾液を濃縮し、残渣を水中に溶解し、強アニオン交換カラム上でHPLCによって精製した。全長化合物144を含有する画分を一つにプールし、脱塩した。結果として生じたGalNAc
4−11共役オリゴマー化合物をLC−MSによって分析し、観察された質量は、その構造と一致した。
【0901】
共役基GalNAc
4−11(GalNAc
4−11
a)のGalNAc
4クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。
【0902】
GalNAc
4−11(GalNAc
4−11
a−CM)の構造は、以下に示される:
【0903】
【化197】
[この文献は図面を表示できません]
【0904】
実施例51:GalNAc
3−6を含むオリゴヌクレオチド155の調製
【0905】
【化198】
[この文献は図面を表示できません]
文献(Analytical Biochemistry 1995,229,54−60)に記載されるように、化合物146を合成した。
【0906】
【化199】
[この文献は図面を表示できません]
【0907】
化合物4(15g、45.55mmol)及び化合物35b(14.3グラム、57mmol)をCH
2Cl
2(200mL)中に溶解した。活性化モレキュラーシーブ(4Å、2g、粉末)を添加し、反応物を窒素雰囲気下で30分間撹拌させた。TMS−OTfを添加し(4.1mL、22.77mmol)、反応物を室温で一晩撹拌させた。完了した時点で、飽和NaHCO
3水溶液(500mL)及び粉砕した氷(約150g)を注いで反応物を反応停止処理した。有機層を分離し、ブラインで洗浄し、MgSO
4上で乾燥させ、濾過し、減圧下で濃縮してオレンジ色の油状物を得た。粗物質をシリカゲルカラムクロマトグラフィーによって精製し、CH
2Cl
2中の2〜10%MeOHで溶出して、化合物112(16.53g、63%)を得た。LCMS及び
1H NMRは、予想した化合物と一致した。
【0908】
化合物112(4.27g、7.35mmol)を1:1のMeOH/EtOAc(40mL)中に溶解した。この溶液を通してアルゴン流を15分間バブリングして反応混合物をパージした。パールマン触媒(炭素上の水酸化パラジウム、400mg)を添加し、この溶液を通して水素ガスを30分間バブリングした。完了した時点で(TLC(CH
2Cl
2中の10%MeOH)及びLCMS)、セライトパッドを通して触媒を濾去した。濾液を回転蒸発によって濃縮し、高真空下で短時間乾燥させて、化合物105a(3.28g)を得た。LCMS及び1H NMRは、所望の生成物と一致した。
【0909】
化合物147(2.31g、11mmol)を無水DMF(100mL)中に溶解した。N,N−ジイソプロピルエチルアミン(DIEA、3.9mL、22mmol)、続いて、HBTU(4g、10.5mmol)を添加した。反応混合物を窒素下で約15分間撹拌させた。これに、乾燥DMF中の化合物105a(3.3g、7.4mmol)の溶液を添加し、窒素雰囲気下で2時間撹拌した。反応物をEtOAcで希釈し、飽和NaHCO
3水溶液及びブラインで洗浄した。有機相を分離し、乾燥させ(MgSO
4)、濾過し、濃縮してオレンジ色のシロップ状物を得た。粗物質をカラムクロマトグラフィー(CH
2Cl
2中の2〜5%MeOH)によって精製して、化合物148(3.44g、73%)を得た。LCMS及び
1H NMRは、予想した生成物と一致した。
【0910】
化合物148(3.3g、5.2mmol)を1:1のMeOH/EtOAc(75mL)中に溶解した。この溶液を通してアルゴン流を15分間バブリングして反応混合物をパージした。パールマン触媒(炭素上の水酸化パラジウム)を添加した(350mg)。この溶液を通して水素ガスを30分間バブリングした。完了した時点で(TLC(DCM中の10%MeOH)及びLCMS)、セライトパッドを通して触媒を濾去した。濾液を回転蒸発によって濃縮し、高真空下で短時間乾燥させて、化合物149(2.6g)を得た。LCMSは、所望の生成物と一致した。残渣を乾燥DMF(10mL)中に溶解し、次のステップで即座に使用した。
【0911】
【化200】
[この文献は図面を表示できません]
【0912】
化合物146(0.68g、1.73mmol)を乾燥DMF(20mL)中に溶解した。これに、DIEA(450μL、2.6mmol、1.5当量)及びHBTU(1.96g、0.5.2mmol)を添加した。反応混合物を室温で15分間、窒素下で撹拌させた。無水DMF(10mL)中の化合物149(2.6g)の溶液を添加した。DIEAを添加することにより(必要に応じて)、反応物のpHをpH=9〜10に調整した。反応物を室温で2時間、窒素下で撹拌させた。完了した時点で、反応物をEtOAc(100mL)で希釈し、飽和NaHCO
3水溶液で洗浄し、続いて、ブラインで洗浄した。有機相を分離し、MgSO
4上で乾燥させ、濾過し、濃縮した。残渣をシリカゲルカラムクロマトグラフィーによって精製し、CH
2Cl
2中の2〜10%MeOHで溶出して、化合物150(0.62g、20%)を得た。LCMS及び
1H NMRは、所望の生成物と一致した。
【0913】
化合物150(0.62g)を1:1のMeOH/EtOAc(5L)中に溶解した。この溶液を通してアルゴン流を15分間バブリングして反応混合物をパージした。パールマン触媒(炭素上の水酸化パラジウム)を添加した(60mg)。この溶液を通して水素ガスを30分間バブリングした。完了した時点で(TLC(DCM中の10%MeOH)及びLCMS)、触媒を濾去した(シリンジチップTeflonフィルター、0.45μm)。濾液を回転蒸発によって濃縮し、高真空下で短時間乾燥させて、化合物151(0.57g)を得た。LCMSは、所望の生成物と一致した。この生成物を4mLの乾燥DMF中に溶解し、次のステップで即座に使用した。
【0914】
【化201】
[この文献は図面を表示できません]
【0915】
化合物83a(0.11g、0.33mmol)を無水DMF(5mL)中に溶解し、N,N−ジイソプロピルエチルアミン(75μL、1mmol)及びPFP−TFA(90μL、0.76mmol)を添加した。接触時に反応混合物は赤紫色になり、その後30分間かけて徐々にオレンジ色になった。TLC及びLCMSによって反応の進行を監視した。完了した時点で(PFPエステルの形成)、化合物151(0.57g、0.33mmol)のDMF溶液を添加した。N,N−ジイソプロピルエチルアミンを添加することにより(必要に応じて)、反応物のpHをpH=9〜10に調整した。反応混合物を窒素下で約30分間撹拌した。完了した時点で、溶媒の大部分を減圧下で除去した。残渣をCH
2Cl
2で希釈し、飽和NaHCO
3水溶液で洗浄し、続いて、ブラインで洗浄した。有機相を分離し、MgSO
4上で乾燥させ、濾過し、濃縮してオレンジ色のシロップ状物を得た。残渣をシリカゲルカラムクロマトグラフィー(CH
2Cl
2中の2〜10%MeOH)によって精製して、化合物152(0.35g、55%)を得た。LCMS及び
1H NMRは、所望の生成物と一致した。
【0916】
化合物152(0.35g、0.182mmol)を1:1のMeOH/EtOAc(10mL)中に溶解した。この溶液を通してアルゴン流を15分間バブリングして反応混合物をパージした。パールマン触媒(炭素上の水酸化パラジウム)を添加した(35mg)。この溶液を通して水素ガスを30分間バブリングした。完了した時点で(TLC(DCM中の10%MeOH)及びLCMS)、触媒を濾去した(シリンジチップTeflonフィルター、0.45μm)。濾液を回転蒸発によって濃縮し、高真空下で短時間乾燥させて、化合物153(0.33g、定量的)を得た。LCMSは、所望の生成物と一致した。
【0917】
化合物153(0.33g、0.18mmol)を窒素下で撹拌しながら無水DMF(5mL)中に溶解した。これに、N,N−ジイソプロピルエチルアミン(65μL、0.37mmol)及びPFP−TFA(35μL、0.28mmol)を添加した。反応混合物を窒素下で約30分間撹拌した。接触時に反応混合物は赤紫色になり、徐々にオレンジ色になった。さらにN,−ジイソプロピルエチルアミンを添加することにより、反応混合物のpHをpH=9〜10で維持した。TLC及びLCMSによって反応の進行を監視した。完了した時点で、溶媒の大部分を減圧下で除去した。残渣をCH
2Cl
2(50mL)で希釈し、飽和NaHCO
3水溶液で洗浄し、その後、ブラインで洗浄した。有機層をMgSO
4上で乾燥させ、濾過し、濃縮してオレンジ色のシロップ状物を得た。残渣をカラムクロマトグラフィーによって精製し、CH
2Cl
2中の2〜10%MeOHで溶出して、化合物154(0.29g、79%)を得た。LCMS及び
1H NMRは、所望の生成物と一致した。
【0918】
【化202】
[この文献は図面を表示できません]
【0919】
実施例46に例証される一般的手順を用いて、GalNAc
3−6共役基を含むオリゴマー化合物155を調製した。共役基GalNAc
3−6(GalNAc
3−6
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。
【0920】
GalNAc
3−6(GalNAc
3−6
a−CM−)の構造は、以下に示される:
【0921】
【化203】
[この文献は図面を表示できません]
【0922】
実施例52:GalNAc
3−9を含むオリゴヌクレオチド160の調製
【0923】
【化204】
[この文献は図面を表示できません]
文献(J.Med.Chem.2004,47,5798−5808)に記載される手順に従って化合物156を合成した。
【0924】
化合物156(18.60g、29.28mmol)をメタノール(200mL)中に溶解した。パラジウム炭素(6.15g、10重量%、負荷量(乾燥ベース)、マトリックス炭素粉末、湿式)を添加した。反応混合物を室温で18時間、水素下で撹拌した。セライトパッドを通して反応混合物を濾過し、このセライトパッドをメタノールで完全に洗浄した。合わせた濾液を洗浄し、濃縮乾固させた。残渣をシリカゲルカラムクロマトグラフィーによって精製し、ジクロロメタン中の5〜10%メタノールで溶出して、化合物157(14.26g、89%)を得た。質量(m/z)544.1[M−H]
−。
【0925】
化合物157(5g、9.17mmol)を無水DMF(30mL)中に溶解した。HBTU(3.65g、9.61mmol)及びN,N−ジイソプロピルエチルアミン(13.73mL、78.81mmol)を添加し、反応混合物を室温で5分間撹拌した。これに、化合物47(2.96g、7.04mmol)の溶液を添加した。反応物を室温で8時間撹拌した。反応混合物を飽和NaHCO
3水溶液に注いだ。この混合物を酢酸エチルで抽出し、有機層をブラインで洗浄し、乾燥させ(Na
2SO
4)、濾過し、蒸発させた。得られた残渣をシリカゲルカラムクロマトグラフィーによって精製し、ヘキサン中の50%酢酸エチルで溶出して、化合物158(8.25g、73.3%)を得た。この構造を、MS及び
1H NMR分析によって確認した。
【0926】
化合物158(7.2g、7.61mmol)を減圧下でP
2O
5上で乾燥させた。乾燥させた化合物を無水DMF(50mL)中に溶解した。これに、1H−テトラゾール(0.43g、6.09mmol)及びN−メチルイミダゾール(0.3mL、3.81mmol)及び2−シアノエチル−N,N,N’,N’−テトライソプロピルホスホロジアミダイト(3.65mL、11.50mmol)を添加した。反応混合物をアルゴン雰囲気下で4時間撹拌した。反応混合物を酢酸エチル(200mL)で希釈した。反応混合物を飽和NaHCO
3及びブラインで洗浄した。有機相を分離し、乾燥させ(Na
2SO
4)、濾過し、蒸発させた。残渣をシリカゲルカラムクロマトグラフィーによって精製し、ヘキサン中の50〜90%酢酸エチルで溶出して、化合物159(7.82g、80.5%)を得た。この構造を、LCMS及び
31P NMR分析によって確認した。
【0927】
【化205】
[この文献は図面を表示できません]
【0928】
標準のオリゴヌクレオチド合成手順を用いて、GalNAc
3−9共役基を含むオリゴマー化合物160を調製した。3単位の化合物159を固体支持体に、続いてヌクレオチドホスホラミダイトにカップリングした。保護されたオリゴマー化合物をアンモニア水で処理して、化合物160を得た。共役基GalNAc
3−9(GalNAc
3−9
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を提供することができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−9(GalNAc
3−9
a−CM)の構造は、以下に示される:
【0929】
【化206】
[この文献は図面を表示できません]
【0930】
実施例53:化合物18(GalNAc
3−1a及びGalNAc
3−3a)の調製のための代替手順
【0931】
【化207】
[この文献は図面を表示できません]
ラクトン161をジアミノプロパン(3〜5当量)またはモノBoc保護ジアミノプロパン(1当量)と反応させて、アルコール162aまたは162bを得た。非保護プロパンジアミンを上述の反応で用いた場合、過剰なジアミンを高真空下で蒸発させて除去し、CbzClを用いて162a中の遊離アミノ基を保護して、カラムクロマトグラフィーによって精製した後に、白色の固体として162bを得た。アルコール162bをTMSOTfの存在下で化合物4とさらに反応させ163aを得て、触媒水素化を用いてCbz基を除去することにより、これを163bに変換した。ペンタフルオロフェニル(PFP)エステル164を、三酸113(実施例48を参照のこと)をDMF(0.1〜0.5M)中のPFPTFA(3.5当量)及びピリジン(3.5当量)と接触させることによって調製した。トリエステル164をアミン163b(3〜4当量)及びDIPEA(3〜4当量)と直接反応させて、化合物18を得た。上述の方法は、中間体精製を大幅に促進し、実施例4に記載される手順を用いて形成される副生成物の形成を最小限に抑える。
【0932】
実施例54:化合物18(GalNAc
3−1a及びGalNAc
3−3a)の調製のための代替手順
【0933】
【化208】
[この文献は図面を表示できません]
先の実施例53に概説される手順を用いて酸113からトリPFPエステル164を調製し、モノBoc保護ジアミンと反応させて、本質的に定量的な収率で165を得た。Boc基を塩酸またはトリフルオロ酢酸で除去して、トリアミンを得て、これをDIPEAなどの好適な塩基の存在下でPFP活性化酸166と反応させて、化合物18を得た。
【0934】
DMF中のPFPTFA(1〜1.2当量)及びピリジン(1〜1.2当量)で処理することにより、PFP保護Gal−NAc酸166を対応する酸から調製した。次いで、アセトニトリル及び水中のTEMPO(0.2当量)及びBAIBを用いて酸化することにより、前駆酸を対応するアルコールから調製した。先の実施例47に記載される条件を用いて1,6−ヘキサンジオール(または1,5−ペンタンジオールもしくは他のn値の他のジオール)(2〜4当量)及びTMSOTfと反応させることにより、前駆アルコールを糖中間体4から調製した。
【0935】
実施例55:生体内におけるSRB−1を標的とする3’−共役基または5’−共役基のいずれかを含むオリゴヌクレオチド(GalNAc
3−1、3、8、及び9の比較)の用量依存的試験
以下に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。非共役ISIS 353382を標準物として含めた。さまざまなGalNAc
3共役基のそれぞれは、ホスホジエステル連結2’−デオキシアデノシンヌクレオシド(切断可能部分)によってそれぞれのオリゴヌクレオチドの3’末端または5’末端のいずれかで結合された。
【0936】
【表26】
[この文献は図面を表示できません]
大文字は、各ヌクレオシドの核酸塩基を示し、
mCは、5−メチルシトシンを示す。下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。共役基は、太字で表示されている。
【0937】
GalNAc
3−1
aの構造は、先の実施例9に示される。GalNAc
3−9の構造は、先の実施例52に示される。GalNAc
3−3の構造は、先の実施例39に示される。GalNAc
3−8の構造は、先の実施例47に示される。
処理
【0938】
6週齢の雄Balb/cマウス(Jackson Laboratory,Bar Harbor,ME)に、ISIS 353382、655861、664078、661161、665001、または生理食塩水を、以下に示される投与量で1回、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺して、リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるSRB−1 mRNAレベルを標準プロトコルに従って決定した。以下の結果は、生理食塩水(対照)に対して正規化された各処理群のSRB−1 mRNAレベルの平均パーセントとして提示される。
【0939】
表40に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でSRB−1 mRNAレベルを低下させた。実際には、3’末端にホスホジエステル連結GalNAc
3−1及びGalNAc
3−9共役体(ISIS 655861及びISIS 664078)ならびに5’末端に連結されたGalNAc
3−3及びGalNAc
3−8共役体(ISIS 661161及びISIS 665001)を含むアンチセンスオリゴヌクレオチドは、非共役アンチセンスオリゴヌクレオチド(ISIS 353382)と比較して、力価の大幅な改善を示した。さらに、3’末端にGalNAc
3−9共役体を含むISIS 664078は、3’末端にGalNAc
3−1共役体を含むISIS 655861と比較して、本質的に等効力であった。それぞれ、GalNAc
3−3またはGalNAc
3−9を含む5’共役アンチセンスオリゴヌクレオチドISIS 661161及びISIS 665001は、3’共役アンチセンスオリゴヌクレオチド(ISIS 655861及びISIS 664078)と比較して、力価を増加させた。
【0940】
【表27】
[この文献は図面を表示できません]
【0941】
血清における肝臓トランスアミナーゼレベル、すなわちアラニンアミノトランスフェラーゼ(ALT)、及びアスパラギン酸アミノトランスフェラーゼ(AST)を、標準のプロトコルを用いて、生理食塩水を注入したマウスとの比較で相対的に測定した。総ビリルビン及びBUNも評価した。体重の変化を評価したが、生理食塩水群との有意な変化は見られなかった。ALT、AST、総ビリルビン、及びBUN値が、以下の表に示される。
【0942】
【表28】
[この文献は図面を表示できません]
【0943】
実施例56:生体内におけるSRB−1を標的とする3’−共役基または5’−共役基のいずれかを含むオリゴヌクレオチドの用量依存的試験(GalNAc
3−1、2、3、5、6、7、及び10の比較)
以下に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。非共役ISIS 353382を標準物として含めた。3’末端にGalNAc
3共役基を結合させたISIS 655861を除いて、さまざまなGalNAc
3共役基のそれぞれは、ホスホジエステル連結2’−デオキシアデノシンヌクレオシド(切断可能部分)によってそれぞれのオリゴヌクレオチドの5’末端に取り付けられた。
【0944】
【表29】
[この文献は図面を表示できません]
大文字は、各ヌクレオシドの核酸塩基を示し、
mCは、5−メチルシトシンを示す。下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。共役基は、太字で表示されている。
【0945】
GalNAc
3−1
aの構造は、先の実施例9に示される。GalNAc
3−2
aの構造は、先の実施例37に示される。GalNAc
3−3
aの構造は、先の実施例39に示される。GalNAc
3−5
aの構造は、先の実施例49に示される。GalNAc
3−6
aの構造は、先の実施例51に示される。GalNAc
3−7
aの構造は、先の実施例48に示される。GalNAc
3−10
aの構造は、先の実施例46に示される。
処理
【0946】
6週齢の雄Balb/cマウス(Jackson Laboratory,Bar Harbor,ME)に、ISIS 353382、655861、664507、661161、666224、666961、666981、666881、または生理食塩水を、以下に示される投与量で1回皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺して、リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるSRB−1 mRNAレベルを決定した。以下の結果は、生理食塩水(対照)に対して正規化された各処理群のSRB−1 mRNAレベルの平均パーセントとして提示される。
【0947】
表43に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でSRB−1 mRNAレベルを低下させた。実際には、共役アンチセンスオリゴヌクレオチドは、非共役アンチセンスオリゴヌクレオチド(ISIS 353382)と比較して、力価の大幅な改善を示した。5’共役アンチセンスオリゴヌクレオチドは、3’共役アンチセンスオリゴヌクレオチドと比較して、力価のわずかな増加を示した。
【0948】
【表30】
[この文献は図面を表示できません]
【0949】
血清における肝臓トランスアミナーゼレベル、すなわちアラニンアミノトランスフェラーゼ(ALT)、及びアスパラギン酸アミノトランスフェラーゼ(AST)を、標準のプロトコルを用いて、生理食塩水を注入したマウスとの比較で相対的に測定した。総ビリルビン及びBUNも評価した。体重の変化を評価したが、生理食塩水群との有意な変化は見られなかった。ALT、AST、総ビリルビン、及びBUN値が、以下の表44に示される。
【0950】
【表31】
[この文献は図面を表示できません]
【0951】
実施例57:生体内におけるApoC IIIを標的とする3’−共役基を含むオリゴヌクレオチドの作用持続時間試験
マウスに以下に示される用量を1回注入し、ApoC−III及び血漿トリグリセリド(血漿TG)レベルを42日間にわたって監視した。各群におけるヒトAPOC−IIIを発現する3匹のトランスジェニックマウスを用いて、この試験を実行した。
【0952】
【表32】
[この文献は図面を表示できません]
大文字は、各ヌクレオシドの核酸塩基を示し、
mCは、5−メチルシトシンを示す。下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。共役基は、太字で表示されている。
【0953】
GalNAc
3−1
aの構造は、先の実施例9に示される。
【0954】
【表33】
[この文献は図面を表示できません]
【0955】
上の表に見られるように、作用持続時間は、非共役オリゴヌクレオチドと比較して、3’−共役基の付加によって増加した。共役完全PSオリゴヌクレオチド647535と比較して、共役混成PO/PSオリゴヌクレオチド647536の作用持続時間がさらに増加した。
【0956】
実施例58:生体内におけるSRB−1を標的とする3’−共役基を含むオリゴヌクレオチドの用量依存的試験(GalNAc
3−1及びGalNAc
4−11の比較)
以下に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。非共役ISIS 440762を非共役標準物として含めた。共役基のそれぞれは、ホスホジエステル連結2’−デオキシアデノシンヌクレオシド(切断可能部分)によってそれぞれのオリゴヌクレオチドの3’末端に取り付けられた。
【0957】
GalNAc
3−1
aの構造は、先の実施例9に示される。GalNAc
3−11
aの構造は、先の実施例50に示される。
【0958】
処理
6週齢の雄Balb/cマウス(Jackson Laboratory,Bar Harbor,ME)に、ISIS 440762、651900、663748、または生理食塩水を、以下に示される投与量で1回、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺して、リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるSRB−1 mRNAレベルを決定した。以下の結果は、生理食塩水(対照)に対して正規化された各処理群のSRB−1 mRNAレベルの平均パーセントとして提示される。
【0959】
表47に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でSRB−1 mRNAレベルを低下させた。3’末端にホスホジエステル連結GalNAc
3−1及びGalNAc
4−11共役体を含むアンチセンスオリゴヌクレオチド(ISIS 651900及びISIS 663748)は、非共役アンチセンスオリゴヌクレオチド(ISIS 440762)と比較して、力価の大幅な増加を示した。2つの共役オリゴヌクレオチド、すなわちGalNAc
3−1とGalNAc
4−11は、等効力であった。
【0960】
【表34】
[この文献は図面を表示できません]
大文字は、各ヌクレオシドの核酸塩基を示し、
mCは、5−メチルシトシンを示す。下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「k」は、6’−(S)−CH
3二環式ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。共役基は、太字で表示されている。
【0961】
血清における肝臓トランスアミナーゼレベル、すなわちアラニンアミノトランスフェラーゼ(ALT)、及びアスパラギン酸アミノトランスフェラーゼ(AST)を、標準のプロトコルを用いて、生理食塩水を注入したマウスとの比較で相対的に測定した。総ビリルビン及びBUNも評価した。体重の変化を評価したが、生理食塩水群との有意な変化は見られなかった。ALT、AST、総ビリルビン、及びBUN値が、以下の表48に示される。
【0962】
【表35】
[この文献は図面を表示できません]
【0963】
実施例59:生体内におけるFXIを標的とするGalNAc
3−1共役ASOの影響
以下に列記されるオリゴヌクレオチドを、複数回投与試験においてマウスにおけるFXIのアンチセンス阻害について試験した。ISIS 404071を非共役標準物として含めた。共役基のそれぞれは、ホスホジエステル連結2’−デオキシアデノシンヌクレオシドの切断可能部分によってそれぞれのオリゴヌクレオチドの3’末端に取り付けられた。
【0964】
【表36】
[この文献は図面を表示できません]
大文字は、各ヌクレオシドの核酸塩基を示し、
mCは、5−メチルシトシンを示す。下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。共役基は、太字で表示されている。
【0965】
GalNAc
3−1
aの構造は、先の実施例9に示される。
【0966】
処理
6週齢の雄Balb/cマウス(Jackson Laboratory,Bar Harbor,ME)に、ISIS 404071、656172、656173、またはPBS処理対照を、以下に示される投与量で週2回3週間、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺して、リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるFXI mRNAレベルを決定した。ELISAを用いて血漿FXIタンパク質レベルも測定した。PBS処理対照に対して正規化する前に(RIBOGREEN(登録商標)を用いて)FXI mRNAレベルを全RNAとの比較で相対的に決定した。以下の結果は、各処理群のFXI mRNAレベルの平均パーセントとして提示される。データをPBS処理対照に対して正規化し、「%PBS」で表示する。当該方法と同様の方法を用いてED
50を測定し、以下に提示する。
【0967】
【表37】
[この文献は図面を表示できません]
【0968】
表50に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でFXI mRNAレベルを低下させた。3’−GalNAc
3−1共役基を含むオリゴヌクレオチドは、非共役アンチセンスオリゴヌクレオチド(ISIS 404071)と比較して、力価の大幅な増加を示した。これら2つの共役オリゴヌクレオチドの間では、PS連結部のうちのいくつかをPO(ISIS 656173)と置き換えることによって、力価がさらに増加した。
【0969】
表50aに例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でFXIタンパク質レベルを低下させた。3’−GalNAc
3−1共役基を含むオリゴヌクレオチドは、非共役アンチセンスオリゴヌクレオチド(ISIS 404071)と比較して、力価の大幅な増加を示した。これら2つの共役オリゴヌクレオチドの間では、PS連結部のうちのいくつかをPO(ISIS 656173)と置き換えることによって、力価がさらに増加した。
【0970】
【表38】
[この文献は図面を表示できません]
【0971】
血清における肝臓トランスアミナーゼレベル、すなわちアラニンアミノトランスフェラーゼ(ALT)、及びアスパラギン酸アミノトランスフェラーゼ(AST)を、標準のプロトコルを用いて、生理食塩水を注入したマウスとの比較で相対的に測定した。総ビリルビン、総アルブミン、CRE、及びBUNも評価した。体重の変化を評価したが、生理食塩水群との有意な変化は見られなかった。ALT、AST、総ビリルビン、及びBUN値が、以下の表に示される。
【0972】
【表39】
[この文献は図面を表示できません]
【0973】
実施例60:生体外におけるSRB−1を標的とする共役ASOの影響
以下に列記されるオリゴヌクレオチドを、複数回投与試験において初代マウス肝細胞におけるSRB−1のアンチセンス阻害について試験した。ISIS 353382を非共役標準物として含めた。共役基のそれぞれは、ホスホジエステル連結2’−デオキシアデノシンヌクレオシドの切断可能部分によってそれぞれのオリゴヌクレオチドの3’末端または5’末端に取り付けられた。
【0974】
【表40】
[この文献は図面を表示できません]
大文字は、各ヌクレオシドの核酸塩基を示し、
mCは、5−メチルシトシンを示す。下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。共役基は、太字で表示されている。
【0975】
GalNAc
3−1
aの構造は、先の実施例9に示される。GalNAc
3−3aの構造は、先の実施例39に示される。GalNAc
3−8aの構造は、先の実施例47に示される。GalNAc
3−9aの構造は、先の実施例52に示される。GalNAc
3−6aの構造は、先の実施例51に示される。GalNAc
3−2aの構造は、先の実施例37に示される。GalNAc
3−10aの構造は、先の実施例46に示される。GalNAc
3−5aの構造は、先の実施例49に示される。GalNAc
3−7aの構造は、先の実施例48に示される。
【0976】
処理
上に列記されるオリゴヌクレオチドを、25,000細胞/ウェルの密度でプレーティングし、かつ0.03、0.08、0.24、0.74、2.22、6.67、または20nMの修飾オリゴヌクレオチドで処理した初代マウス肝細胞において生体外で試験した。約16時間の処理期間後、RNAを細胞から単離し、mRNAレベルを定量的リアルタイムPCRによって測定し、RIBOGREEN(登録商標)によって測定された総RNA含有量に従ってSRB−1 mRNAレベルを調整した。
【0977】
標準的方法を用いてIC
50を計算し、結果を表53に提示する。結果は、オリゴヌクレオチドの細胞への進入を人工的に促進するために試薬も電気穿孔技法も用いない自由取り込み条件下で、GalNAc共役体を含むオリゴヌクレオチドは、GalNAc共役体を含まない親オリゴヌクレオチド(ISIS 353382)よりも肝細胞において著しく強力であったことを示す。
【0978】
【表41】
[この文献は図面を表示できません]
【0979】
実施例61:GalNAc
3−12を含むオリゴマー化合物175の調製
【0980】
【化209】
[この文献は図面を表示できません]
【0981】
【化210】
[この文献は図面を表示できません]
【0982】
【化211】
[この文献は図面を表示できません]
【0983】
【化212】
[この文献は図面を表示できません]
化合物169は、市販のものである。ベンジル(ペルフルオロフェニル)グルタレートを化合物171に添加することによって化合物172を調製した。PFP−TFA及びDIEAをDMF中の5−(ベンジルオキシ)−5−オキソペンタン酸に添加することによって、ベンジル(ペルフルオロフェニル)グルタレートを調製した。実施例46に例証される一般的手順を用いて、GalNAc
3−12共役基を含むオリゴマー化合物175を化合物174から調製した。共役基GalNAc
3−12(GalNAc
3−12
