【実施例】
【0034】
以下、実施例のコーティング剤、その製造方法、及び、実施例のコーティング剤により形成されたコーティング層を有する無機焼結体について説明する。まず、コーティング剤を製造した。コーティング剤の原料としては、組成の異なる二種類のガラス粉末、粘土、単体ケイ素、炭化ケイ素、及び、硝酸ナトリウムを使用した。これらの原料を、水及びバインダと混合してスラリー状とし、コーティング剤E1とした。コーティング剤E1の固形分組成を、表1に示す。
【0035】
【表1】
【0036】
表1に示すように、コーティング剤E1は、二酸化ケイ素(SiO
2)、単体ケイ素(単体Si)に加えて、炭化ケイ素(SiC)、酸化ホウ素(B
2O
3)、酸化アルミニウム(Al
2O
3)、アルカリ金属の酸化物(Na
2O、K
2O)、アルカリ土類金属の酸化物(CaO)を含有している。なお、このコーティング剤E1には、コバルト成分を含有させていない。
【0037】
上記の固形分組成は、蛍光X線分析、及び、湿式化学分析によって分析したものである。蛍光X線分析では、二酸化ケイ素、単体ケイ素、及び、炭化ケイ素の合計の重量割合が酸化物換算で求められるが、湿式化学分析によって求められる二酸化ケイ素、単体ケイ素、及び、炭化ケイ素の重量比を用いて、それぞれの重量割合を算出した。
【0038】
セラミックス焼結体として、アルミナ(Al
2O
3)、ジルコニア(ZrO2)、及び、炭化ケイ素(SiC)の焼結体をそれぞれ使用して同一形状で同一サイズの基体を複数準備し、コーティング剤E1を表面に塗布した。その後、表面がコーティング剤E1で被覆された基体を加熱し、コーティング剤E1をガラス化して基体にしっかりと密着させた。コーティング剤E1がガラス化して形成されたコーティング層の厚さは、100μmであった。
【0039】
このコーティング層について、上記と同様に分析した組成を表1に合わせて示す。コーティング剤E1の組成と、これによるコーティング層の組成とを対比すると、コーティング層ではコーティング剤E1より二酸化ケイ素が増加している一方で、単体ケイ素が減少している。このことから、ガラス化させる加熱処理の際に、単体ケイ素の一部が酸化して二酸化ケイ素となっているが、ガラス化後も単体ケイ素が残存していることが分かる。
【0040】
このような単体ケイ素を含有するケイ酸系ガラスのコーティング層で、アルミナ、ジルコニア、及び、炭化ケイ素の焼結体である基体の表面が被覆された各試料について、放射率を測定した。放射率は、遠赤外線放射率測定装置(株式会社島津製作所製、IRTracer−100)を使用し、JIS R1801に則り、100℃〜800℃の温度で測定した。各試料について、積分波長範囲を2.5μm〜25μmとして計算した積分放射率を、
図1(a)〜
図1(c)に示す。
図1(a)は基体がアルミナの場合であり、
図1(b)は基体がジルコニアの場合であり、
図1(c)は基体が炭化ケイ素の場合である。
【0041】
比較のために、同一の基体(アルミナ、ジルコニア、及び、炭化ケイ素の焼結体である基体)のみからなり、コーティング層を有していない試料について、同様に測定した積分放射率を
図1(a)〜
図1(c)に合わせて示す。
【0042】
図1(a)及び
図1(b)から明らかなように、基体がアルミナ、及び、ジルコニアの焼結体である場合は、コーティング剤E1でコーティング層を形成することにより、全温度範囲にわたり放射率が大きく増加している。これは、アルミナ、及び、ジルコニアの焼結体が白色であるため、濃色のコーティング層で被覆することにより放射率が高められる効果が、顕著にあらわれたものと考えられる。
【0043】
一方、
図1(c)に示すように、基体が炭化ケイ素の焼結体である場合は、100℃〜400℃の範囲では放射率が上昇しているが、その上昇の程度は、基体がアルミナやジルコニアである場合に比べて小さい。これは、本実施例で使用した炭化ケイ素焼結体がもともと濃色(深緑色)を呈しており、コーティング層の無い状態でアルミナやジルコニアに比べて高い放射率を有しているため、濃色のコーティング層によって放射率が高められる効果があらわれにくいと考えられた。また、基体が炭化ケイ素である場合は、500℃でコーティング層の有無に関わらず同程度の放射率を示し、それより高い温度ではコーティング層を有する方が、コーティング層の無い試料より放射率が僅かに減少する傾向が見られた。しかしながら、実際に炭化ケイ素セラミックス焼結体が蓄熱体などとして使用される現場には、雰囲気の温度範囲が100℃〜400℃程度である現場も多いため、この温度範囲であっても炭化ケイ素セラミックス焼結体の放射率を高めることができる意義は高い。
