(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0024】
図1は、本発明の実施形態に係る気象レーダシステム1を上方から視た図であって、該気象レーダシステム1が有する3つの気象レーダ装置2,3,4の平面的な位置関係を示す図である。また、
図2は、本実施形態に係る気象レーダシステム1の構成を示すブロック図である。
【0025】
図1及び
図2に示す気象レーダシステム1では、各気象レーダ装置2,3,4が互いに異なる位置に配置されている。各気象レーダ装置2,3,4は、それぞれを中心とした観測エリア内の各地点における降水強度を算出可能に構成されている。すなわち、本実施形態に係る気象レーダシステム1によれば、1台のレーダ装置ではカバーしきれない比較的広範囲のエリアについて、降水強度を算出することができる。なお、「降水」とは、雨、雪、あられ、みぞれなど、空からから地面へ水分が落下することをいう。また、以下では、降水するこれらの物標を、降水物標と称する場合もある。以下では、本発明の実施形態に係る気象レーダシステム1について、図を参照して説明する。
【0026】
本実施形態に係る気象レーダシステム1は、3つの気象レーダ装置2,3,4を備えている。各気象レーダ装置2,3,4は、
図1を参照して、例えば一例として、一辺が30kmの正三角形の各頂点に対応する位置に配置されている。しかし、各気象レーダ装置2,3,4が配置される位置はこれに限らず、その他の位置に配置されていてもよい。
【0027】
[レーダ装置の構成]
各気象レーダ装置2,3,4は、互いに同じ構成要素を有している。具体的には、各気象レーダ装置2,3,4は、
図2を参照して、アンテナ装置8と、サーキュレータ11と、RFコンバータ12と、パワーアンプ13と、受信機14と、信号処理部15と、操作・表示部16と、GPSアンテナ17とを有している。アンテナ装置8は、レーダアンテナ10と、アンテナ回転制御部20とを有している。
【0028】
レーダアンテナ10は、指向性の狭い送信波を送波可能なアンテナである。また、レーダアンテナ10は、受信波を受波可能に構成されている。各気象レーダ装置2,3,4は、送信波を送波してから受信波を受波するまでの時間を測定する。これにより、各気象レーダ装置2,3,4は、降水物標までの距離rを検出することができる。
【0029】
レーダアンテナ10は、回転駆動機構としての電動モータ10aを有している。レーダアンテナ10は、この電動モータ10aが回転駆動することにより水平面に沿って360°回転することができる。また、レーダアンテナ10は、仰角φを0°〜180°の範囲で変更可能に構成されている。レーダアンテナ10は、送信波及び受信波を送受信する方向(具体的には、方位θ、仰角φ)を変えながら、送信波及び受信波の送受波を繰り返し行うように構成されている。
【0030】
また、レーダアンテナ10から信号処理部15へは、アンテナ回転制御部20を介して、当該レーダアンテナ10が現在どの方向を向いているかを示すデータが出力されている。その結果、各気象レーダ装置2,3,4は、受信波を読み出す際には、受信波が到達した位置を、距離rと方位θと仰角φとの極座標で取得することができる。なお、レーダアンテナ10の方位θ及び仰角φは、図示は省略するが、ロータリーエンコーダ、リードスイッチ、光センサ等をレーダアンテナ10に設けることにより計測することができる。
【0031】
以上の構成で、互いに異なる位置に配置された各気象レーダ装置2,3,4は、該各気象レーダ装置2,3,4の周囲を半球状に探知することができるため、気象レーダシステム1では、上述のように、比較的広範囲に亘って降水を観測できる。
【0032】
また、各レーダアンテナ10は、初期状態(具体的には、気象レーダシステム1が起動される前の状態)において、ビームB2,B3,B4(
図1参照)の向きが、互いに120度の間隔となるように設定されている。各レーダアンテナ10は、気象レーダシステム1が起動されると、電動モータ10aによって同時に回転を開始し、水平面に沿って同じ方向(
図1における反時計回り方向)及び同じ角速度で回転する。
【0033】
