【実施例】
【0074】
本発明の範囲を限定しようとするものではないが、本発明の実施形態に係る例示的な器具、装置、方法及びそれらに関連する結果を以下に示す。実施例において、タイトル又はサブタイトルが、読者の便宜のために使用される可能性があり、これは、決して本発明の範囲を限定するものではないことに留意されたい。さらに、ある特定の理論が、本明細書において提案及び開示される。しかしながら、それらの理論が正しくても間違っていても、いかなる特定の理論又は行動のスキームにも関係なく、本発明が本発明にしたがって実施される限り、それらの理論は決して、本発明の範囲を限定するものではない。
【0075】
<方法>
【0076】
<融合抗原DRMP及びMDPRの合成>
【0077】
融合抗原DRMP(配列番号:52)、MDPR(配列番号:53)及びPCV2 ORF2抗原(配列番号:20)をコードするDNA配列をそれぞれ合成し、さらにプラスミドpTAC−2−PE
313−NESK又はpTAC−2−RAP1−PEt
268−313−K3にクローニングした。合成された全ての配列を、E.coli培養に最適化した。それぞれのフォワードプライマー及びリバースプライマーを、DRMP又はMDPRのDNA増幅のためのPCRにおいて使用した。増幅したDNA断片をEcoRI及びXhoIによって消化し、次いで示されるベクターにライゲーションした。融合タンパク質PE
313−PCV2−NESKも同様の方法でクローニングした。
【0078】
表1は、プラスミドへのクローニングのために使用されるフォワードプライマー及びリバースプライマーの配列を示す。ボールド体の文字はEcoRI切断部位を示す;イタリック文字はSalI切断部位を示す;イタリック且つボールド体の文字はXhoI切断部位を示す;下線の付された文字は抗原配列を示す。
【0079】
【表1】
【0080】
<例1 発現ベクターの構築>
【0081】
図1Aは、PEが3つのドメイン(I、II、及びIII)を含むことを示す。PE
407は、PEのa.a.1〜a.a407の領域である。PE
407は、細胞傷害性ドメインIIIを含まず、したがって、ドメインI及びIIを含む。PE
313は、PEのa.a.1〜a.a.313の領域である。したがって、PE
313は、PEのドメインIa及びドメインIIの部分N末端領域のみを含む。
【0082】
図1B−Cは発現ベクターの構築を示し、これらのそれぞれは、抗原提示細胞(APC)結合ドメイン、トランスロケーションペプチド、抗原、核輸送シグナル(NES)(これは、下のパネルでは存在し、上のパネルでは存在しない)、及び小胞体(ER)保持配列(上のパネルではK3、下のパネルではK)を含み、ER保持配列が融合タンパク質のC末端に位置している。プラスミドであるpTac−2−PE
313−NESK、pTac−2−PE
407−K3、pTac−2−RAP1−PE
268−313−NESK及びpTac−2−RAP1−PE
268−313−K3は、以下のように生成した:
NdeIPE
313−
(EcoRI、XhoI)−NESK
XhoI、
NdeIPE
407−
(EcoRI、XhoI)−K3
XhoI、
NdeIRAP1−
(EcoRI)−PE
268−313−
(EcoRI、XhoI)−NESK
XhoI及び
NdeIRAP1−
(EcoRI)−PE
268−313−
(EcoRI、XhoI)−K3
XhoI断片を、PCR法によって合成し、次いでカナマイシン抵抗性遺伝子を有するpUC18主鎖にライゲーションして、それぞれのプラスミドを得た。
【0083】
次いで、関心の対象となる病原体の抗原又は融合抗原をコードする標的DNAを上述のプラスミドに挿入すると、融合タンパク質の発現のための発現ベクターを生成することができる。例えば、ブタサーコウイルスタイプ2(PCV2)ORF2(配列番号:20)の抗原をコードするDNA断片を合成し、プラスミドpTac−2−PE
