【実施例】
【0059】
ベシクル(液膜)の作製:
AqpZ Mw 27233を用い、下記のプロトコルに従った、1mg/mLおよび脂質−対−タンパク質比(LPR)200のアソレクチンプロテオリポソームの作製:
1. 50mLのガラス製蒸発バイアルに、CHCl
3中2mg/mLのアソレクチン(mW 786.11g/mol,Sigma)原液5mLを充填する;
2. 回転蒸発器を用いて少なくとも2時間、CHCl
3を蒸発させて、完全に乾固させる;
3. 0.8mLの緩衝液(PBS中1.3%のオクチルグルコシド(OG),pH7.4)を添加して、工程2で蒸発バイアル内に得られたフィルムを再水和する;
4. バイアルをプラットホームシェーカー(HeidolphオービタルプラットホームシェーカーUnimax 2010またはそれに相当するもの)で最大rpmにおいて、脂質が溶解するまで振とうする;
5. Tris pH8、グルコースおよびOG 10mg/mLを含有するタンパク質緩衝液中の1.73mgのAqpZを添加し、バイアルを200rpmで15分間回転させる;AqpZは前記に従って調製されたものである;
6. 徐々に9.03mlのPBS(pH7.4,OGを含有しない)を添加し、バイアルを200rpmで15分間振とうする;
7. 合わせた溶液/懸濁液をドライアイス/40℃の水浴で3回、凍結/融解して、存在する可能性のある多重膜構造体を排除する;
8. 250mgの水和Biobeads(SM2,BioRadから)を添加し、バイアルを200rpm、4℃で1時間、回転させて、界面活性剤(OG)を吸着させる;
9. さらに250mgの水和Biobeadsを添加し、バイアルを200rpm、4℃で2〜3日間、回転させる;
10. OGを吸着したBiobeadsを次いで懸濁液からピペッティングにより除去する;
11. 得られた懸濁液を、約11回(たとえば、少なくとも1回から最大で約22回まで)、200nmのポリカーボネートフィルターを通して押出機により押し出して、ベシクル(液膜)懸濁液の形の均一なプロテオリポソーム懸濁液を得る。
【0060】
BioBeadsを用いる代わりに、一般的な樹脂カラム、たとえばAmberlite XAD−2で界面活性剤を除去することができる。
【0061】
1mg/ml、タンパク質−対−ポリマー比(POPR)50のプロテオポリマーソームについてのプロトコル
ポリオキサゾリンベースのトリブロックコポリマーであるポリ(2−メチルオキサゾリン−b−ジメチルシロキサン−b−2−メチルオキサゾリン),Moxa 30:DMS 67,Mw 7319(P8061,Polymer Source(商標)から購入,カナダ、ケベック州),AqpZ Mw 27233
1. 50mLのガラス製蒸発バイアルに、CHCl
3中2mg/mLのP8061原液5mLを充填する;
2. 回転蒸発器を用いて少なくとも2時間、CHCl
3を蒸発させて、完全に乾固させる;
3. 3.0mLの緩衝液(1.3%のO.G.;200mMのスクロース;10mMのTris pH8;50mMのNaCl)を添加して、工程2で蒸発バイアル内に得られたフィルムを再水和する;
4. バイアルをプラットホームシェーカー(HeidolphオービタルプラットホームシェーカーUnimax 2010またはそれに相当するもの)で200rpmにおいて3時間振とうして、コポリマーを溶解する;
5. Tris、グルコースおよびOGを含有するタンパク質緩衝液中の75μLのAqpZを添加し、バイアルを200rpmおよび4℃で一夜回転させる;
6. 6.88mlの緩衝液(10mMのTris pH8;50mMのNaCl)をピペットで上下混合しながら徐々に添加する;
7. 180mgの水和Biobeadsを添加し、200rpmで1時間回転させる;
8. 210mgの水和Biobeadsを添加し、200rpmで1時間回転させる;
9. 240mgの水和Biobeadsを添加し、200rpm、4℃で一夜回転させる;
10. 240mgの水和Biobeadsを添加し、200rpm、4℃で一夜回転させる;
11. OGを吸着したBiobeadsを次いでピペッティングにより懸濁液から除去する;
12. 懸濁液を、約21回(たとえば、少なくとも1回、最大で約22回)、200nmのポリカーボネートフィルターを通して押出機により押し出して、均一なプロテオポリマーソーム懸濁液(ベシクル)懸濁液を得る。
【0062】
TFC有効層の作製:
材料:
非極性溶媒:ヘキサンまたはイソパラフィン溶媒、たとえばIsopar G,ExxonMobil Chemical
