(58)【調査した分野】(Int.Cl.,DB名)
前記複数の肉抜き部が、前記ジベル板に形成された貫通孔、及び前記ジベル板の側縁に形成された切欠部のいずれか一方、又は両方である、請求項1に記載の鋼製構造部材の接続金物。
前記複数の肉抜き部が、前記ジベル板に形成された貫通孔であって、前記第一の肉抜き部である第一の貫通孔の内径は、前記第二の肉抜き部である第二の貫通孔の内径よりも小さい、請求項1に記載の鋼製構造部材の接続金物。
前記複数の肉抜き部が、前記ジベル板の側縁に形成された切欠部であって、前記第一の肉抜き部である第一の切欠部は、前記第二の肉抜き部である第二の切欠部よりも小さい、請求項1に記載の鋼製構造部材の接続金物。
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、特許文献1の接続金物は、支持部に対する制震ダンパーのずれ変形を小さく抑えるために、支持部のコンクリートに剪断力伝達部材及びアンカーボルトを埋設している。このため、剪断力伝達部材及びアンカーボルトが、支持部に配筋された鉄筋に干渉する可能性がある。同様の問題は、制震ダンパーに限らず、鋼製の構造部材を、鉄筋コンクリート構造又は鉄骨鉄筋コンクリート構造の構造物に接続する場合に考慮される。つまり、構造部材を接続される鉄筋コンクリート構造又は鉄骨鉄筋コンクリート構造の構造物の健全性を担保するうえで、鋼製構造部材の接続金物及び接続構造には改良の余地が残されていた。
【0006】
本発明は、前述した事情に鑑みてなされたものであって、鋼製の構造部材を接続される構造物の健全性を高めることができる鋼製構造部材の接続金物及び接続構造を提供することを目的とする。
【課題を解決するための手段】
【0007】
前記課題を解決するために、本発明は以下の手段を提案している。
本発明に係る構造部材の接続金物は、鋼製の構造部材の接続端が一方の面に接続されるベース板と、前記ベース板の他方の面に、該他方の面上に対して起立又は垂下するように固定されたジベル板とを備える。前記ジベル板には、前記ベース板から離れる方向に並ぶ複数の肉抜き部が形成され、前記複数の肉抜き部のうち前記ベース板に最も近い第一の肉抜き部は、前記第一の肉抜き部よりも前記ベース板から遠い第二の肉抜き部よりも小さい。
【0008】
肉抜き部とは、ジベル板に形成された中空の部分である。ジベル板に引抜力が作用する場合には、せん断力作用時と異なり、ジベル板の第一の肉抜き部付近において、ジベル板(鋼板)の引張降伏によって終局耐力が決定することがある。このような状況下において、第一の肉抜き部を第二の肉抜き部より小さくすることで、ジベル板(鋼板)の長さ方向に直交する断面の大きさ(nett値、断面内において貫通孔が占める部分の面積を含まない)を、従来型のジベル板と比較して大きくすることができる。これにより、ジベル板の寸法(長さ、幅、厚さ)を大きく変えることなくジベル板の引抜耐力を高めることができ、ジベル板を従来よりも小さくすることができる。
加えて、ジベル板の第一の肉抜き部がコンクリートの表面に近い場合には、第一の肉抜き部の位置を起点にコンクリートがコーン状破壊することがある。第一の肉抜き部を第二の肉抜き部より小さくすることにより、第一の肉抜き部が抵抗する引抜力が抑制され、コーン状破壊を効果的に抑制できる。これにより、鋼製の構造部材を接続される鉄筋コンクリート構造又は鉄骨鉄筋コンクリート構造の構造物の健全性を高めることができる。
【0009】
なお、前記複数の肉抜き部は、前記ジベル板に形成された貫通孔、及び前記ジベル板の側縁に形成された切欠部のいずれか一方、又は両方であってもよい。
前記複数の肉抜き部を、前記ジベル板に形成された貫通孔とした場合、前記第一の肉抜き部である第一の貫通孔の内径は、前記第二の肉抜き部である第二の貫通孔の内径よりも小さくされる。
前記複数の肉抜き部を、前記ジベル板の側縁に形成された切欠部とした場合は、前記第一の肉抜き部である第一の切欠部は、前記第二の肉抜き部である第二の切欠部よりも小さくされる。
【0010】
鉄筋コンクリート構造に構造部材を配置する場合には、層間変位は鉄骨構造に比べて小さく、風荷重時には数ミリ程度、地震時でもせいぜい数十ミリ程度である。この層間変位を構造部材に効率よく伝達するためには、構造部材の回転ずれが小さい(すなわち、剛性が高い)接続構造とする必要がある。