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を提供することができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−12(GalNAc
3−12
a−CM−)の構造は、以下に示される:
【0984】
【化213】
[この文献は図面を表示できません]
【0985】
実施例62:GalNAc
3−13を含むオリゴマー化合物180の調製
【0986】
【化214】
[この文献は図面を表示できません]
【0987】
【化215】
[この文献は図面を表示できません]
実施例2に示される一般的手順を用いて、化合物176を調製した。実施例49に例証される一般的手順を用いて、GalNAc
3−13共役基を含むオリゴマー化合物180を化合物177から調製した。共役基GalNAc
3−13(GalNAc
3−13
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を提供することができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−13(GalNAc
3−13
a−CM−)の構造は、以下に示される:
【0988】
【化216】
[この文献は図面を表示できません]
【0989】
実施例63:GalNAc
3−14を含むオリゴマー化合物188の調製
【0990】
【化217】
[この文献は図面を表示できません]
化合物181及び185は、市販のものである。実施例46に例証される一般的手順を用いて、GalNAc
3−14共役基を含むオリゴマー化合物188を化合物187から調製した。共役基GalNAc
3−14(GalNAc
3−14
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を提供することができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−14(GalNAc
3−14
a−CM−)の構造は、以下に示される:
【0991】
【化218】
[この文献は図面を表示できません]
【0992】
実施例64:GalNAc
3−15を含むオリゴマー化合物197の調製
【0993】
【化219】
[この文献は図面を表示できません]
【0994】
【化220】
[この文献は図面を表示できません]
化合物189は、市販のものである。実施例31に示される一般的手順を用いて、化合物195を調製した。標準のオリゴヌクレオチド合成手順を用いて、GalNAc
3−15共役基を含むオリゴマー化合物197を化合物194及び195から調製した。共役基GalNAc
3−15(GalNAc
3−15
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−15(GalNAc
3−15
a−CM−)の構造は、以下に示される:
【0995】
【化221】
[この文献は図面を表示できません]
【0996】
実施例65:生体内におけるSRB−1を標的とする5’−共役基を含むオリゴヌクレオチドの用量依存的試験(GalNAc
3−3、12、13、14、及び15の比較)
以下に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。非共役ISIS 353382を標準物として含めた。GalNAc
3共役基のそれぞれは、ホスホジエステル連結2’−デオキシアデノシンヌクレオシド(切断可能部分)によってそれぞれのオリゴヌクレオチドの5’末端に取り付けられた。
【0997】
【表42】
[この文献は図面を表示できません]
大文字は、各ヌクレオシドの核酸塩基を示し、
mCは、5−メチルシトシンを示す。下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。共役基は、太字で表示されている。
【0998】
GalNAc
3−3
aの構造は、先の実施例39に示される。GalNAc
3−12aの構造は、先の実施例61に示される。GalNAc
3−13aの構造は、先の実施例62に示される。GalNAc
3−14aの構造は、先の実施例63に示される。GalNAc
3−15aの構造は、先の実施例64に示される。
処理
【0999】
6〜8週齢のC57bl6マウス(Jackson Laboratory,Bar Harbor,ME)に、ISIS 353382、661161、671144、670061、671261、671262、または生理食塩水を、以下に示される投与量で1回または2回、皮下注入した。2回投与されたマウスは、第1の投与の3日後に第2の投与を受けた。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺して、リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるSRB−1 mRNAレベルを標準プロトコルに従って決定した。以下の結果は、生理食塩水(対照)に対して正規化された各処理群のSRB−1 mRNAレベルの平均パーセントとして提示される。
【1000】
表55に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でSRB−1 mRNAレベルを低下させた。単回用量を受けた動物と2回の用量を受けた動物との間で標的ノックダウンの著しい差は観察されなかった(ISIS 353382の投与量30及び2×15mg/kg、ならびにISIS 661161の投与量5及び2×2.5mg/kgを参照のこと)。ホスホジエステル連結GalNAc
3−3、12、13、14、及び15共役体を含むアンチセンスオリゴヌクレオチドは、非共役アンチセンスオリゴヌクレオチド(ISIS 335382)と比較して、力価の大幅な増加を示した。
【1001】
【表43】
[この文献は図面を表示できません]
【1002】
血清における肝臓トランスアミナーゼレベル、すなわちアラニンアミノトランスフェラーゼ(ALT)、及びアスパラギン酸アミノトランスフェラーゼ(AST)を、標準のプロトコルを用いて、生理食塩水を注入したマウスとの比較で相対的に測定した。総ビリルビン及びBUNも評価した。体重の変化を評価したが、生理食塩水群との有意な差は見られなかった(データ示されず)。ALT、AST、総ビリルビン、及びBUN値が、以下の表56に示される。
【1003】
【表44】
[この文献は図面を表示できません]
【1004】
実施例66:5’−GalNAc
3クラスターを含むSRB−1を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害へのさまざまな切断可能部分の影響
以下に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。GalNAc
3共役基のそれぞれは、ホスホジエステル連結ヌクレオシド(切断可能部分(CM))によってそれぞれのオリゴヌクレオチドの5’末端に取り付けられた。
【1005】
【表45】
[この文献は図面を表示できません]
大文字は、各ヌクレオシドの核酸塩基を示し、
mCは、5−メチルシトシンを示す。下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。共役基は、太字で表示されている。
【1006】
GalNAc
3−3
aの構造は、先の実施例39に示した。GalNAc
3−13aの構造は、先の実施例62に示した。
【1007】
処理
6〜8週齢のC57bl6マウス(Jackson Laboratory,Bar Harbor,ME)に、ISIS 661161、670699、670700、670701、671165、または生理食塩水を、以下に示される投与量で1回、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺して、リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるSRB−1 mRNAレベルを決定した。以下の結果は、生理食塩水(対照)に対して正規化された各処理群のSRB−1 mRNAレベルの平均パーセントとして提示される。
【1008】
表58に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でSRB−1 mRNAレベルを低下させた。さまざまな切断可能部分を含むアンチセンスオリゴヌクレオチドはすべて、同様の力価を示した。
【1009】
【表46】
[この文献は図面を表示できません]
【1010】
血清における肝臓トランスアミナーゼレベル、すなわちアラニンアミノトランスフェラーゼ(ALT)、及びアスパラギン酸アミノトランスフェラーゼ(AST)を、標準のプロトコルを用いて、生理食塩水を注入したマウスとの比較で相対的に測定した。総ビリルビン及びBUNも評価した。体重の変化を評価したが、生理食塩水群との有意な差は見られなかった(データ示されず)。ALT、AST、総ビリルビン、及びBUN値が、以下の表56に示される。
【1011】
【表47】
[この文献は図面を表示できません]
【1012】
実施例67:GalNAc
3−16を含むオリゴマー化合物199の調製
【1013】
【化222】
[この文献は図面を表示できません]
実施例7及び9に例証される一般的手順を用いて、GalNAc
3−16共役基を含むオリゴマー化合物199を調製する。共役基GalNAc
3−16(GalNAc
3−16
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−16(GalNAc
3−16
a−CM−)の構造は、以下に示される:
【1014】
【化223】
[この文献は図面を表示できません]
【1015】
実施例68:GalNAc
3−17を含むオリゴマー化合物200の調製
【1016】
【化224】
[この文献は図面を表示できません]
実施例46に例証される一般的手順を用いて、GalNAc
3−17共役基を含むオリゴマー化合物200を調製した。共役基GalNAc
3−17(GalNAc
3−17
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−17(GalNAc
3−17
a−CM−)の構造は、以下に示される:
【1017】
【化225】
[この文献は図面を表示できません]
【1018】
実施例69:GalNAc
3−18を含むオリゴマー化合物201の調製
【1019】
【化226】
[この文献は図面を表示できません]
実施例46に例証される一般的手順を用いて、GalNAc
3−18共役基を含むオリゴマー化合物201を調製した。共役基GalNAc
3−18(GalNAc
3−18
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−18(GalNAc
3−18
a−CM−)の構造は、以下に示される:
【1020】
【化227】
[この文献は図面を表示できません]
【1021】
実施例70:GalNAc
3−19を含むオリゴマー化合物204の調製
【1022】
【化228】
[この文献は図面を表示できません]
実施例52に例証される一般的手順を用いて、GalNAc
3−19共役基を含むオリゴマー化合物204を化合物64から調製した。共役基GalNAc
3−19(GalNAc
3−19
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−19(GalNAc
3−19
a−CM−)の構造は、以下に示される:
【1023】
【化229】
[この文献は図面を表示できません]
【1024】
実施例71:GalNAc
3−20を含むオリゴマー化合物210の調製
【1025】
【化230】
[この文献は図面を表示できません]
PFP−TFA及びDIEAを、トリフリン酸無水物を6−アミノヘキサン酸に添加することによって調製したアセトニトリル中の6−(2,2,2−トリフルオロアセトアミド)ヘキサン酸に添加することによって、化合物205を調製した。反応混合物を80℃に加熱し、その後、室温まで下げた。実施例52に例証される一般的手順を用いて、GalNAc
3−20共役基を含むオリゴマー化合物210を化合物208から調製した。共役基GalNAc
3−20(GalNAc
3−20
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−20(GalNAc
3−20
a−CM−)の構造は、以下に示される:
【1026】
【化231】
[この文献は図面を表示できません]
【1027】
実施例72:GalNAc
3−21を含むオリゴマー化合物215の調製
【1028】
【化232】
[この文献は図面を表示できません]
化合物211は、市販のものである。実施例52に例証される一般的手順を用いて、GalNAc
3−21共役基を含むオリゴマー化合物215を化合物213から調製した。共役基GalNAc
3−21(GalNAc
3−21
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−21(GalNAc
3−21
a−CM−)の構造は、以下に示される:
【1029】
【化233】
[この文献は図面を表示できません]
【1030】
実施例73:GalNAc
3−22を含むオリゴマー化合物221の調製
【1031】
【化234】
[この文献は図面を表示できません]
ジイソプロピルアンモニウムテトラゾリドを用いて、化合物220を化合物219から調製した。実施例52に例証される一般的手順を用いて、GalNAc
3−21共役基を含むオリゴマー化合物221を化合物220から調製する。共役基GalNAc
3−22(GalNAc
3−22
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、切断可能部分は、−P(=O)(OH)−A
d−P(=O)(OH)−である。GalNAc
3−22(GalNAc
3−22
a−CM−)の構造は、以下に示される:
【1032】
【化235】
[この文献は図面を表示できません]
【1033】
実施例74:5’−GalNAc
3共役体を含むSRB−1を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害へのさまざまな切断可能部分の影響
以下に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。GalNAc
3共役基のそれぞれは、それぞれのオリゴヌクレオチドの5’末端に取り付けられた。
【1034】
【表48】
[この文献は図面を表示できません]
すべての表において、大文字は、各ヌクレオシドの核酸塩基を示し、
mCは、5−メチルシトシンを示す。下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示し、「o’」は、−O−P(=O)(OH)−を示す。共役基は、太字で表示されている。
【1035】
GalNAc
3−3
aの構造は、先の実施例39に示した。GalNAc
3−17aの構造は、先の実施例68に示し、GalNAc
3−18aの構造は、実施例69に示した。
【1036】
処理
6〜8週齢のC57BL/6マウス(Jackson Laboratory,Bar Harbor,ME)に、表60に列記されるオリゴヌクレオチドまたは生理食塩水を、以下に示される投与量で1回、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺して、リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるSRB−1 mRNAレベルを決定した。以下の結果は、生理食塩水(対照)に対して正規化された各処理群のSRB−1 mRNAレベルの平均パーセントとして提示される。
【1037】
表61に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でSRB−1 mRNAレベルを低下させた。GalNAc共役体を含むアンチセンスオリゴヌクレオチドは、同様の力価を示し、GalNAc共役体を欠く親オリゴヌクレオチドよりも著しく強力であった。
【1038】
【表49】
[この文献は図面を表示できません]
【1039】
血清における肝臓トランスアミナーゼレベル、すなわちアラニンアミノトランスフェラーゼ(ALT)、及びアスパラギン酸アミノトランスフェラーゼ(AST)を、標準のプロトコルを用いて、生理食塩水を注入したマウスとの比較で相対的に測定した。総ビリルビン及びBUNも評価した。体重の変化を評価したが、生理食塩水群との有意な変化は見られなかった(データ示されず)。ALT、AST、総ビリルビン、及びBUN値が、以下の表62に示される。
【1040】
【表50】
[この文献は図面を表示できません]
【1041】
実施例75:5’−共役基を含むオリゴヌクレオチドの薬物動態分析
実施例65、66、及び74に記載される処理手順に従って得た肝臓試料を用いて、上の表54、57、及び60におけるASOのPKを評価した。肝臓試料を切り刻み、標準のプロトコルを用いて抽出し、内部標準とともにIP−HPLC−MSによって分析した。適切なUVピークを統合することによってすべての代謝物の合わせた組織レベル(μg/g)を測定し、適切な抽出イオンクロマトグラム(EIC)を用いて、共役体を欠く全長ASO(この場合、ISIS番号353382の「親」)の組織レベルを測定した。
【1042】
【表51】
[この文献は図面を表示できません]
【1043】
上の表63における結果は、特にGalNAc
3共役基を有するオリゴヌクレオチドとGalNAc
3共役基を有しないオリゴヌクレオチドとの間の投薬の違いを考慮に入れた場合、オリゴヌクレオチド投与の72時間後に、GalNAc
3共役基を含むオリゴヌクレオチドの肝臓組織レベルが、GalNAc
3共役基を含まない親オリゴヌクレオチド(ISIS 353382)の肝臓組織レベルよりも高かったことを示す。さらに、72時間までに、GalNAc
3共役基を含む各オリゴヌクレオチドの40〜98%が親化合物に代謝され、GalNAc
3共役基がオリゴヌクレオチドから切断されたことを示す。
【1044】
実施例76:GalNAc
3−23を含むオリゴマー化合物230の調製
【1045】
【化236】
[この文献は図面を表示できません]
【1046】
【化237】
[この文献は図面を表示できません]
化合物222は、市販のものである。44.48mL(0.33mol)の化合物222をピリジン(500mL)中の塩化トシル(25.39g、0.13mol)で16時間処理した。その後、反応物を蒸発させて油状物とし、EtOAc中に溶解し、水、飽和NaHCO
3、ブラインで洗浄し、Na
2SO
4上で乾燥させた。酢酸エチルを濃縮乾固させ、カラムクロマトグラフィーによって精製し、EtOAc/ヘキサン(1:1)、続いて、CH
2Cl
2中の10%メタノールで溶出して、無色の油状物として化合物223を得た。LCMS及びNMRは、その構造と一致した。10g(32.86mmol)の1−トシルトリエチレングリコール(化合物223)を、DMSO(100mL)中のアジ化ナトリウム(10.68g、164.28mmol)で、室温で17時間処理した。その後、反応混合物を水上に注ぎ、EtOAcで抽出した。有機層を水で3回洗浄し、Na
2SO
4上で乾燥させた。有機層を濃縮乾固させて、5.3gの化合物224(92%)を得た。LCMS及びNMRは、その構造と一致した。1−アジドトリエチレングリコール(化合物224、5.53g、23.69mmol)及び化合物4(6g、18.22mmol)を、4Aモレキュラーシーブ(5g)及びジクロロメタン(100mL)中のTMSOTf(1.65mL、9.11mmol)で、不活性雰囲気下で処理した。14時間後、反応物を濾過して当該モレキュラーシーブを除去し、有機層を飽和NaHCO
3、水、ブラインで洗浄し、Na
2SO
4上で乾燥させた。有機層を濃縮乾固させ、カラムクロマトグラフィーによって精製し、ジクロロメタン中の2〜4%メタノールの勾配で溶出して、化合物225を得た。LCMS及びNMRは、その構造と一致した。化合物225(11.9g、23.59mmol)をパールマン触媒上で、EtOAc/メタノール(4:1、250mL)中で水素化した。8時間後、触媒を濾去し、溶媒を除去乾固して、化合物226を得た。LCMS及びNMRは、その構造と一致した。
【1047】
化合物227を生成するために、DMF(100mL)中のニトロメタントリスプロピオン酸(4.17g、15.04mmol)及びヒューニッヒ塩基(10.3mL、60.17mmol)の溶液をペンタフルオロトリフルオロアセテート(9.05mL、52.65mmol)で液滴処理した。30分間後、反応物を氷水上に注ぎ、EtOAcで抽出した。有機層を水、ブラインで洗浄し、Na
2SO
4上で乾燥させた。有機層を濃縮乾固させ、その後、ヘプタンから再結晶化して、白色の固体として化合物227を得た。LCMS及びNMRは、その構造と一致した。化合物227(1.5g、1.93mmol)及び化合物226(3.7g、7.74mmol)をアセトニトリル(15mL)中で、室温で2時間撹拌した。その後、反応物を蒸発乾固し、カラムクロマトグラフィーによって精製し、ジクロロメタン中の2〜10%メタノールの勾配で溶出して、化合物228を得た。LCMS及びNMRは、その構造と一致した。化合物228(1.7g、1.02mmol)をエタノール(100mL)中のラネーニッケル(約2g、湿性)で、水素雰囲気下で処理した。12時間後、触媒を濾去し、有機層を蒸発させて固体にし、これを次のステップで直接使用した。LCMS及びNMRは、その構造と一致した。この固体(0.87g、0.53mmol)をDMF(5mL)中のベンジルグルタル酸(0.18g、0.8mmol)、HBTU(0.3g、0.8mmol)、及びDIEA(273.7μL、1.6mmol)で処理した。16時間後、DMFを減圧下で65℃で除去して油状物とし、この油状物をジクロロメタン中に溶解した。有機層を飽和NaHCO
3、ブラインで洗浄し、Na
2SO
4上で乾燥させた。有機層を蒸発させた後、化合物をカラムクロマトグラフィーによって精製し、ジクロロメタン中の2〜20%メタノールの勾配で溶出して、カップリング生成物を得た。LCMS及びNMRは、その構造と一致した。ベンジルエステルをパールマン触媒で、水素雰囲気下で1時間脱保護した。その後、この触媒を濾去し、溶媒を除去乾固して、酸を得た。LCMS及びNMRは、その構造と一致した。酸(486mg、0.27mmol)を乾燥DMF(3mL)中に溶解した。ピリジン(53.61μL、0.66mmol)を添加し、反応物をアルゴンでパージした。ペンタフルオロトリフルオロアセテート(46.39μL、0.4mmol)を反応混合物に緩徐に添加した。反応物の色が淡黄色からワイン色に変化し、少しの煙を発し、この煙をアルゴン流で吹き飛ばした。反応物を室温で1時間撹拌させた(反応の完了をLCMSによって確認した)。この溶媒を減圧下(回転蒸発)で70℃で除去した。残渣をDCMで希釈し、1N NaHSO
4、ブライン、飽和重炭酸ナトリウム、及び再度ブラインで洗浄した。有機物をNa
2SO
4上で乾燥させ、濾過し、濃縮乾固させて、黄色の脆い泡状物として225mgの化合物229を得た。LCMS及びNMRは、その構造と一致した。
【1048】
実施例46に例証される一般的手順を用いて、GalNAc
3−23共役基を含むオリゴマー化合物230を化合物229から調製した。GalNAc
3−23共役基(GalNAc
3−23
a)のGalNAc
3クラスター部分を任意の切断可能部分と組み合わせて、さまざまな共役基を提供することができる。GalNAc
3−23(GalNAc
3−23
a−CM)の構造は、以下に示される:
【1049】
【化238】
[この文献は図面を表示できません]
【1050】
実施例77:GalNAc
3共役体を含むSRB−1を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
以下に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。
【1051】
【表52】
[この文献は図面を表示できません]
【1052】
GalNAc
3−1
aの構造は、先の実施例9に示され、GalNAc
3−3
aは、実施例39に示され、GalNAc
3−9aは、実施例52に示され、GalNAc
3−10aは、実施例46に示され、GalNAc
3−19
aは、実施例70に示され、GalNAc
3−20
aは、実施例71に示され、GalNAc
3−23
aは、実施例76に示される。
【1053】
処理
6〜8週齢のC57BL/6マウス(Jackson Laboratory,Bar Harbor,ME)のそれぞれに、表64に列記されるオリゴヌクレオチドまたは生理食塩水を、以下に示される投与量で1回、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺して、リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるSRB−1 mRNAレベルを決定した。以下の結果は、生理食塩水(対照)に対して正規化された各処理群のSRB−1 mRNAレベルの平均パーセントとして提示される。
【1054】
表65に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でSRB−1 mRNAレベルを低下させた。
【1055】
【表53】
[この文献は図面を表示できません]
【1056】
標準のプロトコルを用いて、血清中の肝臓トランスアミナーゼレベル、すなわちアラニンアミノトランスフェラーゼ(ALT)、及びアスパラギン酸アミノトランスフェラーゼ(AST)も測定した。総ビリルビン及びBUNも評価した。体重の変化を評価したが、生理食塩水群との有意な変化は見られなかった(データ示されず)。ALT、AST、総ビリルビン、及びBUN値が、以下の表66に示される。
【1057】
【表54】
[この文献は図面を表示できません]
【1058】
実施例78:GalNAc
3共役体を含むアンギオテンシノーゲンを標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
以下に列記されるオリゴヌクレオチドを、用量依存的試験において正常血圧のSprague Dawleyラットにおけるアンギオテンシノーゲン(AGT)のアンチセンス阻害について試験した。
【1059】
【表55】
[この文献は図面を表示できません]
GalNAc
3−1
aの構造は、先の実施例9に示した。
【1060】
処理
6週齢の雄Sprague Dawleyラットのそれぞれに、表67に列記されるオリゴヌクレオチドまたはPBSを、以下に示される投与量で週1回、合計3回の投与で、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にラットを屠殺した。リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるAGT mRNAレベルを決定した。全アンギオテンシノーゲンELISA(カタログ番号JP27412、IBL International,Toronto,ON)を用いて、1:20,000で希釈したAGT血漿タンパク質レベルを測定した。以下の結果は、PBS対照に対して正規化された各処理群の肝臓におけるAGT mRNAレベルまたは血漿におけるAGTタンパク質レベルの平均パーセントとして提示される。
【1061】
表68に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式で肝臓におけるAGT mRNA及び血漿タンパク質レベルを低下させ、GalNAc共役体を含むオリゴヌクレオチドは、GalNAc共役体を欠く親オリゴヌクレオチドよりも著しく強力であった。
【1062】
【表56】
[この文献は図面を表示できません]
【1063】
標準のプロトコルを用いて、屠殺時に血漿中の肝臓トランスアミナーゼレベル、すなわちアラニンアミノトランスフェラーゼ(ALT)、及びアスパラギン酸アミノトランスフェラーゼ(AST)、ならびに体重も測定した。結果が以下の表69に示される。
【1064】
【表57】
[この文献は図面を表示できません]
【1065】
実施例79:GalNAc
3共役体を含むAPOC−IIIを標的とするオリゴヌクレオチドの生体内における作用持続時間
以下の表70に列記されるオリゴヌクレオチドを、単回投与試験においてマウスにおける作用持続時間について試験した。
【1066】
【表58】
[この文献は図面を表示できません]
GalNAc
3−1
aの構造は、先の実施例9に示され、GalNAc
3−3
aは、実施例39に示され、GalNAc
3−7
aは、実施例48に示され、GalNAc
3−10
aは、実施例46に示され、GalNAc
3−13
aは、実施例62に示される。
【1067】
処理
ヒトAPOC−IIIを発現する6〜8週齢のトランスジェニックマウスのそれぞれに、表70に列記されるオリゴヌクレオチドまたはPBSを1回皮下注入した。各処理群は、3匹の動物からなった。投薬前に血液を採取して、ベースライン、ならびに投与後72時間、1週間、2週間、3週間、4週間、5週間、及び6週間時点のレベルを決定した。実施例20に記載されるように、血漿トリグリセリド及びAPOC−IIIタンパク質レベルを測定した。以下の結果は、ベースラインレベルに対して正規化された各処理群の血漿トリグリセリド及びAPOC−IIIレベルの平均パーセントとして提示され、親オリゴヌクレオチドの投与量がGalNAc共役基を含むオリゴヌクレオチドの投与量の3倍であったにもかかわらず、GalNAc共役基を含むオリゴヌクレオチドが共役基を有しない親オリゴヌクレオチド(ISIS 304801)よりも長い作用持続時間を示したことを示す。
【1068】
【表59-1】
[この文献は図面を表示できません]
【1069】
【表59-2】
[この文献は図面を表示できません]
【1070】
実施例80:GalNAc
3共役体を含むα−1抗トリプシン(A1AT)を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
以下の表72に列記されるオリゴヌクレオチドを、マウスにおけるA1ATの用量依存的阻害試験において試験した。
【1071】
【表60】
[この文献は図面を表示できません]
GalNAc
3−1
aの構造は、先の実施例9に示され、GalNAc
3−3
aは、実施例39に示され、GalNAc
3−7
aは、実施例48に示され、GalNAc
3−10
aは、実施例46に示され、GalNAc
3−13
aは、実施例62に示される。
【1072】
処理
6週齢の雄C57BL/6マウス(Jackson Laboratory,Bar Harbor,ME)のそれぞれに、表72に列記されるオリゴヌクレオチドまたはPBSを、以下に示される投与量で週1回、合計3回の投与で、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺した。リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるA1AT mRNAレベルを決定した。マウスα1−抗トリプシンELISA(カタログ番号41−A1AMS−E01、Alpco,Salem,NH)を用いて、A1AT血漿タンパク質レベルを決定した。以下の結果は、PBS対照に対して正規化された各処理群の肝臓におけるA1AT mRNA及び血漿タンパク質レベルの平均パーセントとして提示される。
【1073】
表73に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式で肝臓におけるA1AT mRNA及びA1AT血漿タンパク質レベルを低下させた。GalNAc共役体を含むオリゴヌクレオチドは、親(ISIS 476366)よりも著しく強力であった。
【1074】
【表61】
[この文献は図面を表示できません]
【1075】
標準のプロトコルを用いて、屠殺時に血漿中の肝臓トランスアミナーゼ及びBUNレベルを測定した。体重及び臓器重量も測定した。結果が以下の表74に示される。体重は、ベースラインと比較した%として示される。臓器重量は、PBS対照群と比較した体重の%として示される。
【1076】
【表62】
[この文献は図面を表示できません]
【1077】
実施例81:生体内におけるGalNAc
3クラスターを含むA1ATを標的とするオリゴヌクレオチドの作用持続時間
表72に列記されるオリゴヌクレオチドを、単回投与試験においてマウスにおける作用持続時間について試験した。
【1078】
処理
6週齢の雄C57BL/6マウスのそれぞれに、表72に列記されるオリゴヌクレオチドまたはPBSを1回皮下注入した。各処理群は、4匹の動物からなった。投薬の前日に血液を採取して、ベースライン、ならびに投与後5、12、19、及び25日時点のレベルを決定した。ELISAを用いて血漿A1ATタンパク質レベルを測定した(実施例80を参照のこと)。以下の結果は、ベースラインレベルに対して正規化された各処理群の血漿A1ATタンパク質レベルの平均パーセントとして提示される。結果は、GalNAc共役体を含むオリゴヌクレオチドがGalNAc共役体を欠く親(ISIS 476366)よりも強力であり、かつより長い作用持続時間を有したことを示す。さらに、5’−GalNAc共役体を含むオリゴヌクレオチド(ISIS 678381、678382、678383、及び678384)は、概して、3’−GalNAc共役体を含むオリゴヌクレオチド(ISIS 656326)よりもさらに強力であり、さらに長い作用持続時間を有した。
【1079】
【表63】