TMC:1,2,5 ベンゼントリカルボニルトリクロリド,Aldrichから 147532:
MPD:m−フェニルジアミン,Aldrichから P23954:
ベシクル:プロテオポリマーソームまたはプロテオリポソーム,前記に従って、たとえばp8061−MOXZDMSMOXZ(ポリ(2−メチルオキサゾリン−b−ジメチルシロキサン−b−2−メチルオキサゾリン)(Polymer Source Inc.,カナダ、ケベック州)をAQPZ(POPR 50)と共に用いて調製:
支持膜:MICROPES 1FPHまたは2FPH,Membrana GmbHにより製造。
【0063】
界面重合:
界面重合は、異なるモノマーを溶解した2種類の非混和性液体の界面で起きる重合反応である。本発明においては、MPDを水に溶解し、ベシクルを添加する。多孔質PES支持膜、たとえばMICROPES 1FPHまたは2FPH膜(Membrana GmbHから)を、たとえば5.5cm×11cm、13.5cm×19cm、または20cm×25cmの長方形に切断し、この水溶液に浸漬し、水溶液が細孔を満たした状態で表面が乾燥するのに十分なだけ表面を乾燥させる。TMCを非極性溶媒(ヘキサンまたはIsopar(商標))に溶解し、半乾燥状態の浸漬支持膜の表面に適用する。MPDとTMCが2つの液体の界面で反応して、高度に架橋した網状の芳香族ポリアミドを形成する。TMCは水と反応してカルボン酸基およびHClを生成し、こうしてTMCは水層で分解する。MPDはTMCと反応しやすく、したがって非極性溶媒中へ遠くまで拡散することはない。生成する層は、高度に架橋した芳香族ポリアミドフィルムが100〜700nmの厚さをもつ支持膜表面に包埋されたものである。ベシクルは、架橋したポリアミドフィルムに捕獲または包埋されることにより、固定化された状態になる。
【0064】
実施例1.FOおよびROを用いて淡水源のホウ素汚染を除去するためのシステム
図4は、Washguard SSTポンプ(16)およびRO濾過用浸透圧セル(Sterlitech CF042)を用いてホウ素を除去する水抽出のためのシステムを示す;セルは本明細書の記載に従って作製した5.7cm×11.3cmのTFC−AqpZ膜を保持し、平均含量187μg/LのB、0.20μg/LのAs、113mg/LのCaを含むpH=7.5の水道水(供給源:HOFOR,コペンハーゲン2011)にホウ酸を約5mg/LのBになるように溶解することにより調製されたホウ素汚染した淡水供給源を、RO操作モードにおいて圧力125psiで膜により濾過する。得られた透過液を、たとえばNagaishi & Ishikawa (2009)に従ったICP−MSホウ素元素分析のためにサンプリングすることができ、得られた分析データに基づいて、Kim et al. 2012により得られた結果に匹敵する約45%から約55%までの阻止率の阻止率範囲計算値を得た。
【0065】
図2は、上記のRO実験の場合と同じ供給源、および水道水(供給液のものと同じ水道水源)中35g/LのNaClの抜取溶液を、閉回路で用いてホウ素を除去する水抽出のためのシステムを示す。このFOシステムは、FOモードに適合させたSterlitech CF042P浸透圧セルを用い、そのセルは本明細書の記載に従って作製したTFC−AqpZ膜を保持している;この図を参照。このFOシステムは、50.03ml/分(0.85cm/sに相当する)の向流速度で操作され、膜の有効側が抜取溶液に面したものと膜の有効側が供給溶液に面したものの両方を試験した。1300分の操作後、ICP−MSホウ素元素分析用の試料を抜取溶液から採取し、得られた分析データに基づいて、約60%から約85%までの阻止率範囲計算値を得た;これは、Kim et al. 2012により公表された結果と比較してFOに際しての阻止率改善の可能性を表わす。
【0066】
前記に従って作製した有効面積8.5cm×3.9cmをもつ膜および水道水中にホウ酸の形のホウ素を5mg/mL含む調整した供給溶液を2M NaClの抜取溶液に対して用いた10のFO実験からの結果を表にまとめる:
非供給側(抜取溶液に面した側)に有効膜層;
図1Cを参照
【0067】
【表5】
【0068】
供給側(供給溶液に面した側)に有効膜層;
図1Cを参照
【0069】
【表6】
【0070】
これらの実験において、
図1Bの膜構造はより高い阻止率%を示し、したがって有利である。
【0071】