ここで、構造部材の回転ずれは、構造部材のフランジと平行に配置されたジベル板の抜出しによって引き起こされる。このため、ジベル板の抜出しを防ぐ(すなわち、引抜きに対する剛性を高める)ことが非常に重要となる。
【0011】
前記肉抜き部として、ジベル板の側縁に切欠部を形成すると、上記の作用に加えて、切欠部がコンクリートに対するアンカーとしての作用を生じるので、ジベル板の寸法(長さ、幅、厚さ)を大きく変えることなく、ジベル板の抜出しに対する耐力を高めることができる。
【0012】
本発明に係る接続構造は、鋼製の構造部材と、鉄筋コンクリート構造又は鉄骨鉄筋コンクリート構造の構造物の躯体との接続構造であって、前記接続金物を含み、前記ジベル板が前記構造体に埋設されている。
【0013】
ジベル板の第一の肉抜き部を、第二の肉抜き部よりも小さく形成して構造体に埋設することにより、第一の肉抜き部が抵抗する引抜力が抑制され、構造体のコーン状破壊を効果的に抑制できる。よって、ジベル板のずれ変形を小さく抑えることができ、構造部材にせん断変形を集中させることができる。これにより、構造部材を効果的にせん断塑性変形させてエネルギーを吸収することにより建物の損傷を抑制できる。
【0014】
また、第一の肉抜き部を、第二の肉抜き部よりも小さく形成することにより、構造体のコーン状破壊が効果的に抑制されるので、第一の肉抜き部を構造体の表面に近づけることができる。よって、ジベル板の長さを従来よりも短くすることができる。これにより、例えば、構造体の内部に配筋された鉄筋にジベル板が干渉することを抑えて、構造体の健全性を高めることができる。
【0015】
前記構造体に埋設される鉄筋をさらに含み、前記鉄筋は、前記構造躯体の内部で前記複数の肉抜き部に配設されていてもよい。
【0016】
ジベル板の肉抜き部に配設された鉄筋が構造体に埋設されることにより、構造体のコーン状破壊をより効果的に抑制でき、ジベル板の抜出しに対する耐力、弾性剛性をさらに高めることができる。
【発明の効果】
【0017】
本発明によれば、鋼製の構造部材を接続される鉄筋コンクリート構造又は鉄骨鉄筋コンクリート構造の構造物の健全性を高めることができる。
【発明を実施するための形態】
【0019】
以下、本発明の一実施形態に係る構造部材の接続金物35及び接続構造30を、鉄筋コンクリート構造10の建物に適用する例について説明する。
(第1実施形態)
図1、
図2に示すように、鉄筋コンクリート構造10は、上階の梁12と、下階の梁14と、制震間柱20とを備えた架構式構造である。制震間柱20は、例えば、鉄筋コンクリート構造10の架構の上階の梁12と下階の梁14との間に取付けられている。制震間柱20は、上部支持部21と、下部支持部22と、鋼材型の制震ダンパー(構造部材)25と、接続構造30とを備えている。
【0020】
上部支持部21は、上階の梁12から垂設され、下側端面21aが上階の梁12と下階の梁14との間の中間に位置する鉄筋コンクリート構造の構造体である。上部支持部21は、例えば、下側端面21aが矩形状の平坦に形成されている。下部支持部22は、下階の梁14から立設され、上側端面(表面)22aが上階の梁12と下階の梁14との間の中間に位置する鉄筋コンクリート構造の構造体である。下部支持部22は、上部支持部21と同様に、例えば、上側端面22aが矩形状の平坦に形成されている。上部支持部21の下側端面21aと、下部支持部22の上側端面22aとは、上下方向に所定間隔を置いて配置されている。下側端面21aと上側端面22aとの間には、制震ダンパー25が上下方向へ向けて配置されている。
【0021】
制震ダンパー25は、下側端面21aと上側端面22a間に配置された状態において、下側端面21a及び上側端面22aに接続構造30により接続されている。
制震ダンパー25は、上側接続端(接続端)25a及び下側接続端(接続端)25bにウエブ26及びフランジ27を備えている。制震ダンパー25は、ウエブ26の両端部にフランジ27が接続されることにより断面H状に形成された鋼材ダンパーである。