そして、気象レーダシステム1では、各レーダアンテナ10の回転開始タイミングが、共用システムであるGPS(Global Positioning System)によって得られた情報に基づいて決定される。また、気象レーダシステム1では、各レーダアンテナ10の回転制御が、GPSによって得られた情報に基づいて行われる。これにより、各レーダアンテナ10で形成されるビームB2,B3,B4(
図1参照)の互いに対する向きを120度間隔に保ったまま、各レーダアンテナ10を精度良く同期させることができる。この点については、詳しくは後述する。
【0034】
サーキュレータ11は、パワーアンプ13から出力された送信信号を、レーダアンテナ10へ出力するように構成されている。また、サーキュレータ11は、レーダアンテナ10で受波された受信波から得られる受信信号を、受信機14を介してRFコンバータ12へ出力するように構成されている。受信機14では、サーキュレータ11からの受信信号を増幅等してRFコンバータ12へ出力する。
【0035】
RFコンバータ12は、信号処理部15によって生成された送信信号を、所定のRF周波数帯にアップコンバートし、パワーアンプ13へ出力する。パワーアンプ13は、この送信信号を増幅した後にサーキュレータ11へ出力する。また、RFコンバータ12は、受信機14から出力された受信信号をIF周波数帯にダウンコンバートして信号処理部15へ出力する。
【0036】
信号処理部15は、RFコンバータ12からの信号を処理することにより、各気象レーダ装置2,3,4で降水を観測可能な観測エリア内の各地点の降水強度を算出する。具体的には、信号処理部15は、各地点から得られた受信信号のエコー強度に基づき、各地点の降水強度を算出する。信号処理部15は、ハードウェア・プロセッサ5(例えば、CPU、FPGA等)及び不揮発性メモリ等のデバイスで構成される。例えば、CPUが不揮発性メモリからプログラムを読み出して実行することにより、信号処理部15に各地点の降水強度を算出させることができる。
【0037】
操作・表示部16は、ユーザによって操作可能な操作パネル(図示せず)を含んでいる。ユーザは、この操作パネルを操作することにより、気象レーダ装置2,3,4を操作する。また、操作・表示部16には、信号処理部15によって算出された各地点の降水強度に基づいて生成されたレーダ画像が表示される。
【0038】
また、ユーザが、操作・表示部16を適宜操作することにより、レーダアンテナ10の回転を開始させる時刻としてユーザが希望する時刻である設定時刻t
setが設定される。
【0039】
GPSアンテナ17は、測位用衛星としてのGPS衛星St(
図2参照)からの電波をGPS信号として受信する。GPSアンテナ17で受信された測位信号としてのGPS信号は、アンテナ回転制御部20に出力される。
【0040】
図3は、
図2に示すアンテナ装置8の構成を示すブロック図である。アンテナ装置8が有するアンテナ回転制御部20は、GPSタイミングモジュール21と、アンテナ制御モジュール30とを有している。
【0041】
アンテナ回転制御部20は、信号処理部15の場合と同様、ハードウェア・プロセッサ6(例えば、CPU、FPGA等)及び不揮発性メモリ等のデバイスで構成される。例えば、CPUが不揮発性メモリからプログラムを読み出して実行することにより、アンテナ回転制御部20を、GPSタイミングモジュール21及びアンテナ制御モジュール30として機能させることができる。なお、GPSタイミングモジュール21及びアンテナ制御モジュール30は、それぞれ別体に設けられていてもよく、或いは、1チップで構成されたアンテナ制御モジュール30が、GPSタイミングモジュール21の基板上に実装されていてもよい。
【0042】
GPSタイミングモジュール21は、周期信号取得部としてのPPS信号生成部22と、クロック信号生成部23と、時刻信号取得部としての時刻情報信号生成部24と、を有している。
【0043】
図4は、アンテナ制御モジュールに入力されるPPS信号と時刻情報信号とを時間軸上において対応させて示す模式図である。
【0044】
PPS信号生成部22は、GPSアンテナ17から得られたGPS信号に基づき、一定の周期で繰り返される周期信号としてのPPS信号を生成する。PPS信号とは、