さらに、水道水中におけるホウ酸としてのホウ素5mg/mLの供給溶液側に有効膜層があり、流速0.25m/sおよび印加圧力8.62バールである5つの逆浸透圧実験は、平均値50%±8%のホウ素阻止率を示した。
【0072】
実施例2.FOおよびROを用いて淡水源のヒ素汚染を除去するためのシステム
実施例1に記載したものと同じROシステムを用い、ただし人工的に調製した5mg/LのAsの供給溶液(ヒ酸をMilliQ水に溶解し、1N NaOHを用いてpH9.5に調整したもの)をRO操作モードに際して125psiの圧力でその膜により濾過した。得られた透過液を、たとえばGrosser (2010)に従ったICP−MSヒ素元素分析のためにサンプリングすることができ、得られた分析データに基づいて約100%の阻止率の阻止率範囲計算値を得た。
【0073】
実施例1に記載したものと同じFOシステムを用い、ただしMilliQ中5mg/LのAsの供給溶液(pH9.5)、およびMilliQ中2M NaClの抜取溶液を用いた。1300分間の操作後、ヒ素元素分析用の試料を抜取溶液からICP−MS分析のために採取した。それらの結果は、得られた分析データに基づいて、FO濾過(TFC膜の有効側を抜取溶液に面して用いた場合とTFC膜の有効側を供給溶液に面して用いた場合の両方)を用いて約100%の阻止率計算値が得られることを示す。
【0074】
前記に従って作製した有効面積8.5cm×3.9cmをもつ膜およびmilliQ水中にAs
2O
3の形のヒ素を5mg/mL含むpH9.5に調整した供給溶液を2M NaClの抜取溶液に対して用いた10のFO実験からの結果を表にまとめる:
非供給液(抜取液)に面して有効膜側;
図1Cを参照
【0075】
【表7】
【0076】
供給液に面して有効膜層;
図1Bを参照
【0077】
【表8】
【0078】
さらに、同じタイプの膜の有効側を、milliQ水中にAs
2O
3の形のヒ素5mg/mLを含み、pH9.5、流速0.25m/sおよび印加圧力8.62バールに調整した供給溶液に面して配置した、5つの逆浸透圧実験を実施した。これらの実験は、平均値98%±1%のヒ素阻止率を示した。
【0079】
実施例3.たとえばペプチド用のFO濃縮装置モジュールを含むシステム
方法:
FOモジュールを下記の工程により作製する:
1.プラスチック製測定シリンダー(たとえば、アップコンセントレーションすべき体積に応じて1cmの直径をもつものなど)を、面積0.5cm
2または3.14cm
2に相当する細孔を備えたPlexiglas表面(ここで供給溶液が膜に曝露される)に水密(water tight)固定する;たとえば、シリコーン系接着剤による接着または他の方法で緊密に留め付ける;
2.直下にメッシュ支持体を接着する;
3.TFC−AqpZ膜、たとえば1FPH支持膜およびポリマーソーム用のP8061両親媒性コポリマーを用いて作製したものを前記に従って作製し、トップの有効側を支持体下に接着し、あるいはOリングで水密固定する;
4.場合により、ゴム製ガスケットを膜の後に接着してもよい;
5.このトップパーツをチュービングが配置されるボトムパーツと組み合わせる際に、追加のゴム製ガスケットをクッションとして追加することができる:後記の
図7または8を参照;
6.このモジュールを次いでポンプ、たとえば蠕動ポンプに接続し、抜取溶液を一般に40mL/分の流速でシステムに再循環させる。抜取溶液としてMilliQ水中の2M NaClを用いることにより形成された浸透圧勾配が、測定シリンダー内の供給溶液から抜取溶液への水の移動を駆動する。
【0080】
供給溶質(ペプチドもしくはタンパク質または他の試料)の検出:
この例では、注文製造したペプチドGGGSGAGKT(Caslo Laboratoryから凍結乾燥したトリフルオロ酢酸塩として入手;MSにより測定した分子量690.71,純度98.87%)またはアミノ酸L−リジン(Sigma Aldrichから,分子量146.1g/mol,純度97%))の濃縮供給溶液を、等体積のLavaPepキット(gelcompany.comから;このキットはペプチド中のリジン残基に結合し、ここでは実験的に遊離アミノ酸を検出するためにも用いる)と混合し、暗所において室温で1時間インキュベートした。ペプチドおよびL−リジンの検出は、QuBitにより“ssDNA”のセッティングで行なわれる。QuBitにおけるssDNAの検出範囲:励起:400〜490nm,500〜645nm;発光:570〜645nm。
【0081】
標準曲線の作成:
9.3×TES緩衝液中1000から1μg/mLまでの範囲の6種類の異なる濃度のペプチド/リジンを分析する;これらの濃度はアップコンセントレーションに際して供給溶液が約2〜6倍濃縮されるため適切なものである
