(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0012】
以下、本発明の一実施形態のエアロゾル吸引器用の電源ユニットについて説明するが、先ず、電源ユニットが装着されたエアロゾル吸引器について、
図1及び
図2を参照しながら説明する。
【0013】
(エアロゾル吸引器)
エアロゾル吸引器1は、燃焼を伴わずに香味が付加されたエアロゾルを吸引するための器具であり、所定方向(以下、長手方向Aと呼ぶ)に沿って延びる棒形状を有する。エアロゾル吸引器1は、長手方向Aに沿って電源ユニット10と、第1カートリッジ20と、第2カートリッジ30と、がこの順に設けられている。第1カートリッジ20は、電源ユニット10に対して着脱可能である。第2カートリッジ30は、第1カートリッジ20に対して着脱可能である。言い換えると、第1カートリッジ20及び第2カートリッジ30は、それぞれ交換可能である。
【0014】
(電源ユニット)
本実施形態の電源ユニット10は、
図3、
図4、及び
図6に示すように、円筒状の電源ユニットケース11の内部に、電源12、充電IC55、MCU50、スイッチ19、電圧センサ16、及び各種センサ等を収容する。電源12は、充電可能な二次電池、電気二重層キャパシタ等であり、好ましくは、リチウムイオン電池である。
【0015】
電源ユニットケース11の長手方向Aの一端側(第1カートリッジ20側)に位置するトップ部11aには、放電端子41が設けられる。放電端子41は、トップ部11aの上面から第1カートリッジ20に向かって突出するように設けられ、第1カートリッジ20の負荷21と電気的に接続可能に構成される。
【0016】
また、トップ部11aの上面には、放電端子41の近傍に、第1カートリッジ20の負荷21に空気を供給する空気供給部42が設けられている。
【0017】
電源ユニットケース11の長手方向Aの他端側(第1カートリッジ20と反対側)に位置するボトム部11bには、電源12を充電可能な外部電源60(
図6参照)と電気的に接続可能な充電端子43が設けられる。充電端子43は、ボトム部11bの側面に設けられ、例えば、USB端子、microUSB端子、及びLightning端子の少なくとも1つが接続可能である。
【0018】
なお、充電端子43は、外部電源60から送電される電力を非接触で受電可能な受電部であってもよい。このような場合、充電端子43(受電部)は、受電コイルから構成されていてもよい。非接触による電力伝送(Wireless Power Transfer)の方式は、電磁誘導型でもよいし、磁気共鳴型でもよい。また、充電端子43は、外部電源60から送電される電力を無接点で受電可能な受電部であってもよい。別の一例として、充電端子43は、USB端子、microUSB端子、Lightning端子の少なくとも1つが接続可能であり、且つ上述した受電部を有していてもよい。
【0019】
電源ユニットケース11には、ユーザが操作可能な操作部14が、トップ部11aの側面に充電端子43とは反対側を向くように設けられる。より詳述すると、操作部14と充電端子43は、操作部14と充電端子43を結ぶ直線と長手方向Aにおける電源ユニット10の中心線の交点について点対称の関係にある。操作部14は、ボタン式のスイッチ、タッチパネル等から構成される。操作部14の近傍には、パフ動作を検出する吸気センサ15が設けられている。
【0020】
充電IC55は、充電端子43に近接して配置され、充電端子43から入力される電力の電源12への充電制御を行う。充電IC55は、充電端子43に接続される充電ケーブルに搭載された交流を直流に変換するインバータ61等からの直流をパラメータが異なる直流に変換するコンバータ、このコンバータから電源12に供給される充電電圧V
CHGを測定するための電圧計、このコンバータから電源12に供給される充電電流I
CHGを測定するための電流計、及びこれらを制御するプロセッサ等を含む。本明細書におけるプロセッサとは、より具体的には、半導体素子等の回路素子を組み合わせた電気回路である。
【0021】
充電IC55は、充電電流I
CHGを一定に制御して電源12の充電を行う定電流充電(CC充電、Constant Current Charging)と、充電電圧V
CHGを一定に制御して電源12の充電を行う定電圧充電(CV充電、Constant Voltage Charging)と、を選択的に行う。充電IC55は、電源12の蓄電量に相当する電源電圧V
Battが予め決められたCV切替電圧未満の状態においては、CC充電によって電源12を充電し、電源電圧V
Battが上記のCV切替電圧以上の状態においては、CV充電によって電源12を充電する。
【0022】
MCU50は、
図5に示すように、パフ(吸気)動作を検出する吸気センサ15、電源12の電源電圧V
Battを測定する電圧センサ16、電源12の温度を測定するための温度センサ17等の各種センサ装置、操作部14、後述の報知部45、及びパフ動作の回数又は負荷21への通電時間等を記憶するメモリー18に接続され、エアロゾル吸引器1の各種の制御を行う。MCU50は、具体的にはプロセッサである。
【0023】
また、電源ユニットケース11には、内部に外気を取り込む不図示の空気の取込口が設けられている。なお、空気取込口は、操作部14の周囲に設けられていてもよく、充電端子43の周囲に設けられていてもよい。
【0024】
(第1カートリッジ)
図3に示すように、第1カートリッジ20は、円筒状のカートリッジケース27の内部に、エアロゾル源22を貯留するリザーバ23と、エアロゾル源22を霧化する電気的な負荷21と、リザーバ23から負荷21へエアロゾル源を引き込むウィック24と、エアロゾル源22が霧化されることで発生したエアロゾルが第2カートリッジ30に向かって流れるエアロゾル流路25と、第2カートリッジ30の一部を収容するエンドキャップ26と、を備える。
【0025】
リザーバ23は、エアロゾル流路25の周囲を囲むように区画形成され、エアロゾル源22を貯留する。リザーバ23には、樹脂ウェブ又は綿等の多孔体が収容され、且つ、エアロゾル源22が多孔体に含浸されていてもよい。エアロゾル源22は、グリセリン、プロピレングリコール、又は水などの液体を含む。