図4に示すように、1秒周期で繰り返される矩形状のパルス波を有する信号であって、そのパルス波の周期の誤差が非常に小さい信号である。PPS信号生成部22で生成されたPPS信号は、アンテナ制御モジュール30に出力される。
【0045】
クロック信号生成部23は、GPSアンテナ17から得られたGPS信号に基づき、クロック信号を生成する。このクロック信号は、PPS信号よりも短い周期で繰り返される矩形状のパルス波を有する信号である。クロック信号は、例えばPPS信号に基づいて生成されるため、そのパルス波の周期の誤差が、PPS信号の場合と同様、非常に小さい。クロック信号生成部23で生成されたクロック信号は、アンテナ制御モジュール30に出力される。
【0046】
時刻情報信号生成部24は、GPSアンテナ17から得られたGPS信号に基づき、1秒周期で、時刻情報信号を生成する。時刻情報信号生成部24で生成された時刻情報信号は、アンテナ制御モジュール30に出力される。
【0047】
なお、アンテナ制御モジュールに入力される各時刻情報信号は、その時刻情報信号が有する時刻情報が入力された後に直近でアンテナ制御モジュールに入力されるPPS信号のパルス波形の立ち上がり部分の時刻が、その時刻情報信号が有する時刻となるように、GPSタイミングモジュール21からアンテナ制御モジュール30へ出力される。
図4を参照して具体的に説明すると、時刻情報として2016年1月18日10時0分0秒の情報を有する時刻情報信号は、その時刻よりも1秒前の時刻情報(2016年1月18日9時59分59秒)を有する時刻情報信号に対応するPPS信号のパルス波形の立ち上がり時刻から50ms後に、アンテナ制御モジュール30に入力される。なお、時刻情報信号の時間誤差は数十ms程度であり、PPS信号の周期である1秒よりも小さい。
【0048】
アンテナ制御モジュール30は、設定時刻受付部31と、アンテナ回転開始基準時刻設定部としての基準時刻設定部32と、回転制御処理部33とを有している。
【0049】
設定時刻受付部31は、ユーザによって設定された設定時刻t
setを受け付ける。
【0050】
基準時刻設定部32は、レーダアンテナ10が回転を開始する時刻の基準となる時刻であるアンテナ回転開始基準時刻としての基準時刻t
stdを設定する。本実施形態では、基準時刻設定部32は、設定時刻受付部31によって受け付けられた設定時刻t
setと同じ時刻を、基準時刻t
stdとして設定する。
【0051】
回転制御処理部33は、回転開始制御部34と、回転制御部35とを有している。
【0052】
回転開始制御部34は、前記基準時刻t
stdと同じ時刻を情報として有する時刻情報信号を受けた直後にPPS信号がオンとなるタイミングで(言い換えれば、PPS信号がハイレベルとなるタイミングで)、レーダアンテナ10が有する電動モータ10aに回転開始信号Sを出力し、回転開始信号Sを受けた電動モータ10aは直ちに回転駆動する。すなわち、上述したPPS信号がオンとなるタイミングは、電動モータ10aが回転を開始する回転開始タイミングt
stである。これにより、各レーダアンテナ10は、回転開始タイミングt
stに到達すると、水平面に沿って同時に回転を開始する。
【0053】
回転制御部35は、各レーダアンテナ10が有する電動モータ10aの回転を制御する。具体的には、回転制御部35は、ステッピングモータで構成された電動モータ10aを、クロック信号生成部23で生成された精度の高いクロック信号のパルスに基づいて回転させる。回転制御部35は、例えば一例として、精度の高いクロック信号のパルスを受ける毎に、電動モータ10aを1ステップ分だけ回転させる。これにより、各電動モータ10aが同じタイミングで同じステップ幅分だけ回転する。すなわち、
図1を参照して、各気象レーダ装置2,3,4で形成されるビームB2,B3,B4の互いに対する角度が120度に保たれたまま、各レーダアンテナ10が回転する。
【0054】
[アンテナ装置の動作について]
図5は、
図2に示すアンテナ装置8の動作を示すフローチャートである。以下では、
図5を用いて、アンテナ装置8によってレーダアンテナ10が回転される際に実施されるアンテナ回転方法について説明する。なお、ここでは、レーダアンテナ10が回転するまでのステップについて説明する。