実施形態においては、制震ダンパー25を鋼材ダンパーとした例について説明するが、制震ダンパー25は鋼材ダンパーに限らない。その他の例として、制震ダンパー25を摩擦ダンパー、粘弾性ダンパー、オイルダンパー、粘性ダンパーとしてもよい。
制震ダンパー25は、下側端面21a及び上側端面22aに接続構造30により接続された状態において、所定の水平荷重(せん断力Qu)が作用した際に剪断パネルとしての機能を果たす。
【0022】
接続構造30は、上部接続構造31と、下部接続構造32と、と備えている。上部接続構造31は、制震ダンパー25の上側接続端25aに、例えば溶接で接続されている。よって、上部接続構造31が上部支持部21の下側端面21a側に接続されることにより、制震ダンパー25の上側接続端25aが上部接続構造31を介して上部支持部21の下側端面21a側に接続されている。
下部接続構造32は、制震ダンパー25の下側接続端25bに、例えば溶接で接続されている。よって、下部接続構造32が下部支持部22の上側端面22a側に接続されることにより、制震ダンパー25の下側接続端25bが下部接続構造32を介して下部支持部22の上側端面22a側に接続されている。
上部接続構造31及び下部接続構造32は、上下方向において対称に構成されている。よって、以下、下部接続構造32について説明して上部接続構造31の詳しい説明を省略する。
【0023】
図3から
図5に示すように、下部接続構造32は、制震ダンパー25の接続金物35と、第一の鉄筋(鉄筋)36と、第二の鉄筋(鉄筋)37と、第三の鉄筋(鉄筋)38とを含む。
接続金物35は、ベース板41と、第一のジベル板42と、第二のジベル板43とを備えている。
ベース板41は、対向する2つの長辺41aと、対向する2つの短辺41bとにより平面視矩形状に形成されている。ベース板41は、上面(一方の面)41cに制震ダンパー25の下側接続端25bが、例えば、溶接により接続されている。ベース板41の下面(他方の面)41dのうち、2つの短辺41bの近傍に第一のジベル板42が間隔をおいて対向するように設けられている。
【0024】
第一のジベル板42は、例えば、上下方向に延びる第一のジベル縦辺42aの長さ寸法が、横方向(水平方向)に延びる第一のジベル横辺42bの幅寸法より大きく形成された矩形状の鋼板である。第一のジベル板42は、ベース板41の2つの短辺41bのうち一方の近傍に、上側の第一のジベル横辺42bが、例えば、溶接で接続されることにより、ベース板41の下面41dから垂下するように固定されている。第一のジベル板42は、制震ダンパー25のフランジ27の下方においてフランジ27に沿って設けられている。
第一のジベル板42は、ベース板41から離れる方向に並び、間隔を置いて形成された円形の貫通孔(肉抜き部)45、46、47を有する。第1実施形態においては、これら複数の貫通孔45、46、47として、例えば、第一の貫通孔45、第二の貫通孔46、及び第三の貫通孔(第二の貫通孔)47を例に説明するが、これに限定しない。
【0025】
第一の貫通孔45は、第一の貫通孔45、第二の貫通孔46、及び第三の貫通孔47のうちベース板41に最も近い位置に配置されている。第二の貫通孔46は、第一の貫通孔45よりもベース板41から遠い位置に配置されている。第三の貫通孔47は、第二の貫通孔46よりもベース板41から遠い位置に配置されている。第二の貫通孔46及び第三の貫通孔47は同じ大きさに形成されている。第一の貫通孔45の孔径(内径)d1は、第二の貫通孔46及び第三の貫通孔47の孔径(内径)d2よりも小さく形成されている。
【0026】
ベース板41の下面41dのうち、2つの短辺41bの近傍に第一のジベル板42が間隔をおいて設けられている。2つの第一のジベル板42の第一の貫通孔45に第一の鉄筋36が挿通され、両端部36aが下方に向けて折り曲げられている。また、2つの第一のジベル板42において、第二の貫通孔46に第一の鉄筋36が挿通され、両端部36aが下方に向けて折り曲げられている。さらに、2つの第一のジベル板42において、第三の貫通孔47に第二の鉄筋37が挿通され、両端部寄りの部位37aが下方に向けて折り曲げられている。折り曲げられた部位のうちの両端部37bが内側に向けて水平に折り曲げられている。
【0027】