【0044】
そして、表1に示した組成変化と放射率の測定結果とを考え合わせると、コーティング剤の固形分組成において単体ケイ素を少なくとも22質量%含有させることにより、放射率を高めるために必要な単体ケイ素をコーティング層に残存させることができる。
【0045】
次に、コーティング層が放射率を高める作用に対するコバルト成分の影響について示す。上記のコーティング剤E1の固形分組成に対し、酸化コバルト(III)を外掛けで1%添加し、コーティング剤E2とした。コーティング剤(加熱前)とコーティング層(ガラス化後)とで変化しない基準として、ケイ素原子(SiO
2のSi、単体SiのSi、及び、SiCのSiの合計)を選択すると、コーティング剤E2によるコーティング層におけるコバルト成分の含有量は、酸化コバルト(III)換算でケイ素原子100重量部に対して2.2重量部である。
【0046】
一方、コーティング剤に添加するコバルト成分は、酸化コバルト(III)以外のコバルト化合物であっても良い。そこで、コバルト原子で含有量を表すと、コーティング剤E2におけるコバルト成分の含有量は、ケイ素原子100重量部に対してコバルト原子1.5重量部である。
【0047】
更に、コーティング剤E1の固形分組成に対し、酸化コバルト(III)を外掛けで2%添加し、コーティング剤E3とした。上記と同様に計算すると、コーティング剤E3によるコーティング層におけるコバルト成分の含有量は、酸化コバルト(III)換算でケイ素原子100重量部に対して4.4重量部である。また、コーティング剤E3におけるコバルト成分の含有量は、ケイ素原子100重量部に対してコバルト原子3.1重量部である。
【0048】
上記と同一の基体(アルミナ、ジルコニア、及び、炭化ケイ素の焼結体である基体)それぞれに、上記と同じ厚さ(100μm)でコーティング剤E2を塗布し、ガラス化してコーティング層とした試料、及び、同一の基体それぞれに、上記と同じ厚さ(100μm)でコーティング剤E3を塗布し、ガラス化してコーティング層とした試料について、100℃〜800℃の温度範囲で、上記と同様に積分放射率を測定した。その結果を、それぞれコバルト成分を含まないコーティング剤E1についての測定結果と合わせて、
図2(a)〜
図2(c)に示す。
図2(a)は基体がアルミナの場合であり、
図2(b)は基体がジルコニアの場合であり、
図2(c)は基体が炭化ケイ素の場合である。
【0049】
図2(a)及び
図2(c)から明らかなように、基体がアルミナ、及び、炭化ケイ素である場合は、コバルト成分の含有量が少ないコーティング剤E2を使用した試料の放射率は、コバルト成分を含まないコーティング剤E1を使用した試料の放射率とほぼ等しい。これに対し、コバルト成分の含有量が多いコーティング剤E3を使用した試料の放射率は大きく低下し、コーティング層を有していない場合(
図1(a),(c)参照)の放射率と同程度となっている。
【0050】
一方、
図2(b)に示すように、基体がジルコニアの場合は、コバルト成分の含有量が少ないコーティング剤E2を使用した試料の放射率は、コバルト成分を含まないコーティング剤E1を使用した試料より放射率が低下しているものの、コーティング層を有していない場合(
図1(b)参照)より高い放射率を示している。これに対し、コバルト成分の含有量が多いコーティング剤E3を使用した試料の放射率は、大きく低下している。
【0051】
以上の結果から、無機焼結体の放射率を高める作用のためには、コーティング剤及びそれから形成されるコーティング層は、コバルト成分を含有しないことが望ましい。また、コバルト成分を含有する場合であっても、コーティング剤におけるコバルト成分の含有量としては、ケイ素原子100重量部に対しコバルト原子1.5重量部以下に抑え、コーティング層におけるコバルト成分の含有量としては、ケイ素原子100重量部に対し酸化コバルト(III)換算で2.2重量部以下に抑えることが望ましい。