【0026】
ウィック24は、リザーバ23から毛管現象を利用してエアロゾル源22を負荷21へ引き込む液保持部材であって、例えば、ガラス繊維や多孔質セラミックなどによって構成される。
【0027】
負荷21は、電源12から放電端子41を介して供給される電力によって燃焼を伴わずにエアロゾル源22を霧化する。負荷21は、所定ピッチで巻き回される電熱線(コイル)によって構成されている。なお、負荷21は、エアロゾル源22を霧化してエアロゾルを発生可能な素子であればよく、例えば、発熱素子、又は超音波発生器である。発熱素子としては、発熱抵抗体、セラミックヒータ、及び誘導加熱式のヒータ等が挙げられる。
【0028】
エアロゾル流路25は、負荷21の下流側であって、電源ユニット10の中心線L上に設けられる。
【0029】
エンドキャップ26は、第2カートリッジ30の一部を収容するカートリッジ収容部26aと、エアロゾル流路25とカートリッジ収容部26aとを連通させる連通路26bと、を備える。
【0030】
(第2カートリッジ)
第2カートリッジ30は、香味源31を貯留する。第2カートリッジ30は、第1カートリッジ20側の端部が第1カートリッジ20のエンドキャップ26に設けられたカートリッジ収容部26aに着脱可能に収容される。第2カートリッジ30は、第1カートリッジ20側とは反対側の端部が、ユーザの吸口32となっている。なお、吸口32は、第2カートリッジ30と一体不可分に構成される場合に限らず、第2カートリッジ30と着脱可能に構成されてもよい。このように吸口32を電源ユニット10と第1カートリッジ20とは別体に構成することで、吸口32を衛生的に保つことができる。
【0031】
第2カートリッジ30は、負荷21によってエアロゾル源22が霧化されることで発生したエアロゾルを香味源31に通すことによってエアロゾルに香味を付与する。香味源31を構成する原料片としては、刻みたばこ、又は、たばこ原料を粒状に成形した成形体を用いることができる。香味源31は、たばこ以外の植物(例えば、ミント、漢方、ハーブ等)によって構成されてもよい。香味源31には、メントールなどの香料が付与されていてもよい。
【0032】
本実施形態のエアロゾル吸引器1では、エアロゾル源22と香味源31と負荷21とによって、香味が付加されたエアロゾルを発生させることができる。つまり、エアロゾル源22と香味源31は、エアロゾルを発生させるエアロゾル生成源を構成している。
【0033】
エアロゾル吸引器1におけるエアロゾル生成源は、ユーザが交換して使用する部分である。この部分は、例えば、1つの第1カートリッジ20と、1つ又は複数(例えば5つ)の第2カートリッジ30とが1セットとしてユーザに提供される。
【0034】
エアロゾル吸引器1に用いられるエアロゾル生成源の構成は、エアロゾル源22と香味源31とが別体になっている構成の他、エアロゾル源22と香味源31とが一体的に形成されている構成、香味源31が省略されて香味源31に含まれ得る物質がエアロゾル源22に付加された構成、香味源31の代わりに薬剤等がエアロゾル源22に付加された構成等であってもよい。
【0035】
エアロゾル源22と香味源31とが一体的に形成されたエアロゾル生成源を含むエアロゾル吸引器1であれば、例えば1つ又は複数(例えば20個)のエアロゾル生成源が1セットとしてユーザに提供される。
【0036】
エアロゾル源22のみをエアロゾル生成源として含むエアロゾル吸引器1であれば、例えば1又は複数(例えば20個)のエアロゾル生成源が1セットとしてユーザに提供される。
【0037】
このように構成されたエアロゾル吸引器1では、
図3中の矢印Bで示すように、電源ユニットケース11に設けられた不図示の取込口から流入した空気が、空気供給部42から第1カートリッジ20の負荷21付近を通過する。負荷21は、ウィック24によってリザーバ23から引き込まれたエアロゾル源22を霧化する。霧化されて発生したエアロゾルは、取込口から流入した空気と共にエアロゾル流路25を流れ、連通路26bを介して第2カートリッジ30に供給される。第2カートリッジ30に供給されたエアロゾルは、香味源31を通過することで香味が付与され、吸口32に供給される。
【0038】
また、エアロゾル吸引器1には、各種情報を報知する報知部45が設けられている(
図5参照)。報知部45は、発光素子によって構成されていてもよく、振動素子によって構成されていてもよく、音出力素子によって構成されていてもよい。報知部45は、発光素子、振動素子、及び音出力素子のうち、2以上の素子の組合せであってもよい。報知部45は、電源ユニット10、第1カートリッジ20、及び第2カートリッジ30のいずれに設けられてもよいが、電源ユニット10に設けられることが好ましい。例えば、操作部14の周囲が透光性を有し、LED等の発光素子によって発光するように構成される。
【0039】
(電気回路)
続いて、電源ユニット10の電気回路の詳細について
図6を参照しながら説明する。
電源ユニット10は、電源12と、放電端子41を構成する正極側放電端子41a及び負極側放電端子41bと、充電端子43を構成する正極側充電端子43a及び負極側充電端子43bと、電源12の正極側と正極側放電端子41aとの間及び電源12の負極側と負極側放電端子41bとの間に接続されるMCU(Micro Controller Unit)50と、充電端子43と電源12との電力伝達経路上に配置される充電IC55と、電源12と放電端子41との電力伝達経路上に配置されるスイッチ19と、を備える。
【0040】
スイッチ19は、例えばMOSFET等の半導体素子により構成され、MCU50によって開閉制御される。MCU50は、充電端子43間の電圧変動によって、充電端子43に外部電源60が接続されたことを検知する機能を持つ。
【0041】
図6に示した電源ユニット10の電気回路では、スイッチ19は電源12の正極側と正極側放電端子41aの間に設けられている。このような所謂プラスコントロールに代えて、スイッチ19は負極側放電端子41bと電源12の負極側に設けられるマイナスコントロールであってもよい。
【0042】
(MCU)
次にMCU50の構成について、より具体的に説明する。