313−NESKに挿入して、発現ベクターPE
313−PCV2−NESK(
図1F)を生成した。
【0084】
以下の標的DNA断片を合成した。
(i)PRRSV ORF7のC末端部の2回の反復を含む抗原をコードする標的DNA。この抗原は、「DGD」又は「D」と呼ばれる。
(ii)PRRSV NSP 10(C末端ドメイン配列)及びNSP 11(N末端ドメイン配列)を融合して得られる融合抗原をコードする標的DNA。この抗原は、「M12」又は「M」と呼ばれる。
(iii)ORF6配列とORF5配列との間に架橋/リンカー配列を有しない、PRRSV ORF6のN末端部及びORF5のN末端部を融合して得られる融合抗原をコードする標的DNA。この抗原は、「RSAB」又は「R」と呼ばれる。
(iv)ORF6配列とORF5配列との間に架橋/リンカー配列を有しない、PRRSV ORF6のN末端部及びORF5のN末端部を融合して得られる融合抗原をコードする標的DNA。この抗原は、「PQAB」又は「P」と呼ばれる。
【0085】
上記の標的DNA断片を、
図1Bの上のパネルに示されるプラスミドに挿入して、融合タンパク質PE
407−M−K3、PE
407−P−K3、PE
407−R−K3、及びPE
407−D−K3をそれぞれ生成した(
図1D)。
【0086】
4種類の上述の抗原D、R、M、及びPのすべてを含む融合抗原(DRMP、MDPR、など)をコードする標的DNA断片を合成し、プラスミドpTac−2−PE
313−NESKに挿入して、融合タンパク質PE−DRMP−NESK(
図1E)(これは「PRRSFREE 4−in−1」とも呼ばれる)を発現する発現ベクターを生成した。
【0087】
<例2 タンパク質発現>
【0088】
融合タンパク質の発現のためのプラスミドを内部に持つE. coli BL21細胞を、25ppmのカナマイシンを含有するルリアベルターニ培地中で、37℃でそれぞれ培養した。培養が初期対数期(A600=0.1〜0.4)に達すると、誘導のために、イソプロピル−1−チオ−β−D−ガラクトピラノシド(IPTG)を0.5〜2mMの最終濃度で添加した。細胞を誘導4時間後に採取し、−70℃で直ちに保存した。融合タンパク質を、既述の(Liao et al., 1995. Appl. Microbiol. Biotechnol. 43: 498-507)尿素抽出によって精製し、次いで、4℃で一晩の、50X体積のTNEバッファー(50mM トリス、50mM NaCl及び1mM EDTA)に対する透析法によって、リフォールディングした。リフォールディングされたタンパク質をSDS−PAGE分析に供し、Bradfordタンパク質アッセイキット(Pierce)を使用して定量分析を実施した。この結果は、リフォールディングされたタンパク質のほとんどが、非還元条件下ではモノマーであることを示した。これは、融合タンパク質が容易にリフォールディングされ、凝集されなかったことを示す。
【0089】
<例3 PRRSVサブユニットワクチン免疫原性アッセイ>
【0090】
マウスに、30μg/ショットのPRRSFREE 4−in−1又はPRRSFREE及びISA206アジュバントを含む、200μlのPRRSVサブユニットワクチンを、皮下注射により、1週間に1回を2週間、ワクチン接種した。コントロール群(プラセボ)にはPBSを注射した。
【0091】
最後の免疫化の14日後に全てのマウスを屠殺し、脾臓を採取した。脾細胞を単離し、刺激剤組換え抗原タンパク質の有り無しで、37℃で72時間、96穴プレート(10
5細胞/100μl/ウェル)で培養した。免疫化で使用したワクチンに応じて、抗原特異的細胞媒介性免疫応答を検出するために使用した刺激剤組換え抗原タンパク質は、PRRSFREE抗原、PRRSFREE−4−in−oneキメラ融合抗原、又はPCV2 ORF2抗原であった。細胞培養上清を回収し、上清中のインターフェロン−ガンマ(IFN−γ)を、IFN−γマウス抗体ペア(Invitrogen)によって測定した。