ベース板41の下面41dのうち、2つの長辺41a寄りに第二のジベル板43が間隔をおいて対向するように設けられている。第二のジベル板43は、例えば、上下方向に延びる第二のジベル縦辺43aの長さ寸法が横方向(水平方向)に延びる第二のジベル横辺43bの幅寸法より小さく形成された矩形状の鋼板である。第二のジベル板43は、ベース板41の2つの長辺41aのうち一方の長辺41aよりの部位に、上側の第二のジベル横辺43bが、例えば、溶接で接続されることにより、ベース板41の下面41dから垂下するように固定されている。すなわち、第二のジベル板43は、制震ダンパー25のウエブ26の下方においてウエブ26に沿って設けられている。
【0028】
第二のジベル板43は、ベース板41の長辺41aに沿って間隔をおいて形成された複数の第四の貫通孔48を有する。
ベース板41の下面41dのうち、2つの長辺41a寄りの部位に第二のジベル板43が間隔をおいて設けられている。2つの第二のジベル板43の第四の貫通孔48に第三の鉄筋38が挿通され、両端部38aが第四の貫通孔48から外側に向けて直線上に突出されている。
【0029】
ベース板41の下面41dに、2枚の第一のジベル板42と、2枚の第二のジベル板43とが固定されることにより、接続金物35が一体に形成されている。2枚の第一のジベル板42及び2枚の第二のジベル板43は、下部支持部22の内部に埋設されている。第一のジベル板42の第一の貫通孔45、第二の貫通孔46及び第三の貫通孔47と、第二のジベル板43の第四の貫通孔48に、下部支持部22のコンクリートが充填されている。
【0030】
また、下部支持部22の内部において、接続金物35の第一のジベル板42の第一の貫通孔45及び第二の貫通孔46に第一の鉄筋36が挿通され、第三の貫通孔47に第二の鉄筋37が挿通されている。さらに、接続金物35の第二のジベル板43の第四の貫通孔48に第三の鉄筋38が挿通されている。すなわち、第一の鉄筋36、第二の鉄筋37、及び第三の鉄筋38が下部支持部22の内部に埋設されている。
この状態において、ベース板41の下面41dが下部支持部22の上側端面22aに接触する。ベース板41は、下部支持部22の上側端面22aに接触した状態において、2枚の第一のジベル板42、2枚の第二のジベル板43、第一の鉄筋36、第二の鉄筋37、及び第三の鉄筋38により上側端面22a側に固定されている。
【0031】
図1、
図4に示すように、上部接続構造31は、下部接続構造32と上下方向において対称に、ベース板41の上面(他方の面)41c上に2枚の第一のジベル板42、及び2枚の第二のジベル板43が起立するように固定されている。また、ベース板41の下面(一方の面)41dに制震ダンパー25の上側接続端25aが、例えば、溶接により接続されている。
上部接続構造31のベース板41は、上部支持部21の下側端面21aに接触した状態において、2枚の第一のジベル板42、2枚の第二のジベル板43、第一の鉄筋36、第二の鉄筋37、及び第三の鉄筋38により固定されている。
【0032】
この状態において、例えば、地震や風荷重により制震ダンパー25に曲げモーメントMuと、せん断力Quとが作用する。曲げモーメントMuは、主に、フランジ27に作用する。せん断力Quは、主に、ウエブ26に作用する。
制震ダンパー25のウエブ26にせん断力Quが作用することにより、第二のジベル板43の第四の貫通孔48及び第三の鉄筋38にせん断力Quに抵抗する力が作用する。よって、制震ダンパー25のウエブ26に作用するせん断力Quに対して、下部支持部22の上側端面22aに対する下部接続構造32のずれ変形を小さく抑えることができる。
同様に、制震ダンパー25のウエブ26に作用するせん断力Quに対して、上部支持部21の下側端面21aに対する上部接続構造31のずれ変形を小さく抑えることができる。
【0033】
また、制震ダンパー25のフランジ27に曲げモーメントMuが作用することにより、第一のジベル板42に引抜力Fが作用する。第一のジベル板42に引抜力Fが作用する場合には、第一のジベル板42の第一の貫通孔45付近において、第一のジベル板42の引張降伏によって終局耐力が決定することが考えられる。
【0034】
図4、