MCU50は、
図5に示すように、プログラムを実行することにより実現される機能ブロックとして、エアロゾル生成要求検出部51と、操作検出部52と、電力制御部53と、報知制御部54と、を備える。
【0043】
エアロゾル生成要求検出部51は、吸気センサ15の出力結果に基づいてエアロゾル生成の要求を検出する。吸気センサ15は、吸口32を通じたユーザの吸引により生じた電源ユニット10内の圧力(内圧)変化の値を出力するよう構成されている。吸気センサ15は、例えば、不図示の取込口から吸口32に向けて吸引される空気の流量(すなわち、ユーザのパフ動作)に応じて変化する内圧に応じた出力値(例えば、電圧値又は電流値)を出力する圧力センサである。吸気センサ15は、コンデンサマイクロフォン等から構成されていてもよい。
【0044】
操作検出部52は、ユーザによる操作部14の操作を検出する。
【0045】
報知制御部54は、各種情報を報知するように報知部45を制御する。例えば、報知制御部54は、第2カートリッジ30の交換タイミングの検出に応じて、第2カートリッジ30の交換タイミングを報知するように報知部45を制御する。報知制御部54は、メモリー18に記憶されたパフ動作の回数又は負荷21への累積通電時間に基づいて、第2カートリッジ30の交換タイミングを検出し、報知する。報知制御部54は、第2カートリッジ30の交換タイミングの報知に限らず、第1カートリッジ20の交換タイミング、電源12の交換タイミング、電源12の充電タイミング等を報知してもよい。
【0046】
報知制御部54は、未使用の1つの第2カートリッジ30がセットされた状態にて、パフ動作が所定回数行われた場合、又は、パフ動作による負荷21への累積通電時間が所定値(例えば120秒)に達した場合に、この第2カートリッジ30を使用済み(即ち、残量がゼロ又は空である)と判定して、第2カートリッジ30の交換タイミングを報知するようにしている。
【0047】
また、報知制御部54は、上記の1セットに含まれる全ての第2カートリッジ30が使用済みとなったと判定した場合に、この1セットに含まれる1つの第1カートリッジ20を使用済み(即ち、残量がゼロ又は空である)と判定して、第1カートリッジ20の交換タイミングを報知するようにしてもよい。
【0048】
また、報知制御部54は、電源12の充電状態を示す数値指標として、電源12の容量(満充電容量)に対する電源12に蓄電されている電力量(蓄電量)の割合(単位は%)を示すSOC(State Of Charge、充電状態)を算出し、算出したSOCを報知部45から報知させる。
【0049】
報知制御部54は、例えば、SOCが、0%以上33%未満の第一範囲と、33%以上66%未満の第二範囲と、66%以上100%未満の第三範囲とのどの範囲に属するかを判断する。そして、報知制御部54は、SOCが第一範囲にあるときと、SOCが第二範囲にあるときと、SOCが第三範囲にあるときとで、報知部45に含まれる発光素子の発光色を変えて点灯又は点滅させる、報知部45に含まれる発光素子の発光パターンを変えて点灯又は点滅させる、報知部45に含まれる複数の発光素子のうちの点灯又は点滅させる発光素子の数を変える、報知部45の音出力素子の出力音を変える、報知部45の振動素子の振動パターンを変える、等の制御を行う。これにより、エアロゾル吸引器1のユーザは、電源12のSOCの大きさを、表示器等に表示される文字又は画像ではなく、音、色、又は振動によって直感的に知ることができるようになっている。
【0050】
報知制御部54がこのようにSOCを報知すれば、後述する充電停止制御を行っても、SOCの値を直接表示する場合に比べて、ユーザが抱く違和感を効果的に低減することができる。
【0051】
電力制御部53は、エアロゾル生成要求検出部51がエアロゾル生成の要求を検出した際に放電端子41を介した電源12の放電を、スイッチ19のON/OFFによって制御する。
【0052】
電力制御部53は、負荷21によってエアロゾル源が霧化されることで生成されるエアロゾルの量が所望範囲に収まるように、言い換えると、電源12から負荷21に供給される電力量が一定範囲となるように制御する。具体的に説明すると、電力制御部53は、例えば、PWM(Pluse Width Modulation:パルス幅変調)制御によってスイッチ19のON/OFFを制御する。これに代えて、電力制御部53は、PFM(Pulse Frequency Modulation:パルス周波数変調)制御によってスイッチ19のオン/オフを制御してもよい。
【0053】
電力制御部53は、負荷21への電力供給を開始してから所定期間が経過した場合に、電源12から負荷21に対する電力供給を停止する。言い換えると、電力制御部53は、ユーザが実際にパフ動作を行っているパフ期間内であっても、パフ期間が所定期間を超えた場合に、電源12から負荷21に対する電力供給を停止する。所定期間は、ユーザのパフ期間のばらつきを抑制するために定められる。
【0054】
電力制御部53の制御により、1回のパフ動作において負荷21に流れる電流は、PWM制御によって負荷21に供給される略一定の実効電圧と、放電端子41と負荷21の抵抗値と、によって決まる略一定の値となる。本実施形態のエアロゾル吸引器1では、未使用の1つの第2カートリッジ30をユーザが使用してエアロゾルを吸引する際に、負荷21への累積通電時間が最大で例えば120秒となるよう制御される。そのため、1つの第1カートリッジ20と5つの第2カートリッジ30を1セットとした場合には、この1セットを空(使用済み)にするために必要な最大の電力量を予め求めることができる。
【0055】
また、電力制御部53は、充電端子43と外部電源60との電気的な接続を検出する。そして、電力制御部53は、充電IC55によって電源12の充電が行われている状態において、電源12が満充電状態とならないように、電源12のSOCが100%よりも低い値(例えば95%以下又は90%以下の任意の値)となった時点で、電源12の充電を停止させる制御も行う。この制御によって、電源12が劣化しにくい状態に維持される。
【0056】