定量:10μLの濃縮溶液(2〜5×濃度) + 90μLの10×TES緩衝液(この希釈に際して最終的に9.3×緩衝液になる) + 100μLのキット
LavaPepキットの検出範囲:励起:405〜500nm(グリーン543,532nm,ブルー488nm,バイオレット405nmまたはUVA);発光:最大610nm(バンドパスまたは560ロングパス)
励起:540±10nm;発光:630±10nm。
【0082】
ペプチド/リジンの濃縮供給溶液を下記に従って検出および測定する:
1.開始供給液:1×TES緩衝液中の約50μg/mLのペプチドまたはリジン
2.アッセイを実施する
3.濃縮溶液を採集する
4.10μg/mLの濃縮ペプチド溶液 + 90μg/mLの10×TES緩衝液 + 100μg/mLのキット
5.暗所において室温で1時間のインキュベーション
6.QuBitで蛍光カウントを測定する
7.標準曲線から濃度を読み取る。
【0083】
溶液:
供給溶液:200μg/mLのL−リジン(アミノ酸の例)もしくは50μg/mL〜500μg/mLのペプチド(1×TES緩衝液中)、またはタンパク質の例として用いる500μg/mLのウシ血清アルブミン(BSA緩衝液中)(0.303 Osm)
抜取溶液:MilliQ水中の2M NaCl(200mL)
ペプチド、タンパク質およびL−リジン用キット:LavaPepキット(蛍光化合物:エピコッコノン(epicocconone)はリジンに結合し、ペプチド中のリジンの定量に用いられる)。好ましくは、リジン(および他のアミノ酸)はHPLCを用いて定量できる。
【0084】
アップコンセントレーションについての結果は下記のとおりである:
実験条件:1Lの供給液および1Lの抜取溶液をSterlitech CF042チャンバーに用いる大規模実験
供給溶液:1×TES緩衝液中200μg/mLのL−リジン
抜取溶液:2M NaCl
操作時間:約1175分
最終濃度のL−リジンは約7倍濃縮される。
【0085】
実験条件:上記の大規模実験
供給溶液:1×TES緩衝液中200μg/mLのL−リジン
抜取溶液:2M NaCl
操作時間:約1175分
最終濃度のL−リジンは約6倍濃縮されている。
【0086】
実験条件:小規模,1mL
供給溶液:1×TES緩衝液中50、200または500μg/mLのGGGSGAGKT
抜取溶液:2M NaCl
操作時間:約1175分
体積およびペプチド濃度のアップコンセントレーションを次表に示す。
【0087】
【表9】
【0088】
結論:これらの結果は、このシステムにおける20時間未満の正浸透圧操作に際して、L−リジン供給溶質を最大で約6〜7倍濃縮できること、供給ペプチド溶液についてはこれらを最大で約6倍濃縮でき、供給溶液体積が同程度にまで濃縮されることを明瞭に示す。
【0089】
実施例4.クエン酸による膜処理
実験のセクションの記載に従って膜を作製し、クエン酸による処理に対する堅牢性を試験した。膜を0.3%クエン酸溶液に浸し、15分間浸漬しておいた(n=3)。
浸漬プロセスの前と後に、膜をCF042フローセル内で900分間、FOモード(5μMカルセイン供給溶液および抜取溶液としての2M NaClを使用)で作動させた。
【0090】
試験の結果を次表に示す:
【0091】
【表10】
【0092】
J
wは、膜を通る水フラックスである
J
s,totalは、膜を通る逆方向塩フラックスである
R
calceinは、カルセイン阻止率である
この表から分かるように、この処理は水フラックスに負の影響を及ぼさず、カルセイン阻止率はきわめて高いレベルに維持される。
【0093】
実施例5.EDTAによる膜処理
実験のセクションの記載に従って膜を作製し、EDTAによる処理に対する堅牢性を試験した。膜を0.8% EDTA溶液に浸し、15分間浸漬しておいた(n=3)。
浸漬プロセスの前と後に、膜をCF042フローセル内で900分間、FOモード(5μMカルセイン供給溶液および抜取溶液としての2M NaClを使用)で作動させた。
【0094】
試験の結果を次表に示す:
【0095】
【表11】
【0096】
J
wは、膜を通る水フラックスである
J
s,totalは、膜を通る逆方向塩フラックスである
R
calceinは、カルセイン阻止率である
この表から分かるように、この処理は水フラックスは負の影響を受けず、カルセイン阻止率はきわめて高いレベルに維持され、膜が無傷であることを示す。
【0097】