図5に示すように、第一の貫通孔45は、第二の貫通孔46の孔径d2より孔径d1が小さく形成されている。第一の貫通孔45の孔径d1を第二の貫通孔46の孔径d2より小さくすることで、第一のジベル板42の長さ方向に直交するネット断面の大きさ(すなわち、断面内において第一の貫通孔が占める部分の面積を含まない)を、従来型のジベル板と比較して大きくすることができる。これにより、第一のジベル板42の寸法(長さ、幅、厚さ)を大きく変えることなく第一のジベル板42の引抜耐力を高めることができ、第一のジベル板42をコンパクトにできる。
【0035】
加えて、第一のジベル板42の第一の貫通孔45が下部支持部22の上側端面(表面)22aに近い場合には、第一の貫通孔45の位置を起点に下部支持部22のコンクリートがコーン状破壊することが考えられる。これにより、第一の貫通孔45の孔径d1を第二の貫通孔46の孔径d2より小さくすることにより、第一の貫通孔45が抵抗する引抜力が抑制され、コーン状破壊を効果的に抑制できる。
このように、第一の貫通孔45の孔径d1を第二の貫通孔46の孔径d2より小さくすることにより、制震ダンパー25のウエブ26に作用する曲げモーメントMuに対して、第一のジベル板42のずれ変形を小さく抑えることができる。
同様に、制震ダンパー25のウエブ26に作用する曲げモーメントMuに対して、上部支持部21の下側端面21aに対する上部接続構造31(
図1参照)のずれ変形を小さく抑えることができる。
これにより、地震や風荷重により制震ダンパー25に曲げモーメントMuと、せん断力Quとが作用した場合に、制震ダンパー25を効果的にせん断塑性変形させてエネルギーを吸収することにより建物の損傷を抑制できる。
【0036】
また、第一の貫通孔45の孔径d1を小さく形成して下部支持部22のコンクリートがコーン状破壊を効果的に抑制することにより、第一の貫通孔45を下部支持部22のコンクリートの上側端面22aに近づけることができる。よって、第一のジベル板42の第一のジベル縦辺42aの長さ寸法(すなわち、全長)を短く抑えてコンパクトに形成できる。これにより、例えば、下部支持部22の内部に配筋された鉄筋(図示せず)に第一のジベル板42が干渉することを抑えることにより、制震ダンパー25の施工性を高めることができる。
【0037】
さらに、第一の鉄筋36、第二の鉄筋37、及び第三の鉄筋38が上部支持部21の内部と、下部支持部22の内部とに埋設されている。これにより、上部支持部21と下部支持部22のコンクリートのコーン状破壊を一層効果的に抑制でき、第一のジベル板42の抜出しに対する耐力、弾性剛性を一層高めることができる。
【0038】
(変形例1)
第一実施形態の変形例を
図6に示す。本変形例では、第一のジベル板42は、ベース板41の幅方向に離間した二辺に間隔を置いて形成された半円形の切欠部(肉抜き部)48、49、50を有する。第一の切欠部48は、第一の切欠部48、第二の切欠部49、及び第三の切欠部50のうちベース板41に最も近い位置に配置されている。第二の切欠部49は、第一の切欠部48よりもベース板41から遠い位置に配置されている。第三の切欠部50は、第二の切欠部49よりもベース板41から遠い位置に配置されている。第二の切欠部49及び第三の切欠部50は同じ形状、同じ大きさに形成されている。第一の切欠部48の半径(r1)は、第二の切欠部49及び第三の切欠部50の半径(r2)よりも小さく形成されている。なお、第一のジベル板42には複数の貫通孔40が形成されているが、貫通孔40の孔径はすべて同じであり、よって貫通孔40は本発明における肉抜き部には該当しない。
【0039】
本変形例によれば、第一の切欠部48の半径r1が第二の切欠部49の半径r2よりも小さい。つまり、第一の切欠部48が第二の切欠部49よりも小さい。このようにすることで、第一のジベル板42の長さ方向に直交するネット断面の大きさ(断面内において第一の切欠部が占める部分の面積を含まない)を、従来型のジベル板と比較して大きくすることができる。これにより、第一のジベル板42の寸法(長さ、幅、厚さ)を大きく変えることなく第一のジベル板42の引抜耐力を高めることができ、第一のジベル板42を従来よりも小さくすることができる。