電源12にリチウムイオン二次電池などを用いた場合、電源12を放置する際のSOCの値は、電源12の劣化に影響を与える。この劣化の影響は、SOCが100%又は0%に近づけば近づくほど大きくなる。一方、この劣化の影響は、SOCが30〜70%付近で最小となる。従って、電源12のSOCを100%よりも低い値に維持すれば、電源12が劣化しにくい状態を維持することができる。
【0057】
なお、電力制御部53は、ユーザに提供される未使用の1セット又は複数セット(以下では2セットとする)のエアロゾル生成源を空にするために負荷21に供給が必要な電力量以上の電力が電源12に蓄電された状態となるように、電源12の充電停止制御を行う。これにより、満充電状態よりも前に電源12の充電が完了された状態であっても、1セット又は2セットのエアロゾル生成源を最後まで消費できることを可能にしている。換言すれば、電源12の劣化の抑制とユーザの利便性の向上の双方を達成することができる。
【0058】
以下では、未使用の1セットのエアロゾル生成源を空にするために負荷21に供給が必要な電力量のことを1セット分の必要電力量といい、未使用の2セットのエアロゾル生成源を空にするために負荷21に供給が必要な電力量のことを2セット分の必要電力量という。
【0059】
(電源の充電停止制御)
この制御では、MCU50は、電源12から負荷21への放電を行う放電制御時には、電源12のSOCが0%になった時点で放電を停止させて(言い換えると、放電を不可として)、報知部45により、電源12の充電タイミングを報知する。一方、MCU50は、電源12が劣化しにくいSOCの範囲のうちの上限側の任意の範囲(例えば90%〜95%とする)を予め定めており、充電IC55による電源12の充電中には、電源12のSOCがこの範囲における特定の値に達した場合に、充電IC55を制御して電源12の充電を完了させる。以下では、MCU50が電源12の充電を完了させるときの電源12のSOCのことを、充電停止SOCという。
【0060】
電源12は、上記任意の範囲におけるSOCの最小値(=90%)の蓄電量が2セット分の必要電力量以上となるように、大きな容量のものが用いられている。これにより、電源12の劣化が少ない状態においては、電源12の充電をSOC90%の状態にて停止する制御を行っても、2セットのエアロゾル生成源を空にするための放電はできるようになっている。従って、電源12を満充電状態(SOC=100%)まで充電しなくても、ユーザの利便性は損なわれない。
【0061】
図7、
図8、及び
図9は、電源12の健全状態がそれぞれ異なる場合における、電源12の満充電容量と、電源12の充電完了時における蓄電量との関係の一例を示す図である。
【0062】
以下では、電源12の健全状態を示す数値指標をSOH(State Of Health)として説明する。SOHは、電源12の劣化時の満充電容量を電源12の新品時の満充電容量で除算した値に100をかけて得られる数値であり、単位は%である。つまり、SOHが電源12の健全状態を示す数値指標である場合には、SOHが高いほど、電源12は新品に近い状態であり、SOHが低いほど、電源12の劣化が進行した状態である。SOHは、各種の方法によって測定又は推定が可能である。
【0063】
なお、SOHは、電源12の劣化時の内部抵抗値を電源12の新品時の内部抵抗値で除算した値に100を掛けて得られる数値と定義することもできる。この場合のSOHは、電源12の劣化状態を示す数値指標になる。SOHが電源12の劣化状態を示す数値指標である場合には、SOHが高いほど、電源12の劣化が進行した状態であり、SOHが低いほど、電源12は新品に近い状態である。
【0064】
以下では、SOHが電源12の健全状態を示す数値指標である場合を例にして説明する。当業者であれば、SOHが電源12の劣化状態を示す数値指標である場合でも同様に、電源12の満充電容量と電源12の充電完了時における蓄電量との関係が定義できることが理解できるであろう。
【0065】
図7には、SOHが100%、すなわち、電源12が新品の状態における満充電容量と充電完了時の蓄電量の一例が示されている。上述したように、SOHが100%の状態では、電源12の満充電容量の90%の容量が、2セット分の必要電力量以上となる。このため、この状態では、MCU50は、充電停止SOCを、電源12の劣化が抑制される下限値の90%に設定し、電源12のSOCが90%に達した時点で充電を完了させる。
【0066】
図8には、SOHが100%よりも低い閾値TH1以下のときの状態が示されている。つまり、
図8には、電源12の劣化が
図7の例より進行した状態が示されている。
図8の例では、電源12の満充電容量の90%の容量が、2セット分の必要電力量未満となっている。この状態では、MCU50は、充電完了時の電源12の蓄電量が2セット分の必要電力量を確保できるように、充電停止SOCを90%よりも大きい例えば93%に設定し、電源12のSOCが93%に達した時点で充電を完了させてもよい。これにより、SOHが多少低下した場合であっても、充電完了時には、2セットのエアロゾル生成源を空にするだけの電力が確保されることになる。
【0067】
図9には、SOHが閾値TH1よりも低い閾値TH2以下のときの状態が示されている。つまり、
図9には、電源12の劣化が
図8の例より進行した状態が示されている。
図9の例では、電源12の満充電容量が2セット分の必要電力量以下となっている。この状態では、MCU50は、充電完了時の電源12の蓄電量が1セット分の必要電力量を確保できるように、充電停止SOCを90%〜95%の間のいずれかの値に設定し、電源12のSOCがこの値に達した時点で充電を完了させる。これにより、SOHが大きく低下した場合であっても、充電完了時には、1セットのエアロゾル生成源を空にするだけの電力が確保されることになる。
【0068】
なお、MCU50は、SOHが閾値TH2以下になったことを契機として電源12の劣化を検知し、報知部45によってその電源12が劣化したことを報知してもよい。または、MCU50は、SOHが閾値TH2以下になったことを契機として上述した電源12の充電停止制御を開始してもよい。これにより、劣化した電源12のさらなる劣化を抑制することができる。また、電源12の劣化が検知されるまで又は電源12の充電停止制御が開始されるまでは、電源12は1セットのエアロゾル生成源を空にするだけの電力が確保される。このため、ユーザの利便性が一層向上する。