[この文献は図面を表示できません]
【1080】
実施例82:GalNAc
3共役体を含むSRB−1を標的とするオリゴヌクレオチドによる生体外におけるアンチセンス阻害
処理の2時間前に、初代マウス肝細胞を15,000細胞/ウェルで96ウェルプレートに播種した。表76に列記されるオリゴヌクレオチドをウィリアムE培地に2、10、50、または250nMで添加し、細胞を37℃、5%CO
2で一晩インキュベートした。オリゴヌクレオチド添加の16時間後に細胞を溶解し、RNease 3000 BioRobot(Qiagen)を用いて全RNAを精製した。リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、SRB−1 mRNAレベルを標準のプロトコルに従って決定した。Prism 4ソフトウェア(GraphPad)を用いて、IC
50値を決定した。結果は、さまざまな異なるGalNAc共役基及びさまざまな異なる切断可能部分を含むオリゴヌクレオチドが、生体外自由取り込み実験において、GalNAc共役基を欠く親オリゴヌクレオチド(ISIS 353382及び666841)よりも著しく強力であることを示す。
【1081】
【表64-1】
[この文献は図面を表示できません]
【1082】
【表64-2】
[この文献は図面を表示できません]
【1083】
【表64-3】
[この文献は図面を表示できません]
【1084】
【表64-4】
[この文献は図面を表示できません]
GalNAc
3−1
aの構造は、先の実施例9に示され、GalNAc
3−3
aは、実施例39に示され、GalNAc
3−5
aは、実施例49に示され、GalNAc
3−6
aは、実施例51に示され、GalNAc
3−7
aは、実施例48に示され、GalNAc
3−8
aは、実施例47に示され、GalNAc
3−9
aは、実施例52に示され、GalNAc
3−10
aは、実施例46に示され、GalNAc
3−12
aは、実施例61に示され、GalNAc
3−13
aは、実施例62に示され、GalNAc
3−14
aは、実施例63に示され、GalNAc
3−15
aは、実施例64に示され、GalNAc
3−17
aは、実施例68に示され、GalNAc
3−18
aは、実施例69に示され、GalNAc
3−19
aは、実施例70に示され、GalNAc
3−20
aは、実施例71に示され、GalNAc
3−23
aは、実施例76に示される。
【1085】
実施例83:GalNAc
3クラスターを含む、第XI因子を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
以下の表77に列記されるオリゴヌクレオチドを、マウスにおける第XI因子の用量依存的阻害試験において試験した。
【1086】
【表65】
[この文献は図面を表示できません]
GalNAc
3−1
aの構造は、先の実施例9に示され、GalNAc
3−3
aは、実施例39に示され、GalNAc
3−7
aは、実施例48に示され、GalNAc
3−10
aは、実施例46に示され、GalNAc
3−13
aは、実施例62に示される。
【1087】
処理
6〜8週齢のマウスのそれぞれに、以下に列記されるオリゴヌクレオチドまたはPBSを、以下に示される投与量で週1回、合計3回の投与で、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺した。リアルタイムPCRを用いて肝臓における第XI因子mRNAレベルを測定し、標準のプロトコルに従ってシクロフィリンに対して正規化した。肝臓トランスアミナーゼ、BUN、及びビリルビンも測定した。以下の結果は、PBS対照に対して正規化された各処理群の平均パーセントとして提示される。
【1088】
表78に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式で肝臓における第XI因子mRNAを低下させた。結果は、GalNAc共役体を含むオリゴヌクレオチドが、GalNAc共役体を欠く親(ISIS 404071)よりも強力であったことを示す。さらに、5’−GalNAc共役体を含むオリゴヌクレオチド(ISIS 663086、678347、678348、及び678349)は、3’−GalNAc共役体を含むオリゴヌクレオチド(ISIS 656173)よりもさらに強力であった。
【1089】
【表66】
[この文献は図面を表示できません]
【1090】
実施例84:GalNAc
3共役体を含む第XI因子を標的とするオリゴヌクレオチドの生体内における作用持続時間
表77に列記されるオリゴヌクレオチドを、単回投与試験においてマウスにおける作用持続時間について試験した。
【1091】
処理
6〜8週齢のマウスのそれぞれに、表77に列記されるオリゴヌクレオチドまたはPBSを1回皮下注入した。各処理群は、4匹の動物からなった。投薬の前日に尾採血によって血液を採取して、ベースライン、ならびに投与後3、10、及び17日間時点のレベルを決定した。R & D Systems(Minneapolis,MN)の第XI因子捕捉及びビオチン化検出抗体(それぞれ、カタログ番号AF2460及びBAF2460)、ならびにOptEIA試薬セットB(カタログ番号550534、BD Biosciences,San Jose,CA)を用いて、第XI因子血漿タンパク質レベルをELISAによって測定した。以下の結果は、ベースラインレベルに対して正規化された各処理群の第XI因子血漿タンパク質レベルの平均パーセントとして提示される。結果は、GalNAc共役体を含むオリゴヌクレオチドが、GalNAc共役体を欠く親(ISIS 404071)よりも強力であり、より長い作用持続時間を有したことを示す。さらに、5’−GalNAc共役体を含むオリゴヌクレオチド(ISIS 663086、678347、678348、及び678349)は、3’−GalNAc共役体を含むオリゴヌクレオチド(ISIS 656173)よりもさらに強力であり、さらに長い作用持続時間を有した。
【1092】
【表67】
[この文献は図面を表示できません]
【1093】
実施例85:GalNAc
3共役体を含む、SRB−1を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
表76に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。
【1094】
処理
6〜8週齢のC57BL/6マウスのそれぞれに、表76に列記されるオリゴヌクレオチドまたは生理食塩水を、以下に示される投与量で週1回、合計3回の投与で、皮下注入した。各処理群は、4匹の動物からなった。最終投与の48時間後にマウスを屠殺して、リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、SRB−1 mRNAレベルを決定した。以下の結果は、生理食塩水(対照)に対して正規化された各処理群の肝臓におけるSRB−1 mRNAレベルの平均パーセントとして提示される。
【1095】
表80及び81に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でSRB−1 mRNAレベルを低下させた。
【1096】
【表68】
[この文献は図面を表示できません]
【1097】
標準のプロトコルを用いて、肝臓トランスアミナーゼレベル、総ビリルビン、BUN、及び体重も測定した。各処理群の平均値が以下の表82に示される。
【1098】
【表69】
[この文献は図面を表示できません]
【1099】
実施例86:GalNAc
3クラスターを含む、TTRを標的とするオリゴヌクレオチドの生体内におけるアンチセンス阻害
以下の表83に列記されるオリゴヌクレオチドを、用量依存的試験においてヒトTTR遺伝子を発現するトランスジェニックマウスにおけるヒトトランスサイレチン(TTR)のアンチセンス阻害について試験した。
【1100】
処理
8週齢のTTRトランスジェニックマウスのそれぞれに、以下の表に列記されるオリゴヌクレオチド及び投与量またはPBSを、週1回3週間、合計3回の投与で、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺した。この実験を通してさまざまな時点で尾採血を実行し、血漿TTRタンパク質、ALT、及びASTレベルを測定し、表85〜87に報告した。動物を屠殺した後、血漿ALT、AST、及びヒトTTRレベルを測定し、体重、臓器重量、及び肝臓におおけるヒトTTR mRNAレベルも測定した。臨床分析器(AU480、Beckman Coulter,CA)を用いて、TTRタンパク質レベルを測定した。標準のプロトコルに従ってリアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるヒトTTR mRNAレベルを決定した。表84〜87に提示される結果は、各処理群の平均値である。mRNAレベルは、PBS群の平均と比較した平均値である。血漿タンパク質レベルは、ベースラインでのPBS群の平均値と比較した平均値である。体重は、個々の処理群それぞれを屠殺するまでのベースラインからの平均体重変化率である。示される臓器重量は、動物の体重に対して正規化されており、各処理群の平均正規化臓器重量は、PBS群の平均正規化臓器重量との比較で提示される。
【1101】
表84〜87において、「BL」は、第1の投与の直前に測定したベースラインを示す。表84及び85に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でTTR発現レベルを低下させた。GalNAc共役体を含むオリゴヌクレオチドは、GalNAc共役体を欠く親(ISIS 420915)よりも強力であった。さらに、GalNAc共役体及び混成PS/POヌクレオシド間連結部を含むオリゴヌクレオチドは、GalNAc共役体及び完全PS連結部を含むオリゴヌクレオチドよりもさらに強力であった。
【1102】
【表70】
[この文献は図面を表示できません]
表85の説明文を実施例74で見つけることができる。GalNAc
3−1の構造は、実施例9に示される。GalNAc
3−3
aの構造は、実施例39に示される。GalNAc
3−7
aの構造は、実施例48に示される。GalNAc
3−10
aの構造は、実施例46に示される。GalNAc
3−13
aの構造は、実施例62に示される。GalNAc
3−19
aの構造は、実施例70に示される。
【1103】
【表71】
[この文献は図面を表示できません]
【1104】
【表72】
[この文献は図面を表示できません]
【1105】
【表73】
[この文献は図面を表示できません]
【1106】
【表74-1】
[この文献は図面を表示できません]
【1107】
【表74-2】
[この文献は図面を表示できません]
【1108】
実施例87:GalNAc
3クラスターを含むTTRを標的とするオリゴヌクレオチドの単回投与による生体内における作用持続時間
ISIS番号420915及び660261(表83を参照のこと)を、単回投与試験においてマウスにおける作用持続時間について試験した。ISIS番号420915、682883、及び682885(表83を参照のこと)も、単回投与試験においてマウスにおける作用持続時間について試験した。
【1109】
処理
ヒトTTRを発現する8週齢の雄トランスジェニックマウスのそれぞれに、100mg/kgのISIS番号420915または13.5mg/kgのISIS番号660261を1回皮下注入した。各処理群は、4匹の動物からなった。投薬前に尾採血を実行して、ベースライン、ならびに投与後3、7、10、17、24、及び39日目のレベルを決定した。実施例86に記載されるように、血漿TTRタンパク質レベルを測定した。以下の結果は、ベースラインレベルに対して正規化された各処理群の血漿TTRレベルの平均パーセントとして提示される。
【1110】
【表75】
[この文献は図面を表示できません]
【1111】
処理
ヒトTTRを発現する雌トランスジェニックマウスのそれぞれに、100mg/kgのISIS番号420915、10.0mg/kgのISIS番号682883、または10.0mg/kgの682885を1回皮下注入した。各処理群は、4匹の動物からなった。投薬前に尾採血を実行して、ベースライン、ならびに投与後3、7、10、17、24、及び39日目のレベルを決定した。実施例86に記載されるように、血漿TTRタンパク質レベルを測定した。以下の結果は、ベースラインレベルに対して正規化された各処理群の血漿TTRレベルの平均パーセントとして提示される。
【1112】
【表76】
[この文献は図面を表示できません]
表88及び89における結果は、GalNAc共役体を含むオリゴヌクレオチドが、共役体を欠く親オリゴヌクレオチド(ISIS 420915)よりも強力であり、より長い作用持続時間を有することを示す。
【1113】
実施例88:GalNAc
3共役体を含むSMNを標的とするオリゴヌクレオチドによる生体内におけるスプライシング調節
表90に列記されるオリゴヌクレオチドを、マウスにおけるヒト運動ニューロン生存(SMN)のスプライシング調節について試験した。
【1114】
【表77】
[この文献は図面を表示できません]
GalNAc
3−7
aの構造は、先の実施例48に示した。「X」は、Gene Tools(Philomath,OR)によって生成された5’一次アミンを示し、GalNAc
3−7
bは、以下に示すように、リンカーの−NH−C
6−O部分を欠くGalNAc
3−7
aの構造を示す。
【1115】
【化239】
[この文献は図面を表示できません]
ISIS番号703421及び703422は、モルホリノオリゴヌクレオチドであり、これら2つのオリゴヌクレオチドの各ヌクレオチドは、モルホリノヌクレオチドである。
【1116】
処理
ヒトSMNを発現する6週齢のトランスジェニックマウスに、表91に列記されるオリゴヌクレオチドまたは生理食塩水を1回皮下注入した。各処理群は、2匹の雄及び2匹の雌からなった。投与の3日後にマウスを屠殺して、標準のプロトコルに従ってリアルタイムPCRを用いて、エクソン7を有する場合とエクソン7を有しない場合の肝臓におけるヒトSMN mRNAレベルを決定した。Ribogreen試薬を用いて総RNAを測定した。SMN mRNAレベルを総mRNAに対して正規化し、さらに生理食塩水処理群の平均に対して正規化した。結果として生じたエクソン7を含むSMN mRNAとエクソン7を欠くSMN mRNAとの平均比が、表91に示される。結果は、スプライシングを調節し、かつGalNAc共役体を含む完全修飾オリゴヌクレオチドが、GlaNAc共役体を欠く親オリゴヌクレオチドよりも肝臓におけるスプライシングの改変に著しく強力であることを示す。さらに、この傾向は、2’−MOE及びモルホリノ修飾オリゴヌクレオチドを含む複数の修飾化学でも維持される。
【1117】
【表78】
[この文献は図面を表示できません]
【1118】
実施例89:GalNAc
3共役体を含むアポリポタンパク質A(Apo(a))を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
以下の表92に列記されるオリゴヌクレオチドを、トランスジェニックマウスにおけるApo(a)の用量依存的阻害に関する試験で試験した。
【1119】
【表79】
[この文献は図面を表示できません]
GalNAc
3−7
aの構造は、実施例48に示される。
【1120】
処理
8週齢の雌C57BL/6マウス(Jackson Laboratory,Bar Harbor,ME)のそれぞれに、表92に列記されるオリゴヌクレオチドまたはPBSを、以下に示される投与量で週1回、合計6回の投与で、皮下注入した。各処理群は、3〜4匹の動物からなった。第1の投与の前日に、かつ各投与後週1回、尾採血を実行して、血漿Apo(a)タンパク質レベルを決定した。最終投与の2日後にマウスを屠殺した。リアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるApo(a)mRNAレベルを決定した。ELISAを用いてApo(a)血漿タンパク質レベルを決定し、肝臓トランスアミナーゼレベルを決定した。表93におけるmRNA及び血漿タンパク質の結果は、PBS処理群と比較した処理群の平均パーセントとして提示される。血漿タンパク質レベルをさらにPBS群のベースライン(BL)値に対して正規化した。平均絶対トランスアミナーゼレベル及び体重(ベースライン平均と比較した%)が表94に報告される。
【1121】
表93に例証されるように、オリゴヌクレオチドでの処理は、用量依存的様式で肝臓におけるApo(a)mRNA及び血漿タンパク質レベルを低下させた。さらに、GalNAc共役体を含むオリゴヌクレオチドは、GalNAc共役体を欠く親オリゴヌクレオチドよりも著しく強力であり、より長い作用持続時間を有した。表94に例証されるように、トランスアミナーゼレベル及び体重はオリゴヌクレオチドの影響を受けず、オリゴヌクレオチドが良好な耐容性を示したことを示す。
【1122】
【表80】
[この文献は図面を表示できません]
【1123】
【表81】
[この文献は図面を表示できません]
【1124】
実施例90:GalNAc
3クラスターを含むTTRを標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
以下の表95に列記されるオリゴヌクレオチドを、用量依存的試験においてヒトTTR遺伝子を発現するトランスジェニックマウスにおけるヒトトランスサイレチン(TTR)のアンチセンス阻害について試験した。
【1125】
処理
TTRトランスジェニックマウスのそれぞれに、表96に列記されるオリゴヌクレオチド及び投与量またはPBSを、週1回3週間、合計3回の投与で、皮下注入した。各処理群は、4匹の動物からなった。第1の投与の前に、尾採血を実行して、ベースライン(BL)での血漿TTRタンパク質レベルを決定した。最終投与の72時間後にマウスを屠殺した。臨床分析器(AU480、Beckman Coulter,CA)を用いて、TTRタンパク質レベルを測定した。標準のプロトコルに従ってリアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.Eugene,OR)を用いて、肝臓におけるヒトTTR mRNAレベルを決定した。表96に提示される結果は、各処理群の平均値である。mRNAレベルは、PBS群の平均と比較した平均値である。血漿タンパク質レベルは、ベースラインでのPBS群の平均値と比較した平均値である。「BL」は、第1の投与の直前に測定したベースラインを示す。表96に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でTTR発現レベルを低下させた。GalNAc共役体を含むオリゴヌクレオチドは、GalNAc共役体を欠く親(ISIS 420915)よりも強力であり、ホスホジエステルまたはデオキシアデノシンの切断可能部分を含むオリゴヌクレオチドは、共役体を欠く親と比較して、力価の著しい改善を示した(ISIS番号682883及び666943対420915、ならびに実施例86及び87を参照のこと)。
【1126】
【表82】
[この文献は図面を表示できません]
表95の説明文を実施例74で見つけることができる。GalNAc
3−3
aの構造は、実施例39に示される。GalNAc
3−7
aの構造は、実施例48に示される。GalNAc
3−10
aの構造は、実施例46に示される。GalNAc
3−13
aの構造は、実施例62に示される。
【1127】
【表83】
[この文献は図面を表示できません]
【1128】
実施例91:非ヒト霊長類におけるGalNAc
3共役体を含む第VII因子を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
以下の表97に列記されるオリゴヌクレオチドを、非終末用量増加試験(non−terminal,dose escalation study)においてサルにおける第VII因子のアンチセンス阻害について試験した。
【1129】
処理
処置した(non−naive)サルのそれぞれに、増加用量の表97に列記されるオリゴヌクレオチドまたはPBSを、0、15、及び29日目に皮下注入した。各処理群は、4匹の雄及び1匹の雌からなった。第1の投与の前とその後のさまざまな時点で、血液採取を実行して、血漿第VII因子タンパク質レベルを決定した。ELISAによって第VII因子タンパク質レベルを測定した。表98に提示される結果は、第1の投与の直前に測定したベースライン(BL)でのPBS群の平均値と比較した各処理群の平均値である。表98に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式で第VII因子の発現レベルを低下させ、GalNAc共役体を含むオリゴヌクレオチドは、サルにおいてGalNAc共役体を欠くオリゴヌクレオチドよりも著しく強力であった。
【1130】
【表84】
[この文献は図面を表示できません]
表97の説明文を実施例74で見つけることができる。GalNAc
3−10
aの構造は、実施例46に示される。
【1131】
【表85】
[この文献は図面を表示できません]
【1132】
実施例92:GalNAc
3共役体を含むApo−CIIIを標的とするアンチセンスオリゴヌクレオチドによる初代肝細胞におけるアンチセンス阻害
初代マウス肝細胞を15,000細胞/ウェルで96ウェルプレートに播種し、マウスApoC−IIIを標的とする表99に列記されるオリゴヌクレオチドを、0.46、1.37、4.12、または12.35、37.04、111.11、もしくは333.33nMまたは1.00μmで添加した。オリゴヌクレオチドとともに24時間インキュベートした後、細胞を溶解し、RNeasy(Qiagen)を用いて全RNAを精製した。標準のプロトコルに従ってリアルタイムPCR及びRIBOGREEN(登録商標)RNA定量化試薬(Molecular Probes,Inc.)を用いて、ApoC−III mRNAレベルを決定した。Prism 4ソフトウェア(GraphPad)を用いて、IC
50値を決定した。結果は、切断可能部分がホスホジエステルであるかホスホジエステル連結デオキシアデノシンであるかにかかわらず、GalNAc共役体を含むオリゴヌクレオチドが、共役体を欠く親オリゴヌクレオチドよりも著しく強力であったことを示す。
【1133】
【表86】
[この文献は図面を表示できません]
GalNAc
3−1
aの構造は、先の実施例9に示され、GalNAc
3−3
aは、実施例39に示され、GalNAc
3−7
aは、実施例48に示され、GalNAc
3−10
aは、実施例46に示され、GalNAc
3−13
aは、実施例62に示され、GalNAc
3−19
aは、実施例70に示される。
【1134】
実施例93:混成ウイング及び5’−GalNAc
3共役体を含むSRB−1を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
表100に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。
【1135】
【表87】
[この文献は図面を表示できません]
GalNAc
3−3
aの構造は、先の実施例39に示され、GalNAc
3−7aの構造は、先の実施例48に示される。下付き文字「e」は、2’−MOE修飾ヌクレオシドを示し、「d」は、β−D−2’−デオキシリボヌクレオシドを示し、「k」は、6’−(S)−CH
3二環式ヌクレオシド(cEt)を示し、「s」は、ホスホロチオエートヌクレオシド間連結部(PS)を示し、「o」は、ホスホジエステルヌクレオシド間連結部(PO)を示す。上付き文字「m」は、5−メチルシトシンを示す。
【1136】
処理
6〜8週齢のC57BL/6マウス(Jackson Laboratory,Bar Harbor,ME)に、表100に列記されるオリゴヌクレオチドまたは生理食塩水を、以下に示される投与量で1回、皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺した。リアルタイムPCRを用いて、肝臓におけるSRB−1 mRNAレベルを測定した。標準のプロトコルに従って、SRB−1 mRNAレベルをシクロフィリンmRNAレベルに対して正規化した。結果は、生理食塩水対照群と比較した各処理群のSRB−1 mRNAレベルの平均パーセントとして提示される。表101に例証されるように、アンチセンスオリゴヌクレオチドでの処理は、用量依存的様式でSRB−1 mRNAレベルを低下させ、GalNAc共役体を含み、かつ完全cEtまたは混成糖修飾のいずれかのウイングを有するギャップマーオリゴヌクレオチドは、共役体を欠き、かつ完全cEt修飾ウイングを含む親オリゴヌクレオチドよりも著しく強力であった。
【1137】
体重、肝臓トランスアミナーゼ、総ビリルビン、及びBUNも測定し、各処理群の平均値が表101に示される。体重は、オリゴヌクレオチド投与の直前に測定したベースライン体重(%BL)と比較した平均体重率として示される。
【1138】
【表88-1】
[この文献は図面を表示できません]
【1139】
【表88-2】
[この文献は図面を表示できません]
【1140】
実施例94:2’−糖修飾及び5’−GalNAc
3共役体を含むSRB−1を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
表102に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。
【1141】
【表89】
[この文献は図面を表示できません]
下付き文字「m」は、2’−O−メチル修飾ヌクレオシドを示す。完全な表の説明文については、実施例74を参照されたい。GalNAc
3−3
aの構造は、先の実施例39に示し、GalNAc
3−7aの構造は、先の実施例48に示した。
【1142】
処理
実施例93に記載されるプロトコルを用いて試験を完了した。結果が以下の表103に示され、GalNAc共役体を含む2’−MOE修飾オリゴヌクレオチドと2’−OMe修飾オリゴヌクレオチドとが両方ともに、共役体を欠くそれぞれの親オリゴヌクレオチドよりも著しく強力であったことを示す。体重、肝臓トランスアミナーゼ、総ビリルビン、及びBUNの測定結果は、これらの化合物がすべて良好な耐容性を示したことを示す。
【1143】
【表90】
[この文献は図面を表示できません]
【1144】
実施例95:二環式ヌクレオシド及び5’−GalNAc
3共役体を含むSRB−1を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
表104に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。
【1145】
【表91】
[この文献は図面を表示できません]
下付き文字「g」は、フルオロ−HNAヌクレオシドを示し、下付き文字「l」は、2’−O−CH
2−4’橋を含むロックドヌクレオシドを示す。他の省略形については、実施例74の表の説明文を参照されたい。GalNAc
3−1
aの構造は、先の実施例9に示し、GalNAc
3−3
aの構造は、先の実施例39に示し、GalNAc
3−7aの構造は、先の実施例48に示した。
【1146】
処理
実施例93に記載されるプロトコルを用いて試験を完了した。結果が以下の表105に示され、GalNAc共役体及びさまざまな二環式ヌクレオシド修飾を含むオリゴヌクレオチドが、共役体を欠くが二環式ヌクレオシド修飾を含む親オリゴヌクレオチドよりも著しく強力であったことを示す。さらに、GalNAc共役体及びフルオロ−HNA修飾を含むオリゴヌクレオチドは、共役体を欠くがフルオロ−HNA修飾を含む親よりも著しく強力であった。体重、肝臓トランスアミナーゼ、総ビリルビン、及びBUNの測定結果は、これらの化合物がすべて良好な耐容性であったことを示した。
【1147】
【表92】
[この文献は図面を表示できません]
【1148】
実施例96:GalNAc
3共役基を含むアンチセンスオリゴヌクレオチドの血漿タンパク質結合
ApoC−IIIを標的とする表70に列記されるオリゴヌクレオチド及びApo(a)を標的とする表106におけるオリゴヌクレオチドを限外濾過アッセイにおいて試験して、血漿タンパク質結合を評価した。
【1149】
【表93】
[この文献は図面を表示できません]
表の説明文については、実施例74を参照されたい。GalNAc
3−7aの構造は、先の実施例48に示される。
【1150】
Ultrafree−MC限外濾過ユニット(30,000NMWL、低結合再生セルロース膜、Millipore,Bedford,MA)を300μLの0.5%Tween 80で事前に条件付け、2000gで10分間遠心分離し、その後、H
2O中の300μLの300μg/mL対照オリゴヌクレオチド溶液で事前に条件付け、2000gで16分間遠心分離した。これらの試験で用いる表70及び106の各試験オリゴヌクレオチドのフィルターへの非特異的結合を評価するために、300μLのH
2O中の250ng/mL溶液オリゴヌクレオチド(pH7.4)を事前に条件付けたフィルターに設置し、2000gで16分間遠心分離した。ELISAアッセイによって濾過していない試料及び濾過した試料を分析して、オリゴヌクレオチド濃度を決定した。3つの複製物を用いて各試料の平均濃度を得た。濾過していない試料と比較した濾過した試料の平均濃度を用いて、血漿の不在下でフィルターによって回収されたオリゴヌクレオチドの割合(%回収)を決定する。
【1151】
薬物を使用していない健常なヒト志願者、カニクイザル、及びCD−1マウス由来のK3−EDTA中に収集された凍結全血漿試料をBioreclamation LLC(Westbury,NY)から購入した。試験オリゴヌクレオチドを、2つの濃度(5μg/mL及び150μg/mL)で血漿の1.2mLの一定分量に添加した。各スパイクした血漿試料の一定分量(300μL)を事前に条件付けられたフィルターユニット内に設置し、37°Cで30分間インキュベートした直後に2000gで16分間遠心分離した。ELISAによって、濾過してスパイクした血漿試料及び濾過していないスパイクした血漿試料の一定分量を分析して、各試料中のオリゴヌクレオチドの濃度を決定した。1つの濃度ごとに3つの複製物を用いて、各試料中の結合オリゴヌクレオチド及び非結合オリゴヌクレオチドの平均割合を決定した。濾過していない試料の濃度と比較した濾過した試料の平均濃度を用いて、血漿タンパク質に結合されていない血漿中のオリゴヌクレオチドの割合(%非結合)を決定する。各オリゴヌクレオチドの%非結合を%回収で割ることによって、最終非結合オリゴヌクレオチド値を非特異的結合に対して補正する。最終%非結合値を100から差し引くことによって、最終%結合オリゴヌクレオチド値を決定する。各種の血漿において試験した2つの濃度のオリゴヌクレオチド(5μg/mL及び150μg/mL)の結果が表107に示される。結果は、GalNAc共役基が血漿タンパク質結合に大きな影響を与えないことを示す。さらに、完全PSヌクレオシド間連結部を有するオリゴヌクレオチドも混成PO/PS連結部を有するオリゴヌクレオチドも血漿タンパク質に結合し、完全PS連結部を有するオリゴヌクレオチドは、混合PO/PS連結部を有するオリゴヌクレオチドよりも若干高い程度に血漿タンパク質に結合する。
【1152】
【表94】
[この文献は図面を表示できません]
【1153】
実施例97:GalNAc
3共役基を含むTTRを標的とする修飾オリゴヌクレオチド
GalNAc共役体を含む表108に示されるオリゴヌクレオチドを、TTRを標的とするように設計した。
【1154】
【表95】
[この文献は図面を表示できません]
表108の説明文を実施例74で見つけることができる。GalNAc
3−1の構造は、実施例9に示した。GalNAc
3−3
aの構造は、実施例39に示した。GalNAc
3−7
aの構造は、実施例48にした。GalNAc
3−10
aの構造は、実施例46に示した。GalNAc
3−13
aの構造は、実施例62に示した。GalNAc
3−19
aの構造は、実施例70に示した。
【1155】
実施例98:hPMBCアッセイにおけるGalNAc共役体を含むオリゴヌクレオチドの炎症誘発作用の評価
表109に列記されるオリゴヌクレオチドを、実施例23及び24に記載されるようにhPMBCアッセイにおいて炎症誘発作用について試験した(オリゴヌクレオチドの説明については、表30、83、95、及び108を参照のこと)。ISIS 353512は、正の対照として用いられる高レスポンダーであり、他のオリゴヌクレオチドは、表83、95、及び108に記載されるものである。1人の志願ドナー由来の血液を用いて表109に示される結果を得た。結果は、混合PO/PSヌクレオシド間連結部を含むオリゴヌクレオチドが、完全PS連結部を有する同一のオリゴヌクレオチドと比較して、著しく低い炎症誘発応答をもたらしたことを示す。さらに、GalNAc共役基は、このアッセイにおいて大きく影響しなかった。
【1156】
【表96】
[この文献は図面を表示できません]
【1157】
実施例99:アシアロ糖タンパク質受容体に対するGalNAc共役体を含むオリゴヌクレオチドの結合親和性
アシアロ糖タンパク質受容体に対する表110に列記されるオリゴヌクレオチド(オリゴヌクレオチドの説明については、表76を参照のこと)の結合親和性を、競合的受容体結合アッセイにおいて試験した。競合相手のリガンドであるα1−酸性糖タンパク質(AGP)を、50mM酢酸ナトリウム緩衝液(pH5)中で1Uノイラミニダーゼ−アガロースとともに37℃で16時間インキュベートし、シアル酸アッセイまたはサイズ排除クロマトグラフィー(SEC)のいずれかで90%を超える脱シアル化を確認した。Atsma et al.(J Lipid Res.1991 Jan;32(1):173−81を参照のこと)の手順に従って、一塩化ヨウ素を用いてAGPをヨウ素化した。この方法において、脱シアル化α1−酸性糖タンパク質(de−AGP)を、10mM塩化ヨウ素、Na