【0092】
免疫化に使用したワクチンに応じて、体液性免疫応答を検出するために、PRRSFREE抗原、又はPRRSFREE 4−in−one融合抗原、又はPCV2 ORF2抗原をELISAプレートにコーティングした。コーティングの後、プレートを洗浄し、ブロッキングした後で、希釈されたマウス血清を添加した。次いでプレートを洗浄し、HRPコンジュゲート二次抗体でハイブリダイズし、その後TMB基質を添加した。反応を止めた後、結果をELISAリーダーによって検出した。
【0093】
<例4 細胞媒介性免疫応答(CMI)及び体液性免疫応答>
【0094】
図2Aは、ワクチン接種群のIFN−γ濃度が、コントロール群のものより高かったことを示している。このことは、ワクチン接種下でCMI応答が誘導されたことを示す。さらに、PRRSFREE 4−in−1ワクチンを投与された群のIFN−γ濃度は、PRRSFREE治療群より劇的に高かった。この結果は、1種類の単一の融合抗原で構成されたPRRSFREE 4−in−1ワクチンが、驚くべきことに、4種類の別個の抗原で構成されたPRRSFREEワクチンよりも強いCMI応答を誘導することができることを示す。
【0095】
図2Bは、ワクチン免疫化群がコントロール群よりも高い抗原特異的抗体価を有したことを示す。PRRSFREE 4−in−1ワクチンを接種したマウスは、PRRSFREEワクチンで免疫化した群よりも高い抗体価を有した。この結果は、PRRSFREE 4−in−1が、PRRSFREEワクチンよりも強い体液性免疫応答を誘導することができることを示す。
【0096】
図2A−Bのデータは、PRRSFREE 4−in−1(これは、D、M、P、及びR抗原の融合物を備える1種類の単一の融合抗原を含む融合タンパク質を含む)が、PRRSFREEワクチン(これは、4種類の個別の、別個の抗原を含み(すなわち、4種類の抗原M、M、P、Rが融合されていない)、各抗原はそれぞれの融合タンパク質にある)よりも強い細胞性及び体液性免疫応答を誘発することができることを示す。
【0097】
<例5 ブタサーコウイルスタイプ2(PCV2)ORF2サブユニットワクチンとの組み合わせワクチン>
【0098】
上述の免疫化スケジュールにしたがって、マウスに、PBS、PRRSFREE 4−in−oneプラスPE−PCV2−NESK、又はPRRSFREEプラスPE−PCV2−NESKコンボワクチンをワクチン接種した。PRRSFREE 4−in−oneプラスPE−PCV2−NESKコンボワクチンは、PE−DRMP−NESK(
図1D)及びPE−PCV2−NESK(
図1F)融合タンパク質を含む。PRRSFREEプラスPE−PCV2−NESKコンボワクチンは、5種類の別個の融合タンパク質:(1)PE−DGD−K3、PE−M12−K3、PE−PQAB−K3、PE−RSAB−K3(
図1D)、及びPE−PCV2−NESK(
図1F)を含む。
【0099】
<例6 PCV2 ORF2サブユニットワクチンとの組み合わせワクチン>
【0100】
図3Aは、PRRSV抗原特異的(PRRSFREE 4−in−1融合抗原、及びPRRSFREE抗原)CMI応答を示し、
図3Bは、PCV2−ORF2特異的CMI応答を示す。このデータは、PRRSFREE 4−in−1融合抗原及びPCV2 ORF2サブユニットワクチンの組み合わせで免疫化したマウス群が、PRRSFREE(4種類の別個の抗原)及びPCV2 ORF2サブユニットワクチンの組み合わせで免疫化したマウス群よりも強いCMI応答を示したことを示す。
【0101】