【0069】
以下、MCU50が行う充電停止制御について具体的に説明する。
【0070】
まず、MCU50は、SOHを測定又は推定し、このSOHから、電源12の満充電容量を推定する。SOHの測定又は推定には、電源12の内部抵抗や、充放電した電力の積算値などを用いてもよい。具体的には、既知である新品時の電源12の満充電容量にSOHを乗じることで、現在の満充電容量を推定する。
【0071】
MCU50は、推定した満充電容量に充電停止SOCの下限値(90%)を乗じた値が、2セット分の必要電力量以上となっている場合(
図7のケース)には、充電停止SOCを下限値の90%に設定する。これにより、電源12の劣化が少ない状態では、電源12の劣化を効果的に抑制しながら、1回の充電によって、2セットを消費するための電力を確保することができる。
【0072】
MCU50は、推定した満充電容量に充電停止SOCの下限値(90%)を乗じた値が、2セット分の必要電力量未満となり、且つ、推定した満充電容量に充電停止SOCの上限値(95%)を乗じた値が2セット分の必要電力量以上となる場合(
図8のケース)には、充電完了時の電源12の蓄電量を2セット分の必要電力量とすることのできるSOC(90%よりも高い値)を充電停止SOCに設定する。この場合でも、満充電状態にはならないため、劣化を抑制しながら、2セットを消費するための電力を確保することができる。
【0073】
MCU50は、推定した満充電容量に充電停止SOCの下限値(90%)と上限値(95%)を乗じた値が、それぞれ、2セット分の必要電力量未満となる場合には、充電停止時の蓄電量が1セット分の必要電力量以上となるような充電停止SOCを90%〜95%の間で決定する。これにより、電源12の劣化を抑制しつつ、1セットを消費するための電力を確保することができる。
【0074】
MCU50は、推定した満充電容量に充電停止SOCの上限値(95%)を乗じた値が、1セット分の必要電力量未満となった場合には、電源12の交換タイミングになったことを報知部45からユーザに報知させる。
【0075】
充電完了時の電源12の蓄電量から、電源12の放電が不可となるとき(SOCが0%のとき)の電源12の蓄電量を引いた蓄電量を放電可能蓄電量と定義すると、以上のMCU50の制御により、この放電可能蓄電量を、1セット分又は2セット分の必要電力量以上とすることができる。したがって、電源12が新品の状態と劣化が進んだ状態とのいずれにおいても、少なくとも1セット分のエアロゾル生成源を消費することが可能となり、利便性を向上させることができる。また、電源12は、満充電状態になることはないため、劣化を抑制することができる。
【0076】
なお、上述した実施形態では、MCU50は、2セット分の必要電力量を基準として、充電停止SOCを決定している。これに代えて、MCU50は、1セット分の必要電力量を基準として、充電停止SOCを決定してもよい。この場合、いずれの劣化(健全)状態においても、充電停止SOCは、下限値(90%)に設定される。
【0077】
また、上述した実施形態で述べた充電停止SOCの下限値(90%)と上限値(95%)は、一例に過ぎない点に留意されたい。これらは、用いる電源12によって異なる値であるため、個々の電源12に対する実験などによって求められることが好ましい。
【0078】
(電源の充電停止制御の第一変形例)
この制御では、MCU50は、電源12の充電時には、電源12のSOCが100%になった時点で充電を完了させる。一方、MCU50は、電源12が劣化しにくいSOCの範囲のうちの下限側の任意の範囲(例えば10%〜5%とする)を予め定めており、電源12から負荷21への放電中に、電源12のSOCがこの範囲における特定の値に達した場合には、電源12から負荷21へのそれ以上の放電を停止して(言い換えると、放電を不可として)、報知部45により、電源12の充電タイミングを報知する。以下では、MCU50が電源12の放電を不可とするときの電源12のSOCのことを、放電不可SOCという。
【0079】
電源12は、満充電容量から上記任意の範囲におけるSOCの最大値(=10%)の蓄電量を減じて得られる容量が2セット分の必要電力量以上となる(言い換えると、電源12の満充電容量の90%の容量が、2セット分の必要電力量以上となる)ように、大きな容量のものが用いられている。これにより、電源12の劣化が少ない状態においては、電源12の放電をSOC10%の状態にて不可とする制御を行っても、2つのセットのエアロゾル生成源を空にするための放電はできるようになっている。
【0080】
図10、
図11、及び
図12は、電源12の健全状態がそれぞれ異なる場合における、電源12の満充電容量と、電源12の放電不可時における蓄電量との関係の一例を示す図である。
【0081】
図10には、SOHが100%、すなわち、電源12が新品の状態における満充電容量と放電不可時の蓄電量の一例が示されている。上述したように、SOHが100%の状態では、電源12の満充電容量の90%の容量が2セット分の必要電力量以上となる。このため、この状態では、MCU50は、放電不可SOCを、電源12の劣化が最も少なくなる上限値の10%に設定し、電源12のSOCが10%に達した時点で放電を不可とする。
【0082】
図11には、SOHが100%よりも低い閾値TH1以下のときの状態が示されている。つまり、
図11には、電源12の劣化が
図10の例より進行した状態が示されている。
図11の例では、電源12の満充電容量の90%の容量が、2セット分の必要電力量未満となっている。この状態では、満充電容量と放電停止時の電源12の蓄電量との差が2セット分の必要電力量となるように、放電不可SOCを10%よりも小さい例えば7%に設定し、電源12のSOCが7%に達した時点で、電源12の放電を不可とする。これにより、SOHが多少低下した場合であっても、充電完了時には、2セットのエアロゾル生成源を空にするだけの電力が確保されることになる。
【0083】
図12には、SOHが閾値TH1よりも低い閾値TH2以下のときの状態が示されている。つまり、
図12には、電源12の劣化が