125I、及び0.25M NaOH中の1Mグリシンに添加した。室温で10分間インキュベートした後、3KDMWCOスピンカラムを利用してこの混合物を2回濃縮することによって、
125I標識de−AGPを遊離
125Iから分離した。このタンパク質を、Agilent SEC−3カラム(7.8×300mm)及びβ−RAMカウンタを装備したHPLCシステムにおいて標識効率及び純度について試験した。
125I標識de−AGP及びASOを含有するさまざまなGalNAcクラスターを利用した競合実験を以下のとおりに実行した。ヒトHepG2細胞(10
6細胞/mL)を、2mLの適切な成長培地中の6ウェルプレートにプレーティングした。10%ウシ胎児血清(FBS)、2mM L−グルタミン、及び10mM HEPESを補充したMEM培地を用いた。細胞を、それぞれ、5%及び10%CO
2で、37℃で16〜20時間インキュベートした。実験前に細胞をFBSを有しない培地で洗浄した。細胞を、2%FBSを有する適切な成長培地を含有する1mLの競合混合物、10
−8M
125I標識de−AGP、及び10
−11〜10
−5Mの範囲の濃度のASOを含有するGalNAcクラスターとともに、37℃で30分間インキュベートした。10
−2M GalNAc糖の存在下で非特異的結合を決定した。細胞をFBSを有しない培地で2回洗浄して、非結合
125I標識de−AGP及び競合相手であるGalNAc ASOを除去した。1%β−メルカプトエタノールを含有するQiagenのRLT緩衝液を用いて、細胞を溶解した。10分間の短時間凍結/解凍サイクル後に溶解物を丸底アッセイチューブに移し、γ−カウンタでアッセイした。非特異的結合を差し引いた後に、
125Iタンパク質カウントを最も低いGalNAc−ASO濃度カウントの値で割った。非線形回帰アルゴリズムを用いた単一部位競合結合等式に従って阻害曲線を当てはめて、結合親和性(K
D)を計算した。
【1158】
表110における結果を5つの異なる日に実行した実験から得た。上付き文字「a」の付いたオリゴヌクレオチドの結果は、2つの異なる日に実行した実験の平均である。結果は、5’末端にGalNAc共役基を含むオリゴヌクレオチドがヒトHepG2細胞上のアシアロ糖タンパク質受容体に結合し、3’末端にGalNAc共役基を含むオリゴヌクレオチドよりも1.5〜16倍高い親和性を有することを示す。
【1159】
【表97】
[この文献は図面を表示できません]
【1160】
実施例100:生体内におけるApo(a)を標的とするGalNAc共役基を含むオリゴヌクレオチドによる生体内におけるアンチセンス阻害
以下の表111aに列記されるオリゴヌクレオチドを、単回投与試験においてマウスにおける作用持続時間について試験した。
【1161】
【表98】
[この文献は図面を表示できません]
GalNAc
3−7
aの構造は、実施例48に示した。
【1162】
処理
ヒトApo(a)を発現する雌トランスジェニックマウスのそれぞれに、表111bに列記されるオリゴヌクレオチド及び投与量またはPBSを、週1回、合計6回の投与で、皮下注入した。各処理群は、3匹の動物からなった。投薬の前日に血液を採取して、血漿中のApo(a)タンパク質のベースラインレベル、ならびに第1の投与後72時間、1週間、及び2週間時点のレベルを決定した。第1の投与後3週間、4週間、5週間、及び6週間時点でさらに血液を採取する。ELISAを用いて血漿Apo(a)タンパク質レベルを測定した。表111bにおける結果は、ベースラインレベル(%BL)に対して正規化された各処理群の血漿Apo(a)タンパク質レベルの平均パーセントとして提示され、結果は、GalNAc共役基を含むオリゴヌクレオチドがApo(a)発現の強力な減少を示したことを示す。この強力な影響は、完全PSヌクレオシド間連結部を含むオリゴヌクレオチド及び混成PO及びPS連結部を含むオリゴヌクレオチドにおいて観察された。
【1163】
【表99】
[この文献は図面を表示できません]
【1164】
実施例101:安定した部分を介して連結されたGalNAcクラスターを含むオリゴヌクレオチドによるアンチセンス阻害
表112に列記されるオリゴヌクレオチドを生体内におけるマウスAPOC−III発現の阻害について試験した。C57Bl/6マウスのそれぞれに、表112に列記されるオリゴヌクレオチドまたはPBSを1回皮下注入した。各処理群は、4匹の動物からなった。ISIS 440670で処理した各マウスは、2、6、20、または60mg/kgの投与を受けた。ISIS 680772または696847で処理した各マウスは、0.6、2、6、または20mg/kgを受けた。ISIS 696847のGalNAc共役基は、安定した部分(容易に切断可能なホスホジエステル含有結合の代わりにホスホロチオエート連結部)を介して連結されている。投与の72時間後に動物を屠殺した。リアルタイムPCRを用いて、肝臓におけるAPOC−III mRNAレベルを測定した。標準のプロトコルに従って、APOC−III mRNAレベルをシクロフィリンmRNAレベルに対して正規化した。結果は、生理食塩水対照群と比較した各処理群のAPOC−III mRNAレベルの平均パーセントとして表112に提示される。結果は、GalNAc共役基を含むオリゴヌクレオチドが、共役基を欠くオリゴヌクレオチドよりも著しく強力であったことを示す。さらに、切断可能部分を介してオリゴヌクレオチドに連結されたGalNAc共役基を含むオリゴヌクレオチド(ISIS 680772)は、安定した部分を介してオリゴヌクレオチドに連結されたGalNAc共役基を含むオリゴヌクレオチド(ISIS 696847)よりもさらに強力であった。
【1165】
【表100】
[この文献は図面を表示できません]
GalNAc
3−7
aの構造は、実施例48に示した。
【1166】
実施例102:GalNAc共役体を含むアンチセンスオリゴヌクレオチドの肝臓における分布
GalNAc共役体を含まないISIS 353382(表36を参照のこと)及びGalNAc共役体を含むISIS 655861(表36を参照のこと)の肝臓における分布を評価した。雄balb/cマウスに、ISIS 353382または655861を、表113に列記される投与量で1回、皮下注入した。2匹の動物からなった18mg/kgのISIS 655861群を除いて、各処理群は、3匹の動物からなった。投与の48時間後に動物を屠殺して、オリゴヌクレオチドの肝臓における分布を決定した。1細胞あたりのアンチセンスオリゴヌクレオチド分子の数を測定するために、ルテニウム(II)トリス−ビピリジン標識(MSD TAG、Meso Scale Discovery)を、アンチセンスオリゴヌクレオチドを検出するために用いるオリゴヌクレオチドプローブに共役させた。表113に提示される結果は、1細胞あたり100万オリゴヌクレオチド分子を1単位として表した各処理群のオリゴヌクレオチドの平均濃度である。結果は、等価用量で、GalNAc共役体を含むオリゴヌクレオチドが、全肝臓及び肝細胞において、GalNAc共役体を含まないオリゴヌクレオチドよりも高い濃度で存在したことを示す。さらに、GalNAc共役体を含むオリゴヌクレオチドは、非実質肝臓細胞において、GalNAc共役体を含まないオリゴヌクレオチドよりも低い濃度で存在した。1細胞あたりの肝細胞及び非実質肝臓細胞におけるISIS 655861の濃度が同様であった一方で、肝臓は、約80体積%肝細胞であった。したがって、肝臓内に存在するISIS 655861オリゴヌクレオチドの大部分が肝細胞内に見られる一方で、肝臓内に存在するISIS 353382オリゴヌクレオチドの大部分は、非実質肝臓細胞内に見られた。
【1167】
【表101】
[この文献は図面を表示できません]
【1168】
実施例103:GalNAc
3共役体を含むAPOC−IIIを標的とするオリゴヌクレオチドの生体内における作用持続時間
以下の表114に列記されるオリゴヌクレオチドを、単回投与試験においてマウスにおける作用持続時間について試験した。
【1169】
【表102】
[この文献は図面を表示できません]
GalNAc
3−3
aの構造は、実施例39に示され、GalNAc
3−19
aは、実施例70に示される。
【1170】
処理
ヒトAPOC−IIIを発現する雌トランスジェニックマウスのそれぞれに、表114に列記されるオリゴヌクレオチドまたはPBSを1回皮下注入した。各処理群は、3匹の動物からなった。投薬前に血液を採取して、ベースライン、ならびに投与後3、7、14、21、28、35、及び42日間のレベルを決定した。実施例20に記載されるように、血漿トリグリセリド及びAPOC−IIIタンパク質レベルを測定した。表115における結果は、ベースラインレベルに対して正規化された各処理群の血漿トリグリセリド及びAPOC−IIIレベルの平均パーセントとして提示される。実施例79の表71における結果と以下の表115における結果の比較は、ホスホジエステルヌクレオシド間連結部及びホスホロチオエートヌクレオシド間連結部の両方を含むオリゴヌクレオチドが、ホスホロチオエートヌクレオシド間連結部のみを含む等価オリゴヌクレオチドよりも増加した作用持続時間を示したことを示す。
【1171】
【表103】
[この文献は図面を表示できません]
【1172】
実施例104:5’−GalNAc
2共役体を含むオリゴヌクレオチドの合成
【1173】
【化240】
[この文献は図面を表示できません]
化合物120は市販されており、化合物126の合成は実施例49に記載されている。化合物120(1g、2.89mmol)、HBTU(0.39g、2.89mmol)、及びHOBt(1.64g、4.33mmol)を、DMF(10mL)中に溶解し、N,N−ジイソプロピルエチルアミン(1.75mL、10.1mmol)を添加した。約5分後、アミノヘキサン酸ベンジルエステル(1.36g、3.46mmol)をこの反応物に添加した。3時間後、反応混合物を100mLの1M NaHSO4に注ぎ、2×50mL酢酸エチルで抽出した。有機層を合わせ、40mL飽和NaHCO
3で3回、ブラインで2回洗浄し、Na
2SO
4で乾燥させ、濾過し、濃縮した。この生成物をシリカゲルカラムクロマトグラフィー(DCM:EA:Hex=1:1:1)によって精製して、化合物231を得た。LCMS及びNMRは、その構造と一致した。化合物231(1.34g、2.438mmol)をジクロロメタン(10mL)中に溶解し、トリフルオロ酢酸(10mL)を添加した。室温で2時間撹拌した後、反応混合物を減圧下で濃縮し、トルエン(3×10mL)と共蒸発させた。残渣を減圧下で乾燥させて、トリフルオロ酢酸塩として化合物232を得た。化合物166の合成は、実施例54に記載される。化合物166(3.39g、5.40mmol)をDMF(3mL)中に溶解した。化合物232(1.3g、2.25mmol)の溶液をDMF(3mL)中に溶解し、N,N−ジイソプロピルエチルアミン(1.55mL)を添加した。反応物を室温で30分間撹拌し、その後、水(80mL)に注ぎ、水層をEtOAc(2×100mL)で抽出した。有機相を分離し、飽和NaHCO
3水溶液(3×80mL)、1M NaHSO
4(3×80mL)、及びブライン(2×80mL)で洗浄し、その後、乾燥させ(Na
2SO
4)、濾過し、濃縮した。残渣をシリカゲルカラムクロマトグラフィーによって精製して、化合物233を得た。LCMS及びNMRは、その構造と一致した。化合物233(0.59g、0.48mmol)をメタノール(2.2mL)及び酢酸エチル(2.2mL)中に溶解した。パラジウム炭素(10重量%Pd/C、湿性、0.07g)を添加し、反応混合物を水素雰囲気下で3時間撹拌した。セライトパッドを通して反応混合物を濾過し、濃縮して、カルボン酸を得た。カルボン酸(1.32g、1.15mmol、クラスター遊離酸)をDMF(3.2mL)中に溶解した。これに、N,N−ジイソプロピルエチルアミン(0.3mL、1.73mmol)及びPFPTFA(0.30mL、1.73mmol)を添加した。室温で30分間撹拌した後、反応混合物を水(40mL)に注ぎ、EtOAc(2×50mL)で抽出した。上述のように標準の後処理を完了して、化合物234を得た。LCMS及びNMRは、その構造と一致した。実施例46に記載される一般的手順を用いて、オリゴヌクレオチド235を調製した。共役基GalNAc
2−24のGalNAc
2クラスター部分(GalNAc
2−24
a)をオリゴヌクレオチド上に存在する任意の切断可能部分と組み合わせて、さまざまな共役基を提供することができる。GalNAc
2−24(GalNAc
2−24
a−CM)の構造は、以下に示される:
【1174】
【化241】
[この文献は図面を表示できません]
【1175】
実施例105:GalNAc
1−25共役体を含むオリゴヌクレオチドの合成
【1176】
【化242】
[この文献は図面を表示できません]
化合物166の合成は、実施例54に記載される。実施例46に記載される一般的手順を用いて、オリゴヌクレオチド236を調製した。
【1177】
あるいは、以下に示されるスキームを用いてオリゴヌクレオチド236を合成し、実施例10に記載される手順を用いて、化合物238を用いてオリゴヌクレオチド236を形成した。
【1178】
【化243】
[この文献は図面を表示できません]
共役基GalNAc
1−25のGalNAc
1クラスター部分(GalNAc
1−25
a)をオリゴヌクレオチド上に存在する任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。GalNAc
1−25(GalNAc
1−25
a−CM)の構造は、以下に示される:
【1179】
【化244】
[この文献は図面を表示できません]
【1180】
実施例106:5’−GalNAc
2または5’−GalNAc
3共役体を含むSRB−1を標的とするオリゴヌクレオチドによる生体内におけるアンチセンス阻害
表116及び117に列記されるオリゴヌクレオチドを、用量依存的試験においてマウスにおけるSRB−1のアンチセンス阻害について試験した。
処理
【1181】
6週齢の雄C57BL/6マウス(Jackson Laboratory,Bar Harbor,ME)に、2、7、もしくは20mg/kgのISIS番号440762;または0.2、0.6、2、6、もしくは20mg/kgのISIS番号686221、686222、もしくは708561;または生理食塩水を1回皮下注入した。各処理群は、4匹の動物からなった。最終投与の72時間後にマウスを屠殺した。リアルタイムPCRを用いて、肝臓におけるSRB−1 mRNAレベルを測定した。標準のプロトコルに従って、SRB−1 mRNAレベルをシクロフィリンmRNAレベルに対して正規化した。アンチセンスオリゴヌクレオチドは、用量依存的様式でSRB−1 mRNAレベルを低下させ、ED
50結果が、表116及び117に提示される。以前の研究において、三価GalNAc共役オリゴヌクレオチドが二価GalNAc共役オリゴヌクレオチドよりも著しく強力であり、これは、次いで、一価GalNAc共役オリゴヌクレオチドよりも著しく強力であったことが示されたが(例えば、Khorev et al.,Bioorg.& Med.Chem.,Vol.16,5216−5231(2008)を参照のこと)、表116及び117に示されるように、一価、二価、及び三価GalNAcクラスターを含むアンチセンスオリゴヌクレオチドでの処理は、同様の力価でSRB−1 mRNAレベルを低下させた。
【1182】
【表104】
[この文献は図面を表示できません]
表の説明文については、実施例93を参照されたい。GalNAc
3−13aの構造は、実施例62に示し、GalNAc
2−24aの構造は、実施例104に示した。
【1183】
【表105】
[この文献は図面を表示できません]
表の説明文については、実施例93を参照されたい。GalNAc
1−25aの構造は、実施例105に示した。
【1184】
実施例75に記載される手順を用いて、表116及び117における肝臓中のオリゴヌクレオチドの濃度も評価した。以下の表117a及び117bに示される結果は、肝臓組織のオリゴヌクレオチド(μg)/g単位のUVによって測定された各処理群の平均総アンチセンスオリゴヌクレオチド組織レベルである。結果は、GalNAc共役基を含むオリゴヌクレオチドがGalNAc共役基を欠く同一の用量のオリゴヌクレオチドよりも著しく高いレベルで肝臓に蓄積したことを示す。さらに、それらのそれぞれの共役基に1、2、または3個のGalNAcリガンドを含むアンチセンスオリゴヌクレオチドはすべて同様のレベルで肝臓に蓄積した。上記のKhorev et al.の文献参照を考慮すると、これは意外な結果であり、上の表116及び117に示される活性データと一致する。
【1185】
【表106】
[この文献は図面を表示できません]
【1186】
実施例107:GalNAc
1−26またはGalNAc
1−27共役体を含むオリゴヌクレオチドの合成
【1187】
【化245】
[この文献は図面を表示できません]
DMF中HBTU及びDIEAを用いて、オリゴヌクレオチド239を化合物47(実施例15を参照のこと)と酸64(実施例32を参照のこと)とのカップリングによって合成する。結果として生じたアミド含有化合物をホスフィチル化し、その後、実施例10に記載される手順を用いて、オリゴヌクレオチドの5’末端に付加する。共役基GalNAc
1−26のGalNAc
1クラスター部分(GalNAc
1−26
a)をオリゴヌクレオチド上に存在する任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。GalNAc
1−26(GalNAc
1−26
a−CM)の構造は、以下に示される:
【1188】
【化246】
[この文献は図面を表示できません]
【1189】
GalNAc
1共役基をオリゴヌクレオチドの3’末端に付加するために、実施例7に記載される手順を用いて、化合物47と64の反応から形成されたアミドを固体支持体に付加する。その後、実施例9に記載される手順を用いて、オリゴヌクレオチド合成を完了して、オリゴヌクレオチド240を形成する。
【1190】
【化247】
[この文献は図面を表示できません]
共役基GalNAc
1−27のGalNAc
1クラスター部分(GalNAc
1−27
a)をオリゴヌクレオチド上に存在する任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。GalNAc
1−27(GalNAc
1−27
a−CM)の構造は、以下に示される:
【1191】
【化248】
[この文献は図面を表示できません]
【1192】
実施例108:生体内におけるApo(a)を標的とするGalNAc共役基を含むオリゴヌクレオチドによる生体内におけるアンチセンス阻害
以下の表118に列記されるオリゴヌクレオチドを、マウスにおける単回投与試験において試験した。
【1193】
【表107】
[この文献は図面を表示できません]
GalNAc
3−7
aの構造は、実施例48に示される。
【1194】
処理
ヒトApo(a)を発現する雄トランスジェニックマウスのそれぞれに、表119に列記されるオリゴヌクレオチド及び投与量またはPBSを1回皮下注入した。各処理群は、4匹の動物からなった。投薬の前日に血液を採取して、血漿中のApo(a)タンパク質のベースラインレベル及び第1の投与後の1週間時点のレベルを決定した。週1回約8週間、さらに血液を採取する。ELISAを用いて血漿Apo(a)タンパク質レベルを測定した。表119における結果は、ベースラインレベル(%BL)に対して正規化された各処理群の血漿Apo(a)タンパク質レベルの平均パーセントとして提示され、結果は、アンチセンスオリゴヌクレオチドがApo(a)タンパク質の発現を低下させたことを示す。さらに、GalNAc共役基を含むオリゴヌクレオチドは、共役基を含まないオリゴヌクレオチドよりもさらに強力なApo(a)発現の減少を示した。
【1195】
【表108】
[この文献は図面を表示できません]
【1196】
実施例109:GalNAc
1−28またはGalNAc
1−29共役体を含むオリゴヌクレオチドの合成
【1197】
【化249】
[この文献は図面を表示できません]
オリゴヌクレオチド241を実施例71に記載される手順と同様の手順を用いて合成して、ホスホラミダイト中間体を形成し、続いて、実施例10に記載される手順を用いてオリゴヌクレオチドを合成する。共役基GalNAc
1−28のGalNAc
1クラスター部分(GalNAc
1−28
a)をオリゴヌクレオチド上に存在する任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。GalNAc
1−28(GalNAc
1−28
a−CM)の構造は、以下に示される:
【1198】
【化250】
[この文献は図面を表示できません]
【1199】
GalNAc
1共役基をオリゴヌクレオチドの3’末端に付加するために、実施例71に記載される手順と同様の手順を用いてヒドロキシル中間体を形成し、その後、実施例7に記載される手順を用いてこれを固体支持体に付加する。その後、実施例9に記載される手順を用いてオリゴヌクレオチド合成を完了させて、オリゴヌクレオチド242を形成する。
【1200】
【化251】
[この文献は図面を表示できません]
共役基GalNAc
1−29のGalNAc
1クラスター部分(GalNAc
1−29
a)をオリゴヌクレオチド上に存在する任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。GalNAc
1−29(GalNAc
1−29
a−CM)の構造は、以下に示される:
【1201】
【化252】
[この文献は図面を表示できません]
【1202】
実施例110:GalNAc
1−30共役体を含むオリゴヌクレオチドの合成
【1203】
【化253】
[この文献は図面を表示できません]
GalNAc
1−30共役基を含むオリゴヌクレオチド246(式中、Yが、O、S、置換もしくは無置換C
1〜C
10アルキル、アミノ、置換アミノ、アジド、アルケニル、またはアルキニルから選択される)を上に示されるように合成する。共役基GalNAc
1−30のGalNAc
1クラスター部分(GalNAc
1−30
a)を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、Yは、切断可能部分の一部である。ある特定の実施形態において、Yは、安定した部分の一部であり、切断可能部分は、オリゴヌクレオチド上に存在する。GalNAc
1−30
aの構造は、以下に示される:
【1204】
【化254】
[この文献は図面を表示できません]
【1205】
実施例111:GalNAc
2−31またはGalNAc
2−32共役体を含むオリゴヌクレオチドの合成
【1206】
【化255】
[この文献は図面を表示できません]
【1207】
【化256】
[この文献は図面を表示できません]
GalNAc
2−31共役基を含むオリゴヌクレオチド250(式中、Yが、O、S、置換もしくは無置換C
1〜C
10アルキル、アミノ、置換アミノ、アジド、アルケニル、またはアルキニルから選択される)を上に示されるように合成する。共役基GalNAc
2−31のGalNAc
2クラスター部分(GalNAc
2−31
a)を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、オリゴヌクレオチドの5’末端に直接隣接したY含有基は、切断可能部分の一部である。ある特定の実施形態において、オリゴヌクレオチドの5’末端に直接隣接したY含有基は、安定した部分の一部であり、切断可能部分は、オリゴヌクレオチド上に存在する。GalNAc
2−31
aの構造は、以下に示される:
【1208】
【化257】
[この文献は図面を表示できません]
【1209】
GalNAc
2−32共役体を含むオリゴヌクレオチドの合成は、以下に示される。
【1210】
【化258】
[この文献は図面を表示できません]
【1211】
GalNAc
2−32共役基を含むオリゴヌクレオチド252(式中、Yが、O、S、置換もしくは無置換C
1〜C
10アルキル、アミノ、置換アミノ、アジド、アルケニル、またはアルキニルから選択される)を上に示されるように合成する。共役基GalNAc
2−32のGalNAc
2クラスター部分(GalNAc
2−32
a)を任意の切断可能部分と組み合わせて、さまざまな共役基を得ることができる。ある特定の実施形態において、オリゴヌクレオチドの5’末端に直接隣接したY含有基は、切断可能部分の一部である。ある特定の実施形態において、オリゴヌクレオチドの5’末端に直接隣接したY含有基は、安定した部分の一部であり、切断可能部分は、オリゴヌクレオチド上に存在する。GalNAc
2−32
aの構造は、以下に示される:
【1212】
【化259】
[この文献は図面を表示できません]
【1213】
実施例112:GalNAc
1共役体を含む修飾オリゴヌクレオチド
SRB−1を標的とする表120のオリゴヌクレオチドをGalNAc
1共役基で合成して、GalNAcリガンドを含有する共役基を含むオリゴヌクレオチドの力価をさらに試験した。
【1214】
【表109-1】
[この文献は図面を表示できません]
【1215】
【表109-2】
[この文献は図面を表示できません]
【1216】
実施例113:GalNAcクラスターを含むカリクレインB、血漿(フレッチャー因子)1を標的とするアンチセンスオリゴヌクレオチド
表121のオリゴヌクレオチドは、ヒトカリクレインB、血漿(フレッチャー因子)1またはプレカリクレイン(PKK)を標的とするように設計した。
【1217】
【表110】
[この文献は図面を表示できません]
【1218】
実施例114:2’−MOE糖修飾を有するアンチセンスオリゴヌクレオチドによるHepaRG(商標)細胞中のヒトPKKのアンチセンス阻害
アンチセンスオリゴヌクレオチドは、PKKを標的とするように設計し、PKK mRNAに対する効果についてin vitro試験を実施した。HepaRG(商標)細胞は、ヒト肝前駆細胞株由来の分化された肝細胞であり、初代ヒト肝細胞の特性を保持しており(Lubberstedt M. et al., J. Pharmacol. Toxicol. Methods 2011 63: 59−68)、スクリーン中で使用した。
【1219】
以下の表に示すキメラアンチセンスオリゴヌクレオチドは、5−10−5MOEギャップマーとして設計された。これらのギャップマーは20ヌクレシオド長であり、中央のギャップセグメントは10個の2’−デオキシヌレドで構成され、5’側と3’側にそれぞれ5個のヌクレオシドを含むウイングセグメントが隣接している。5’ウイングセグメント中の各ヌクレオシドと3’ウイングセグメント中の各ヌクレオシドは、2’−O−メトキシエチル修飾を有する。ヌクレオシド間連結部は、各ギャップマーの全体を通して、ホスホロチオエート連結部である。シトシン残基は、各ギャップマーの全体を通してすべて、5−メチルシトシンである。「開始部位」とは、ヒト遺伝子配列中で当該ギャップマーの標的になる最も5’側のヌクレオシドを示す。「終止部位」とは、ヒト遺伝子配列中で当該ギャップマーの標的になる最も3’側のヌクレオシドを示す。以下の表に示す各ギャップマーは、本明細書で配列番号1として設計したヒトPKK mRNA(GENBANK寄託番号NM_000892.3)もしくは本明細書で配列番号10として設計したヒトPKKゲノム配列(ヌクレオチド111693001から111730000まで切り捨てられたGENBANK寄託番号NT_016354.19)のいずれかを標的とする。「該当なし」は、そのアンチセンスオリゴヌクレオチドが当該特定の遺伝子配列を標的としないことを示す。
【1220】
ウェルあたり20,000細胞の密度で培養されたHepaRG(商標)細胞は、エレクトロポレーションを用いて3,000 nMのアンチセンスオリゴヌクレオチドでトランスフェクトした。約24時間の処理時間経過後に、RNAを細胞から単離し、PKK mRNAレベルを、定量的リアルタイムPCRにより測定した。ヒトプライマープローブセットRTS3454(配列番号20として本明細書で設計した順方向配列CCAAAAAAGGTGCACCAGTAACA、配列番号21として本明細書で設計した逆方向配列CCTCCGGGACTGTACTTTAATAGG、配列番号22として本明細書で設計したプローブ配列 CACGCAAACATTTCACAAGGCAGAGTACC)を使用してmRNAレベルを測定した。PKK mRNAレベルは、RIBOGREEN(登録商標)によって測定される総RNA含量に従って調整した。同様の培養条件を有していた一連の実験で、アンチセンスオリゴヌクレオチドの試験を実施した。各実験の結果は、以下に示す別のテーブルで表す。結果は、未処理の対照細胞と比較して、PKKの阻害パーセントとして表す。
【1221】
【表111-1】
[この文献は図面を表示できません]
【1222】
【表111-2】
[この文献は図面を表示できません]
【1223】
【表111-3】
[この文献は図面を表示できません]
【1224】
【表112-1】
[この文献は図面を表示できません]
【1225】
【表112-2】
[この文献は図面を表示できません]
【1226】
【表112-3】
[この文献は図面を表示できません]
【1227】
【表113-1】
[この文献は図面を表示できません]
【1228】
【表113-2】
[この文献は図面を表示できません]
【1229】
【表113-3】
[この文献は図面を表示できません]
【1230】
【表113-4】
[この文献は図面を表示できません]
【1231】
【表113-5】
[この文献は図面を表示できません]
【1232】
【表113-6】
[この文献は図面を表示できません]
【1233】
【表113-7】
[この文献は図面を表示できません]
【1234】
【表113-8】
[この文献は図面を表示できません]
【1235】
【表113-9】
[この文献は図面を表示できません]
【1236】
【表114-1】
[この文献は図面を表示できません]
【1237】
【表114-2】
[この文献は図面を表示できません]
【1238】
【表114-3】
[この文献は図面を表示できません]
【1239】
【表114-4】
[この文献は図面を表示できません]
【1240】
【表114-5】
[この文献は図面を表示できません]
【1241】
【表114-6】
[この文献は図面を表示できません]
【1242】
【表114-7】
[この文献は図面を表示できません]
【1243】
【表114-8】
[この文献は図面を表示できません]
【1244】
【表114-9】
[この文献は図面を表示できません]
【1245】
【表114-10】
[この文献は図面を表示できません]
【1246】
【表114-11】
[この文献は図面を表示できません]
【1247】
実施例115:2’−MOE糖修飾を有するアンチセンスオリゴヌクレオチドによるHepaRG(商標)細胞中のヒトPKKのアンチセンス阻害
追加のアンチセンスオリゴヌクレオチドは、PKK核酸を標的とするように設計し、PKK mRNAに対する効果についてin vitro試験を実施した。
【1248】
以下の表のキメラアンチセンスオリゴヌクレオチドは、5−10−5MOEギャップマー、4−9−4MOEギャップマー、4−10−4MOEギャップマー、4−10−3MOEギャップマー、3−10−4MOEギャップマー、または3−10−3MOEギャップマーとして設計した。5−10−5MOEギャップマーは、20ヌクレシオド長であり、中央のギャップセグメントは10個の2’−デオキシヌレドで構成され、中央のギャップセグメントは10個の2’−デオキシヌクレオシドで構成され、5’側と3’側にそれぞれ5個のヌクレオシドを含むウイングセグメントが隣接している。4−9−4MOEギャップマーは、17ヌクレシオド長であり、中央のギャップセグメントは9個の2’−デオキシヌレドで構成され、5’側と3’側にそれぞれ4個のヌクレオシドを含むウイングセグメントが隣接している。4−10−4MOEギャップマーは、18ヌクレシオド長であり、中央のギャップセグメントは10個の2’−デオキシヌレドで構成され、5’側と3’側にそれぞれ4個のヌクレオシドを含むウイングセグメントが隣接している。4−10−3MOEギャップマーは、17ヌクレシオド長であり、中央のギャップセグメントは10個の2’−デオキシヌレドで構成され、5’側と3’側にそれぞれ4個と3個のヌクレオシドを含むウイングセグメントが隣接している。3−10−4MOEギャップマーは、17ヌクレシオド長であり、中央のギャップセグメントは10個の2’−デオキシヌレドで構成され、5’側にウイングセグメントが隣接しており、3’側にそれぞれ4個と3個のヌクレオシドを含む。3−10−3MOEギャップマーは、16ヌクレシオド長であり、中央のギャップセグメントは10個の2’−デオキシヌレドで構成され、5’側と3’側にそれぞれ3個のヌクレオシドを含むウイングセグメントが隣接している。5’ウイングセグメント中の各ヌクレオシドと3’ウイングセグメント中の各ヌクレオシドは2’−O−メトキシエチル修飾を有する。ヌクレオシド間連結部は、各ギャップマーの全体を通して、ホスホロチオエート連結部である。シトシン残基は、各ギャップマーの全体を通してすべて、5−メチルシトシンである。「開始部位」とは、ヒト遺伝子配列中で当該ギャップマーの標的になる最も5’側のヌクレオシドを示す。「終止部位」とは、ヒト遺伝子配列中で当該ギャップマーの標的になる最も3’側のヌクレオシドを示す。以下の表に示す各ギャップマーは、配列番号1または配列10のいずれかを標的とする。「該当なし」は、そのアンチセンスオリゴヌクレオチドが当該特定の遺伝子配列を標的としないことを示す。