実施例6.FDFO用の水抽出システム
この例では、肥料に含まれる一般的な植物栄養素塩類の阻止率および達成可能な水フラックス値を調べる目的で、肥料抜取−正浸透(Fertilizer Drawn Forward Osmosis)(FDFO)の原理を本発明に従った正浸透水抽出システムで試験した。
【0098】
プロトコル:
水、たとえば水道水またはMilliQ水に、下記の組成をもつ乾燥NPK顆粒(Danish Agroから)を溶解することにより、66.62g/Lの濃縮栄養素溶液を調製した:総N 14.0%、硝酸塩−N 5.7%、アンモニウム−N 8.3%、リン(クエン酸塩および水に可溶性)3.0%、カリウム(水溶性)15.0%、マグネシウム総量2.5%、硫黄総量10.0%、およびホウ素総量0.02%。得られた溶液を組合わせFDFO脱塩システムにおいて抜取溶液として使用できる;
図3を参照。あるいは、市販の濃縮液状植物栄養素溶液Blomin(The Scotts Company(Nordic),デンマーク、グロストルップ)を使用できる。この栄養素溶液は下記の組成および濃度の栄養素塩からなる:窒素(N) − 4.4%;リン(P) − 0.9%;カリウム(K) − 3.3%;ホウ素(B) − 0.0002%;銅(Cu) − 0.006%;鉄(Fe) − 0.02%;マンガン(Mn) − 0.008%,硫黄(S) − 0.0003%;モリブデン(Mo) − 0.0002%;および亜鉛(Zn) − 0.004%。
【0099】
図3を参照すると、このシステムは、海水供給源(10)、すなわちコペンハーゲン、Tuborg Harbourの海岸に近いOresundからサンプリングした水を含み、この水は約8.7g/Lの概算塩度をもつ;(13)は前記に従って調製した濃縮肥料溶液を入れた容器である(場合によりマグネチックスターラーなどを備えていてもよい);(1)は前記の実験のセクションの記載に従ってP8061コポリマーを用いて作製したTFC−AqpZ膜(有効面積0.003315m
2)を備えたSterlitech CF042フローセルである;(12)は部分希釈された肥料溶液を入れた容器であり、これを再循環してより高い希釈度を達成できる;(14)は肥料溶液の希釈度を最終調整するための追加の淡水タンク(普通の水道水を使用できる)である;(11)は濃縮された供給溶液流、たとえばアップコンセントレーションした海水である;(15)はそのまま使用できる希釈された肥料溶液である。このシステムをまず約900分間作動させると、そのまま使用できるほど十分に希釈された、またはさらに希釈した後に使用できる、植物栄養素溶液が得られると予想される;
図3および本明細書中の
図3についての説明を参照されたい。
【0100】
実施例7.酪農産業のRO透過液から尿素を分離する水抽出システム
図4を参照すると、このシステムは、45〜75mg/Lの総N(約110mg/Lの尿素に相当する)を含む酪農プロセス水を入れた供給溶液タンク(18)を含む;(16)はポンプである;(17)はバルブである;(19)は透過液である;(20)は透過液タンクである。ポンプ(Washguard SST)からSterlitech CF042フローセルを通ってバルブへ戻る液流は、125psiおよびクロスフロー速度0.26m/sの加圧液流である;残りの液流は加圧されていない液流である。透過液の尿素含量は少なくとも50%低減すると予想される。
【0101】
図5を参照すると、このシステムは、前記の(18)の場合と同じ組成をもつ供給液流(21)を含む;(1)は、前記の実験のセクションの記載に従って作製したアクアポリン膜(2)を備えたSterlitech CF042Pフローセルである;(22)は濃縮された供給液流である;(23)は、濃縮抜取溶液である;(8)は、抜取溶液、たとえば典型的なKattegat塩度に相当する水道水中35g/LのNaClであり、フローセルと流体連通している;(24)は、希釈された抜取溶液である;(9)は、抜取溶液回収システムである;(25)は、抜取溶液溶質を含まない脱塩された生成水である。供給液流と抜取液流の両方がフローセルを通って流速50.03ml/分の向流モードでポンプ輸送される。このシステムで得られる尿素阻止率は約75%であると予想される。
【0102】
実施例8.再生可能エネルギーを貯蔵するための水抽出システム
この例は、再生可能な供給源からのエネルギー、たとえば太陽光線、風、潮の干満、波および地熱(すなわちグリーンエネルギー)からのエネルギーを貯蔵するための水抽出システムの使用を示す。これらのエネルギー源はしばしばそれらの性質が間欠性であり、そのようなエネルギーの貯蔵については高い要求がある。