図4Aは、PRRSV抗原特異的抗体応答を示す。ELISA法を使用して抗原特異的抗体価を測定した。PE−DRMP−NESK及びPE−PCV2−NESKの組み合わせ(すなわち、2種類の融合タンパク質)で治療した群については、融合抗原DRMPを使用して抗原特異的抗体価を測定した。PRRSFREE及びPE−PCV2−NESKの組み合わせ(すなわち、5種類の融合タンパク質)で治療した群については、4種類の抗原D、R、M、及びPを使用して抗原特異的抗体価を測定した。このデータは、PRRSFREE 4−in−1融合抗原及びPCV2 ORF2サブユニットワクチンの組み合わせで免疫化したマウス群が、PRRSFREE(4種類の別個の抗原)及びPCV2 ORF2サブユニットワクチンの組み合わせで免疫化したマウス群よりも強いPRRSFREE 4−in−1融合抗原特異的体液性応答を示したことを示す(
図4A)。
【0102】
図4Bは、PCV2−ORF2抗原特異的抗体応答を示す。驚くべきことに、PRRSFREE(4種類の別個の抗原)及びPCV2 ORF2サブユニットワクチン(PE−PCV2−NESK)の組み合わせで免疫化されたマウスは、PRRSFREE 4−in−1融合抗原(PE−DRMP−NESK)及びPCV2 ORF2サブユニットワクチン(PE−PCV2−NESK)の組み合わせで免疫化された群よりも高いPCV2特異的抗体価を有した。この結果は、これら2種類のPRRSV/PCV2コンボワクチンの間で、PRRSV抗原特異的体液性免疫応答及びPCV2特異的体液性免疫応答に差異があったことを示す。
【0103】
CMI応答及び体液性免疫応答の誘導において、両方のアプローチが有効であることは明らかである。2種類の融合タンパク質(PE−DRMP−NESK及びPE−PCV2−NESK)を含むPRRSV/PCV2コンボワクチンは、試験した4つの免疫応答のうち3つにおいて、より良好な効能を示す。この研究は、PRRSVキメラ融合抗原及びPCV2 ORF2抗原で構成されたPRRSV/PCV2コンボワクチンが、5種類の個別の抗原で構成されたものよりも良い選択であることを示す。それでもなお、両方のアプローチが、動物において免疫応答を誘導するのに有用である。
【0104】
<例7 2種類の抗原の融合物対4種類の抗原の融合物>
【0105】
3群の6週齢メスC57BL/6マウス(1群あたり3匹のマウス)に、毎週の間隔で3回、(1)15μgのPE−DR−NESKタンパク質、(2)15μgのPE−DR−NESKタンパク質及び15μgのPE−MP−NESKタンパク質の組み合わせ、又は(3)30μgのPE−DRMP−NESK(200μlの50%ISA206中)を、皮下注射した。最後の免疫化の1週間後にマウスを殺し、脾細胞を採取した。脾細胞を4種類のPRRSV抗原(M12、DgD、PQAB及びRSAB、それぞれ2.5μg/ml)で72時間刺激し、ELISAキットを使用して各群の無細胞上清中のIFN−γを検出した。
図5は、PE−DRMP−NESKで免疫化されたマウスが、3群の中で最も大きいCMI応答を示したことを示す。
【0106】
<例8 ブタにおける細胞媒介性免疫性>
【0107】
5週齢のSPFブタ(1群あたり2−4匹のブタ)に、毎週の間隔で2回、以下のワクチンのうちの1つを筋肉内注射した:(1)PRRSFREE、(2)PE−DRMP−NESK、(3)PE−MDPR−NESK、(4)RAP1−PE
268−313−DRMP−K3、(5)RAP1−PE
268−313−MDPR−K3(2mlの50%ISA206中)、又は(6)プラセボとしてPBS。
図6は、これらのワクチンの設計を示す。各注射中の抗原は、2mlの50%ISA206中に300μgであった。ワクチン接種したブタの末梢血単核細胞(PBMC)を、最後の免疫化の3週間後に採取した。免疫化において使用したワクチンに応じて、PBMCを、PRRSFREE抗原(M12、DgD、PQAB及びRSAB、それぞれ2.5ug/ml)、PE−DRMP−NESK、PE−MDPR−NESK、RAP1−PE
268−313−DRMP−K3、又はRAP1−PE