【0055】
まず、ステップS1では、ユーザによる設定時刻t
setの設定が行われる。ユーザによって設定された設定時刻t
setは、設定時刻受付部31によって受け付けられる。
【0056】
ステップS2では、ステップS1の前若しくは後に、又はステップS1と並行して、時刻情報信号生成部24によって、時刻情報信号が生成される。
【0057】
ステップS3では、ステップS1及びS2の前若しくは後に、又はこれらと並行して、PPS信号生成部22によって、PPS信号が生成される。
【0058】
上述したステップS1及びS2の後、ステップS4では、基準時刻設定部32によって、基準時刻t
stdが設定される。
【0059】
上述したステップS3及びS4の後、ステップS5では、回転開始制御部34によって、回転開始タイミングt
stが決定される。
【0060】
次に、ステップS6では、レーダアンテナ10が、回転開始タイミングt
stで回転を開始する。
【0061】
[効果]
以上のように、本実施形態に係る気象レーダシステム1のアンテナ装置8、及びこのアンテナ装置8を用いたアンテナ回転方法では、基準時刻t
stdと周期信号(本実施形態の場合、PPS信号)とに基づいて、レーダアンテナ10の回転開始タイミングt
stが決定される。こうすると、回転開始タイミングt
stを、例えば単に基準時刻t
stdのみを用いて決定する場合と比べて、より多くの情報に基づいて回転開始タイミングt
stを決定できるため、回転開始タイミングt
stをより正確に決定することができる。また、アンテナ装置8によれば、例えば、基準時刻t
stdが受信された時刻と実際の時刻との間に誤差がある場合であっても、その時刻を、周期信号によって実際の時刻に精度よく一致させることが可能となる。そうすると、回転開始タイミングt
stが所望の時刻とずれてしまうことに起因して、各ビームB2,B3,B4の向きが一致又は対向してしまう事態を回避できる。
【0062】
従って、アンテナ装置8及びアンテナ回転方法によれば、アンテナ(例えば気象レーダ装置2のレーダアンテナ10)から送波される電波と他の電波(例えば気象レーダ装置3,4のレーダアンテナ10から送波される電波)との干渉を低減できる。
【0063】
また、アンテナ装置8によれば、測位用衛星(本実施形態の場合、GPS衛星St)から取得される測位信号(本実施形態の場合、GPS信号)に基づいて、比較的容易に時刻情報を得ることができる。
【0064】
また、アンテナ装置8によれば、時間的に隣接するパルスの各立ち上がり部分の時間間隔の誤差が非常に少ない、高精度なPPS信号に基づいて、回転開始タイミングt
stを設定することができる。これにより、回転開始タイミングt
stをより一層正確に決定することができる。
【0065】
また、アンテナ装置8では、
図4を参照して、基準時刻t
stdの直後にPPS信号がオンとなるタイミングが、回転開始タイミングt
stとして決定される。GPSでは、時刻情報信号が有する時刻情報(
図4を参照して、例えば2016年1月18日10時0分0秒)が示す時刻に、該時刻情報信号の直後のPPS信号が立ち上がる。これにより、アンテナ装置8によれば、回転開始タイミングt
stを、設定時刻t
setに基づいて設定された基準時刻t
stdと精度良く一致させることができるため、回転開始タイミングt
stを設定時刻t
setに高精度で合わせることができる。
【0066】
また、アンテナ装置8によれば、GPS信号から得られる精度の高いクロック信号に基づいてステッピングモータの回転が制御されるため、複数のレーダアンテナ10を同時に同じ角度ずつ、正確に回転させることができる。
【0067】
また、アンテナ装置8では、基準時刻t
stdが、ユーザによって設定された設定時刻t
setにも基づいて決定される。これにより、基準時刻t
stdを所望の時刻に設定することができる。
【0068】
また、気象レーダシステム1によれば、アンテナから送波される電波と他のアンテナから送波される電波との干渉を低減可能なアンテナ装置8を備えたレーダシステムを提供できる。
【0069】