【1249】
ウェルあたり20,000個の細胞密度の培養されたHepaRG(商標)は、5,000nMのアンチセンスオリゴヌクレオチドを有するエレクトロポレーションを用いてトランスフェクトした。約24時間処理を行った後、RNAを細胞から単離し、PKK mRNAレベルと定量的リアルタイムPCRによって測定した。ヒトプライマープローブセットRTS3454を使用してmRNAレベルを測定した。PKK mRNAレベルをRIBOGREEN(登録商標)によって測定する総RNA含量に従って調整した。同様の培養条件を有する一連の実験でアンチセンスオリゴヌクレオチドの試験を行った。各実験の結果は、以下に示す別個の表に表す。結果は、未処理の対照細胞に対するPKKの阻害率(%)として表す。
【1250】
【表115-1】
[この文献は図面を表示できません]
【1251】
【表115-2】
[この文献は図面を表示できません]
【1252】
【表115-3】
[この文献は図面を表示できません]
【1253】
【表116-1】
[この文献は図面を表示できません]
【1254】
【表116-2】
[この文献は図面を表示できません]
【1255】
【表116-3】
[この文献は図面を表示できません]
【1256】
【表116-4】
[この文献は図面を表示できません]
【1257】
【表116-7】
[この文献は図面を表示できません]
【1258】
【表116-8】
[この文献は図面を表示できません]
【1259】
【表117-1】
[この文献は図面を表示できません]
【1260】
【表117-2】
[この文献は図面を表示できません]
【1261】
【表117-3】
[この文献は図面を表示できません]
【1262】
【表118-1】
[この文献は図面を表示できません]
【1263】
【表118-2】
[この文献は図面を表示できません]
【1264】
【表118-3】
[この文献は図面を表示できません]
【1265】
【表119-1】
[この文献は図面を表示できません]
【1266】
【表119-2】
[この文献は図面を表示できません]
【1267】
【表119-3】
[この文献は図面を表示できません]
【1268】
【表120-1】
[この文献は図面を表示できません]
【1269】
【表120-2】
[この文献は図面を表示できません]
【1270】
【表120-3】
[この文献は図面を表示できません]
【1271】
【表121-1】
[この文献は図面を表示できません]
【1272】
【表121-2】
[この文献は図面を表示できません]
【1273】
【表121-3】
[この文献は図面を表示できません]
【1274】
【表122-1】
[この文献は図面を表示できません]
【1275】
【表122-2】
[この文献は図面を表示できません]
【1276】
【表122-3】
[この文献は図面を表示できません]
【1277】
【表122-4】
[この文献は図面を表示できません]
【1278】
【表122-5】
[この文献は図面を表示できません]
【1279】
【表122-6】
[この文献は図面を表示できません]
【1280】
【表122-7】
[この文献は図面を表示できません]
【1281】
【表122-8】
[この文献は図面を表示できません]
【1282】
【表123-1】
[この文献は図面を表示できません]
【1283】
【表123-2】
[この文献は図面を表示できません]
【1284】
【表123-3】
[この文献は図面を表示できません]
【1285】
【表123-4】
[この文献は図面を表示できません]
【1286】
【表123-5】
[この文献は図面を表示できません]
【1287】
【表123-6】
[この文献は図面を表示できません]
【1288】
【表123-7】
[この文献は図面を表示できません]
【1289】
【表123-8】
[この文献は図面を表示できません]
【1290】
【表123-9】
[この文献は図面を表示できません]
【1291】
【表123-10】
[この文献は図面を表示できません]
【1292】
【表123-11】
[この文献は図面を表示できません]
【1293】
【表123-12】
[この文献は図面を表示できません]
【1294】
【表123-13】
[この文献は図面を表示できません]
【1295】
【表123-14】
[この文献は図面を表示できません]
【1296】
【表123-15】
[この文献は図面を表示できません]
【1297】
【表124-1】
[この文献は図面を表示できません]
【1298】
【表124-2】
[この文献は図面を表示できません]
【1299】
【表124-3】
[この文献は図面を表示できません]
【1300】
【表124-4】
[この文献は図面を表示できません]
【1301】
【表124-5】
[この文献は図面を表示できません]
【1302】
【表124-6】
[この文献は図面を表示できません]
【1303】
【表124-7】
[この文献は図面を表示できません]
【1304】
【表124-8】
[この文献は図面を表示できません]
【1305】
【表124-9】
[この文献は図面を表示できません]
【1306】
【表124-10】
[この文献は図面を表示できません]
【1307】
【表124-11】
[この文献は図面を表示できません]
【1308】
【表125-1】
[この文献は図面を表示できません]
【1309】
【表125-2】
[この文献は図面を表示できません]
【1310】
【表125-3】
[この文献は図面を表示できません]
【1311】
【表125-4】
[この文献は図面を表示できません]
【1312】
【表126-1】
[この文献は図面を表示できません]
【1313】
【表126-2】
[この文献は図面を表示できません]
【1314】
【表126-3】
[この文献は図面を表示できません]
【1315】
【表126-4】
[この文献は図面を表示できません]
【1316】
【表126-5】
[この文献は図面を表示できません]
【1317】
【表126-6】
[この文献は図面を表示できません]
【1318】
【表126-7】
[この文献は図面を表示できません]
【1319】
【表126-8】
[この文献は図面を表示できません]
【1320】
【表126-9】
[この文献は図面を表示できません]
【1321】
【表126-10】
[この文献は図面を表示できません]
【1322】
【表126-11】
[この文献は図面を表示できません]
【1323】
【表126-12】
[この文献は図面を表示できません]
【1324】
【表126-13】
[この文献は図面を表示できません]
【1325】
【表126-14】
[この文献は図面を表示できません]
【1326】
【表126-15】
[この文献は図面を表示できません]
【1327】
【表126-16】
[この文献は図面を表示できません]
【1328】
【表126-17】
[この文献は図面を表示できません]
【1329】
【表126-18】
[この文献は図面を表示できません]
【1330】
【表126-19】
[この文献は図面を表示できません]
【1331】
【表126-20】
[この文献は図面を表示できません]
【1332】
【表126-21】
[この文献は図面を表示できません]
【1333】
【表126-22】
[この文献は図面を表示できません]
【1334】
【表126-23】
[この文献は図面を表示できません]
【1335】
【表126-24】
[この文献は図面を表示できません]
【1336】
【表126-25】
[この文献は図面を表示できません]
【1337】
【表126-26】
[この文献は図面を表示できません]
【1338】
【表126-27】
[この文献は図面を表示できません]
【1339】
【表126-28】
[この文献は図面を表示できません]
【1340】
【表126-29】
[この文献は図面を表示できません]
【1341】
実施例116:MOE、デオキシ及びcEt糖修飾を有するアンチセンスオリゴヌクレオチドによるHepaRG(商標)細胞中のヒトPKKのアンチセンス阻害
追加のアンチセンスオリゴヌクレオチドは、PKK核酸を標的にするように設計し、PKK mRNAに対する効果についてin vitro試験を行った。
【1342】
以下の表のキメラのアンチセンスオリゴヌクレオチドは、デオキシ、MOE及びcEtギャップマーとして設計した。ギャップマーは長さが16ヌクレオチドであり、そのヌクレオチドはMOE糖修飾、cEt糖修飾、またはデオキシ修飾のいずれかを有する。列「化学構造」は、各オリゴヌクレオチドの糖修飾を記載している。「k」はcEt糖修飾を示し、その数はデオキシヌクレオシドの数を示し、そうでなければ、「d」はデオキシヌクレオシドを示し、「e」は2’−O−メトキシエチル修飾を示す。各ギャップマー全体のヌクレオシド間結合は、ホスホロチオエート結合である。各オリゴヌクレオチド全体のすべてのシトシン残基は、5−メチルシトシンである。「開始部位」とは、ヒト遺伝子配列中で当該ギャップマーの標的となる最も5’側のヌクレオシドを示す。「終止部位」とは、ヒト遺伝子配列中で当該ギャップマーの標的となる最も3’側のヌクレオシドを示す。以下の表に示す各ギャップマーは、配列番号1として本明細書で設計したヒトPKK mRNA、または配列番号10として本明細書で設計したヒトPKK遺伝子配列のいずれかを標的とする。「該当なし」は、そのアンチセンスオリゴヌクレオチドが、当該特定の遺伝子配列を標的としないことを示す。
【1343】
ウェルあたり20,000個の細胞密度の培養されたHepaRG(商標)に、1,000nMのアンチセンスオリゴヌクレオチドを、エレクトロポレーションを用いてトランスフェクトした。約24時間処理を行った後、RNAを細胞から単離し、PKK mRNAレベルを定量的リアルタイムPCRによって測定した。ヒトプライマープローブセットRTS3454を使用してmRNAレベルを測定した。ISIS 531231もこのアッセイに含めた。PKK mRNAレベルを、RIBOGREEN(登録商標)によって測定する総RNA含量に従って調整した。同様の培養条件を有する一連の実験でアンチセンスオリゴヌクレオチドの試験を行った。各実験の結果は、以下に示す別個の表に表す。結果は、未処理の対照細胞に対するPKKの阻害率(%)として表す。
【1344】
【表127-1】
[この文献は図面を表示できません]
【1345】
【表127-2】
[この文献は図面を表示できません]
【1346】
【表127-3】
[この文献は図面を表示できません]
【1347】
【表128-1】
[この文献は図面を表示できません]
【1348】
【表128-2】
[この文献は図面を表示できません]
【1349】
【表128-3】
[この文献は図面を表示できません]
【1350】
【表129-1】
[この文献は図面を表示できません]
【1351】
【表129-2】
[この文献は図面を表示できません]
【1352】
【表129-3】
[この文献は図面を表示できません]
【1353】
【表129-4】
[この文献は図面を表示できません]
【1354】
【表129-5】
[この文献は図面を表示できません]
【1355】
【表130-1】
[この文献は図面を表示できません]
【1356】
【表130-2】
[この文献は図面を表示できません]
【1357】
【表130-3】
[この文献は図面を表示できません]
【1358】
【表130-4】
[この文献は図面を表示できません]
【1359】
【表130-5】
[この文献は図面を表示できません]
【1360】
【表131-1】
[この文献は図面を表示できません]
【1361】
【表131-2】
[この文献は図面を表示できません]
【1362】
【表131-3】
[この文献は図面を表示できません]
【1363】
【表131-4】
[この文献は図面を表示できません]
【1364】
【表131-5】
[この文献は図面を表示できません]
【1365】
【表132-1】
[この文献は図面を表示できません]
【1366】
【表132-2】
[この文献は図面を表示できません]
【1367】
【表132-3】
[この文献は図面を表示できません]
【1368】
【表132-4】
[この文献は図面を表示できません]
【1369】
【表132-5】
[この文献は図面を表示できません]
【1370】
【表133-1】
[この文献は図面を表示できません]
【1371】
【表133-2】
[この文献は図面を表示できません]
【1372】
【表133-3】
[この文献は図面を表示できません]
【1373】
【表133-4】
[この文献は図面を表示できません]
【1374】
【表133-5】
[この文献は図面を表示できません]
【1375】
【表134-1】
[この文献は図面を表示できません]
【1376】
【表134-2】
[この文献は図面を表示できません]
【1377】
【表134-3】
[この文献は図面を表示できません]
【1378】
【表134-4】
[この文献は図面を表示できません]
【1379】
【表134-5】
[この文献は図面を表示できません]
【1380】
【表135-1】
[この文献は図面を表示できません]
【1381】
【表135-2】
[この文献は図面を表示できません]
【1382】
【表135-3】
[この文献は図面を表示できません]
【1383】
【表135-4】
[この文献は図面を表示できません]
【1384】
【表135-5】
[この文献は図面を表示できません]
【1385】
【表136-1】
[この文献は図面を表示できません]
【1386】
【表136-2】
[この文献は図面を表示できません]
【1387】
【表136-3】
[この文献は図面を表示できません]
【1388】
【表136-4】
[この文献は図面を表示できません]
【1389】
【表136-5】
[この文献は図面を表示できません]
【1390】
【表137-1】
[この文献は図面を表示できません]
【1391】
【表137-2】
[この文献は図面を表示できません]
【1392】
【表137-3】
[この文献は図面を表示できません]
【1393】
【表137-4】
[この文献は図面を表示できません]
【1394】
【表137-5】
[この文献は図面を表示できません]
【1395】
【表137-6】
[この文献は図面を表示できません]
【1396】
【表138-1】
[この文献は図面を表示できません]
【1397】
【表138-2】
[この文献は図面を表示できません]
【1398】
【表138-3】
[この文献は図面を表示できません]
【1399】
【表138-4】
[この文献は図面を表示できません]
【1400】
【表138-5】
[この文献は図面を表示できません]
【1401】
【表138-6】
[この文献は図面を表示できません]
【1402】
【表138-7】
[この文献は図面を表示できません]
【1403】
【表138-8】
[この文献は図面を表示できません]
【1404】
【表138-9】
[この文献は図面を表示できません]
【1405】
【表138-10】
[この文献は図面を表示できません]
【1406】
【表138-11】
[この文献は図面を表示できません]
【1407】
【表139-1】
[この文献は図面を表示できません]
【1408】
【表139-2】
[この文献は図面を表示できません]
【1409】
【表139-3】
[この文献は図面を表示できません]
【1410】
【表139-4】
[この文献は図面を表示できません]
【1411】
【表139-5】
[この文献は図面を表示できません]
【1412】
実施例117:HepaRG(商標)細胞中のヒトPKKの用量依存的アンチセンス阻害
PKK mRNAの有意なin vitro阻害を表す上記の試験からギャップマーを選択し、HepaRG(商標)細胞中で、様々な用量で試験を行った。ウェルあたり20,000個の細胞密度で細胞を播種し、0.12μM、0.37μM、1.11μM、3.33μM及び10.00μMの濃度のアンチセンスオリゴヌクレオチドを、エレクトロポレーションを用いてトランスフェクトした。約16時間処理を行った後、RNAを細胞から単離し、PKK mRNAレベルを定量的リアルタイムPCRで測定した。ヒトPKKプライマープローブセットRTS3454を使用して、mRNAレベルを測定した。PKK mRNAレベルをRIBOGREEN(登録商標)によって測定したときの総RNA含量に従って調整した。同様の培養条件を有する一連の実験で、アンチセンスオリゴヌクレオチドの試験を行った。各実験の結果は、以下に示す別個の表に表す。結果は、未処理の対照細胞に対するPKKの阻害率(%)として表す。
【1413】
各オリゴヌクレオチドの半数阻害濃度(IC
50)も表す。PKK mRNAレベルは、アンチセンスオリゴヌクレオチドで処理した細胞で、用量依存的に有意に減少した。
【1414】
【表140】
[この文献は図面を表示できません]
【1415】
【表141】
[この文献は図面を表示できません]
【1416】
実施例118:HepaRG(商標)細胞中のヒトPKKの用量依存的アンチセンス阻害
PKK mRNAの有意なin vitro阻害を表す上記の試験からギャップマーを選択し、HepaRG(商標)細胞中で、様々な用量で試験を行った。ウェルあたり20,000個の細胞密度で細胞を播種し、0.19μM、0.56μM、1.67μM、及び5.00μMの濃度のアンチセンスオリゴヌクレオチドを、エレクトロポレーションを用いてトランスフェクトした。約16時間処理を行った後、RNAを細胞から単離し、PKK mRNAレベルを定量的リアルタイムPCRで測定した。ヒトPKKプライマープローブセットRTS3454を使用して、mRNAレベルを測定した。PKK mRNAレベルをRIBOGREEN(登録商標)によって測定したときの総RNA含量に従って調整した。同様の培養条件を有する一連の実験で、アンチセンスオリゴヌクレオチドの試験を行った。各実験の結果は、以下に示す別個の表に表す。結果は、未処理の対照細胞に対するPKKの阻害率(%)として表す。「該当なし」は、特定の用量の特定のアンチセンスオリゴヌクレオチドについて、測定を実施しなかったことを示す。
【1417】
各オリゴヌクレオチドの半数阻害濃度(IC
50)も表す。PKK mRNAレベルは、アンチセンスオリゴヌクレオチドで処理した細胞で、用量依存的に有意に減少した。
【1418】
【表142】
[この文献は図面を表示できません]
【1419】
【表143】
[この文献は図面を表示できません]
【1420】
【表144】
[この文献は図面を表示できません]
【1421】
【表145-1】
[この文献は図面を表示できません]
【1422】
【表145-2】
[この文献は図面を表示できません]
【1423】
【表146】
[この文献は図面を表示できません]
【1424】
【表147】
[この文献は図面を表示できません]
【1425】
【表148】
[この文献は図面を表示できません]
【1426】
【表149】
[この文献は図面を表示できません]
【1427】
【表150】
[この文献は図面を表示できません]
【1428】
実施例119:HepaRG(商標)細胞中のヒトPKKの用量依存的アンチセンス阻害
PKK mRNAの有意なin vitro阻害を表す上記の試験のギャップマーを選択し、HepaRG(商標)細胞中で様々な用量で試験を行った。ウェルあたり20,000個の細胞密度で細胞を播種し、0.11μM、0.33μM、1.00μM、及び3.00μMの濃度のアンチセンスオリゴヌクレオチドを、エレクトロポレーションを用いてトランスフェクトした。約16時間処理を行った後、RNAを細胞から単離し、PKK mRNAレベルを定量的リアルタイムPCRで測定した。ヒトPKKプライマープローブセットRTS3454を使用して、mRNAレベルを測定した。PKK mRNAレベルを、RIBOGREEN(登録商標)によって測定したときの総RNA含量に従って調整した。同様の培養条件を有する一連の実験でアンチセンスオリゴヌクレオチドの試験を行った。各実験の結果は、以下に示す別個の表に表す。結果は、未処理の対照細胞に対するPKKの阻害率(%)として表す。「該当なし」は、特定の用量の特定のアンチセンスオリゴヌクレオチドについて、測定を実施しなかったことを示す。
【1429】
各オリゴヌクレオチドの半数阻害濃度(IC
50)も表す。PKK mRNAレベルは、アンチセンスオリゴヌクレオチドで処理した細胞で、用量依存的に有意に減少した。
【1430】
【表151】
[この文献は図面を表示できません]
【1431】
【表152】
[この文献は図面を表示できません]
【1432】
【表153】
[この文献は図面を表示できません]
【1433】
【表154】
[この文献は図面を表示できません]
【1434】
実施例120:トランスジェニックマウスにおけるヒトPKKを標的とするアンチセンスオリゴヌクレオチドの有効性
ヒトKLKB1遺伝子配列の37,390塩基対フラグメント(染色体4:位置187148672−187179625、寄託番号:NC_000004.11)を含むトランスジェニックマウスは、上述の試験から選択したISISアンチセンスオリゴヌクレオチドで処置を行い、このモデルにおける有効性を評価した。
【1435】
処置
トランスジェニックマウスの群に、ISIS 546232、ISIS 546251、ISIS 546254、ISIS 546343、ISIS 546828、ISIS 547455、ISIS 547457、ISIS 547927、及びISIS 548048を、2.5mg/kg/週、5.0mg/kg/週、10mg/kg/週または20mg/kg/週で、3週間週に2回、皮下注射した。トランスジェニックマウスの1つの群には、PBSを3週間皮下注射した。最後の投与から48時間後にマウスを安楽死させ、次の分析のために臓器及び血漿を採取した。
【1436】
RNA分析
ISISオリゴヌクレオチドの標的の減少への効果を評価するために、ヒトPKKのリアルタイムPCR分析のために、RNAを肝組織から抽出した。結果は、PBS対照に対するPKK mRNAの阻害率(%)として表す。表169に示すように、ISISアンチセンスオリゴヌクレオチドによる処理は、PBS対照に比べ、PKK mRNAが有意に減少した。
【1437】
【表155】
[この文献は図面を表示できません]
【1438】
タンパク質の分析
すべての群で血漿PKKタンパク質レベルを評価した。結果は、PBS対照に対するPKKタンパク質の阻害率(%)として表す。表170に示すように、ISISアンチセンスオリゴヌクレオチドによる処理は、PBS対照に比べて、PKKタンパク質レベルが有意に減少した。
【1439】
【表156】
[この文献は図面を表示できません]
【1440】
実施例121:カニクイザルにおけるヒトPKKを標的とするISISアンチセンスオリゴヌクレオチドの効果
上述の試験から選択したISISアンチセンスオリゴヌクレオチドで、カニクイザルに処置を行った。アンチセンスオリゴヌクレオチドの有効性と耐容性を評価した。試験対象のヒトアンチセンスオリゴヌクレオチドは、アカゲザルのゲノム配列(ヌクレオチド2358000〜2391000を切り捨てられ、配列番号18として本明細書で示されたGENBANK寄託番号NW_001118167.1)と交差反応性であった。配列番号18に対する各オリゴヌクレオチドの標的開始部位を、表171に表す。「ミスマッチ」は、オリゴヌクレオチドがアカゲザルの配列とミスマッチするヌクレオチドの数を示している。ヒトオリゴヌクレオチドとアカゲザルの配列との間の相補性が大きいほど、ヒトオリゴヌクレオチドがアカゲザルの配列と交差反応する可能性が大きい。「該当なし」は、オリゴヌクレオチドが、アカゲザルの配列と3つより多いミスマッチがあることを示している。
【1441】
【表157】
[この文献は図面を表示できません]
【1442】
処置
試験を実施する前に、サルを30日間隔離し、その間に健康全般を毎日観察した。サルは2〜4歳で、体重は2〜4kgであった。4匹のランダムに割り付けられた雄のカニクイザルの10の群に、ISISオリゴヌクレオチドまたはPBSを皮下注射した。試験の第1週に4つの用量からなる投与計画(loading regimen)(1、3、5、7日目)で、40mg/kgの用量のPBS溶液またはISISオリゴヌクレオチドを最初に投与し、次に14日目(2〜13週)に、週に1回の維持投与計画(maintenance regimen)を開始した。背中の4部位に時計回りに、1用量につき1部位、皮下注射を行った。注射部位は、ケタミンで鎮静させながら、いれずみで印をつけ、最小3cmの間隔を置いた。
【1443】
試験期間中、サルの病気または苦痛の兆候を最小1日1回観察した。処置、外傷または病気によるわずかな痛みまたは苦痛を示したサルは、すぐに担当の獣医師と試験責任者に報告した。健康状態が良くないサルや瀕死の状態のサルは、さらなるモニタリングと可能な安楽死をすることにした。例えば、ISIS 547445で処理した2匹のサルは、物静かな行動、側臥位、刺激に対する反応の喪失、呼吸の減少があったために安楽死させた。実施例に記述のプロトコルは、Institutional Animal Care and Use Committee (IACUC)によって承認された。
【1444】
標的の減少
RNA分析
87または88日目、最後の投与から48時間後に、プライマープローブセットRTS3455(配列番号23として本明細書で設計した順方向配列CCTGTGTGGAGGGTCACTCA、配列番号24として本明細書で設計した逆方向配列CCACTATAGATGCGCCAAACATC、配列番号25として本明細書で設計したプローブ配列CCCACTGCTTTGATGGGCTTCCC)を使用して、PKKのリアルタイムPCR分析のために、RNAを肝組織から抽出した。得られたものはハウスキーピング遺伝子シクロフィリンに正規化した。結果をPBS対照に対するPKK mRNAの阻害率(%)として表す。表172に示すように、ISISアンチセンスオリゴヌクレオチドでの処置によって、PBS対照に比べて、PKK mRNAが有意に減少した。
【1445】
【表158】
[この文献は図面を表示できません]
【1446】
タンパク質分析
約0.9mLの血液を、投与前、17日目、31日目、45日目、59日目、73日目の各時間に、すべての対象動物から採取し、3.2%のクエン酸ナトリウムを含む管に置いた。管を遠心分離(室温で10分間3000回転)にかけ、血漿を得た。血漿中のPKKタンパク質レベルをELISAによって測定した。結果は表173に表し、PBS対照レベルと比較した阻害率(%)として表した。結果は、ISISアンチセンスオリゴヌクレオチドがPKKタンパク質レベルを有意に減少させたことを示す。
【1447】
【表159】
[この文献は図面を表示できません]
【1448】
耐容性試験
肝機能
ISISオリゴヌクレオチドの肝機能への影響を評価するために、サルを一晩絶食にした。約1.5mLの血液試料を全試験群から採取した。血液は、血漿を分離するために抗凝固剤のない管に集めた。管を最短90分間室温に保管し、その後10分間、3,000回転で遠心分離にかけた。様々な肝機能マーカーのレベルをToshiba 120FR NEO化学分析器(Toshiba Co., Japan)を用いて測定した。結果は表174に表し、アンチセンスオリゴヌクレオチドは、アンチセンスオリゴヌクレオチドの予測の範囲を超えて、肝機能に影響することはなかった。
【1449】
【表160】
[この文献は図面を表示できません]
【1450】
血液学
カニクイザルの体内のISISオリゴヌクレオチドが血液学的数値に及ぼす影響を評価するために、約1.2mLの血液試料を、投与前、87日目または88日目に、試験対象の動物それぞれから採取し、K
2−EDTAを含む管に保管した。試料は、赤血球細胞(RBC)数、白血球細胞(WBC)数、血小板数、ヘモグロビン含有量、ヘマトクリットについて、ADVIA2120i血液学的検査器(SIEMENS、USA)を用いて分析した。分析データを表175に表す。
【1451】
データによると、この投与では、オリゴヌクレオチドの大部分が、アンチセンスオリゴヌクレオチドの予測の範囲を超えて、血液学的数値に変化を及ぼさなかった。
【1452】
【表161】
[この文献は図面を表示できません]
【1453】
腎機能
ISISオリゴヌクレオチドの腎機能に及ぼす影響を評価するために、サルを一晩絶食にした。約1.5mLの血液試料を全試験群から採取した。血液は、血漿を分離するために、抗凝固剤のない管に集めた。管を最短90分間室温に保管し、10分間、3,000回転の遠心分離にかけた。Toshiba 120FR NEO化学分析器(Toshiba Co., Japan)を使用して、BUNとクレアチニンのレベルを測定した。結果はmg/dLの単位で表176に表した。血漿の化学データによると、ISISオリゴヌクレオチドの大部分が、アンチセンスオリゴヌクレオチドの予測の範囲を超えて、腎機能に影響を及ぼさなかった。特に、ISIS 546254による処理は、サルの腎機能に関して良好な耐容性であった。
【1454】
尿検査によっても腎機能を評価した。新鮮な尿を湿った氷の上の清潔なケージパン(cage pan)を使用して、すべての動物から採取した。新鮮な尿を集める前に、一晩食べ物を与えず、水だけを与えた。Toshiba 120FR NEO 自動化学分析器(Toshiba Co., Japan)を用いて、総タンパク質レベルとクレアチニンレベルを測定し、クレアチニンに対するタンパク質の比を計算した。その結果を表177に表す。
【1455】
【表162】
[この文献は図面を表示できません]
【1456】
【表163】
[この文献は図面を表示できません]
【1457】
C反応性タンパク質レベルの分析
カニクイザルのISISオリゴヌクレオチドの炎症効果を評価するために、サルを一晩絶食にした。約1.5mLの血液試料を全試験群から採取した。血液は、血漿を分離するために抗凝固剤のない管に集めた。管を最短90分間室温に保管し、10分間、3,000回転で遠心分離にかけた。C反応性タンパク質(CRP)は、肝臓で合成され、炎症のマーカーとして使用され、Toshiba 120FR NEO化学分析器(Toshiba Co., Japan)を使用して測定した。相補的C3も同様に測定し、データはベースライン値の割合として表す。結果は表178に表し、ISISオリゴヌクレオチドによる処理が、サルに炎症を引き起こさなかったことを示している。
【1458】
【表164】
[この文献は図面を表示できません]
【1459】
実施例122:マウス初代培養肝細胞中のマウスPKK mRNAのアンチセンス阻害
マウスPKK核酸を標的とするアンチセンスオリゴヌクレオチドを設計し、PKK mRNAに及ぼす効果についてin vitro試験を行った。ウェルあたり10,000細胞の密度で培養されたマウスの初代培養肝細胞に、サイトフェクチン試薬を使用して、12.5nM、25.0nM、50.0nM、100.0nM、及び200.0nMのアンチセンスオリゴヌクレオチドをトランスフェクトした。約24時間の処理を行った後、RNAを細胞から単離し、マウスPKK mRNAレベルを、マウスプライマープローブセットRTS3313(配列番号2228として本明細書で設計した順方向配列TGCCTGCTGTTCAGCTTTCTC、配列番号2229として本明細書で設計した逆方向配列TGGCAAAGTCCCTGTAATGCT、配列番号2230として本明細書で設計したプローブ配列CGTGACTCCACCCAAAGAGACAAATAAACG)を用いて、定量的リアルタイムPCRによって測定した。PKK mRNAレベルは、RIBOGREENによって測定したときのRNA総含量に従って調整した。
【1460】
キメラのアンチセンスオリゴヌクレオチドは、5−10−5MOEギャップマーとして設計した。このギャップマーは長さが20ヌクレオチドであり、中央のギャップセグメントは10個の2’−デオキシヌクレオシドから成り、それぞれ5ヌクレオシドを含むウイングによって、(5’位と3’位の)両側で隣り合っている。5’ウイングセグメント中の各ヌクレオシドと3’ウイングセグメント中の各ヌクレオシドは、2’−O−メトキシエチル修飾を有している。ヌクレオシド間連結部は、各ギャップマーの全体を通して、ホスホロチオエート連結部である。シトシン残基は、各ギャップマーの全体にわたりすべて、5−メチルシトシンである。結果は、PKK mRNAレベルが用量依存的に有意に減少したことを示している。
【1461】
ある特定の例では、ISIS 482584(GGCATATTGGTTTTTGGAAT、配列番号2244)は、用量依存的にPKK mRNAを減少させ、84nMの半数阻害濃度(IC
50)を得た(表179参照)。ISIS 482584は、配列番号11(GENBANK寄託番号NM_008455.2)に対して標的化され、標的開始部位1586と標的終止部位1605を有する。「標的開始部位」とは、ヒト遺伝子配列中で当該ギャップマーの標的になる最も5’側のヌクレオシドを示す。「標的終止部位」とは、ヒト遺伝子配列中で当該ギャップマーの標的になる最も3’側のヌクレオシドを示す。
【1462】
【表165】
[この文献は図面を表示できません]
【1463】
実施例123:BALB/cマウスにおけるPKK mRNAのアンチセンス阻害
PKK mRNAに対するISIS 482584の効果について、in vivo試験を行った。
【1464】
処置
