(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について、図面を用いて説明する。なお、下記の実施形態は本発明の例示であり、本発明は、下記の構成には限定されない。
【0017】
<システムの構成>
図1は、本実施形態に係るシステムの構成を示す図である。本システムは、移動状況判定装置1と、ネットワーク2と、移動体3(3a、3b・・・)とを含む。移動体3はGPS(Global Positioning System)受信機等の位置情報を取得可能なセンサを備えてい
る。本実施形態では、移動体3が位置情報を送信するものとして説明する。具体的には、移動体3は、乗用車や二輪車等であってナビゲーション装置を備える車両3aや、携帯電話機、スマートフォン、タブレット(スレートPC(Personal Computer))、ノート型
PCといったモバイル装置3bを所持して外出する使用者等である。また、ナビゲーション装置やモバイル装置には所定のアプリケーションソフトウェアがインストールされており、当該アプリケーションソフトウェアはネットワーク2を介して移動状況判定装置1へ継続的に位置情報を送信するものとする。一方、移動状況判定装置1は、移動体3の現在地や目的地、過去の移動履歴から生成した移動パターンのモデル等に基づいて、土地勘のある地域での移動か否か、習慣性(規則性とも呼ぶ)のある移動か否かといった移動状況の判定を行うとともに、判定に応じた情報を出力する。
【0018】
<機能構成>
図2は、移動状況判定装置1の一例を示す機能ブロック図である。移動状況判定装置1は、記憶部11と、位置情報取得部12と、移動履歴生成部13と、モデル生成部14と、予測目的地取得部15と、自宅位置取得部16と、生活圏内外判定部17と、習慣性判定部18と、情報出力部19とを含む。
【0019】
記憶部11は、いわゆる主記憶装置または補助記憶装置であり、本実施形態で用いる情報を一時的又は永続的に保持する。位置情報取得部12は、ネットワーク2を介して移動体3から緯度及び経度を含む位置情報を継続的に取得し、記憶部11に格納する。また、移動履歴生成部13は、出発地から目的地への移動を表す1つの単位として、記憶部11に格納されている複数の位置情報から1回の移動に係る移動履歴を生成し、記憶部11に格納する。なお、移動の開始及び終了は、例えば車両のエンジン始動からエンジン停止まで、又は略同一の場所への所定期間以上の滞在から別の場所への所定期間以上の滞在までといった条件に基づいて判別する。なお、本実施形態では、過去の移動において到達した目的地を特に「訪問先」とも呼ぶ。
【0020】
本実施形態では、緯度及び経度を含む位置情報を例えば地域メッシュコードに変換し、地域メッシュコードの遷移を表す移動履歴を生成する。
図3は、地域メッシュコードを説明するための図である。本実施形態では、日本工業規格のJIS X0410に規定された地域メッシュコードを用いている。地域メッシュコードは、第1次メッシュ(「第1次地域区画」とも呼ぶ)、第2次メッシュ(「第2次地域区画」、「統合地域メッシュ」とも呼ぶ)及び第3次メッシュ(「第3次地域区画」、「基準地域メッシュ」とも呼ぶ)といった標準地域メッシュ、並びに2分の1地域メッシュ、4分の1地域メッシュ及び8分の1地域メッシュといった分割地域メッシュの各段階の大きさのメッシュで位置を表現する。
【0021】
第1次メッシュとは、地域を1辺の長さが約80kmの略矩形の領域に分割したものであり、第1次メッシュコードは、緯度を表す上2桁の数字及び経度を表す下2桁の数値からなる4桁の数字で表される。第2次メッシュは、第1次メッシュを東西方向及び南北方向にそれぞれ8等分したものであり、第2次メッシュコードは、緯度方向を表す上1桁の