【0103】
この例に記載するように塩勾配としてのエネルギー貯蔵は、電気エネルギーが過剰である際に水をより高いレベルの位置、たとえば山へポンプ輸送する慣用されるプロセスに匹敵する。電気エネルギーの需要が生産能力より高い場合、水の位置エネルギーを用いてタービンを駆動させる。この既知の技術は山岳地域では利用しやすいが、低レベルの地域または洋上には適用できない。
【0104】
この実施例に従ったシステムを用いると、(洋上)ウィンドミル、波力、太陽電池、または他のいずれかの再生可能エネルギー源により産生されるエネルギーを塩勾配として貯蔵できる。
【0105】
図11を参照すると、送電網が収容できるより多量の電力を再生可能エネルギー源が産生する場合、そのエネルギーを利用して逆浸透プロセスにより、水溶液、たとえば海水を、または廃水すら濃縮することができる。必要なすべては塩溶液の溜め(64)(最も簡単な形態では海洋であってもよい)、脱塩された水の溜め(63)、余剰電力により作動する圧力送達ポンプ(16)、および浸透膜(2)を備えたフローセル(1)である。圧力勾配により淡水(脱塩された海水)が強制的に膜を通り、濃縮された海水が後に残る。
【0106】
時には、再生可能エネルギー源が産生できるより多量の電力が必要な場合、浸透膜発電(pressure retarded osmosis)(PRO)の採用によりこのプロセスを逆行させることができる。このプロセスでは、塩溶液側(61)と脱塩された海水側(62)の間の塩勾配により浸透膜上に水圧が発生する。塩は膜を貫通できないが水は貫通できるので水はより高い塩度(より高い塩濃度)に向かって膜を貫通し、これにより水圧が発生し、それを次いで発電機(31)により電力に変換できる。放圧された希釈塩溶液の塩度に応じて、液流を塩溶液タンク(64)へ戻す(66を経て)か、あるいはシステム外へ排出することができる。入口(67)は、システムに新鮮な供給塩溶液を供給することができる。
【0107】
実施例9.使用済み透析溶液から血液透析水を再抽出するための水抽出システム
この例は、透析溶液の後処理のために本発明の水抽出システムを使用することを示す;
図1を参照。透析溶液は無機質イオンおよびグルコースの希釈水溶液であり、一般に血液透析に際して血液と向流で患者から中空繊維限外濾過モジュールを通って走行する。Sam et al. (2006)は、血液透析液の組成および臨床使用を開示している。透析溶液は、血液から除去すべき溶質、たとえば尿素、分解産物、たとえばインドキシル硫酸およびp−クレゾール、ならびに過剰のカリウムおよびリンに関して、限外濾過膜を挟んで十分な濃度勾配を維持し、したがって透析の効率を維持するであろう。このためには多量の超純水、特に毎週約400Lの水が必要である。本明細書に記載する水抽出システムは、この超純水を再利用するためのシステムに、たとえば閉ループのシステムに有用である;その場合、血液透析フィルターに通すことにより血液透析に使用した後の、たとえば尿素などの廃棄物を血液から吸収した後の(希釈された)使用済み透析溶液が、さらなる膜モジュール、すなわちアクアポリン膜を収容したフローセル(1)を貫通する際の供給溶液(7)として機能でき、その際、新鮮な濃縮透析溶液(dialysate solution,dialysis fluid)が抜取溶液として機能することができる。理想的には、濃縮透析溶液を、連続血液透析に直接使用できるのに十分なほど希釈することができる。これは、アクアポリン含有膜の供給側にわずかな圧力を印加することにより達成できる(補助正浸透の概念を利用)。この方法で、汚染された使用済み透析溶液から純水のみを抽出し、この抽出された純水を、他の場合には透析溶液濃縮液を希釈するために新たに補充する必要がある超純水の代替として使用できる。
【0108】
使用済み透析溶液が濃縮されて廃棄物処理の体積が小さくなることから、さらに他の利点が得られる。
本発明は、非限定的に以下の態様を含む。
[態様1]
下記のものを含む水抽出システム:
a)膜(2)を含むフローセル(1);膜は固定化されたアクアポリン水チャネルを含む有効層(3)および支持層(4)を含み、膜は供給側(5)および非供給側(6)を有する;ならびに
b)膜の供給側と流体連通した供給源水溶液(7)。
[態様2]
有効層はアクアポリンベシクルが取り込まれた架橋芳香族アミド薄膜であり、ベシクルはアクアポリンタンパク質懸濁液の存在下での両親媒性脂質またはブロックコポリマーの自己アセンブリーにより形成されたものである、態様1に記載の水抽出システム。