また、第一の切欠部48の大きさを意図的に小さくすることにより、第一の切欠部48が抵抗する引抜力が抑制され、コーン状破壊を効果的に抑制できる。これにより、制震ダンパー25を接続される建物の健全性を高めることができる。
【0040】
本実施形態においては、制震部材の接続金物35及び接続構造30を鉄筋コンクリート構造10に適用する例について説明するが、本発明はこれに限定されるものではない。その他の例として、接続金物35及び接続構造30を鉄骨鉄筋コンクリート構造の建物や、鉄骨構造の建物に適用してもよい。接続金物35及び接続構造30を鉄骨構造の建物に適用する場合には、鉄骨構造の躯体を支持する基礎(鉄筋コンクリート製)の部分に接続構造30が設置される。
また、接続金物35及び接続構造30を、制震部材ではなく単純な柱、梁、ブレース等の構造部材を躯体に接続するために用いてもよい。
【0041】
以下、第2実施形態、第3実施形態の制震ダンパーの接続金物を
図7、
図8に基づいて説明する。また、第4実施形態、第5実施形態の接続構造を
図12、
図13に基づいて説明する。なお、第2実施形態から第5実施形態において第1実施形態と同一、類似部材については同じ符号を付して詳しい説明を省略する。
【0042】
(第2実施形態)
図7に示すように、接続金物100は、第一のジベル板102が第1実施形態の第一のジベル板42と異なるだけで、その他の構成は第1実施形態の接続金物35と同様である。
第一のジベル板102は、第一のジベル縦辺(側縁)102aに形成された複数の切欠部104を有する。切欠部104は、例えば、半円形に形成されている。複数の切欠部104は、第一のジベル縦辺102aに、ベース板41から離れる方向に並び、間隔をおいて形成されている。
【0043】
ところで、特に、鉄筋コンクリート構造に制震ダンパー25を配置する場合には、層間変位は鉄骨構造に比べて小さく、風荷重時には数ミリ程度、地震時でもせいぜい数十ミリ程度である。この層間変位を制震ダンパー25に効率よく伝達するためには、制震ダンパー25の回転ずれが小さい(すなわち、剛性が高い)接続構造とする必要がある。
ここで、制震ダンパー25の回転ずれに対しては、制震ダンパー25のフランジ27に沿って平行に配置された第一のジベル板102の抜出しによって引き起こされる。このため、第一のジベル板102の抜出しを防ぐ(すなわち、引抜きに対する剛性を高める)ことが重要となる。
【0044】
そこで、第2実施形態において、第一のジベル板102の第一のジベル縦辺102aに切欠部104を形成することにした。よって、第一のジベル板102と下部支持部22との支圧面積を増大させることができる。これにより、第一のジベル板102の板サイズ、板厚寸法を大きく変えることなく、第一のジベル板102の抜出しに対する耐力、弾性剛性を高めることができる。
さらに、第一のジベル縦辺102aに複数の切欠部104を形成することにより、第一のジベル板102の板サイズ、板厚を変えることなく、第一のジベル板102の抜出しに対する耐力、弾性剛性を一層高めることができる。よって、第一のジベル板102のずれ変形を抑えることができ、第一のジベル板102を一層コンパクトに形成できる。これにより、制震ダンパー25を効果的にせん断塑性変形させてエネルギーを一層良好に吸収でき、第一のジベル板102による下部支持部22の鉄筋への干渉を抑えて一層良好に施工性を高めることができる。
【0045】
(第3実施形態)
図8に示すように、接続金物200は、第一のジベル板202が第2実施形態の第一のジベル板102と異なるだけで、その他の構成は第2実施形態の接続金物100と同様である。
第一のジベル板202は、第一のジベル縦辺(側縁)202aに形成された複数の切欠部204を有する。切欠部204は、例えば、V字状の凹形に形成されている。複数の切欠部204は、第一のジベル縦辺202aに、ベース板41から離れる方向に並び、凹凸が連続するように並んで形成されている。
【0046】
よって、第一のジベル板202と下部支持部22との支圧面積を増大させることができる。これにより、第一のジベル板202の板サイズ、板厚寸法を大きく変えることなく、第一のジベル板202の抜出しに対する耐力、弾性剛性を高めることができる。