数字及び経度方向を表す下1桁の数字からなる2桁の数字を「−(ハイフン)」で第1次メッシュコードに連結した形式で表される。第3次メッシュは、第2次メッシュを東西方向及び南北方向にそれぞれ10等分したものであり、第3次メッシュコードは、緯度方向を表す上1桁の数字及び経度方向を表す下1桁の数字からなる2桁の数字を第1次メッシュコード及び第2次メッシュコードに連結した形式で表される。2分の1地域メッシュは、第3次メッシュを東西方向及び南北方向にそれぞれ2等分したものであり、2分の1地域メッシュコードは、南西の領域を1、南東の領域を2、北西の領域を3、北東の領域を4として第1次〜第3次メッシュコードに連結した形式で表される。4分の1地域メッシュは、2分の1地域メッシュを東西方向及び南北方向にそれぞれ2等分したものであり、4分の1地域メッシュコードは、南西の領域を1、南東の領域を2、北西の領域を3、北東の領域を4として第1次〜2分の1地域メッシュコードに連結した形式で表される。8分の1地域メッシュは、4分の1地域メッシュを東西方向及び南北方向にそれぞれ2等分したものであり、8分の1地域メッシュコードは、南西の領域を1、南東の領域を2、北西の領域を3、北東の領域を4として第1次〜4分の1地域メッシュコードに連結した形式で表される。
【0022】
なお、緯度及び経度を含む位置情報から地域メッシュコードへの変換処理は既存のアルゴリズムを用いて行うことができるため、詳細は省略する。また、本実施形態では、便宜上、第1次メッシュ側を上位のメッシュ、8分の1地域メッシュ側を下位のメッシュと相対的に呼ぶ。なお、既存の地域メッシュコードに限らず、地域を予め定められた位置及び大きさの網目状に区画するメッシュを独自に定義して用いるようにしてもよい。
【0023】
例えば交差点をノードとした位置情報の系列で移動履歴を表す場合等のような地図情報を必要とする方式と異なり、地域メッシュコードを用いることで、地図情報の更新及び管理にかかるコストを削減することができる。また、メッシュコードに対して商業施設や観光地、その他のランドマーク(例えば、POI(Point Of Interest))を関連付けて保
存したり、メッシュコードの系列に対して渋滞や工事等の交通情報を関連付けて保存したりしておくことで、移動状況判定装置1から移動体3への適切な情報出力も可能となる。なお、上述の通り、地域メッシュコードは、位置情報を複数段階の詳細度で表すことができる。移動体3の移動距離や、移動状況判定装置1の処理負荷等に応じて詳細度を変更することで、状況判定の精度を向上させたり、処理速度を向上させたりすることもできる。
【0024】
また、モデル生成部14は、記憶部11に格納されている移動履歴から、後述する判別処理において用いる履歴モデルを生成し、記憶部11に格納する。本実施形態に係る履歴モデルとは、移動履歴から生成した習慣性の傾向を表す統計情報をいうものとする。例えば、曜日ごと且つ時間帯ごとに、各目的地(すなわち、訪問先)への到着回数を集計しておく。
図4は、曜日及び時間帯ごとに集計した目的地への到達回数を説明するための図である。
図4の例では、過去所定期間における木曜8時台の集計結果として、会社が43回、理容院が6回、ジムが3回と記憶されている。なお、
図4において目的地はランドマークごとに集計されているが、メッシュごとに目的地を集計するようにしてもよい。また、モデル生成部14は、習慣性判断の指標値を求めるようにしてもよい。例えば、ある曜日のある時間帯において訪問回数が最多の目的地と、訪問回数が2番目以下の目的地との間の比率が、所定の閾値以上であるか判断する。そして、所定の閾値以上の差がある場合、当該曜日の当該時間帯においては、最多訪問回数の目的地へ向かっているときに習慣的な移動を行っていると、後述する判定処理において判定する。
【0025】
目的地取得部15は、移動体3の目的地を示す情報を記憶部11から読み出す。移動体3の目的地は、ユーザ(運転者)がナビゲーション装置に入力した位置であってもよいし、移動体3の移動開始から現在地までの移動に基づいて移動状況判定装置1等が予測した位置であってもよい。また、自宅位置取得部16は、移動体3のユーザの自宅の位置を記
憶部11から読み出す。自宅の位置も、ユーザがナビゲーション装置に入力した位置を読み出すようにしてもよいし、移動履歴に基づいて推定した自宅の位置を読み出すようにしてもよい。