雄BALB/cマウスの6つの群を、2.5mg/kg、5.0mg/kg、10.0mg/kg、20.0mg/kg、40.0mg/kg、または80.0mg/kgのISIS 482584を、3週間にわたって週に2回(週の用量は5.0mg/kg、10.0mg/kg、20.0mg/kg、40.0mg/kg、80.0mg/kg、または160.0mg/kg)、皮下投与をして処置した。BALB/cマウスの対照群を、PBSを3週間にわたって週に2回皮下投与して処置した。アンチセンスオリゴヌクレオチドまたはPBSの最後の投与から2日後に、10mg/kgのキシラジンで混合した150mg/kgのケタミンを腹腔内注射することによって、全群のマウスに麻酔をかけた。肝臓をRNA分析のために回収した。
【1465】
RNA分析
PKKのリアルタイムPCRを実施するために肝臓組織からRNAを抽出した。PKK mRNAレベルは、マウスプライマープローブセットを使用して測定した(配列番号2231として本明細書で設計した順方向配列ACAAGTGCATTTTACAGACCAGAGTAC、配列番号2232として本明細書で設計した逆方向配列GGTTGTCCGCTGACTTTATGCT、配列番号2233として本明細書で設計したプローブ配列AAGCACAGTGCAAGCGGAACACCC)。結果はPBS対照に対するPKKの阻害率(%)として表す。表180に示すように、ISIS 482584による処置は、PBS対照に比べ、PKK mRNAを用量依存的に有意に減少させた。
【1466】
【表166】
[この文献は図面を表示できません]
【1467】
タンパク質分析
抗凝固剤としてクエン酸ナトリウムを含む管に血漿を集めた。試料は、4〜12%勾配SDS−ポリアクリルアミドゲル(Invitrogen)で実行し、次にマウスPKK抗体(R&D Systems)による免疫ブロット法を実行した。ブロットを二次的フルオロフォア標識抗体(LI−COR)でインキュベートし、Odyssey Imager (LI−COR)に撮像した。結果は、PBS対照に対するPKKの阻害率(%)として表す。表181に示すように、ISIS 482584の処置は、PBS対照に比べ、PKK血漿タンパク質を用量依存的に有意に減少させた。
【1468】
【表167】
[この文献は図面を表示できません]
【1469】
実施例124:血管浮腫マウスモデルにおけるマウスPKKのアンチセンス阻害のin vivo効果
遺伝性血管浮腫(HAE)は、局所的膨張及び皮下組織中の血管透過性の増加を特徴とする(Morgan, B.P. N. Engl. J. Med. 363: 581−83, 2010)。補体系のタンパク質であるC1阻害因子の欠損によって引き起こされる。C1−INH欠損の確立されたマウスモデルとCaptopril誘導性浮腫(両者ともHAEの特徴である血管透過性を引き起こす)の2つのマウスモデルを本試験に使用した。血管透過性の回復は、高分子キニノゲン(HMWK)の血漿レベルの増加を伴う。
【1470】
最初のモデルでは、浮腫は血圧降下薬として知られているCaptoprilによる処置により誘発され、マウスの血管透過性を増加させ、遺伝性血管浮腫の病理を再現する。
【1471】
第二のモデルでは、浮腫は、マウスC1阻害因子mRNAを標的とするアンチセンスオリゴヌクレオチドであるISIS 461756による処置により誘発され、マウスの血管透過性を増加させ、遺伝性血管浮腫の病理を再現する。ISIS 461756(配列番号2245;AAAGTGGTTGATACCCTGGG)は、NM_009776.3(配列番号2243)のヌクレオシド1730−1749標的とする5−10−5MOEギャップマーである。
【1472】
PKKのアンチセンスオリゴヌクレオチド阻害因子であるHOE−140とISIS 482584の効果は、Captopril及び血管透過性のISIS 461756誘発性マウスモデルで評価した。マウス群のいくつかは、血管拡張と血管透過性をブロックする、ブラジキニンB2受容体の選択的アンタゴニストであるHOE−140で処理し、(Cruden and Newby, Expert Opin. Pharmacol. 9: 2383−90, 2008)。他のマウスはPKK mRNA発現を阻害するISIS 482584で処置した。HOE−140による処置効果を、ISIS 482584による処理効果と比較した。
【1473】
処置
このアッセイについての様々な処置群を表182に表す。
【1474】
群1は、PBSを4週間にわたって週に2回、皮下投与して処置した4匹のC57BL/6J−Tyrc−2Jマウスから成った。群1には他のいかなる処置も行わず、血管透過性の基礎レベルを測定するための対照群とした。
【1475】
群2は、PBSを4週間にわたって週に2回、皮下投与して処置した8匹のC57BL/6J−Tyrc−2Jマウスから成った。処置期間の最後に、20μgのCaptoprilを腹腔内投与した。群2は、Captopril誘発性血管透過性のPBS対照群とした。
【1476】
群3は、PBSを4週間にわたって週に2回、皮下投与して処置した8匹のC57BL/6J−Tyrc−2Jマウスから成った。14日目に、C1阻害因子ISIS 461756を標的とする50mg/kgのアンチセンスオリゴヌクレオチドで処置し、2週間にわたって週に2回腹腔内投与した。処置期間の最後に、20μgのCaptoprilを腹腔内投与した。群3は、CaptoprilとISIS 461756誘発性血管透過性についてのPBS対照群とした。
【1477】
群4は、PBSを4週間にわたって週に2回、皮下投与して処置した8匹のC57BL/6J−Tyrc−2Jマウスから成った。14日目に、C1阻害因子ISIS 461756を標的とする50mg/kgのアンチセンスオリゴヌクレオチドで処置し、2週間にわたって週に2回腹腔内投与した。処置期間の最後に、20μgのCaptoprilを腹腔内投与した。その後、30μgのHOE−140も投与した。群4はHOE−140の血管透過性の阻害についての陽性対照とした。
【1478】
群5は、40mg/kgの対照オリゴヌクレオチドISIS 141923、マウス標的としては知られていない5−10−5MOEギャップマー、(CCTTCCCTGAAGGTTCCTCC、配列番号2246)を、4週間にわたって週に2回皮下投与して処置した8匹のC57BL/6J−Tyrc−2Jマウスから成った。14日目に、C1阻害因子ISIS 461756を標的とする50mg/kgのアンチセンスオリゴヌクレオチドを皮下投与し、2週間にわたって週に2回腹腔内投与した。処置期間の最後に、20μgのCaptoprilを腹腔内投与した。群5はCaptoprilとISIS 461756誘発性血管透過性についての対照群とした。
【1479】
群6は、40mg/kgのISIS 482584を4週間にわたって週に2回、皮下投与して処置した8匹のC57BL/6J−Tyrc−2Jマウスから成った。処理期間の最後に、20μgのCaptoprilを腹腔内投与した。群6は、PKK ASOのCaptopril誘発性血管透過性に対する影響を検討するための実験処置群とした。
【1480】
群7は、40mg/kgのISIS 482584を4週間にわたって週に2回、皮下投与して処置した8匹のC57BL/6J−Tyrc−2Jマウスから成った。14日目に、C1阻害因子ISIS 461756を標的とする50mg/kgのアンチセンスオリゴヌクレオチドを、2週間にわたって週に2回皮下投与した。処置期間の最後に、20μgのCaptoprilを腹腔内投与した。群7は、PKK ASOのCaptopril及びISIS 461756誘発性血管透過性に対する影響を検討するための実験処置群とした。
【1481】
全群に30mg/kgのエバンスブルー溶液を尾静脈に注入した。エバンスブルー溶液注入から30分後に、マウスを屠殺し、結腸、足、耳及び腸を回収した。血液試料は、心臓穿刺で採取した。
【1482】
【表168】
[この文献は図面を表示できません]
【1483】
血管透過性の定量
足、結腸、耳及び腸から採取した組織は、別個にホルムアミドに一晩おき、エバンスブルーを浸出した。耳及び足の組織を含むホルムアミド溶液を55℃に加熱し、一晩放置した。染液が浸透したホルムアミド溶液の色彩強度は、OD
600nmで測定し、表183に表す。浮腫を表しているマウスにはより多くの染液を取り込み、高いOD値を示している。
【1484】
表183に示すように、ISIS 482584の処置によって、Captoprilで処置したマウス(群6)とCaptoprilとISIS 461756 で処置したマウス(群7)のマウスは、それぞれのPBS群(群2と3)に比べて、血管透過性を防いでいる。群6と7のマウスの血管透過性の測定値もまた、血管透過性はCaptoprilとISIS 461756で誘発された、対照オリゴヌクレオチドISIS 141923で処置したマウス(群5)に比べ、大部分の組織で減少した。両処置群(群6と7)の結腸と足の組織中の血管透過性の測定値は、PBSでのみ処置されたマウス(群1)で観察されたときの基礎レベルと同等であった。ISIS 482584で処置したマウスの血管透過性の減少は、このアッセイで陽性対照であったブラジキニン2受容体アンタゴニスト、HOE140で処置されたマウスに見られた血管透過性と同等であった。
【1485】
したがって、PKK mRNAのアンチセンス阻害は、HAEの徴候である血管透過性の治療と予防に利益をもたらしうる。
【1486】
【表169】
[この文献は図面を表示できません]
【1487】
高分子キニノゲン(HMWK)の定量
血液試料からのHMWKのウエスタンブロット法を、
図1に表す。
【1488】
図1に示すように、群1と2の試料は、群6と7に比べ、HMWKのレベルが低く、このことは血管透過性が群6と7では逆転していることを示している。
図1ではまた、群1と2の試料は、群6と7に比べ、HMWK切断産物が増加している。したがって、HMWKの欠損は、HMWKのPKK切断によって、(ブラジキニン及びHKaを含む)切断産物に引き起こされる。
【1489】
実施例125:マウスにおけるマウスPKKのアンチセンス阻害が基礎の透過性及びCaptopril誘発性透過性に及ぼすin vivo効果
基礎の透過性は、ナイーブ、未処置のマウスに起こる血管透過性のレベルである。基礎またはCaptopril誘発性のいずれかの血管透過性の予防におけるISIS 482584の効果を評価した。
処置
【1490】
このアッセイの様々な処置群を表184に表す。
【1491】
群1は、8匹のマウスから成り、4週間にわたって週に2回、PBSを皮下に投与して処置した。群1に他のいかなる治療薬も投与せず、血管透過性の基礎レベルを測定するための対照群とした。
【1492】
群2は、8匹のマウスから成り、4週間にわたって週に2回、PBSを皮下に投与して処置した。処理期間の最後に、20μgのCaptoprilを腹腔内投与した。群2はCaptopril誘発性血管透過性についての陰性対照群とした。
【1493】
群3は、8匹のマウスから成り、4週間にわたって週に2回、PBSを皮下に投与して処置した。処置期間の最後に、30μgのHOE−140を腹腔内投与した。群3は基礎の血管透過性の阻害についての陽性対照とした。
【1494】
群4は、8匹のマウスから成り、4週間にわたって週に2回、PBSを皮下に投与して処置した。処置期間の最後に、20μgのCaptoprilを腹腔内投与した。また、30μgのHOE−140を腹腔内投与した。群4は、Captopril誘発性血管透過性の阻害についての陽性対照とした。
【1495】
群5は、8匹のマウスから成り、40mg/kgのISIS 482584を4週間にわたって週に2回、皮下投与して処置した。群5は、ISIS 482584の基礎の血管透過性に及ぼす効果を検討するための実験処置群とした。
【1496】
群6は、8匹のマウスから成り、40mg/kgのISIS 482584を4週間にわたって週に2回、皮下投与して処置した。処置期間の最後に、20μgのCaptoprilを腹腔内投与した。群6は、ISIS 482584のCaptopril誘発性血管透過性に及ぼす効果を検討するための実験処置群とした。
【1497】
全群に30mg/kgのエバンスブルー溶液を尾静脈に注入した。エバンスブルー溶液注入から30分後に、マウスを屠殺し、結腸、足、耳及び腸を回収した。
【1498】
【表170】
[この文献は図面を表示できません]
【1499】
血管透過性の定量
足、結腸、腸及び耳から採取した組織は、別個にホルムアミドに一晩おき、エバンスブルーを浸出した。足及び耳の組織を含むホルムアミド溶液を55℃に加熱し、一晩放置した。染液が浸透したホルムアミド溶液の色彩強度は、OD
600nmで測定し、表185に表す。浮腫を表しているマウスには染液をより多く取り込み、高いOD値を示している。
【1500】
表185に示すように、ISIS 482584で処置されたマウスは、PBS対照に比べ、血管透過性が減少した(群5対群1)。ISIS 482584での処置による血管透過性の減少は、HOE−140での処置(陽性対照とした群3)によって生じたものと同等であった。ISIS 482584で処置されたマウスは、PBS対照に比べ、大部分の組織でCaptopril誘発性血管透過性の減少を示した(群6対群2)。ISIS 482584での処置によるCaptopril誘発性血管透過性の減少は、HOE−140での処理(陽性対照とした群4)によって生じたものと同等であった。
【1501】
【表171】
[この文献は図面を表示できません]
【1502】
実施例126:マウスPKKのアンチセンス阻害がCaptopril誘発性血管透過性に及ぼす用量依存的効果
ISIS 482584の用量を変化させたときのCaptopril誘発性血管透過性に与える効果を評価した。
【1503】
処置
このアッセイの様々な処置群は、表186に表す。
【1504】
群1は、4匹のマウスから成り、3週間にわたって週2回PBSを皮下投与して処置した。群1には他のいかなる治療薬も投与せず、血管透過性の基礎レベルを測定するための対照群とした。
【1505】
群2は、8匹のマウスから成り、3週間にわたって週2回PBSを皮下投与して処置した。処置期間の最後に、20μgのCaptopriを腹腔内投与した。群2は、Captopril誘発性血管透過性の対照群とした。
【1506】
群3は、4匹のマウスから成り、3週間にわたって週2回PBSを皮下投与して処置した。処置期間の最後に、20μgのCaptopriを腹腔内投与した。また、30μgのIcatibant(HOE−140)を腹腔内投与した。群4は、Captopril誘発性血管透過性の阻害の陽性対照とした。
【1507】
群4、5、6、7、8及び9は、8匹のマウスから成り、3週間にわたって週2回、それぞれにISIS 482584を2.5mg/kg、5mg/kg、10mg/kg、20mg/kg、40mg/kg、または80mg/kg(週に5mg/kg、10mg/kg、20mg/kg、40mg/kg、80mg/kg、または160mg/kgに対応する)皮下投与した。処置期間の最後に、20μgのCaptopriを腹腔内投与した。群4〜9は、ISIS 482584の用量の変化がCaptopril誘発性血管透過性に及ぼす効果を検討するための実験処置群とした。
【1508】
全群に30mg/kgのエバンスブルー溶液を尾静脈に注入した。エバンスブルー溶液注入から30分後に、マウスを屠殺し、結腸、足、耳及び腸を回収した。血液試料は、心臓穿刺で採取した。
【1509】
【表172】
[この文献は図面を表示できません]
【1510】
血管透過性の定量化
採取した組織は、別個にホルムアミド溶液に一晩おき、エバンスブルーを浸出した。足及び耳の組織を含むホルムアミド溶液を55℃に加熱し、一晩放置した。染液が浸透したホルムアミド溶液の色彩強度は、OD
600nmで測定し、表187に表す。浮腫を表しているマウスは染液をよりおおく取り込み、高いOD値を示している。
【1511】
表187に示すように、より高用量のISIS 482584(群4、5及び6)を投与されたマウスでは、対応するPBS対照群(群2)に比べ、Captopril誘発性血管透過性のレベルが減少した。これらの処置群(群4及び5)のマウスの血管透過性の減少は、血管透過性の基礎レベル(群1に示すように)ならびにHOE−140(群3)を投与されたマウスの血管透過性の基礎レベルと同等であった。
【1512】
【表173】
[この文献は図面を表示できません]
【1513】
血管漏出の定量
心臓穿刺によって採取された血液は、すぐに、氷冷した3倍体積のエタノールと混合した。溶液を4℃で20分間、15,000gの遠心分離にかけ、細胞片と沈殿した血漿タンパク質を取り除いた。10kDaのMWCOフィルターによる限外濾過によってエタノール抽出物をさらに精製した。エタノール抽出血漿溶液の色彩強度を、OD
620nmで測定した。結果は、PBS対照群1のOD値に対する増加率または減少率として、表188に表す。浮腫を発現しているマウスの組織は、血漿からより多くの染液を漏出しており、そのため、血管漏出の減少により、高いODを示す処置群に対し、ODが低いことが予想された。160mg/kg/週及び80mg/kg/週のISIS 482584を投与されたマウス(群4及び5)は、Captoprilを投与されたPBS陰性対照(群2)に比べ、血管漏出が低かった。群4及び5の結果は、HOE−140を投与された陽性群(群3)と同等であった。
【1514】
【表174】
[この文献は図面を表示できません]
【1515】
実施例127:マウスにおけるマウスPKKのアンチセンス阻害が基礎透過性に及ぼす用量依存的効果
ISIS 482584の用量を変化させたときの血管透過性に及ぼす効果を評価した。
【1516】
処置
このアッセイの様々な処置群は、表189に表す。
【1517】
群1は、8匹のマウスから成り、3週間にわたって週2回PBSを皮下投与して処置した。群1には他のいかなる治療薬も投与せず、血管透過性の基礎レベルを測定するための対照群とした。
【1518】
群2は、4匹のマウスから成り、3週間にわたって週2回PBSを皮下投与して処置した。処置の最後に、30μgのHOE−140を腹腔内投与した。群2は基礎血管透過性の阻害についての陽性対照とした。
【1519】
群3、4、5、6、7、及び8は、8匹のマウスから成り、3週間にわたって週2回、それぞれに、ISIS 482584を2.5mg/kg、5mg/kg、10mg/kg、20mg/kg、40mg/kg、または80mg/kg(週に5mg/kg、10mg/kg、20mg/kg、40mg/kg、80mg/kg,または160mg/kgに対応する)皮下投与して処置した。群4〜9は、ISIS 482584の用量の変化が基礎血管透過性に及ぼす効果を検討するための実験処置群とした。
【1520】
全群に30mg/kgのエバンスブルー溶液を尾静脈に注入した。エバンスブルー溶液注入から30分後に、マウスを屠殺し、結腸、足、及び耳を回収し、透過性の欠損について検討した。血液試料は、心臓穿刺で採取した。
【1521】
【表175】
[この文献は図面を表示できません]
【1522】
血管透過性の定量
足、結腸及び耳から採取した組織は、別個にホルムアミドに一晩おき、エバンスブルーを浸出した。足及び耳の組織を含むホルムアミド溶液を55℃に加熱し、一晩放置した。染液が浸透したホルムアミド溶液の色彩強度は、OD
600nmで測定し、表190に表す。高いOD値は高い透過性と関連している。
【1523】
表190に示すように、ISIS 482584を投与されたマウス(群3〜8)の大部分の組織は、全ての用量で、PBS対照(群1)に比べ、基礎血管透過性が減少した。ISISオリゴヌクレオチド処置群の基礎血管透過性の減少は、HOE−140を投与された陽性対照群(群2)で示されたものと同等であった。
【1524】
【表176】
[この文献は図面を表示できません]
【1525】
血管漏出の定量
心臓穿刺によって採取された血液は、すぐに、氷冷した3倍体積のエタノールと混合した。溶液は4℃で20分間、15,000gで遠心分離にかけ、細胞片と沈殿した血漿タンパク質を取り除いた。エタノール抽出物は、10kDaのMWCOフィルターによる限外濾過によってさらに精製した。エタノール抽出血漿溶液の色彩強度は、OD
620nmで測定した。結果は、群1PBS対照のOD値に対する増加率または減少率として表191に表す。処置群は、血管漏出の減少により高いOD値を表しうることが予想された。ISISオリゴヌクレオチド処置群のすべてのマウスが、PBS陰性対照に比べ、有意に血管漏出が減少した。
【1526】
【表177】
[この文献は図面を表示できません]
【1527】
高分子キニノゲン(HMWK)の定量
血液試料からのHMWKのウエスタンブロット法を、
図2及び表192及び193に示す。
【1528】
表192に示すように、482584の処置群は、PBS対照に比べ、HMWKのレベルが高く、用量依存的に増加している。PKKアンチセンスオリゴヌクレオチドによる処置は、HMWKの安定性をもたらしている。したがって、ISIS 482584処置群では、用量依存的に、血管透過性が減少している。表193に示すように、ISIS 482584の処置群は、PBS対照に比べ、HMWK切断産物が少なく、用量依存的に減少している。そのため、HMWKの減少は、HMWKのPKK切断によって、(ブラジキニン及びHKaを含む)切断産物に引き起こされる。データは濃度計によって測定された強度単位で表している。
【1529】
【表178】
[この文献は図面を表示できません]
【1530】
【表179】
[この文献は図面を表示できません]
【1531】
実施例128:マウスにおけるPKKを標的とするアンチセンスオリゴヌクレオチドとCaptopril誘発性血管透過性の因子12の併用療法
Captopril誘発性血管透過性モデルにおいて、ISIS 410944、因子12を標的とする5−10−5MOEギャップマー(GCATGGGACAGAGATGGTGC;配列番号2247)であるISIS 482584の用量を変化させてマウスに処置を行った。
【1532】
処置
このアッセイの様々な処置群は、表194に表す。
【1533】
群1は、4匹のマウスから成り、3週間にわたって週2回PBSを皮下投与して処置した。群1には他のいかなる治療薬も投与せず、血管透過性の基礎レベルを測定するための対照群とした。
【1534】
群2は、8匹のマウスから成り、3週間にわたって週2回PBSを皮下投与して処置した。処置期間の最後に、20μgのCaptopriを腹腔内投与した。群2は、Captopril誘発性血管透過性の対照群とした。
【1535】
群3は、4匹のマウスから成り、3週間にわたって週2回PBSを皮下投与して処置した。処置期間の最後に、20μgのCaptopriを腹腔内投与した。また、30μgのHOE−140を腹腔内投与した。群3は、Captopril誘発性血管透過性の阻害の陽性対照とした。
【1536】
群4、5、6、7、及び8は、8匹のマウスから成り、3週間にわたって週2回、それぞれに、ISIS 482584とISIS 41094を2.5mg/kg、5mg/kg、10mg/kg、20mg/kg、40mg/kg(週に5mg/kg、10mg/kg、20mg/kg、40mg/kg、80mg/kgに対応する)皮下投与した。処置期間の最後に、20μgのCaptopriを腹腔内投与した。群4〜8は、ISIS 410944とISIS 482584の用量の変化がCaptopril誘発性血管透過性に及ぼす効果を検討するための実験処置群とした。
【1537】
全群に30mg/kgのエバンスブルー溶液を尾静脈に注入した。エバンスブルー溶液注入から30分後に、マウスを屠殺し、結腸、足、耳及び腸を回収した。
【1538】
【表180】
[この文献は図面を表示できません]
【1539】
血管透過性の定量
足、結腸、及び耳から採取した組織は、ホルムアミドに一晩おき、エバンスブルーに浸出した。足及び耳の組織を含むホルムアミド溶液を55℃に加熱し、一晩放置した。染液が浸透したホルムアミド溶液の色彩強度は、OD
600nmで測定し、表195に表す。より高いOD値は、より高い透過性レベルに関連している。
【1540】
表195に示すように、ISIS 482584とISIS 410944の併用で処置されたマウス(群3〜8)の組織の大部分が、全ての用量で、PBS対照(群1)に比べ、血管透過性が減少した。ISISオリゴヌクレオチド処置群の血管透過性の減少は、基礎PBS対照(群1)、ならびにHOE140で処置された陽性対照(群2)で示された血管透過性と同等であった。PKKと因子12アンチセンスオリゴヌクレオチドの組み合わせでは、透過性が相乗的に減少した。予想したように、血管漏出の対応する相乗的な減少も観察した。
【1541】
【表181】
[この文献は図面を表示できません]
【1542】
実施例129:マウスにおける基礎血管透過性についてのPKKを標的とするアンチセンスオリゴヌクレオチドと因子12の併用療法
基礎血管透過性において、ISIS 410944、因子12を標的とするアンチセンスオリゴヌクレオチド、ISIS 482584の用量を変化させてマウスに処置を行った。
【1543】
処置
このアッセイの様々な処置群は、表196に表す。
【1544】
群1は、8匹のマウスから成り、3週間にわたって週2回PBSを皮下投与して処置した。群1には他のいかなる治療薬も投与せず、血管透過性の基礎レベルを測定するための対照群とした。
【1545】
群2に、4匹のマウスから成り、3週間にわたって週2回PBSを皮下投与して処置した。処置期間の最後に、30μgのHOE−140を腹腔内投与した。群2は、基礎血管透過性の阻害の陽性対照とした。
【1546】
群3、4、5、6、及び7は、8匹のマウスから成り、3週間にわたって週2回、それぞれに、ISIS 482584とISIS 410944を2.5mg/kg、5mg/kg、10mg/kg、20mg/kg、または40mg/kg(週に5mg/kg、10mg/kg、20mg/kg、40mg/kg、80mg/kgに対応する)皮下投与した。群3〜7は、ISIS 410944とISIS 482584が基礎誘発性血管透過性に及ぼす効果を検討するための実験処置群とした。
【1547】
全群に30mg/kgのエバンスブルー溶液を尾静脈に注入した。エバンスブルー溶液注入から30分後に、マウスを屠殺し、結腸、足、耳及び腸を回収した。
【1548】
【表182】
[この文献は図面を表示できません]
【1549】
血管透過性の定量
足、結腸、腸及び耳から採取した組織は、ホルムアミドに一晩おき、エバンスブルーを浸出した。足及び耳の組織を含むホルムアミド溶液を55℃に加熱し、一晩放置した。染液が浸透したホルムアミド溶液の色彩強度は、OD
600nmで測定し、表197に表す。より高いOD値は、より高い透過性レベルに関連している。
【1550】
表197に示すように、ISIS 482584とISIS 410944の組み合わせで処置されたマウスの大部分の組織は、全ての用量(群2〜7)で、PBS対照(群1)に比べ、血管透過性が減少した。ISISオリゴヌクレオチド処置群の血管透過性の減少は、HOE140で処置された陽性対照(群2)で示された血管透過性の減少と同等であった。PKKと因子12アンチセンスオリゴヌクレオチドの組み合わせでは、透過性が相乗的に減少した。予想したように、血管漏出の対応する相乗的な減少も観察した。
【1551】
【表183】
[この文献は図面を表示できません]
【1552】
実施例130:ISIS 482584による因子12タンパク質活性化の阻害
PKK mRNAのアンチセンス阻害の因子12タンパク質活性化への影響を評価した。
【1553】
処置
このアッセイの様々な処理群は、表198に表す。
【1554】
群1は、8匹のマウスから成り、3週間にわたって週2回PBSを皮下投与して処置した。群1には他のいかなる治療薬も投与せず、因子12の活性化を測定するための対照群とした。
【1555】
群2、3、4、5、及び6は、8匹のマウスから成り、3週間にわたって週2回、それぞれに、ISIS 482584を2.5mg/kg、5mg/kg、10mg/kg、20mg/kg、または40mg/kg(週に5mg/kg、10mg/kg、20mg/kg、40mg/kg、80mg/kgに対応する)皮下投与した。群2〜6は、ISIS 482584が因子12の活性化に及ぼす効果を検討するための実験処置群とした。
【1556】
処置期間の最後に、血漿は、血漿中の因子12についてSpectrozyme(登録商標)因子12aをベースとするアミド分解アッセイから採取した。
【1557】
【表184】
[この文献は図面を表示できません]
【1558】
血漿中の因子12の活性化についてのアッセイ
96ウェルのポリプロピレンマイクロプレート中の85μLのPBSおよび1μg/mlのデキストラン硫酸(500kDa)に、血漿(5μL)を添加し、溶液を室温で5分間インキュベートした。Spectrozyme(登録商標)FXIIa(10μLの2mM溶液)と0.2mMのKALLISTOP(商標)溶液を添加し、吸光速度(absorbance kinetic)を405nmで測定した。因子12の活性化は、吸光度蓄積(absorbance accumulation)の線形位相で測定した。結果は、PBS対照試料で測定された因子12の活性化の割合として、表199に表す。表199に見られるように、ISIS 482584によるPKKの阻害は、基質による因子12の活性化の減少をもたらし、このことはPKKが、適切な因子12の活性化に必要であることを示唆している。
【1559】
【表185】
[この文献は図面を表示できません]
【1560】
実施例131:マウスPKKのアンチセンス阻害がC1−INHアンチセンスオリゴヌクレオチド誘発性血管透過性に及ぼすin vivo効果
マウスC1阻害因子mRNAを標的とするアンチセンスオリゴヌクレオチドであるISIS 461756によって誘発される血管透過性は、マウスの血管透過性を増加させ、遺伝性血管浮腫の病理を再現する。このモデルへのISIS 482584の効果を評価した。
【1561】
処置
8匹のマウスから成る一群は、40mg/kgのISIS 482584を、3週間にわたって週に2回(週の用量は80mg/kg)、投与した。8匹のマウスから成る第二の群は、40mg/kgの対照オリゴヌクレオチド、ISIS 141923で、3週間にわたって週に2回(週の用量は80mg/kg)皮下投与して処置した。8匹のマウスから成る第三の群3は、PBSを3週間にわたって週に2回投与することによって処置した。14日目に、全群に12.5mg/kgのISIS 461756を3週間にわたって週に2回(週の用量は25mg/kg)を投与した。マウスの対照群は、PBSを3週間にわたって週に2回投与したが、ISIS 461756は投与しなかった。
【1562】
処置の最後に、全群に30mg/kgのエバンスブルー溶液を尾静脈に注入した。エバンスブルー溶液注入から30分後に、マウスを屠殺し、結腸、足、耳及び腸を回収した。また、RNA分析のために肝臓を回収した。
【1563】
RNA分析
RNAは、C1−INH及びPKK mRNAのRT−PCR分析のために、肝臓から単離した。C1−INHのためのプライマープローブセットは、RTS3218(配列番号2234として本明細書で指定した順方向配列GAGTCCCCCAGAGCCTACAGT、配列番号2235として本明細書で指定した逆方向配列TGTCATTTGTTATTGTGATGGCTACA、配列番号2236として本明細書で設計したプローブ配列CTGCCCTCTACCTGGCCAACAACCA)である。PKKのためのプライマープローブセットは、RTS3287(配列番号2237として指定した順方向配列ACAAGTGCATTTTACAGACCAGAGTAC、配列番号2238として設計した逆方向配列GGTTGTCCGCTGACTTTATGCT、配列番号2239として指定したプローブ配列AAGCACAGTGCAAGCGGAACACCC)である。結果は、ISIS 461756で処置をしていないPBS対照と比較したときの阻害率(%)として、表200に表す。データは、ISIS 461756がC1−INH mRNA発現を有意に減少させ、ISIS 482584による処置がPKK発現を有意に減少させたことを示している。
【1564】
【表186】
[この文献は図面を表示できません]
【1565】
血管透過性の定量
足、結腸、及び腸から採取した組織は、ホルムアミド溶液に一晩おき、エバンスブルーを浸出した。足の組織を含むホルムアミド溶液を55℃に加熱し、一晩放置した。染液が浸透したホルムアミド溶液の色彩強度は、OD
600nmで測定した。データは、ISIS 461756で処置していないPBS対照と比較したときの増加率または減少率(%)として、表201に表す。データは、ISIS 482584による処置が、ISIS 461756によって誘発される血管透過性を防いだことを示している。
【1566】
【表187】
[この文献は図面を表示できません]
【1567】
実施例132:FeCl
3誘発性下大静脈血栓症モデルにおけるマウスPKKのアンチセンス阻害のin vivo効果
PKKのin vitro及びin vivoの有意な阻害を示したISIS 482584を、FeCl
3誘発性下大静脈血栓症マウスモデルで評価した。
【1568】
処置
8匹の雄BALB/cマウスの3つの群に、10mg/kg、20mg/kg、または40mg/kgのISIS 482584を、3週間にわたって週2回(週の用量は20mg/kg、40mg/kg、または80mg/kg)皮下投与した。12匹のBALB/cマウスの2つの対照群にそれぞれ、PBSで処置、3週間にわたって週2回皮下投与して処置した。アンチセンスオリゴヌクレオチドまたはPBSの最後の投与から2日後に、10mg/kgのキシラジンと混合した150mg/kgのケタミンを腹腔内注射することによって、全群のマウスに麻酔をかけた。第1の対照群を除き、麻酔をかけたマウスの全群で、FeCl
3によって血栓形成が誘発した。