図11の例より進行した状態が示されている。
図12の例では、電源12の満充電容量が2セット分の必要電力量以下となっている。この状態では、MCU50は、満充電容量と放電停止時の電源12の蓄電量との差が1セット分の必要電力量以上となるように、放電不可SOCを10%〜5%の間のいずれかの値に設定し、電源12のSOCがこの値に達した時点で、放電を不可とする。これにより、SOHが大きく低下した場合であっても、充電完了時には、1セットのエアロゾル生成源を空にするだけの電力が確保されることになる。
【0084】
なお、MCU50は、SOHが閾値TH2以下になったことを契機として電源12の劣化を検知し、報知部45によってその電源12が劣化したことを報知してもよい。または、MCU50は、SOHが閾値TH2以下になったことを契機として上述した電源12の放電停止制御を開始してもよい。これにより、劣化した電源12のさらなる劣化を抑制することができる。また、電源12の劣化が検知されるまで又は電源12の放電停止制御が開始されるまでは、電源12は1セットのエアロゾル生成源を空にするだけの電力が確保される。このため、ユーザの利便性が一層向上する。
【0085】
以下、MCU50が行う放電停止制御について具体的に説明する。
【0086】
まず、MCU50は、SOHを測定又は推定し、このSOHから、電源12の満充電容量を推定する。SOHの測定又は推定には、電源12の内部抵抗や、充放電した電力の積算値などを用いてもよい。具体的には、既知である新品時の電源12の満充電容量にSOHを乗じることで、現在の満充電容量を推定する。
【0087】
MCU50は、このようにして推定した満充電容量から、推定した満充電容量に放電不可SOCの上限値(10%)を乗じた値を減じて得られる容量が、2セット分の必要電力量以上となっている場合(
図10のケース)には、放電不可SOCを上限値の10%に設定する。これにより、電源12の劣化が少ない状態では、電源12の劣化を効果的に抑制しながら、1回の充電によって、2セットを消費するための電力を確保することができる。
【0088】
MCU50は、推定した満充電容量から、推定した満充電容量に放電不可SOCの下限値(5%)を乗じた値を減じて得られる容量が2セット分の必要電力量以上となり、且つ、推定した満充電容量から、推定した満充電容量に放電不可SOCの上限値(10%)を乗じた値を減じて得られる容量が2セット分の必要電力量未満となる場合(
図11のケース)には、満充電容量から放電不可時の電源12の蓄電量を減じて得られる容量を2セット分の必要電力量とすることのできるSOC(10%よりも低い値)を放電不可SOCに設定する。この場合でも、放電終止状態にはならないため、劣化を抑制しながら、2セットを消費するための電力を確保することができる。
【0089】
MCU50は、推定した満充電容量から、推定した満充電容量に放電不可SOCの下限値(5%)を乗じた値を減じて得られる容量と、推定した満充電容量から、推定した満充電容量に放電不可SOCの上限値(10%)を乗じた値を減じて得られる容量と、がそれぞれ2セット分の必要電力量未満となる場合(
図12のケース)には、満充電容量から放電不可時の電源12の蓄電量を減じて得られる容量を1セット分の必要電力量とすることのできる放電不可SOCを10%〜5%の間で決定する。これにより、電源12の劣化を抑制しつつ、1セットを消費するための電力を確保することができる。
【0090】
MCU50は、推定した満充電容量から、推定した満充電容量に放電不可SOCの下限値(5%)を乗じた値を減じて得られる容量が1セット分の必要電力量未満となった場合には、電源12の交換タイミングになったことを報知部45からユーザに報知させる。
【0091】
充電完了時の電源12の蓄電量から、電源12の放電が不可とされるときの電源12の蓄電量を引いた蓄電量を放電可能蓄電量と定義すると、以上のMCU50の放電停止制御により、この放電可能蓄電量を、1セット分又は2セット分の必要電力量以上とすることができる。したがって、電源12が新品の状態と劣化が進んだ状態とのいずれにおいても、少なくとも1セット分のエアロゾル生成源を消費することが可能となり、利便性を向上させることができる。また、電源12は、放電終止状態になることはないため、劣化を抑制することができる。
【0092】
なお、上述した実施形態では、MCU50は、2セット分の必要電力量を基準として、放電不可SOCを決定している。これに代えて、MCU50は、1セット分の必要電力量を基準として、放電不可SOCを決定してもよい。この場合、いずれの劣化(健全)状態においても、放電不可SOCは、上限値(10%)に設定される。
【0093】
また、上述した実施形態で述べた放電不可SOCの下限値(5%)と上限値(10%)は、一例に過ぎない点に留意されたい。これらは、用いる電源12によって異なる値であるため、個々の電源12に対する実験などによって求められることが好ましい。
【0094】
(電源の充電停止制御の第二変形例)
MCU50は、電源12の充電時には、電源12のSOCが上記の上限側の任意の範囲の特定の値になった時点で充電を完了させ、電源12の放電時には、電源12のSOCが上記の下限側の任意の範囲の特定の値になった時点で放電を不可とする制御を行ってもよい。つまり、MCU50は、電源12が満充電状態と放電終止状態とのいずれにもならないように、電源12の充電と放電をそれぞれ制御してもよい。
【0095】
充電完了時の電源12の蓄電量から、電源12の放電が不可となるときの電源12の蓄電量を引いた蓄電量を放電可能蓄電量と定義すると、MCU50は、この放電可能蓄電量が1セット分又は2セット分の必要電力量以上となるように、充電停止SOCと放電不可SOCとをそれぞれ設定することで、電源12が新品の状態と劣化が進んだ状態とのいずれにおいても、少なくとも1セット分のエアロゾル生成源を消費することが可能となり、利便性を向上させることができる。また、電源12は、満充電状態と放電終止状態のいずれにもなることはないため、劣化をより抑制することができる。
【0096】
(電源の充電停止制御の第三変形例)