さらに、第一のジベル縦辺202aに複数の切欠部204を形成することにより、第一のジベル板202の板サイズ、板厚を変えることなく、第一のジベル板202の抜出しに対する耐力、弾性剛性を一層高めることができる。よって、第一のジベル板202のずれ変形を抑えることができ、第一のジベル板202を一層コンパクトに形成できる。これにより、制震ダンパー25を効果的にせん断塑性変形させてエネルギーを一層良好に吸収でき、第一のジベル板202による下部支持部22の鉄筋への干渉を抑えて一層良好に施工性を高めることができる。
【0047】
(実施例)
以下、第1実施例から第5実施例の第一のジベル板を例に引張力と引抜変位との関係を表1、
図9から
図11のグラフに基づいて説明する。表1において、第1実施例から第5実施例の第一のジベル板は、例えば、第1実施形態の第一のジベル板42に相当する部材である。また、第1実施例から第5実施例の第一の貫通孔、及びその他の貫通孔は、例えば、第1実施形態の第一の貫通孔45、第二、第三の貫通孔46,47に相当する孔である。また、第一の貫通孔、その他の貫通孔の孔径に、第1実施形態の孔径d1,d2を付して説明する。また、第一の貫通孔の埋込深さLは、例えば、第1実施形態の下部支持部22の上側端面22aから第一の貫通孔45の中心までの距離である。また、切欠部は、例えば、第2実施形態の第一のジベル縦辺102aに形成された複数の切欠部104に相当する部位である。
さらに、
図9から
図11において、縦軸は引張力(kN)を示し、横軸は引抜変位(mm)を示す。また、第1実施例の第一のジベル板をG1、第2実施例の第一のジベル板をG2として説明する。また、第3実施例の第一のジベル板をG3、第4実施例の第一のジベル板をG4、第5実施例の第一のジベル板をG5として説明する。
【0049】
まず、第1実施例の第一のジベル板及び第2実施例の第一のジベル板について引張力と引抜変位との関係を表1、
図9に基づいて説明する。
表1に示すように、第1実施例及び第2実施例の第一のジベル板は、第一の貫通孔の埋込深さLを210mmと大きく設定されている。加えて、第2実施例の第一のジベル板は、第一の貫通孔がその他の貫通孔の孔径d2より小さい孔径d1に形成されている。よって、第一のジベル板の引張降伏を第一の貫通孔の近傍において遅らせることができる。
これにより、
図9に示すように、グラフG2の引抜力がグラフG1の引抜力より大きくなる。このように、第一の貫通孔の孔径d1を小さく形成することにより、下部支持部22の上側端面22aから第一のジベル板が引き抜かれる引抜力(すなわち、終局耐力)を約13%高めることができることがわかる。
【0050】
次に、第3実施例の第一のジベル板及び第4実施例の第一のジベル板について引張力と引抜変位との関係を表1、
図10に基づいて説明する。
表1に示すように、第3実施例及び第4実施例の第一のジベル板は、第一の貫通孔の埋込深さLを100mmと小さく抑えられている。加えて、第3実施例の第一のジベル板は、第一の貫通孔がその他の貫通孔の孔径d2より小さい孔径d1に形成されている。このように、第3実施例の第一のジベル板によれば、第一の貫通孔の埋込深さLを小さく抑えた状態において、第一の貫通孔の孔径d1を小さく形成することにより、下部支持部22のコンクリートがコーン状破壊することを効果的に抑制できる。
【0051】
これにより、
図10に示すように、グラフG3の引抜力がグラフG4の引抜力より大きくなる。このように、第一の貫通孔の埋込深さLを小さく抑えた状態において、第一の貫通孔の孔径d1を小さく形成することにより、下部支持部22の上側端面22aから第一のジベル板が引き抜かれる引抜力(終局耐力)を約8%高めることができることがわかる。
【0052】
次いで、第5実施例の第一のジベル板及び第1実施例の第一のジベル板について引張力と引抜変位との関係を表1、
図11に基づいて説明する。
表1に示すように、第5実施例及び第1実施例の第一のジベル板は、第一の貫通孔の埋込深さLを210mmと大きく設定されている。加えて、第5実施例の第一のジベル板は、第一のジベル縦辺に複数の切欠部が形成されている。よって、下部支持部22に対する第一のジベル板の抜出しによる初期耐力、初期剛性を高めることができる。