また、気象レーダシステム1では、各レーダアンテナ10のビームB2,B3,B4の向きが、回転開始時において、互いに0度又は180度以外の向きになっている。これにより、気象レーダシステム1の動作中に各レーダアンテナ10が同じ方向になったり向かい合う方向となることを回避できるため、各レーダアンテナ10から送波される電波間の干渉をより確実に低減できる。
【0070】
また、気象レーダシステム1では、各アンテナ回転制御部20による回転動作が行われる前の各レーダアンテナ10が、各ビームB2,B3,B4の向きが互いに0度又は180度以外の向きとなるように設定されている。そして、気象レーダシステム1では、各アンテナ回転制御部20が対応するレーダアンテナ10の回転を同時に開始する。これにより、気象レーダシステム1の動作中に各レーダアンテナ10が同じ方向になったり向かい合う方向となることを確実に回避できる。
【0071】
また、気象レーダシステム1では、それぞれから送波される電波間の干渉が低減された複数の気象レーダ装置2,3,4によって各地点の降水強度が算出されるため、広範囲に亘って正確に降水強度を算出できる。
【0072】
[変形例]
以上、本発明の実施形態について説明したが、本発明はこれらに限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。
【0073】
(1)
図6は、変形例に係る気象レーダシステムの各気象レーダ装置が有するアンテナ装置8aの構成を示すブロック図である。上述した実施形態では、GPS信号から得られるクロック信号に基づいてレーダアンテナ10の回転を制御する例を挙げて説明したが、これに限らない。具体的には、本変形例では、GPS信号から得られるクロック信号に基づくレーダアンテナ10の回転の制御が行われず、気象レーダ装置2,3,4毎に、レーダアンテナ10の回転制御が行われる。この場合であっても、上記実施形態の場合と同様、各レーダアンテナ10の回転開始タイミングt
stを正確に合わせることができるため、アンテナから送波される電波と他のアンテナから送波される電波との干渉を低減することができる。
【0074】
また、本変形例によれば、上記実施形態の場合と比べて、GPSタイミングモジュール21aにおいてクロック信号生成部23が省略された構成となっており、且つアンテナ制御モジュール30aの回転制御処理部33aにおいて回転制御部35が省略された構成となっている。これにより、上記実施形態と比べて、気象レーダシステムの構成を簡素化できる。
【0075】
(2)上述した実施形態及び変形例では、公共システムとしてのGPSから得られるGPS信号を用いてレーダアンテナ10の回転を開始したが、これに限らず、その他の公共システムから得られる信号に基づいて、レーダアンテナ10の回転を開始してもよい。例えば一例として、
図7に示す気象レーダシステム1aのように、標準電波を送波する標準電波送信所Tから送波された標準電波を受波する標準電波用アンテナ17aで受波された信号に基づき、レーダアンテナ10の回転を開始してもよい。或いは、GPS以外の測位システム(例えばGLONASS)、NTP(Network Time Protocol)から得られる信号に基づいて、レーダアンテナ10の回転を開始してもよい。これらの場合であっても、上記実施形態の場合と同様、レーダアンテナ10の回転開始タイミングt
stと設定時刻t
setとを精度良く対応させることができるため、アンテナから送波される電波と他の電波との干渉を低減できる。
【0076】
(3)
図8は、本発明の実施形態に係るアンテナ装置8が適用される気象レーダシステム1bの構成を示すブロック図である。上述した実施形態では、アンテナ装置8を、複数の気象レーダ装置2,3,4を有する気象レーダシステム1に適用する例を例に挙げて説明したが、これに限らない。具体的には、本発明に係るアンテナ装置8は、
図8に示すような、1つの気象レーダ装置7を有する気象レーダシステム1bに適用することもできる。この場合であっても、気象レーダ装置7の回転開始タイミングt