エアロゾル生成源が、1つの第1カートリッジ20と、複数(例えば5つ)の第2カートリッジ30とが1セットとしてユーザに提供される場合の、充電停止制御について以下に詳述する。この場合では、新品(未使用時)の1つの第1カートリッジ20の残量を空にしようとすると、新品(未使用時)の5つの第2カートリッジ30の残量を空にする必要がある。必要電力量は、新品(未使用時)の1つの第1カートリッジ20を消費するために必要な電力量に基づいて設定してもよいし、新品(未使用時)の1つの第2カートリッジ30を消費するために必要な電力量に基づいて設定してもよい。
【0097】
新品(未使用時)の1つの第1カートリッジ20を消費するために必要な電力量に基づいて必要電力量を設定した場合には、電源12が1セットを消費するために十分な電力量を有することになる。これにより、電源12の劣化を抑制しつつ、電源12の充電頻度が過度にならないようにすることができる。
【0098】
新品(未使用時)の1つの第2カートリッジ30を消費するために必要な電力量に基づいて必要電力量を設定した場合には、電源12のサイズ、重量、コストを低減することができる。
【0099】
以上の説明では、MCU50が充電停止SOCと放電不可SOCの少なくとも一方を制御するものとしたが、この制御のうち充電停止SOCの制御については充電IC55が行うようにしてもよい。
【0100】
本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
【0101】
(1)
エアロゾル生成源(エアロゾル源22及び香味源31)からエアロゾルを発生させるための負荷(負荷21)に放電可能な電源(電源12)と、
前記電源が満充電状態と放電終止状態とのうちの一方又は両方とならないように、前記電源の充電と放電の少なくとも一方を制御する制御部(MCU50)と、を備えるエアロゾル吸引器(エアロゾル吸引器1)用の電源ユニット(電源ユニット10)。
【0102】
(1)によれば、電源が満充電状態と放電終止状態とのうちの一方又は両方とならないように電源が制御されるため、電源の劣化を抑制することができる。特に、エアロゾル吸引器のように頻繁に使用され充放電が行われ得る機器においてこのような制御を行うことにより、電源の劣化を抑制して機器の寿命を延ばすことができる。併せて、省エネルギー効果を得ることができる。
【0103】
(2)
(1)記載のエアロゾル吸引器用の電源ユニットであって、
前記電源の充電を完了した状態における前記電源の蓄電量から、前記電源の放電を不可とする前記電源の蓄電量を引いた残りを放電可能電力量とし、
前記制御部は、前記放電可能電力量が、未使用の前記エアロゾル生成源の残量を空にするために前記負荷に供給が必要な電力量以上となるように、前記電源の充電と放電の少なくとも一方を制御するエアロゾル吸引器用の電源ユニット。
【0104】
(2)によれば、電源の充電が完了された状態においては、未使用のエアロゾル生成源をエアロゾル吸引器によって消費することが可能となる。このため、エアロゾル生成源の残量が残っている状態にてエアロゾルを発生させることができなくなる状況を防ぐことができ、電源の頻繁な充電を防いで、電源の劣化を抑制することができる。換言すれば、電源の劣化の抑制とユーザの利便性の向上の双方を達成することができる。
【0105】
(3)
(2)記載のエアロゾル吸引器用の電源ユニットであって、
前記エアロゾル生成源は、前記負荷によって霧化される媒体を含む第一ユニット(第1カートリッジ20)と、前記霧化された前記媒体に香味を付与する香味源を含む第二ユニット(第2カートリッジ30)と、を含み、
前記制御部は、前記放電可能電力量が、予め決められた1以上の数の前記第一ユニットの残量を空にするために前記負荷に供給が必要な電力量以上となるように、前記電源の充電と放電の少なくとも一方を制御するエアロゾル吸引器用の電源ユニット。
【0106】
(3)によれば、電源の充電が完了された状態においては、予め決められた数の第一ユニットをエアロゾル吸引器によって消費することが可能となる。例えば、1つの第一ユニットによって複数の第二ユニットが使用可能とされる場合には、1回の充電で多くの第二ユニットを消費できるようになる。これにより、電源の頻繁な充電を防いで、電源の劣化を抑制することができる。
【0107】
(4)
(2)記載のエアロゾル吸引器用の電源ユニットであって、
前記エアロゾル生成源は、前記負荷によって霧化される媒体を含む第一ユニット(第1カートリッジ20)と、前記霧化された前記媒体に香味を付与する香味源を含む第二ユニット(第2カートリッジ30)と、を含み、
前記制御部は、前記放電可能電力量が、予め決められた1以上の数の前記第二ユニットの残量を空にするために前記負荷に供給が必要な電力量以上となるように、前記電源の充電と放電の少なくとも一方を制御するエアロゾル吸引器用の電源ユニット。
【0108】
(4)によれば、電源の充電が完了された状態においては、予め決められた数の第二ユニットをエアロゾル吸引器によって消費することが可能となる。例えば、電源の放電可能電力量が複数の第二ユニットを空にするために必要な電力量以上となるように構成されることで、1回の充電で多くの第二ユニットを消費できるようになる。これにより、電源の頻繁な充電を防いで、電源の劣化を抑制することができる。
また、電源の放電可能電力量が例えば1つの第二ユニットを空にするために必要な電力量以上となるように構成されることで、電源の容量を小さくすることができ、エアロゾル吸引器の小型化、軽量化、低コスト化を図ることができる。また、第二ユニットを1つ消費するための電力量は、第一ユニットを1つ消費するための電力量よりも少なくすることができるため、電源の容量を小さくすることができ、エアロゾル吸引器の小型化、軽量化、低コスト化を図ることができる。
【0109】
(3)又は(4)記載のエアロゾル吸引器用の電源ユニットと、
前記第一ユニットと、
未使用時において前記負荷へ放電を行うと、未使用の前記第一ユニットより早く残量が空になる前記第二ユニットと、を含むエアロゾル吸引器。
【0110】
(6)
(1)記載のエアロゾル吸引器用の電源ユニットであって、
前記電源の充電を完了した状態における前記電源の蓄電量から、前記電源の放電を不可とする前記電源の蓄電量を引いた残りを放電可能電力量とし、