【1569】
FeCl
3処理を行ったマウスにおいて、10%のFeCl
3溶液を事前に浸したフィルター紙(2x4mm)を、大静脈に直接適用することによって、血栓の形成が誘発された。暴露から3分後に、フィルター紙を取り除いた。フィルター紙の適用から30分後に、血小板の分析のために、血栓を含む静脈の全長を切除した。肝臓はRNA分析のために回収した。
【1570】
血小板組成の定量
血小板因子4(PF−4)のリアルタイムPCRを使用して、血栓形成の測定値として、大静脈の血小板を定量した。PF−4 mRNAレベルは、マウスプライマープローブセットmPF4_LTS_00086(配列番号2240として本明細書で指定した順方向配列AGACCCATTTCCTCAAGGTAGAACT、配列番号2241として本明細書で指定した逆方向配列CGCAGCGACGCTCATG、配列番号2242として本明細書で指定したプローブ配列TCTTTGGGTCCAGTGGCACCCTCTT)を使用して測定した。結果は、2つのPBS処理対照群と比較したときの、ISISオリゴヌクレオチド処置マウスのPF−4の割合として表す。表202に示すように、ISIS 482584による処置は、PBS対照に比べ、PF−4の有意な減少をもたらした。そのため、当該化合物によるPKKの減少は、血栓の形成の阻害に有用である。
【1571】
【表188】
[この文献は図面を表示できません]
【1572】
実施例133:尾の出血アッセイにおけるマウスPKKのアンチセンス阻害のin vivo効果
ISIS 482584による処置が、マウスに過剰な出血または大量の出血を引き起こすかどうかを観察するために、尾の出血を測定した。
【1573】
処置
10匹の雄BALB/cマウスの群を、10mg/kg、20mg/kg、または40mg/kgのISIS 482584を、3週間にわたって週2回(週の用量は20mg/kg、40mg/kg、または80mg/kg)を皮下投与して処置した。8匹のBALB/cマウスの対照群を、PBSを3週間にわたって週2回、皮下投与して処置した。
【1574】
尾の出血アッセイ
ISISオリゴヌクレオチドまたはPBSの最後の処置から2日後に、マウスを尾を出血させるためのチャンバーに固定した。マウスにイソフランでチャンバーにおいて麻酔をかけた。その後、尾の小さい部分(切片から約4mm)を滅菌ハサミで切り出した。切り出した尾は、37℃に温めた約10mLの0.9%のNaCl緩衝液で満たされた15mLのFalcon管にすぐに置いた。血液は40分かけて採取した。出血前と出血後の管の生理食塩水の重さを測った。結果は表203に示す。
【1575】
ISIS 482584による処置は、出血に有意に影響しなかった。これらのデータは、本明細書で提供される当該化合物の出血能力は低いことを示唆している。実施例19の結果で得られたこれらのデータは、本明細書に記載の当該化合物でのPKKの阻害は、関連する出血のリスクを有さずに抗血栓の活性を提供するのに有用であることを示唆している。
【1576】
【表189】
[この文献は図面を表示できません]
【1577】
実施例134:FeCl
3誘発性腸間膜血栓症モデルにおけるマウスPKKのアンチセンス阻害のin vivo効果
FeCl
3誘発性腸間膜血栓症マウスモデルでISIS 482584を評価した。
【1578】
処置
Swiss−Websterマウス6〜8匹の群を、40mg/kgのISIS 482584を、3週間にわたって週2回皮下注射して処置した(週の用量は80mg/kg)。Swiss−Websterマウス6匹の対照群を、PBSを3週間にわたって週2回皮下注射して処置した。アンチセンスオリゴヌクレオチドまたはPBSの最後の投与から2日後に、25mg/kgのキシラジンで混合した75mg/kgのケタミンを腹腔内注射することによって、全群のマウスに麻酔をかけた。
【1579】
用量5mg/kgのローダミン6G染色を皮下注射し、血小板を染色した。用量1mg/kgのAlexa−647標識化抗フィブリノーゲン抗体を尾静脈に注射し、フィブリンを染色した。腹部を正中切開によって開口した。内臓の腸間膜をガラスカバーグラスに広げ、腸間膜細動脈(70〜120μm)を、顕微鏡で観察することにより位置確認した。6%のFeCl
3溶液を事前に浸した綿糸(2x0.3mm)を、標的の血管に直接適用することによって、血栓形成が誘発された。3分間の暴露の後、糸を取り除き、両方の染液の色彩強度を、適切なフィルターで、蛍光顕微鏡検査法(Olympus FluoView 1000共焦点レーザー顕微鏡)によって70分間記録した。
【1580】
対照及び処置群の血小板凝集の結果を任意単位(a.u.)で表204に表す。血小板凝集は、PBSで処置したマウスに比べ、80mg/kg/週のISIS 482584で処置したマウスで減少した。対照及び処置群のフィブリン形成の結果を任意単位(a.u.)で表205に表す。フィブリン形成は、PBSで処置したマウスに比べ、用量80mg/kg/週のISIS 482584で処置したマウスで減少した。したがって、これらの結果は、ISIS 482584が血栓形成を阻害することを示唆している。
【1581】
【表190】
[この文献は図面を表示できません]
【1582】
【表191】
[この文献は図面を表示できません]
【1583】
実施例135:狭窄誘発性下大静脈血栓症モデルにおけるマウスPKKのアンチセンス阻害のin vivo効果
狭窄誘発性下大静脈(IVC)血栓症モデルでISIS 482584を評価した。血流の減少及び内皮損傷が、このモデルの特徴であり、St.Tomasモデルとしても知られている。
【1584】
処置
BALB/cマウス6〜8匹の4つの群を、5mg/kg、10mg/kg、20mg/kgまたは40mg/kgのISIS 482584を3週間にわたって週2回皮下注射して処置した(週の用量は10mg/kg、20mg/kg、40mg/kgまたは80mg/kg)。BALB/cマウス8匹の対照群を、3週間にわたって週2回PBSを皮下注射して処置した。アンチセンスオリゴヌクレオチドまたはPBSの最後の投与から2日後に、2.5%の吸入用のイソフルランで麻酔をかけた。マウスのIVCを、左腎静脈の下、正中切開によって露わにし、鈍的解剖によって腹部大動脈から分離した。6−0シルクタイ(silk tie)(Ethicon、UK)をちょうど左腎静脈のシアノ血管の後ろに配置し、金属製4−0縫合糸(Ethicon、UK)をIVCにわたって長軸方向に配値し、シルクタイを頂上で縛った。金属製縫合糸はその後取り除いた。2つの神経血管手術用クリップ(Braun Medical Inc, PA)を、結紮下の2つに分かれた位置にそれぞれ20秒間置き、その後、取り除いた。腹腔の内容物を置き換え、腹腔を閉じた。24時間後、IVCをあらわにし、血栓形成を確認した。形成された血栓のすべてを採取し、10%のホルマリンに24時間固定した。
【1585】
血栓の重さを測り、結果は、ミリグラムで表206に表す。結果によって示されるように、ISIS 482584の用量を増加させながらの処置は、結果的に対応する血栓の重量の減少をもたらした。この結果は、PKKの阻害が血栓形成の阻害に有用であることを示している。
【1586】
【表192】
[この文献は図面を表示できません]
【1587】
実施例136:GalNAc
3共役基を含むアンチセンスオリゴヌクレオチドによるマウスPKKの阻害
以下の表に示すように、PKK mRNAの効果について、ISIS 482584とISIS 722059のin vivo試験を行った。
【1588】
【表193】
[この文献は図面を表示できません]
下付き文字:「e」は2’−MOE修飾ヌクレオシドを示す。「d」はβ−D−2’−デオキシリボヌクレオシドを示す。「s」はホスホロチオエートヌクレオシド間結合(PS)を示す。「o」はリン酸ジエステルヌクレオシド間結合(PO)を示す。「o」は−O−P(=O)(OH)−を示す。上付き文字「m」は5−メチルシトシンを示す。「GalNAc
3−7」の構造は実施例48に示している。
【1589】
処置
C57Bl/6J−Tyr
c−2Jマウス4匹からなる4つの群を、5.0mg/kg、10.0mg/kg、20.0mg/kg、または40.0mg/kgのISIS 482584を、3週間にわたって週2回皮下注射して処置した(週の用量は10.0mg/kg、20.0mg/kg、40.0mg/kg、または80.0mg/kg)。BALB/cマウス4匹からなる4群を、それぞれ、1.0mg/kg、2.0mg/kg、4.0mg/kg、または8.0mg/kgのISIS 722059を、3週間にわたって週2回皮下注射して処置した(週の用量は2.0mg/kg、4.0mg/kg、8.0mg/kg、または16.0mg/kg)。BALB/cマウス4匹の対照群を、PBSを3週間にわたって週2回皮下注射した。アンチセンスオリゴヌクレオチドまたはPBSの最後の投与から3日後に、全群のマウスに、誘導のために空気中に2.5%蒸発させたイソフルラン、次にメインテナンスのためにノーズコーンによる1〜2%のイソフルランによって麻酔をした。その後、頚椎脱臼した。安楽死の後、RNA分析のために肝臓を回収した。
【1590】
RNA分析
PKKのリアルタイムPCRのためにRNAを肝組織から抽出した。PKK mRNAレベルを、マウスプライマープローブセットを使用して測定した(配列番号2231として本明細書で指定した順方向配列ACAAGTGCATTTTACAGACCAGAGTAC、配列番号2232として本明細書で指定した逆方向配列GGTTGTCCGCTGACTTTATGCT、配列番号2233として本明細書で指定したプローブ配列AAGCACAGTGCAAGCGGAACACCC)。結果は、PBS対照に対するPKKの阻害率(%)として表す。以下の表208に示すように、GalNAc
3共役基を含むIsis 722059は、親アンチセンスオリゴヌクレオチド、Isis 482584より、有意に強力にPKK mRNAを減少させた。この結果は、上述の実施例の結果と一致しており、マウスとヒトの両方の多くの標的遺伝子で、GalNAc
3共役基を含むアンチセンスオリゴヌクレオチドは、親アンチセンスオリゴヌクレオチドより有意に強力であった。したがって、GalNAc
3共役基を含むヒトPKKアンチセンスオリゴヌクレオチドは、同様に、共役基を含まない親アンチセンスオリゴヌクレオチドより、強力にヒトPKK mRNAを減少させることが予想される。
【1591】
【表194】
[この文献は図面を表示できません]
【1592】
実施例137:GalNAc
3共役基を含むアンチセンスオリゴヌクレオチドによるヒトPKKの阻害
以下の表に示すように、ヒトPKK mRNAに対する効果について、ISIS 546254とISIS 721744のin vitro試験を行った。
【1593】
【表195】
[この文献は図面を表示できません]
下付き文字:「e」は2’−MOE修飾ヌクレオシドを示す。「d」はβ−D−2’−デオキシリボヌクレオシドを示す。「s」はホスホロチオエートヌクレオシド間結合(PS)を示す。「o」はリン酸ジエステルヌクレオシド間結合(PO)を示す。上付き文字「m」は5−メチルシトシンを示す。「GalNAc
3−7」の構造は実施例48に示している。「GalNAc
3−7
a−o’」は、切断可能部分が−O−P(=O)(OH)−であるGalNAc
3−7共役基を示す。
【1594】
肝臓のin vitroの生理学的微小環境を模倣するために、間質細胞を含む初代ヒト肝細胞共培養物(HepatoPac kit HPHU−TX−96S、Hepregen、Medford、MA)を、製造者の指示に従って使用した。以下の表に挙げる濃度のIsisオリゴヌクレオチドまたはPBSを、トランスフェクション試薬の非存在下で、各ウェルに添加した。96時間後、細胞を溶解し、RNAを細胞から単離した。PKK mRNAレベルは、プライマープローブセットRTS3454を使用して、定量的リアルタイムPCRによって測定し、RIBOGREEN(登録商標)によって測定する総RNA含量に正規化した。結果は、PBS処理細胞に対するPKK mRNAレベルの阻害率(%)として以下の表に表し、IC
50値は、4値ロジスティックモデル(JMP Software、Cary、NC)を使用して計算した。結果は、オリゴヌクレオチドを細胞に人工的に移行することを促進するための試薬またはエレクトロポレーション技術を使用しない自由な取り込み条件下で、GalNAc共役体を含むオリゴヌクレオチドが、GalNAc共役体を含まない親オリゴヌクレオチドより、有意に強力であったことを示している。
【1595】
【表196】
[この文献は図面を表示できません]
出願時の請求の範囲
〔1〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは、12〜30個の連結されたヌクレオシドから成り、配列番号30〜2226の核酸塩基配列のいずれかの少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20個の連続する核酸塩基を含む核酸塩基配列を有する、化合物。
〔2〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号570の少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20個の連続する核酸塩基を含む核酸塩基配列を有する、化合物。
〔3〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号705の少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20個の連続する核酸塩基を含む核酸塩基配列を有する、化合物。
〔4〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号1666の少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、または少なくとも16の連続する核酸塩基を含む核酸塩基配列を有する、化合物。
〔5〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは20個の連結されたヌクレオシドから成り、配列番号570の核酸塩基配列を有する、化合物。
〔6〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは20個の連結されたヌクレオシドから成り、配列番号705の核酸塩基配列を有する、化合物。
〔7〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは16個の連結されたヌクレオシドから成り、配列番号1666の核酸塩基配列を有する、化合物。
〔8〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号62、72、103、213、312、334−339、344、345、346、348、349、351、369、373、381、382、383、385、387−391、399、411、412、414、416、444、446−449、452、453、454、459、460、462−472、473、476、477、479、480、481、484、489−495、497、500、504、506、522、526、535、558、559、560、564、566、568−571、573、576、577、578、587、595、597−604、607、608、610、613、615、618、619、622、623、624、633、635、636、638、639、640、642、643、645、652、655−658、660、661、670、674−679、684、685、698、704、705、707、708、713、716、717、728、734、736、767、768、776、797、798、800、802、810、815、876、880、882、883、886、891、901−905、908−911、922、923、924、931、942、950−957、972、974、978、979、980、987−991、1005、1017−1021、1025、1026、1029、1030、1032、1034、1035、1037、1040、1041、1045、1046、1051、1054、1059、1060、1061、1064、1065、1066、1075、1076、1087、1089、1111、1114、1116、1117、1125、1133、1153、1169、1177、1181、1182、1187、1196、1200、1214、1222、1267、1276、1277、1285、1286、1289、1290、1291、1303、1367、1389、1393、1398−1401、1406、1407、1408、1411、1419−1422、1426、1430、1431、1432、1434−1437、1439、1440、1443、1444、1451、1452、1471、1516、1527、1535、1537、1538、1539、1540、1541、1563、1564、1567、1568、1616、1617、1623、1629、1664、1665、1666、1679、1687、1734、1804、1876、1886、1915、2008、2018、2100、2101、2115、及び2116の核酸塩基配列のいずれかの少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、または少なくとも16個の連続する核酸塩基配列を有する、化合物。
〔9〕
前記修飾オリゴヌクレオチドはPKKの少なくとも80%のmRNAの阻害を達成する、請求項8に記載の化合物。
〔10〕
修飾オリゴヌクレオチド及び共役基から成り、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号62、72、103、213、334−339、344、346、348、349、351、381、382、383、385、389、390、391、446、448、452、453、454、466−473、476、481、484、491、492、494、495、497、504、526、558、559、566、568−571、576、578、587、595、597、598、600−604、607、610、613、618、619、624、635、638、639、645、652、656、657、658、660、674、675、676、684、698、704、705、707、713、716、768、876、880、901−905、908−911、922、923、924、931、942、951、954−957、972、974、978、979、987、988、990、1005、1019、1020、1021、1025、1032、1037、1040、1041、1045、1054、1059、1060、1061、1064、1065、1066、1075、1111、1116、1117、1125、1133、1153、1169、1177、1200、1222、1267、1285、1290、1291、1303、1367、1398、1399、1401、1406、1408、1411、1419、1420、1421、1426、1430、1431、1432、1434−1437、1440、1443、1444、1451、1537−1540、1563、1616、1679、1687、1804、2008、2101、2115、及び2116の核酸塩基配列のいずれかの少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、または少なくとも16個の連続する核酸塩基を含む核酸塩基配列を有する、化合物。
〔11〕
前記修飾オリゴヌクレオチドはPKKの少なくとも85%のmRNAの阻害を達成する、請求項10に記載の化合物。
〔12〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号334、346、351、382、390、391、446、448、452、453、468、469、470、471、472、476、481、491、495、504、558、566、568、570、571、578、587、597、598、600、604、613、635、638、645、656、658、660、674、675、684、704、705、880、901−905、909、922、931、951、954、956、990、1005、1020、1032、1037、1040、1041、1045、1054、1075、1111、1125、1133、1153、1200、1267、1291、1303、1398、1399、1401、1406、1420、1426、1430、1431、1434、1435、1436、1440、1443、1451、1537−1540、2115、及び2116の核酸塩基配列のいずれかの少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、または少なくとも16個の連続する核酸塩基を含む核酸塩基配列を有する、化合物。
〔13〕
前記修飾オリゴヌクレオチドはPKKの少なくとも90%のmRNAの阻害を達成する、請求項12に記載の化合物。
〔14〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号334、391、448、468、469、568、570、598、635、658、674、684、705、901、903、904、922、990、1267、1291、1420、1430、1431、1434、1435、1436、1537、1538、及び1540の核酸塩基配列のいずれかの少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、または少なくとも16の連続する核酸塩基を含む核酸塩基配列を有する、化合物。
〔15〕
前記修飾オリゴヌクレオチドはPKKの少なくとも95%のmRNAの阻害を達成する、請求項14に記載の化合物。
〔16〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号334、338、346、349、382、383、390、448、452、453、454、495、526、559、570、587、598、635、660、705、901、903、904、908、923、931、955、974、988、990、1020、1039、1040、1111、1117、1267、1291、1349、1352、1367、1389、1393、1399、1401、1408、1411、1426、1499、1516、1535、1544、1548、1563、1564、1568、1569、1598、1616、1617、1623、1624、1643、1661、1665、1666、1673、1679、1695、1720、1804、1817、1876、1881、1886、1940、1947、2008、2018、2019、2031、2044、2100、2101、2115、及び2116のいずれかの核酸塩基配列の少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、または少なくとも16個の連続する核酸塩基を含む核酸塩基配列を有する、化合物。
〔17〕
前記修飾オリゴヌクレオチドは0.4以下のIC
50(μM)を達成する、請求項16に記載の化合物。
〔18〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号334、346、349、382、453、454、495、526、570、587、598、635、660、901、903、904、931、955、990、1020、1111、1267、1349、1352、1367、1389、1399、1408、1411、1426、1516、1535、1544、1548、1563、1564、1568、1569、1598、1616、1617、1623、1643、1661、1665、1666、1673、1695、1804、1876、1881、2019、2044、2100、2101、2115、及び2116の核酸塩基配列のいずれかの少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、または少なくとも16の連続する核酸塩基を含む核酸塩基配列を有する、化合物。
〔19〕
前記修飾オリゴヌクレオチドは0.3以下のIC
50(μM)を達成する、請求項18に記載の化合物。
〔20〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号334、346、382、453、495、526、570、587、598、635、901、904、931、955、1020、1111、1349、1352、1389、1426、1516、1535、1544、1548、1564、1569、1598、1616、1617、1665、1666、1804、1876、1881、2019、2044、2101、及び2116の核酸塩基配列のいずれかの少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、または少なくとも16の連続する核酸塩基を含む核酸塩基配列を有する、化合物。
〔21〕
前記修飾オリゴヌクレオチドは、0.2以下のIC
50(μM)を達成する請求項20に記載の化合物。
〔22〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号334、495、587、598、635、1349、1352、1389、1516、1544、1548、1569、1598、1617、1665、1666、1804、1881、及び2019の核酸塩基配列のいずれかの少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、または少なくとも16個の連続する核酸塩基を含む核酸塩基配列を有する、化合物。
〔23〕
前記修飾オリゴヌクレオチドは、0.2以下のIC
50(μM)を達成する、請求項22に記載の化合物。
〔24〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号10の核酸塩基27427〜27466の長さが等しい部分に相補的な、少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20の連続した核酸塩基を含む核酸塩基配列を含む、化合物。
〔25〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号10の核酸塩基33183〜33242の長さが等しい部分に相補的な、少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20の連続した核酸塩基を含む核酸塩基配列を含む、化合物。
〔26〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号10の核酸塩基30570〜30610の長さが等しい部分に相補的な、少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20の連続した核酸塩基を含む核酸塩基配列を含む、化合物。
〔27〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号10の核酸塩基27427〜27521の長さが等しい部分に相補的な、少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20の連続した核酸塩基を含む核酸塩基配列を含む、化合物。
〔28〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号10の核酸塩基33085〜33248の長さが等しい部分に相補的な、少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20の連続した核酸塩基を含む核酸塩基配列を含む、化合物。
〔29〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号10の核酸塩基30475〜30639の長さが等しい部分に相補的な、少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20の連続した核酸塩基を含む核酸塩基配列を含む、化合物。
〔30〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号10の核酸塩基27362〜27525の長さが等しい部分に相補的な、少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20の連続した核酸塩基を含む核酸塩基配列を含む、化合物。
〔31〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号10の核酸塩基33101〜33241の長さが等しい部分に相補的な、少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20の連続した核酸塩基を含む核酸塩基配列を含む、化合物。
〔32〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、配列番号10の核酸塩基30463〜30639の長さが等しい部分に相補的な、少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20の連続した核酸塩基を含む核酸塩基配列を含む、化合物。
〔33〕
修飾オリゴヌクレオチド及び共役基を含み、前記修飾オリゴヌクレオチドは12〜30個の連結されたヌクレオシドから成り、PKK核酸のエクソン9、エクソン12、またはエクソン14の長さが等しい部分に相補的な、少なくとも8、少なくとも9、少なくとも10、少なくとも11、少なくとも12、少なくとも13、少なくとも14、少なくとも15、少なくとも16、少なくとも17、少なくとも18、少なくとも19、または少なくとも20の連続した核酸塩基を含む核酸塩基配列を含む、化合物。
〔34〕
前記修飾オリゴヌクレオチドの前記核酸塩基配列は、配列番号10と少なくとも80%、少なくとも81%、少なくとも82%、少なくとも83%、少なくとも84%、少なくとも85%、少なくとも86%、少なくとも87%、少なくとも88%、少なくとも89%、少なくとも90%、少なくとも91%、少なくとも92%、少なくとも93%、少なくとも94%、少なくとも95%、少なくとも96%、少なくとも97%、少なくとも98%、少なくとも99%、または100%相補的である、請求項24〜33に記載の化合物。
〔35〕
一本鎖修飾オリゴヌクレオチド及び共役基からなる、前記請求項のいずれかに記載の化合物。
〔36〕
少なくとも1つのヌクレオシド間結合は修飾ヌクレオシド間結合である、前記請求項のいずれかに記載の化合物。
〔37〕
少なくとも1つの修飾ヌクレオシド間結合はホスホロチオエートヌクレオシド間結合である、請求項36に記載の化合物。
〔38〕
前記修飾オリゴヌクレオチドは、少なくとも1つのホスホジエステルヌクレオシド間結合を含む、請求項36に記載の化合物。
〔39〕
前記修飾オリゴヌクレオチドは、少なくとも2つのホスホジエステルヌクレオシド間結合を含む、請求項36に記載の化合物。
〔40〕
修飾オリゴヌクレオチドは、少なくとも3つのホスホジエステルヌクレオシド間結合を含む、請求項36に記載の化合物。
〔41〕
前記修飾オリゴヌクレオチドは、少なくとも4つのホスホジエステルヌクレオシド間結合を含む、請求項36に記載の化合物。
〔42〕
前記修飾オリゴヌクレオチドは、少なくとも5つのホスホヌクレオシド間結合を含む、請求項36に記載の化合物。
〔43〕
前記修飾オリゴヌクレオチドは、少なくとも6つのホスホジエステルヌクレオシド間結合を含む、請求項36に記載の化合物。
〔44〕
前記修飾オリゴヌクレオチドは、少なくとも7つのホスホジエステルヌクレオシド間結合を含む、請求項36に記載の化合物。
〔45〕
前記修飾オリゴヌクレオチドの各ヌクレオシド間結合は、ホスホジエステル結合及びホスホロチオエートヌクレオシド間結合から選択される、請求項38〜44のいずれかに記載の化合物。
〔46〕
各ヌクレオシド間結合はホスホロチオエート結合である、請求項37に記載の化合物。
〔47〕
少なくとも1つのヌクレオシドは修飾核酸塩基を含む、前記請求項のいずれかに記載の化合物。
〔48〕
前記修飾核酸塩基は5−メチルシトシンである、請求項39に記載の化合物。
〔49〕
前記修飾オリゴヌクレオチドは、少なくとも1つの修飾糖を含む、前記請求項のいずれかに記載の化合物。
〔50〕
前記修飾糖は2’修飾糖、BNA、またはTHPである、請求項49に記載の化合物。
〔51〕
前記修飾糖は、2’−O−メトキシエチル、2’−O−メチル、拘束エチル、LNA、または3’−フルオロHNAのいずれかである、請求項50に記載の化合物。
〔52〕
少なくとも1つの2’−O−メトキシエチルヌクレオシド、2’−O−メチルヌクレオシド、拘束エチルヌクレオシド、LNAヌクレオシド、または3’−フルオロ−HNAヌクレオシドを含む、前記請求項のいずれかに記載の化合物。
〔53〕
前記修飾オリゴヌクレオチドは
10個の連結されたデオキシヌクレオシドからなるギャップセグメント、
5個の連結されたヌクレオシドからなる5’ウイングセグメント、
5個の連結されたヌクレオシドからなる3’ウイングセグメント、
を含む、前記請求項に記載の化合物であって、前記ギャップセグメントは5’ウイングセグメントと3’ウイングセグメントの間に位置し、各ウイングセグメントの各ヌクレオシドは修飾糖を含む、前記化合物。
〔54〕