【0026】
生活圏内外判定部17は、移動中である移動体3の出発地及び目的地に基づいて、今回の移動が移動体3のユーザの生活圏内における移動であるか否かを判定する。例えば、出発地及び目的地の両者が自宅の位置から所定距離以内であれば生活圏内であると判定する。また、習慣性判定部18は、移動中である移動体3の目的地並びに移動時の曜日及び時間帯に基づいて、今回の移動が移動体3のユーザにとって習慣性のある移動であるか否か判定する。習慣性のある移動とは、例えば、同一の曜日且つ同一の時間帯に行う決まった場所への移動のように、所定の時刻に間に合うように移動しなければならないと推定される、日常の規則的な行動をいうものとする。
【0027】
図5は、移動状況の判定を説明するための図である。本実施形態では、生活圏内外及び習慣性の有無の組み合わせによって、移動体3のユーザの置かれている状況や移動の目的を表す、4つの移動状況(シーンとも呼ぶ)に分類する。具体的には、習慣性の有無により、状況を日常と非日常とに分類する。また、生活圏内外により、状況をホーム(Home)とアウェイ(Away)とに分類する。これらの状況を組み合わせると、非日常且つホーム、非日常且つアウェイ、日常且つホーム、日常且つアウェイの4つの移動状況に分類される。
【0028】
情報出力部19は、生活圏内の移動であるか否か、及び習慣性のある移動であるか否かといった条件により、移動体3のユーザが土地勘のある地域を移動しているか否か、及び日常のルーチン化された移動であるか否かといった移動の状況を判別し、状況に応じた情報をネットワーク2を介して移動体3に出力する。
【0029】
<装置構成>
図6は、コンピュータの一例を示す装置構成図である。移動状況判定装置1や図示していない移動体3のナビゲーション装置、モバイル端末等は、例えば
図6に示すようなコンピュータである。
図6に示すコンピュータ1000は、CPU(Central Processing Unit)1001、主記憶装置1002、補助記憶装置(外部記憶装置)1003、通信IF
(Interface)1004、入出力IF(Interface)1005、ドライブ装置1006、通信バス1007を備えている。CPU1001は、プログラムを実行することにより本実施の形態に係る処理等を行う。主記憶装置1002は、CPU1001が読み出したプログラムやデータをキャッシュしたり、CPUの作業領域を展開したりする。主記憶装置は、具体的には、RAM(Random Access Memory)やROM(Read Only Memory)等である。補助記憶装置1003は、CPU1001により実行されるプログラムや、位置情報などを記憶する。補助記憶装置1003は、具体的には、HDD(Hard-disk Drive)やS
SD(Solid State Drive)、eMMC(embedded Multi-Media Card)、フラッシュメモリ等である。主記憶装置1002や補助記憶装置1003は、移動状況判定装置1の記憶部11等として働く。通信IF1004は、他のコンピュータとの間でデータを送受信する。移動状況判定装置1は、通信IF1004を介してネットワーク2に接続される。通信IF1004は、具体的には、有線又は無線のネットワークカード等である。入出力IF1005は、入出力装置と接続され、ユーザから入力を受け付けたり、ユーザへ情報を出力したりする。入出力装置は、具体的には、キーボード、マウス、ディスプレイ、タッチパネル等である。ドライブ装置1006は、磁気ディスク、光磁気ディスク、光ディスク等の記憶媒体に記録されたデータを読み出したり、記憶媒体にデータを書き込んだりする。そして、以上のような構成要素が、通信バス1007で接続されている。なお、これらの構成要素はそれぞれ複数設けられていてもよいし、一部の構成要素(例えば、ドライブ装置1006)を設けないようにしてもよい。また、入出力装置がコンピュータと一体