[態様3]
有効層は架橋芳香族アミド層、好ましくは界面重合により形成されたものであり、ベシクルは両親媒性脂質またはトリブロックコポリマー溶液、たとえばアソレクチンまたはPMOXAa−PDMSb−PMOXAaコポリマーから形成されたものである、態様1または2に記載の水抽出システム。
[態様4]
アクアポリンは、植物アクアポリン、たとえばSoPIP2;1;哺乳動物アクアポリン、たとえばAqp1;および細菌アクアポリン、たとえばアクアポリン−Zから選択される、態様1〜3のいずれか1項に記載の水抽出システム。
[態様5]
支持層はポリスルホンまたはポリエーテルスルホン支持膜である、態様1〜4のいずれか1項に記載の水抽出システム。
[態様6]
高温プロセスに使用するための、態様1〜5のいずれか1項に記載の水抽出システム。
[態様7]
高pHプロセスに使用するための、態様1〜5のいずれか1項に記載の水抽出システム。
[態様8]
低pHプロセスに使用するための、態様1〜5のいずれか1項に記載の水抽出システム。
[態様9]
膜の非供給側が抜取側として機能し;システムがさらに
c)膜の抜取側と流体連通した抜取水溶液(8)を含み、場合により
d)さらに抜取溶液濃縮ユニット(9)を含む、
正浸透(FO)のための態様1〜8のいずれか1項に記載の水抽出システム。
[態様10]
膜の再生またはファウリング防止のための手段を含み、その手段が約2〜11のpHを有する洗浄液を含み、洗浄液が有機酸、たとえばクエン酸、またはキレート化剤、たとえばEDTAの溶液から選択される、態様1〜9のいずれか1項に記載の水抽出システム。
[態様11]
施肥灌漑システムに使用するための、態様1〜10のいずれか1項に記載の水抽出システム。
[態様12]
下記の機構を含む施肥灌漑システム(
図3を参照):
i)供給液流(10)、
ii)ポンプ(16)、
iii)アクアポリン膜、好ましくはTFC−アクアポリン膜(2)を備えたフローセル(1)、好ましくはクロスフローセル、
iv)濃縮植物栄養素抜取溶液(13)、
v)膜の抜取側(8)と流体連通した希釈された抜取溶液(12)、
vi)希釈された抜取溶液の追加希釈のための任意選択的な淡水源(14)、および
vii)生成した、そのまま使用できる希釈された植物栄養素溶液(15);
その際、希釈された抜取溶液をフローセルに再循環させて、より高い希釈度を達成できる。
[態様13]
有機溶質、たとえばアミノ酸、ペプチドおよびタンパク質のアップコンセントレーションに使用するための、態様1〜10のいずれか1項に記載の水抽出システム。
[態様14]
実質的に
図7〜10に示す、態様13に記載の水抽出システム。
[態様15]
膜の非供給側が透過側として機能し;水抽出システムがさらに
c)膜の透過側と流体連通した透過液
を含む、逆浸透のための態様1〜8のいずれか1項に記載の水抽出システム。
[態様16]
供給溶液が約0.10m/s〜約0.30m/s、たとえば約0.26m/sのクロスフロー速度、および約100psi〜約130psi、たとえば約125psiの圧力でフローセルを通ってポンプ輸送される、態様15に記載の水抽出システム。
[態様17]
下記の機構を含む、態様15および16に記載の逆浸透システム(
図4を参照):
i)供給溶液タンク(18)、
ii)ポンプ(16)、
iii)バルブ(17)、
iv)逆浸透に適合させたフローセル(1)、
v)TFC−アクアポリン膜(2)、
vi)透過液コンパートメント(19)、および
vii)場合により透過液タンク(20)に採集された、透過液流。
[態様18]
供給溶液がヒ酸の形の約0.005mg/Lから約20mg/LまでのAsの溶存含量を有し、透過液が初期含量の約1%未満の溶存ヒ素含量を有する、態様17に記載の逆浸透システム。
[態様19]
供給溶液が約0.005mg/LのB〜約20mg/LのBの溶存ホウ素含量を有し、透過液が初期含量の約50〜20%未満、たとえば25%未満の溶存ホウ素含量を有する、態様17に記載の逆浸透システム。
[態様20]
供給溶液が酪農廃水からのRO透過液であって尿素の形の約10mg/Lから約15mg/LまでのNまたはそれ未満の総溶存窒素含量を有し、透過液が元の含量の約50%未満の総溶存窒素含量を有する、態様17に記載の逆浸透システム。
[態様21]
さらに、
図5に述べる抜取溶液回収システム(9)の形の希釈された抜取溶液の逆浸透処理、たとえば逆浸透回収を含む、正浸透のための態様9に記載の水抽出システム。
[態様22]