【0052】
次に、コーティング層が放射率を高める作用に対する酸化アルミニウムの影響について示す。上記のコーティング剤E1は、固形分組成において10.5重量%の酸化アルミニウムを含有している。これを、コーティング剤E1から形成されるコーティング層における酸化アルミニウムの含有量に換算すると、ケイ素原子100重量部に対して23重量部である。なお、コーティング剤に含有させるアルミニウム成分は、酸化物でなくとも他のアルミニウム化合物でも良いため、アルミニウム原子で含有量を表すと、コーティング剤E1におけるアルミニウム成分の含有量は、ケイ素原子100重量部に対してアルミニウム原子12重量部である。
【0053】
これに対し、コーティング剤E1の固形分組成に対し、酸化アルミニウムを外掛けで1%添加し、コーティング剤E4とした。上記と同様に計算すると、コーティング剤E4から形成されるコーティング層における酸化アルミニウムの含有量は、ケイ素原子100重量部に対して25重量部である。また、コーティング剤E4におけるアルミニウム成分の含有量は、ケイ素原子100重量部に対してアルミニウム原子13重量部である。
【0054】
上記と同一の基体(アルミナ、ジルコニア、及び、炭化ケイ素の焼結体である基体)それぞれに、上記と同じ厚さ(100μm)でコーティング剤E4を塗布し、ガラス化してコーティング層とした試料について、100℃〜800℃の温度範囲で、上記と同様に積分放射率を測定した。その結果を、コーティング剤E1を使用した試料についての測定結果と合わせて、
図3(a)〜
図3(c)に示す。
図3(a)は基体がアルミナの場合であり、
図3(b)は基体がジルコニアの場合であり、
図3(c)は基体が炭化ケイ素の場合である。
【0055】
図3(c)に示すように、基体が炭化ケイ素である場合は、コーティング層における酸化アルミニウムの含有量が増加すると放射率が低下しており、その放射率はコーティング層を有していない場合(
図1(c)参照)より小さい。これに対し、
図3(b)に示すように、基体がジルコニアである場合は、コーティング層における酸化アルミニウムの含有量が増加すると放射率が低下しているものの、その放射率はコーティング層を有していない場合(
図1(b)参照)より大きい。また、
図3(a)に示すように、基体がアルミナである場合は、コーティング層における酸化アルミニウムの含有量が増加すると、放射率が更に増加している。
【0056】
以上のことから、基体がアルミナ、またはジルコニアの焼結体である場合は、コーティング層における酸化アルミニウムの含有量が、少なくともケイ素原子100重量部に対して23重量部〜25重量部の範囲であれば、コーティング層によって無機焼結体の放射率が高められる効果が得られることが確認された。また、そのようなコーティング層を形成するためのコーティング剤におけるアルミニウム成分の含有量は、ケイ素原子100重量部に対してアルミニウム原子12重量部〜13重量部の範囲であった。
【0057】
次に、放射率を高める作用に対するコーティング層の厚さの影響を示す。上記と同一の炭化ケイ素の焼結体の基体に、コーティング剤E1を異なる厚さで塗布し、ガラス化してコーティング層とした。コーティング層の厚さが10μm、30μm、100μm、300μm、及び、400μmと相違する試料について、それぞれ100℃〜800℃の温度範囲で、上記と同様に積分放射率を測定した。測定結果のうち、400℃の場合を
図4(a)に、600℃の場合を
図4(b)に、800℃の場合を
図4(c)に示す。
【0058】
図4(a)〜
図4(c)から明らかなように、何れの温度においても、コーティング層の厚さが10μm〜300μmの範囲では放射率はほぼ一定であったが、400μmでは放射率は大きく低下した。図示を省略した他の温度でも、この傾向は同様であった。以上のことから、コーティング層によって無機焼結体の放射率が高められる効果を得るためには、コーティング層の厚さを少なくとも10μm〜300μmとすることが望ましいと考えられた。
【0059】