268−313−MDPR−K3で72時間刺激し、次いでELISAキットを使用して、各群の無細胞上清中のIFN−γを検出した。
図7は、刺激の後に、ワクチン接種したブタのPBMCによって分泌されたIFN−γを示す。融合抗原を含むワクチンが、プラセボ群よりも高いIFN−γ分泌を誘導することができたことが観察された。
【0108】
<例9 ブタにおけるウイルス血症研究>
【0109】
5週齢のSPFブタ(1群あたり2−4匹のブタ)に、毎週の間隔で2回、以下のワクチンのうちの1つを筋肉内注射した:(1)PRRSFREE、(2)PE−DRMP−NESK、(3)PE−MDPR−NESK、(4)RAP1−PE
268−313−DRMP−K3、(5)RAP1−PE
268−313−MDPR−K3(2mlの50%ISA206中)、又は(6)プラセボとしてPBS。各注射中の抗原は、2mlの50%ISA206中に300μgであった。ワクチン接種したブタに、最後の免疫化の3週間後に、2 x 10
5 TCID50のPRRSVを鼻腔内投与した。血液サンプルを毎週回収した。ウイルスRNAを血清から抽出し、ワンステップSyBR GreenリアルタイムPCRを使用して定量化して、ウイルス血症のレベルを測定した。この実験結果は、融合抗原を含むワクチンがウイルス量を低減することができたことを示した。
【0110】
表2は、様々な融合タンパク質を作製するために使用されるペプチドの配列番号を示す。
【0111】
【表2-1】
【表2-2】
【表2-3】
【0112】
*:PE
268−313は、完全長PEのa.a.268−a.a.313である;PE
313は、完全長PEのa.a.1−a.a.313である;PE
407は、完全長PEのa.a.1−a.a.407である。
**:ボールド体の文字は、人工核輸送シグナルのアミノ酸配列を表す;下線の付された文字は、小胞体保持シグナルのアミノ酸配列を表す。
***:M(M12)は、PRRSV NSP 10(C末端ドメイン配列)及びNSP 11(N末端ドメイン配列)の融合によって調製された融合ポリペプチドである。すなわち、このポリペプチドは、非構造タンパク質であるORF1b NSP 10 C末端部及びNSP 11 N末端部に由来する。
****:P(PQAB)は、PRRSV ORF6 a.a.2−a.a.26及びORF5 aa31−aa63の融合によって調製されたポリペプチドである。米国特許第7465455号を参照。普通の文字で示される配列はPRRSV ORF6/マトリクスタンパク質配列に由来し、ボールド体の文字で示される配列はPRRSV ORF5配列に由来する。PRRSVのORF5によってコードされる主要なエンベロープタンパク質(GP5)は、ウイルス中和(VN)抗体及びPRRSVの異なる株間の交差防御の誘導において、決定的役割を有する。異なる株間には配列変異があるため、本明細書中の配列は、例示の目的で開示される。
【0113】
本発明は、図示された特定の形態に限定されず、本発明の精神及び範囲から逸脱しない全ての改変が、添付の特許請求の範囲に規定される範囲内にある。企図される特定の用途に適するように様々な改変をして、本発明及び様々な実施形態を当業者が利用することができるように、本発明の原理及びその実際の適用を説明する目的で、実施形態及び実施例は選択及び記載された。本発明の精神及び範囲から逸脱することなく、別の実施形態が、本発明に関する分野の当業者には明らかになるであろう。特許、特許出願及び様々な刊行物を含み得る、いくつかの参考文献が、本発明の説明において引用され、論じられている。そのような参考文献の引用及び/又は議論は、単に本発明の説明を明確にするために提供されるものであり、そのような参照が本明細書に記載された発明の「先行技術」であることを認めるものではない。本明細書で引用され論じられたすべての参考文献は、各参考文献が参照により個別に組み込まれた場合と同じ程度に、その全体が参照により本明細書に組み込まれる。