前記修飾オリゴヌクレオチドは20個の連結されたヌクレオシドからなる、前記請求項のいずれかに記載の化合物。
〔55〕
前記修飾オリゴヌクレオチドは19個の連結されたヌクレオシドからなる、前記請求項のいずれかに記載の化合物。
〔56〕
前記修飾オリゴヌクレオチドは18個の連結されたヌクレオシドからなる、前記請求項のいずれかに記載の化合物。
〔57〕
共役基及び以下の式Tes Ges mCes Aes Aes Gds Tds mCds Tds mCds Tds Tds Gds Gds mCds Aes Aes Aes mCes Aeに従う修飾オリゴヌクレオチドからなる化合物であって、
A=アデニン、
mC=5’−メチルシトシン、
G=グアニン、
T=チミン、
e=2’−O−メトキシメチル修飾ヌクレオシド、
d=2’−デオキシヌクレオシド、及び
s=ホスホロチオエートヌクレオシド間結合
である、化合物。
〔58〕
共役基及び以下の式mCes mCes mCes mCes mCes Tds Tds mCds Tds Tds Tds Ads Tds Ads Gds mCes mCes Aes Ges mCeに従う修飾オリゴヌクレオチドからなる化合物であって、
A=アデニン、
mC=5’−メチルシトシン、
G=グアニン、
T=チミン、
e=2’−O−メトキシメチル修飾ヌクレオシド、
d=2’−デオキシヌクレオシド、及び
s=ホスホロチオエートヌクレオシド間結合
である、化合物。
〔59〕
共役基及び以下の式mCes Ges Aks Tds Ads Tds mCds Ads Tds Gds Ads Tds Tds mCks mCks mCeに従う修飾オリゴヌクレオチドからなる化合物であって、
A=アデニン、
mC=5’−メチルシトシン、
G=グアニン、
T=チミン、
e=2’−O−メトキシメチル修飾ヌクレオシド、
k=cEt修飾ヌクレオシド、
d=2’−デオキシヌクレオシド、及び
s=ホスホロチオエートヌクレオシド間結合
である、化合物。
〔60〕
以下の式に従う共役基及び修飾オリゴヌクレオチドからなる化合物。
【化1001】
[この文献は図面を表示できません]
〔61〕
以下の式に従う共役基及び修飾オリゴヌクレオチドからなる化合物。
【化1002】
[この文献は図面を表示できません]
〔62〕
以下の式に従う共役基及び修飾オリゴヌクレオチドからなる化合物。
【化1003】
[この文献は図面を表示できません]
〔63〕
前記共役基は、前記修飾オリゴヌクレオチドの5’末端の前記修飾オリゴヌクレオチドに連結されている、請求項1〜62のいずれかに記載の化合物。
〔64〕
前記共役基は、前記修飾オリゴヌクレオチドの3’末端の前記修飾オリゴヌクレオチドに連結されている、請求項1〜62のいずれかに記載の化合物。
〔65〕
前記共役基は1つだけリガンドを含む、請求項1〜64のいずれかの化合物。
〔66〕
前記共役基は2つだけリガンドを含む、請求項1〜64のいずれかに記載の化合物。
〔67〕
前記共役基は3つ以上のリガンドを含む、請求項1〜64のいずれかの化合物。
〔68〕
前記共役基は3つだけリガンドを含む、請求項1〜64のいずれかに記載の化合物。
〔69〕
各リガンドは、多糖、修飾多糖、マンノース、ガラクトース、マンノース誘導体、ガラクトース誘導体、D−マンノピラノース、L−マンノピラノース、D−アラビノース、L−ガラクトース、D−キシロフラノース、L−キシロフラノース、D−グルコース、L−グルコース、D−ガラクトース、L−ガラクトース、α−D−マンノフラノース、β−D−マンノフラノース、α−D−マンノピラノース、β−D−マンノピラノース、α−D−グルコピラノース、β−D−グルコピラノース、α−D−グルコフラノース、β−D−グルコフラノース、α−D−フルクトフラノース、α−D−フルクトピラノース、α−D−ガラクトピラノース、β−D−ガラクトピラノース、α−D−ガラクトフラノース、β−D−ガラクトフラノース、グルコサミン、シアル酸、α−D−ガラクトサミン、N−アセチルガラクトサミン、2−アミノ−3−O−[(R)−1−カルボキシエチル]−2−デオキシ−β−D−グルコピラノース、2−デオキシ−2−メチルアミノ−L−グルコピラノース、4,6−ジデオキシ−4−ホルムアミド−2,3−ジ−O−メチル−D−マンノピラノース、2−デオキシ−2−スルホアミノ−D−グルコピラノース、N−グリコロイル−α−ノイラミン酸、5−チオ−β−D−グルコピラノース、メチル2,3,4−トリ−O−アセチル−1−チオ−6−O−トリチル−α−D−グルコピラノシド、4−チオ−β−D−ガラクトピラノース、エチル3,4,6,7−テトラ−O−アセチル−2−デオキシ−1,5−ジチオ−α−D−グルコ−ヘプトピラノシド、2,5−アンヒドロ−D−アロノニトリル、リボース、D−リボース、D−4−チオリボース、L−リボース、L−4−チオリボースのなかから選択される、請求項65〜68のいずれか一項に記載の化合物。
〔70〕
各リガンドは、N−アセチルガラクトサミンである、請求項69に記載の化合物。
〔71〕
前記共役基は以下を含む、請求項1〜64のいずれかに記載の化合物。
【化1004】
[この文献は図面を表示できません]
〔72〕
前記共役基は以下を含む、請求項1〜64のいずれかに記載の化合物。
【化1005】
[この文献は図面を表示できません]
〔73〕
前記共役基は以下を含む、請求項1〜64のいずれかに記載の化合物。
【化1006】
[この文献は図面を表示できません]
〔74〕
前記共役基は以下を含む、請求項1〜64のいずれかに記載の化合物。
【化1007】
[この文献は図面を表示できません]
〔75〕
前記共役基は以下を含む、請求項1〜64のいずれかに記載の化合物。
【化1008】
[この文献は図面を表示できません]
〔76〕
前記共役基は、少なくとも1つのリン共役基または中性の共役基を含む、請求項64〜70のいずれかに記載の化合物。
〔77〕
前記共役基は以下のなかから選択される構造を含み、
【化1009-1】
[この文献は図面を表示できません]
【化1009-2】
[この文献は図面を表示できません]
nは1〜12であり、
mは1〜12である、
請求項1〜76のいずれかに記載の化合物。
〔78〕
前記共役基は、以下のなかから選択される構造を有するテザーを有し、
【化10010】
[この文献は図面を表示できません]
Lはリン共役基または中性連結基のいずれかであり、
Z
1はC(=O)OR
2であり、
Z
2は、H、C
1−C
6アルキルまたは置換C
1−C
6アルキルであり、
R
2はH、C
1−C
6アルキルまたは置換C
1−C
6アルキルであり、
各m
1は独立して0〜20であり、少なくとも1つのm
1は各テザーにつき0よりも大きい、
請求項1〜76のいずれかに記載の化合物。
〔79〕
共役基は以下のなかから選択される構造を有するテザーを有し、
【化10011】
[この文献は図面を表示できません]
Z
2はHまたはCH
3であり、
各m
1は独立して0〜20であり、少なくとも1つのm
1は各テザーにつき0よりも大きい、
請求項78に記載の化合物。
〔80〕
前記共役基は、以下のなかから選択される構造を有するテザーを有し、
【化10012】
[この文献は図面を表示できません]
;
nは1〜12であり、
mは1〜12である、
請求項64〜70のいずれかに記載の化合物。
〔81〕
前記共役基は修飾オリゴヌクレオチドに共有結合で結合されている、請求項1〜80のいずれかに記載の化合物。
〔82〕
以下の式によって表される構造を有し、
【化10013】
[この文献は図面を表示できません]
ここで、
Aは修飾オリゴヌクレオチドであり、
Bは切断可能部分であり、
Cは共役リンカーであり、
Dは分岐基であり、
各Eはテザーであり、
各Fはリガンドであり、
qは1〜5の整数である、
請求項1〜81のいずれかに記載の化合物。
〔83〕
以下の式によって表される構造を有し、
【化10014】
[この文献は図面を表示できません]
ここで、
Aは修飾オリゴヌクレオチドであり、
Bは切断可能部分であり、
Cは共役リンカーであり、
Dは分岐基であり、
各Eはテザーであり、
各Fはリガンドであり、
各nは独立して0または1であり、
qは1〜5の整数である、
請求項1〜81のいずれかに記載の化合物。
〔84〕
以下の式によって表される構造を有し、
【化10015】
[この文献は図面を表示できません]
ここで、
Aは修飾オリゴヌクレオチドであり、
Bは切断可能部分であり、
Cは共役リンカーであり、
各Eはテザーであり、
各Fはリガンドであり、
qは1〜5の整数である、
請求項1〜81のいずれかに記載の化合物。
〔85〕
以下の式によって表される構造を有し、
【化10016】
[この文献は図面を表示できません]
ここで、
Aは修飾オリゴヌクレオチドであり、
Cは共役リンカーであり、
Dは分岐基であり、
各Eはテザーであり、
各Fはリガンドであり、
qは1〜5の整数である、
請求項1〜81のいずれかに記載の化合物。
〔86〕
以下の式によって表される構造を有し、
【化10017】
[この文献は図面を表示できません]
ここで、
Aは修飾オリゴヌクレオチドであり、
Cは共役リンカーであり、
各Eはテザーであり、
各Fはリガンドであり、
qは1〜5の整数である、
請求項1〜81のいずれかに記載の化合物。
〔87〕
以下の式によって表される構造を有し、
【化10018】
[この文献は図面を表示できません]
ここで、
Aは修飾オリゴヌクレオチドであり、
Bは切断可能部分であり、
Dは分岐基であり、
各Eはテザーであり、
各Fはリガンドであり、
qは1〜5の整数である、
請求項1〜81のいずれかに記載の化合物。
〔88〕
以下の式によって表される構造を有し、
【化10019】
[この文献は図面を表示できません]
ここで、
Aは修飾オリゴヌクレオチドであり、
Bは切断可能部分であり、
各Eはテザーであり、
各Fはリガンドであり、
qは1〜5の整数である、
請求項1〜81のいずれかに記載の化合物。
〔89〕
以下の式によって表される構造を有し、
【化10020】
[この文献は図面を表示できません]
ここで、
Aは修飾オリゴヌクレオチドであり、
Dは分岐基であり、
各Eはテザーであり、
各Fはリガンドであり、
qは1〜5の整数である、
請求項1〜81のいずれかに記載の化合物。
〔90〕
前記共役リンカーは、以下のなかから選択される構造を有し、
【化10021】
[この文献は図面を表示できません]
ここで、各Lは、独立して、リン共役基または中性の共役基であり、
各nは独立して1〜20である、
請求項82〜89のいずれかに記載の化合物。
〔92〕
前記共役リンカーは、以下のなかから選択される構造を有する、請求項83〜90のいずれかに記載の化合物:
【化10022】
[この文献は図面を表示できません]
〔93〕
前記共役リンカーは以下の構造を有する、請求項83〜90のいずれかに記載の化合物:
【化10023】
[この文献は図面を表示できません]
〔94〕
前記共役リンカーは、以下のなかから選択される構造を有する、請求項83〜90のいずれかに記載の化合物:
【化10024】
[この文献は図面を表示できません]
〔95〕
前記共役リンカーは、以下のなかから選択される構造を有する、請求項83〜90のいずれかに記載の化合物:
【化10025】
[この文献は図面を表示できません]
〔96〕
前記共役リンカーは、以下のなかから選択される構造を有する、請求項83〜90のいずれかに記載の化合物:
【化10026】
[この文献は図面を表示できません]
〔97〕
前記共役リンカーはピロリジンを含む、請求項83〜96のいずれかに記載の化合物。
〔98〕
前記共役リンカーはピロリジンを含まない、請求項83〜96のいずれかに記載の化合物。
〔99〕
前記共役リンカーはPEGを含む、請求項83〜98のいずれかに記載の化合物。
〔100〕
前記共役リンカーはアミドを含む、請求項83〜99のいずれかに記載の化合物。
〔101〕
前記共役リンカーは、少なくとも2つのアミドを含む、請求項83〜99のいずれかに記載の化合物。
〔102〕
前記共役リンカーはアミドを含まない、請求項83〜99のいずれかに記載の化合物。
〔103〕
前記共役リンカーはポリアミドを含む、請求項83〜102のいずれかに記載の化合物。
〔104〕
前記共役リンカーはアミンを含む、請求項83〜103のいずれかに記載の化合物。
〔105〕
前記共役リンカーは、2つ以上のジスルフィド結合を含む、請求項83〜104のいずれかに記載の化合物。
〔106〕
前記共役リンカーはタンパク質結合部分を含む、請求項83〜105のいずれかに記載の化合物。
〔107〕
前記タンパク質結合部分は脂質を含む、請求項106に記載の化合物。
〔108〕
前記タンパク質結合部分は、コレステロール、コール酸、アダマンタン酢酸、1−ピレン酪酸、ジヒドロテストステロン、1,3−ビス−O(ヘキサデシル)グリセロール、ゲラニルオキシヘキシル基、ヘキサデシルグリセロール、ボルネオール、メントール、1,3−プロパンジオール、ヘプタデシル基、パルミチン酸、ミリスチン酸、O3−(オレオイル)リトコール酸、O3−(オレオイル)コレン酸、ジメトキシトリチル、またはフェノキサジン)、ビタミン(例えば、葉酸、ビタミンA、ビタミンE、ビオチン、ピリドキサール)、ペプチド、炭水化物(例えば、単糖、二糖、三糖、四糖、オリゴ糖、多糖)、エンドソーム溶解成分、ステロイド(例えば、ウバオール、hecigenin、ジオスゲニン)、テルペン(例えば、トリテルペン、例えば、サルササポゲニン、フリーデリン、エピフリーデリノール誘導体化リトコール酸)、またはカチオン性脂質のなかから選択される、請求項106に記載の化合物。
〔109〕
前記タンパク質結合部分は、C16〜C22長鎖の飽和もしくは不飽和脂肪酸、コレステロール、コール酸、ビタミンE、アダマンタンまたは1−ペンタフルオロプロピルのなかから選択される請求項106に記載の化合物。
〔110〕
前記共役リンカーは、以下のなかから選択される構造を有し、
【化10027】
[この文献は図面を表示できません]
ここで、各nは独立して1〜20であり、pは1から6である、
請求項82〜109のいずれかに記載の化合物。
〔111〕
前記共役リンカーは、以下のなかから選択される構造を有し、
【化10028】
[この文献は図面を表示できません]
ここで、各nは独立して1〜20である、
請求項82〜110のいずれかに記載の化合物。
〔112〕
前記共役リンカーは、以下のなかから選択される構造を有する、請求項82〜110のいずれかに記載の化合物:
【化10029】
[この文献は図面を表示できません]
〔113〕
前記共役リンカーは、以下のなかから選択される構造を有し、
【化10030】
[この文献は図面を表示できません]
nは1〜20である、
請求項82〜110のいずれかに記載の化合物。
〔114〕
前記共役リンカーは、以下のなかから選択される構造を有する、請求項82〜110のいずれかに記載の化合物:
【化10031】
[この文献は図面を表示できません]
〔115〕
前記共役リンカーは、以下のなかから選択される構造を有し、
【化10032】
[この文献は図面を表示できません]
ここで、各nは独立して、0、1、2、3、4、5、6、または7である、
請求項82〜110のいずれかに記載の化合物。
〔116〕
前記共役リンカーは、以下の構造を有する、請求項82〜110のいずれかに記載の化合物:
【化10033】
[この文献は図面を表示できません]
〔117〕
前記分枝基は、以下の構造の1つを有し、
【化10034】
[この文献は図面を表示できません]
ここで、各A
1は独立してO、S、C=OまたはNHであり、
各nは独立して1〜20である、
請求項82〜116のいずれかに記載の化合物。
〔118〕
前記分枝基は以下の構造の1つを有し、
【化10035】
[この文献は図面を表示できません]
各A
1は独立してO、S、C=OまたはNHであり、
各nは独立して1〜20である、
請求項82〜116のいずれかに記載の化合物。
〔119〕
前記分枝基は、以下の構造を有する、請求項82〜116のいずれかに記載の化合物:
【化10036】
[この文献は図面を表示できません]
〔120〕
前記分枝基は以下の構造を有する、請求項82〜116のいずれかに記載の化合物:
【化10037】
[この文献は図面を表示できません]
〔121〕
前記分枝基は、以下の構造を有する、請求項82〜116のいずれかに記載の化合物:
【化10038】
[この文献は図面を表示できません]
〔122〕
前記分枝基は、以下の構造を有する、請求項82〜116のいずれかに記載の化合物:
【化10039】
[この文献は図面を表示できません]
〔123〕
前記分岐基はエーテルを含む、請求項82〜116のいずれかに記載の化合物。
〔124〕
前記分枝基は、以下の構造を有し、
【化10040】
[この文献は図面を表示できません]
ここで、各nは独立して1〜20であり、
mは2から6である、
請求項82〜116のいずれかに記載の化合物。
〔125〕
前記分枝基は、以下の構造を有する、請求項82〜116のいずれかに記載の化合物:
【化10041】
[この文献は図面を表示できません]
〔126〕
前記分枝基は、以下の構造を有する、請求項82〜116のいずれかに記載の化合物:
【化10042】
[この文献は図面を表示できません]
〔127〕
前記分岐基は以下を含み、
【化10043】
[この文献は図面を表示できません]
ここで、各jは1から3の整数であり、
前記各nは1から20の整数である、
請求項82〜116のいずれかに記載の化合物。
〔128〕
前記分岐基は以下を含む請求項82〜116のいずれかに記載の化合物:
【化10044】
[この文献は図面を表示できません]
〔129〕
各テザーは、以下のなかから選択され、
【化10045】
[この文献は図面を表示できません]
ここで、Lは、リン共役基及び中性の共役基から選択され、
Z
1はC(=O)OR
2であり、
Z
2は、H、C
1−C
6アルキルまたは置換C
1−C
6アルキルであり、
R
2はH、C
1−C
6アルキルまたは置換C
1−C
6アルキルであり、
各m
1は独立して0〜20であり、少なくとも1つのm
1は各テザーにつき0よりも大きい、
請求項82〜128のいずれかに記載の化合物。
〔130〕
各テザーは、以下のなかから選択され、
【化10046】
[この文献は図面を表示できません]
Z
2はHまたはCH
3であり、
各m
2は独立して0〜20であり、少なくとも1つのm
2は各テザーにつき0よりも大きい、
請求項82〜128のいずれかに記載の化合物。
〔131〕
各テザーは、以下のなかから選択され、
【化10047】
[この文献は図面を表示できません]
nは1〜12であり、
mは1〜12である、
請求項82〜128のいずれかに記載の化合物。
〔132〕
少なくとも1つのテザーはエチレングリコールを含む、請求項82〜128のいずれかに記載の化合物。
〔133〕
少なくとも1つのテザーはアミドを含む、請求項82〜128または130のいずれかに記載の化合物。
〔134〕
少なくとも1つのテザーはポリアミドを含む、請求項82〜128または130のいずれかに記載の化合物。
〔135〕
少なくとも1つのテザーはアミンを含む、請求項82〜128または130のいずれかに記載の化合物。
〔136〕
少なくとも2つのテザーは互いに異なっている、請求項82〜128または130のいずれかに記載の化合物。
〔137〕
テザーの全ては互いに同じである、請求項82〜128または130のいずれかに記載の化合物。
〔138〕
各テザーは、以下のなかから選択され、
【化10048】
[この文献は図面を表示できません]
ここで、各nは独立して1〜20であり、
各pは1から約6である、
請求項82〜128のいずれかに記載の化合物。
〔139〕
各テザーは、以下のなかから選択される、請求項82〜128のいずれかに記載の化合物:
【化10049】
[この文献は図面を表示できません]
〔140〕
各テザーは、以下の構造を有し、
【化10050】
[この文献は図面を表示できません]
各nは独立して1〜20である、
請求項82〜128のいずれかに記載の化合物。
〔141〕
各テザーは、以下の構造を有する、請求項82〜128のいずれかに記載の化合物:
【化10051】
[この文献は図面を表示できません]
〔142〕
前記テザーは、以下のなかから選択される構造を有し、
【化10052】
[この文献は図面を表示できません]
各nは独立して、0、1、2、3、4、5、6、または7である、
請求項82〜128のいずれかに記載の化合物。
〔143〕
前記テザーは、以下のなかから選択される構造を有する、請求項82〜128のいずれかに記載の化合物:
【化10053】
[この文献は図面を表示できません]
〔144〕
前記リガンドはガラクトースである、請求項140〜143のいずれかに記載の化合物。
〔145〕
前記リガンドはマンノース−6−リン酸である、請求項140〜143のいずれかに記載の化合物。
〔146〕
各リガンドは以下のなかから選択され、
【化10054】
[この文献は図面を表示できません]
各R
1はOH及びNHCOOHから選択される、
請求項140〜143のいずれかに記載の化合物。
〔147〕
各リガンドは以下のなかから選択される、請求項140〜143のいずれかに記載の化合物:
【化10055】
[この文献は図面を表示できません]
〔148〕
各リガンドは以下の構造を有する、請求項140〜143のいずれかに記載の化合物:
【化10056】
[この文献は図面を表示できません]
〔149〕
各リガンドは以下の構造を有する、請求項140〜143のいずれかに記載の共役されるアンチセンス化合物:
【化10057】
[この文献は図面を表示できません]
〔150〕
前記共役基は細胞標的化部分を含む、前記請求項のいずれかに記載の化合物。
〔151〕
前記共役基は以下の構造を有する細胞標的化部分を含み、
【化10058】
[この文献は図面を表示できません]
各nは独立して1〜20である、
請求項150に記載の化合物。
〔152〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10059】
[この文献は図面を表示できません]
〔153〕
細胞標的化部分は以下の構造を有し、
【化10060】
[この文献は図面を表示できません]
各nは独立して1〜20である、
請求項150に記載の化合物。
〔154〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10061】
[この文献は図面を表示できません]
〔155〕
前記細胞標的化部分は以下を含む、請求項150に記載の化合物:
【化10062】
[この文献は図面を表示できません]
〔156〕
前記細胞標的化部分は以下を含む、請求項150に記載の化合物:
【化10063】
[この文献は図面を表示できません]
〔157〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10064】
[この文献は図面を表示できません]
〔158〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10065】
[この文献は図面を表示できません]
〔159〕
前記細胞標的化部分は以下を含む、請求項150に記載の化合物:
【化10066】
[この文献は図面を表示できません]
〔160〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10067】
[この文献は図面を表示できません]
〔161〕
前記細胞標的化部分は以下を含む、請求項150に記載の化合物:
【化10068】
[この文献は図面を表示できません]
〔162〕
前記細胞標的化部分は以下を含む、請求項150に記載の化合物:
【化10069】
[この文献は図面を表示できません]
〔163〕
前記細胞標的化部分は以下を含む、請求項150に記載の化合物:
【化10070】
[この文献は図面を表示できません]
〔164〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10071】
[この文献は図面を表示できません]
〔165〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10072】
[この文献は図面を表示できません]
〔166〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10073】
[この文献は図面を表示できません]
〔167〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10074】
[この文献は図面を表示できません]
〔168〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10075】
[この文献は図面を表示できません]
〔169〕
前記細胞標的化部分は以下を含む、請求項150に記載の化合物:
【化10076】
[この文献は図面を表示できません]
〔170〕
前記細胞標的化部分は以下を含む、請求項150に記載の化合物:
【化10077】
[この文献は図面を表示できません]
〔171〕
前記細胞標的化部分は以下を含む、請求項150に記載の化合物:
【化10078】
[この文献は図面を表示できません]
〔172〕
前記細胞標的化部分は以下を含む、請求項150に記載の化合物:
【化10079】
[この文献は図面を表示できません]
〔173〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10080】
[この文献は図面を表示できません]
〔174〕
前記細胞標的化部分は以下を含む、請求項150に記載の化合物:
【化10081】
[この文献は図面を表示できません]
〔175〕
前記細胞標的化部分は以下の構造を有する、請求項150に記載の化合物:
【化10082】
[この文献は図面を表示できません]
〔176〕
前記細胞標的化部分は以下を含み、
【化10083】
[この文献は図面を表示できません]
各Yは、O、S、置換もしくは非置換C
1−C
10アルキル、アミノ、置換アミノ、アジド、アルケニルまたはアルキニルから選択される、請求項150に記載の化合物。
〔177〕
前記共役基は以下を含み、
【化10084】
[この文献は図面を表示できません]
;
各Yは、O、S、置換もしくは非置換C
1−C
10アルキル、アミノ、置換アミノ、アジド、アルケニルまたはアルキニルから選択される、請求項150に記載の化合物。
〔178〕
前記細胞標的化部分は以下の構造を有し、
【化10085】
[この文献は図面を表示できません]
;
各Yは、O、S、置換もしくは非置換C
1−C
10アルキル、アミノ、置換アミノ、アジド、アルケニルまたはアルキニルから選択される、請求項150に記載の化合物。
〔179〕
前記共役基は以下を含む、前記請求項のいずれかに記載の化合物:
【化10086】
[この文献は図面を表示できません]
〔180〕
前記共役基は以下を含む、前記請求項のいずれかに記載の化合物:
【化10087】
[この文献は図面を表示できません]
〔181〕
前記共役基は以下を含む、前記請求項のいずれかに記載の化合物:
【化10088】
[この文献は図面を表示できません]
〔182〕
前記共役基は以下を含む、前記請求項のいずれかに記載の化合物:
【化10089】
[この文献は図面を表示できません]
〔183〕
前記共役基は、ホスホジエステル、アミド、またはエステルのなかから選択される切断可能部分を含む、前記請求項のいずれかに記載の化合物。
〔184〕
前記共役基は、ホスホジエステル切断可能部分を含む、前記請求項のいずれかに記載の化合物。
〔185〕
前記共役基は、切断可能部分を含まず、前記共役基は、前記共役基と前記オリゴヌクレオチドの間にホスホロチオエート結合を含む、前記請求項のいずれかに記載の化合物。
〔186〕
前記共役基はアミド切断可能部分を含む、前記請求項のいずれかに記載の化合物。
〔187〕
前記共役基は、エステル切断可能部分を含む、前記請求項のいずれかに記載の化合物。
〔188〕
以下の構造を有し、
【化10090】
[この文献は図面を表示できません]
各nは独立して1〜20であり、
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔189〕
以下の構造を有し、
【化10091】
[この文献は図面を表示できません]
各nは独立して1〜20であり、
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔190〕
以下の構造を有し、
【化10092】
[この文献は図面を表示できません]
各nは独立して1〜20であり、
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Zは、Hまたは連結された固体支持体であり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔191〕
以下の構造を有し、
【化10093】
[この文献は図面を表示できません]
各nは独立して1〜20であり、
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Zは、Hまたは連結された固体支持体であり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔192〕
以下の構造を有し、
【化10094】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔193〕
以下の構造を有し、
【化10095】
[この文献は図面を表示できません]
、
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔194〕
以下の構造を有し、
【化10096】
[この文献は図面を表示できません]
、
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔195〕
以下の構造を有し、
【化10097】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔196〕
以下の構造を有し、
【化10098】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔197〕
以下の構造を有し、
【化10099】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔198〕
以下の構造を有し、
【化100100】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔199〕
以下の構造を有し、
【化100101】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔200〕
以下の構造を有し、
【化100102】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔201〕
以下の構造を有し、
【化100103】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔202〕
以下の構造を有し、
【化100104】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔203〕
前記共役基は以下を含み、
【化100105】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔204〕
前記共役基は以下を含み、
【化100106】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔205〕
前記共役基は以下を含み、
【化100107】
[この文献は図面を表示できません]
Q
13はHまたはO(CH
2)
2−OCH
3であり、
Aは修飾オリゴヌクレオチドであり、
Bxは複素環式塩基部分である、
前記請求項のいずれかに記載の化合物。
〔206〕
B
xは、アデニン、グアニン、チミン、ウラシル、またはシトシンまたは5−メチルシトシンのなかから選択される、前記請求項のいずれかに記載の化合物。
〔207〕
B
xはアデニンである、前記請求項のいずれかに記載の化合物。
〔208〕
B
xはチミンである、前記請求項のいずれかに記載の化合物。
〔209〕
Q
13はO(CH
2)
2−OCH
3である、前記請求項のいずれかに記載の化合物。
〔210〕
Q
13はHである、前記請求項のいずれかに記載の化合物。
〔211〕
以下に記載の修飾オリゴヌクレオチドからなる化合物:
【化100108】
[この文献は図面を表示できません]
〔212〕
前記請求項のいずれかに記載の化合物またはその塩、及び医薬的に許容される担体または希釈剤の少なくとも1つを含む組成物。
〔213〕
請求項1〜212のいずれかの化合物を含むプロドラッグ。
〔214〕
前記請求項のいずれかに記載の化合物またはその塩、及び医薬的に許容される担体または希釈剤の少なくとも1つを含む組成物。
〔215〕
動物に前記請求項のいずれかに記載の化合物または組成物を投与することを含む方法。
〔216〕
前記動物はヒトである、請求項215に記載の方法。
〔217〕
前記化合物を投与することによりPKK関連疾患、障害または病態を予防、治療、または改善する、請求項215または216に記載の方法。
〔218〕
前記PKK関連疾患、障害または病態は、遺伝性血管浮腫(HAE)、浮腫、血管浮腫、腫脹、目蓋の血管浮腫、眼の浮腫、黄斑浮腫、脳浮腫、血栓症、塞栓症、血栓塞栓症、深部静脈血栓症、肺塞栓症、心筋梗塞、脳卒中、または梗塞である、請求項217に記載の方法。
〔219〕
炎症性疾患または血栓塞栓性疾患を治療するための医薬品を製造するための前記請求項のいずれかに記載の化合物または組成物の使用。