stを正確に決定することができる。そうすると、他のレーダ装置(図示省略)のビームがどの時刻にどの方向を向いているかを把握できる場合等に、自身のアンテナと前記他のレーダ装置のアンテナとが同じ方向を向いたり或いは対向したりしないように、自身のアンテナの回転時刻を正確に決定できる。これにより、気象レーダ装置7からの電波が、前記他のレーダ装置から送波される電波と干渉することを回避できる。なお、
図8に示す気象レーダ装置7の構成は、上記実施形態の気象レーダ装置2,3,4と同じであるため、その説明を省略する。
【0077】
(4)
図9は、上記実施形態の各気象レーダ装置2,3,4が有するレーダアンテナ10の向き、及び各レーダアンテナ10の回転開始タイミングについて説明するための模式図である。
【0078】
上述した実施形態では、各レーダアンテナ10の向きが互いに120度の間隔となるように各レーダアンテナ10が設定された状態において、レーダアンテナ10を同じタイミングで回転させる例を挙げて説明したが、これに限らない。具体的には、
図9を参照して、各気象レーダ装置2,3,4のレーダアンテナ10の向きが互いに同じ向きとなるように設定された状態において、各レーダアンテナ10を異なるタイミングで回転させてもよい。この場合であっても、各レーダアンテナ10の向きが同じ又は対向した状態での電波の送受波が回避可能となるため、各レーダアンテナ10からの電波同士が干渉することを防止できる。
【0079】
(5)上述した実施形態では、
図4を参照して、基準時刻t
std直後のPPS信号の立ち上がりを回転開始タイミングt
stと決定したが、これに限らない。具体的には、基準時刻t
stdの前のPPS信号の立ち上がりを回転開始タイミングt
stと決定してもよく、或いは、基準時刻t
stdの複数後のPPS信号の立ち上がりを、回転開始タイミングt
stと決定してもよい。
【0080】
(6)上述した実施形態及び各変形例では、本発明に係るアンテナ回転制御部を気象レーダシステムに適用する例を挙げて説明したが、これに限らず、その他の装置及びシステムに適用することもできる。例えば一例として、舶用レーダに適用することもできる。
【0081】
(7)上述した実施形態では、各レーダアンテナ10の電動モータ10aをステッピングモータで構成する例を挙げて説明した。しかし、これに限らず、電動モータとして、ステッピングモータでない通常のモータを用いることもできる。この場合、回転制御部は、精度の高いクロック信号に基づき、電動モータの駆動パルスのデューティー比を制御する。これにより、各電動モータの回転速度を設定するためのデューティー比が高い精度で一致するため、各電動モータを高い精度で同期して回転させることができる。
【0082】
(8)上述した実施形態では、時刻情報をGPS信号に基づいて生成したが、これに限らない。具体的には、例えば一例として、ユーザが有する時計に基づいて、各レーダ装置で用いられる時刻情報を生成してもよい。この場合であっても、上記実施形態の場合と同様、各レーダアンテナの回転開始タイミングを正確に合わせることができるため、アンテナから送波される電波と他のアンテナから送波される電波との干渉を低減することができる。
【0083】
(9)上述した実施形態では、周期信号としてPPS信号を用いているが、この限りでなく、その他の周期信号を用いてもよい。この場合、時刻情報信号の時間誤差よりも大きな周期であって、該時刻情報信号の時間誤差よりも小さな時間誤差で繰り返される略一定周期の周期信号を用いることで、上述した実施形態の場合と同様、アンテナから送波される電波と他のアンテナから送波される電波との干渉を低減することができる。
【0084】
(10)上述した実施形態では、GPS信号に基づいてPPS信号を生成する例を挙げて説明したが、これに限らない。具体的には、GPS以外の測位システムから得られる測位信号に基づいて、PPS信号を生成してもよい。
【0085】
(11)上述した実施形態では、レーダアンテナ10を同期して回転させるために、GPS信号に基づいて生成されたクロック信号を用いたが、これに限らず、精度の高いクロック周波数を有するクロック信号であれば、クロック信号はどのように生成されてもよい。例えば、GPSシステム以外の測位システムから得られる測位信号に基づいてクロック信号が生成されてもよく、或いは、何らかの基準信号を補正等することによって精度が向上したクロック信号が生成されてもよい。