また、基体が炭化ケイ素など非酸化物セラミックスの焼結体である場合は、酸素が存在する高温の雰囲気下で使用すると酸化してしまうという問題があるところ、ケイ酸系ガラスのコーティング層によって、酸化が抑制されると考えられる。これは、基体の表面を高い密着性で気密に被覆しているケイ酸系ガラスの層により、基体と酸素との接触が妨げられるためである。
【0060】
そこで、炭化ケイ素の焼結体を基体とし、コーティング剤E1によるコーティング層の厚さを異ならせた上記の試料について、空気雰囲気下での加熱に伴う基体の酸化の度合いを評価する酸化試験を行った。炭化ケイ素の分子量は40であり、二酸化ケイ素の分子量は60であるため、1モルの炭化ケイ素が酸化して1モルの二酸化ケイ素となると質量は20g増加する。酸化試験は、このことを利用し、空気雰囲気下での加熱処理の前後での質量変化によって、酸化の度合いを評価するものである。
【0061】
酸化試験は、温度1300℃まで所定速度で昇温し、その温度にて50時間保持した後、室温まで降温するという操作を1回として、この操作を6回繰り返して加熱時間を計300時間とすることにより行った。酸化試験の開始前の質量(初期質量)を基準とし、酸化試験後の質量の増加率が1%以下であった場合に耐酸化性を有すると評価し、質量の増加率が1%を超えた場合に耐酸化性に劣ると評価した。また、比較のために、コーティング層を有していない試料(炭化ケイ素焼結体の基体のみ)についても、同様の酸化試験を行った。
【0062】
その結果、コーティング層の厚さが30μm〜400μmの試料は耐酸化性を有していたのに対し、コーティング層の厚さが10μmの試料、及び、コーティング層を有していない試料は、耐酸化性に劣るものであった。この結果から、コーティング層によって基体の炭化ケイ素の酸化を抑制することが可能であるが、コーティング層の厚さが10μmであると、酸化を抑制する作用を発揮するためにはコーティング層の厚さが小さ過ぎると考えられた。
【0063】
以上のことから、炭化ケイ素の焼結体を基体とする無機焼結体の場合、コーティング層によって放射率が高められる効果を得ると共に、コーティング層によって基体の酸化が抑制される効果を得るためには、コーティング層の厚さを少なくとも30μm〜300μmの範囲とすることが望ましいことが確認された。
【0064】
また、コーティング層には、放射率を高める作用のために単体ケイ素を含有させているが、コーティング層が単体ケイ素を含有していることは、基体の炭化ケイ素の酸化を抑制する点でも有利である。すなわち、炭化ケイ素の焼結体を基体とする無機焼結体が、コーティング層に単体ケイ素を含有していると、高温の雰囲気で無機焼結体が使用される際に、基体の炭化ケイ素に先んじて表面のコーティング層に存在する単体ケイ素が酸化する。これにより、無機焼結体の表面に近い雰囲気中の酸素が消費されるため、基体の炭化ケイ素の酸化が抑制される。
【0065】
なお、本実施例のコーティング剤は炭化ケイ素を含有しており、この炭化ケイ素はガラス化した後のコーティング層にもそのまま残存している。コーティング層に含有されている炭化ケイ素も、上記の単体ケイ素と同様に基体の炭化ケイ素に先んじて酸化するため、これによっても基体の炭化ケイ素の酸化が抑制される。
【0066】
以上、本発明について好適な実施形態を挙げて説明したが、本発明は上記の実施形態に限定されるものではなく、以下に示すように、本発明の要旨を逸脱しない範囲において、種々の改良及び設計の変更が可能である。
【0067】
例えば、本発明のコーティング剤でコーティング層を形成する対象とする無機焼結体の基体の形状は、特に限定されないため、中実の球体とすることも、単一の方向に延びて列設された隔壁により区画された複数のセルを備えるハニカム構造体とすることも、その他の立体形状とすることもできる。基体がどのような形状であっても、高放射率コーティング層で表面を被覆することにより、かかるコーティング層を有していない場合に比べて放射率を高めることができる。
【0068】
また、上記では、基体がセラミックス焼結体である実施例を記載したが、セラミックス焼結体と共通する原料から作製され、同様に焼結体である耐火レンガについても、本発明のコーティング剤によるコーティング層で表面を被覆することにより、同様に放射率を高めることができる。