前記制御部は、前記電源の充電を完了した状態且つ前記電源の劣化状態を示す数値指標(SOH)が閾値未満又は前記電源の健全状態を示す数値指標(SOH)が閾値以上となっている第1状態における前記放電可能電力量が、未使用の前記エアロゾル生成源の残量を空にするために前記負荷に供給が必要な電力量以上となるように、前記電源の充電と放電の少なくとも一方を制御するエアロゾル吸引器用の電源ユニット。
【0111】
(5)によれば、電源の劣化が進んでいない状態において、未使用のエアロゾル生成源を空にするために負荷に供給が必要な電力量以上の放電可能電力量が確保されているため、電源の劣化が進んだ場合でも、未使用のエアロゾル生成源を空にするだけの電力を確保することができる。また、上記状態における放電可能電力量を小さくすることで、電源の容量を減らすことができ、エアロゾル吸引器の小型化、軽量化、低コスト化を図ることができる。
【0112】
(7)
(6)記載のエアロゾル吸引器用の電源ユニットであって、
前記第1状態は、新品時における前記電源の状態であるエアロゾル吸引器用の電源ユニット。
【0113】
(8)
(1)、(6)、又は(7)記載のエアロゾル吸引器用の電源ユニットであって、
前記電源の充電を完了した状態における前記電源の蓄電量から、前記電源の放電を不可とする前記電源の蓄電量を引いた残りを放電可能電力量とし、
前記制御部は、前記電源の充電を完了した状態且つ前記電源の劣化状態を示す数値指標(SOH)が閾値以上又は前記電源の健全状態を示す数値指標が閾値未満となっている第2状態における前記放電可能電力量が、未使用の前記エアロゾル生成源の残量を空にするために前記負荷に供給が必要な電力量以上となるように、前記電源の充電と放電の少なくとも一方を制御するエアロゾル吸引器用の電源ユニット。
【0114】
(8)によれば、電源の劣化が進んで電源の満充電容量が減少した場合であっても未使用のエアロゾル生成源を空にするために負荷に供給が必要な電力量以上の放電可能電力量が確保されるため、未使用のエアロゾル生成源を最後まで消費することが可能となる。また、上記状態における放電可能電力量を小さくすることで、電源の容量を減らすことが可能となり、エアロゾル吸引器の小型化、軽量化、低コスト化を図ることができる。
【0115】
(9)
(8)記載のエアロゾル吸引器用の電源ユニットであって、
前記第2状態は、前記制御部が前記電源の劣化を検知する又は前記電源の充放電を抑制する状態であるエアロゾル吸引器用の電源ユニット。
【0116】
(10)
(1)から(9)のいずれか1つに記載のエアロゾル吸引器用の電源ユニットであって、
前記制御部は、前記電源が少なくとも満充電状態とならないように前記電源の充電を行うエアロゾル吸引器用の電源ユニット。
【0117】
(10)によれば、電源の充電完了までにかかる時間を短縮することができる。
【0118】
(11)
(10)記載のエアロゾル吸引器用の電源ユニットであって、
前記制御部は、前記電源の満充電容量に対する前記電源の蓄電量の割合を示すSOCの上限値が95%以下となるように前記電源の充電を行うエアロゾル吸引器用の電源ユニット。
【0119】
(11)によれば、SOC95%の状態にてエアロゾル生成源を空にするための電力以上の電力を負荷に供給できるよう電源の容量を大きくしておくことで、電源の劣化が進んで容量が減少した場合でも、エアロゾル生成源を消費するための電力を確保することができ、エアロゾル吸引器の寿命を延ばすことができる。
【0120】
(12)
(11)記載のエアロゾル吸引器用の電源ユニットであって、
前記制御部は、前記電源の満充電容量に対する前記電源の蓄電量の割合を示すSOCの上限値が90%以下となるように前記電源の充電を行うエアロゾル吸引器用の電源ユニット。
【0121】
(12)によれば、SOC90%の状態にてエアロゾル生成源を空にするための電力以上の電力を負荷に供給できるよう電源の容量を大きくしておくことで、電源の劣化が進んで容量が減少した場合でも、エアロゾル生成源を消費するための電力を確保することができ、エアロゾル吸引器の寿命を延ばすことができる。
【0122】
(13)
エアロゾル生成源からエアロゾルを発生させるための負荷に放電可能な電源を有するエアロゾル吸引器の電源制御方法であって、
前記電源が満充電状態と放電終止状態とのうちの一方又は両方とならないように、前記電源の充電と放電の少なくとも一方を制御する制御ステップを備える電源制御方法。
【0123】
(14)
エアロゾル生成源からエアロゾルを発生させるための負荷に放電可能な電源を有するエアロゾル吸引器の電源制御プログラムであって、
前記電源が満充電状態と放電終止状態とのうちの一方又は両方とならないように、前記電源の充電と放電の少なくとも一方を制御する制御ステップをコンピュータに実行させるための電源制御プログラム。
【0124】
(13)と(14)によれば、電源が満充電状態と放電終止状態とのうちの一方又は両方とならないように電源が制御されるため、電源の劣化を抑制することができる。特に、エアロゾル吸引器のように頻繁に使用され充放電が行われ得る機器においてこのような制御を行うことにより、電源の劣化を抑制して機器の寿命を延ばすことができる。併せて、省エネルギー効果を得ることができる。
【0125】
(1)、(13)及び(14)によれば、電源が満充電状態と放電終止状態とのうちの一方又は両方とならないように電源が制御されるため、電源の劣化を抑制することができる。特に、エアロゾル吸引器のように頻繁に使用され充放電が行われ得る機器においてこのような制御を行うことにより、電源の劣化を抑制して機器の寿命を延ばすことができる。従って、電源を新品のものと交換することなく長期に亘って使用できるという省エネルギー効果を有する。
【課題】電源の性能劣化を抑制することのできるエアロゾル吸引器用の電源ユニット、エアロゾル吸引器の電源制御方法、及びエアロゾル吸引器の電源制御プログラムを提供する。
【解決手段】エアロゾル吸引器1は、エアロゾル生成源からエアロゾルを発生させるための負荷21に放電可能な電源12と、電源12が満充電状態と放電終止状態とのうちの一方又は両方とならないように、電源12の充電と放電の少なくとも一方を制御するMCU50と、を備える。