【0053】
これにより、
図11に示すように、グラフG5の初期引抜力がグラフG1の初期引抜力より大きくなる。このように、第一のジベル縦辺に複数の切欠部を形成することにより、下部支持部22の上側端面22aから第一のジベル板が引き抜かれる初期引抜力(すなわち、初期耐力)を約44%高めることができることがわかる。
一方、グラフG5の終局引抜力(すなわち、終局耐力)がグラフG1の終局引抜力より約15%小さくなる。グラフG5の終期引抜力は、例えば、第一の貫通孔45の孔径d1を変える方策との組み合わせや、第一のジベル板の板厚の調整で終局耐力を高めることは可能である。
【0054】
第1実施形態から第3実施形態においては、制震ダンパーの接続金物35及び接続構造30を用いて制震間柱20に制震ダンパー25を接続する例について説明したが、これに限定するものではない。その他の例として、制震ダンパー25及び接続金物35を含むシアリンク型の制震ダンパーの例を
図12に、ブレース型の制震ダンパーを
図13、
図14に基づいて説明する。
【0055】
(第4実施形態)
図12に示すように、鉄筋コンクリート構造300は、隣り合う鉄筋コンクリート製の柱301、302と、一方の柱301に設けられた第一支持部303と、他方の柱302に設けられた第二支持部304と、第一、第二支持部303、304間に架設された制震ダンパー25と、接続構造30とを備えている。本構造は、第1実施形態の制震間柱20を、上下階の梁間ではなく左右に隣り合う柱301、302間に配設したものである。
【0056】
鉄筋コンクリート構造300が採用された構造物に、地震や強い横風によって横揺れが生じると、柱301、302は局所的にみて同じ方向に斜めに傾く。これに伴い、第一支持部303と第二支持部304とが、構造物の長さ(高さ)方向に相互に離間するように変位するため、制震ダンパー25には、曲げモーメントMuとせん断力Quとが作用するが、第1実施形態と同様に、制震ダンパー25を効果的にせん断塑性変形させて揺れのエネルギーを良好に吸収できる。
【0057】
(第5実施形態)
図13、
図14に示すように、鉄筋コンクリート構造400は、上階の梁401及び一方の柱403の上側交差部404と、下階の梁402及び他方の柱403の下側交差部405との間に制震ブレース410が斜めに架設されている。制震ブレース410の上端は、上側交差部404に設置された上側の接続金物(ブラケット)404aに接続され、ブレース410の下端は、下側交差部405に設置された下側の接続金物(ブラケット)405aに接続されている。
接続金物404a、405aは同じ構造を有しているので、以下では下側の接続金物405aについて説明し、接続金物404aの説明は省略する。
【0058】
接続金物405aは、第一のベース板411と、第二のベース板412と、複数のジベル板420とを備えている。複数のジベル板420の一部は、第一のベース板411の下面から垂下するように固定され、複数のジベル板420の残りは、第二のベース板412の側面から梁402と平行な方向に延びるように固定されている。各ジベル板420は、ベース板41から離れる方向に間隔を置いて形成された複数の貫通孔45、46、47を有し、これら複数の貫通孔45、46、47に、鉄筋コンクリート構造400に含まれる鉄筋36が挿通されたうえでコンクリートに埋設固定されている。
これにより、第4実施形態によれば、上記の実施形態と同様に、制震ブレース410を効果的にせん断塑性変形させてエネルギーを一層良好に吸収できる。
【0059】
なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した実施形態や実施例を適宜組み合わせてもよい。
【解決手段】制震ダンパーの接続金物は、鋼製の構造部材の接続端が一方の面に接続されるベース板41と、ベース板41の他方の面41dに起立又は垂下するように固定されたジベル板42とを備える。ジベル板42には、ベース板41から離れる方向に並ぶ複数の貫通孔45、46、47が形成され、それらのうちベース板41に最も近い貫通孔45は、その貫通孔45よりもベース板41から遠い貫通孔46よりも小さい。