膜の非供給側が抜取側として機能し;水抽出システムがさらに下記のものを含む、浸透圧発電(PRO)のための態様1〜8のいずれか1項に記載の水抽出システム:
f)抜取溶液を膜の抜取側と流体連通させるための手段:その際、抜取溶液は天然海水または湖水オスモライト(osmolytes)を含み、その手段は位置エネルギーの形の圧力を貯蔵できる閉容積を含む;
g)供給源溶液を膜の供給側へ付与するための手段:供給源は、抜取溶液より高い水活性を有する水を含む;および
h)位置エネルギーを電気に変換するための手段、たとえばタービン。
[態様23]
抜取溶液が、塩水源、たとえば海水、淡海水、ソーダ湖水、死海水、塩類溶液、およびブラインから選択される、態様22に記載の水抽出システム。
[態様24]
供給源溶液が抜取溶液の脱塩により得られ、余剰の再生可能エネルギー源により産生される、態様22または23に記載の水抽出システム。
[態様25]
使用済み透析溶液が供給源溶液を構成することを特徴とする、血液透析プロセスにおける使用済み超純水の再利用のための態様1〜10のいずれか1項に記載の水抽出システム。
[態様26]
さらに、新鮮な濃縮透析溶液を抜取溶液として使用することを含む、態様25に記載の水抽出システム。
【0109】
参考文献
Zhao, Y et al, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization, Journal of Membrane Science, Volumes 423-424, 15 December 2012, Pages 422-428.
Kim et al. Journal of Membrane Science 419-420 (2012) 42-48.
Branislav Petrusevski, Saroj Sharma, Jan C. Schippers (UNESCO-IHE), and Kathleen Shordt (IRC), Reviewed by: Christine van Wijk (IRC). Arsenic in Drinking WaterMarch 2007, IRC International Water and Sanitation Centre
Nagaishi & Ishikawa (Geochemical Journal, Vol. 43, pp. 133 to 141, 2009)
Grosser, Z., October 13, 2010 (downloaded from internet on 20130219): <url: http://www.watertechonline.com/articles/the-challenge-measure-arsenic-in-drinking-water>
Hill & Taylor, 15 July - 19 July 2012, Use of Aquaporins to Achieve Needed Water Purity on the International Space Station for the Extravehicular Mobility Unit Space Suit System. In: (ICES) 42
nd International Conference on Environmental systems, San Diego, California.
Al-Amoudi et al, Journal of Membrane Science 303 (2007) 4-28.
Porcelli et al, Separation and Purification Technology 71 (2010) 137-143
Achilli et al. Selection of inorganic-based draw solutions for forward osmosis applications. Journal of Membrane Science 364 (2010) 233-241
Phuntsho et al. A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions. Journal of Membrane Science 375 (2011) 172-181.
Sam et al. Composition and clinical use of hemodialysates. Hemodialysis International 2006;10: 15-28