に構成されていてもよい。また、ドライブ装置1006で読み取り可能な可搬性の記憶媒体や、フラッシュメモリのような可搬性の補助記憶装置1003、通信IF1004などを介して、本実施の形態で実行されるプログラムが提供されるようにしてもよい。そして、CPU1001がプログラムを実行することにより、
図6に示すようなコンピュータを
図2に示した移動状況判定装置1等として働かせる。
<モデル作成処理>
次に、移動状況判定装置1の処理の詳細について説明する。移動状況判定装置1は、移動体3から位置情報を継続的に受信し、移動履歴の記憶及び予測モデルの生成を行う。
【0030】
図7は、モデル作成処理の一例を示す処理フロー図である。移動状況判定装置1の位置情報取得部12は、ネットワーク2を介して移動体3から任意のタイミングで位置情報を取得する(
図7:S1)。まず、移動体3は、例えばGPS受信機によって、緯度及び経度によって自身の位置を示す位置情報を測定する。そして、移動体3は、所定の時間ごと、又は所定の距離を移動するごと等のタイミングで、位置情報を移動状況判定装置1へ送信する。なお、位置情報は、いわゆるプローブ情報であってもよい。一方、移動状況判定装置1の位置情報取得部12は、受信した位置情報を記憶部11に格納する。
【0031】
図8は、記憶部11に格納される位置情報の一例を示す図である。
図8の例では、ある移動体のある時点における位置情報として、移動体ID、日時、緯度、経度、方角、速度等の各項目に対応する値が1つのレコードに格納されている。なお、方角の項目は移動体の進行方向を示し、進行方向を示す値は、例えば、真北を0度又は12時等とする方位角で表す。
【0032】
そして、位置情報取得部12は、移動体3が目的地(すなわち、訪問先)へ到着したか判断する(S2)。位置情報取得部12は、例えば所定時間以上、移動体3から位置情報が送信されなくなった場合に移動体3が目的地へ到着したと判断してもよいし、移動体3が目的地へ到着した旨の情報を送信するようにしてもよい。車両のエンジン停止を目的地への到着と判断するような場合、車載装置の電源のオフが指示されたとき目的地への到着を示す情報及び当該地点の位置情報を移動状況判定装置1へ送信してからシャットダウンするようにしてもよい。また、エンジンや車載装置の電源と連動した制御ができない場合は、次に車載装置の電源がオンになったとき、当該地点の位置情報及び前回のシャットダウン直前の日時等を移動状況判定装置1へ送信するようにしてもよい。目的地へ到着していないと判断された場合(S2:NO)、処理はS1に戻り、位置情報取得部12は、移動体3が送信する位置情報を順次記憶部11に格納する。
【0033】
一方、目的地へ到着したと判断された場合(S2:YES)、移動状況判定装置1の移動履歴生成部13は、移動開始から目的地到着までを1つの単位とした移動履歴を生成する(S3)。本ステップでは、例えば
図9に示すような移動履歴の1レコードが生成される。
図9の移動履歴は、移動体ID、履歴ID、出発情報、到着情報、移動時間、通過点、天候等の各項目に対応する値を含む。なお、出発情報及び到着情報は、それぞれメッシュ、緯度、経度、POI及び日時の各項目に対応する値を含む。移動体IDの項目には、移動体の識別情報が登録される。履歴IDの項目には、移動開始から目的地到着までを表す移動履歴の識別情報が登録される。また、移動状況判定装置1の図示していないPOI情報更新部は、地域メッシュにより表される位置情報と当該位置に存在する施設等の情報とを対応付けて記憶部11に保持させておくようにしてもよい。また、図示していない天候情報取得部は、地域ごと且つ過去の時間帯ごとの天候を示す情報を、例えばインターネット上の情報配信サーバから取得し、記憶部11に保持させておくようにしてもよい。そして、移動履歴生成部13は、出発地及び到着地の位置情報にそれぞれ関連付けられたPOIや、例えば出発地における出発時刻の天候情報を読み出して移動履歴に格納する。天候情報とは、例えば、晴れ、曇り、雨、雪、不明等の天候区分、並びに最高気温及び最低
気温とする。また、移動時間の項目には、到着に係る日時から出発に係る日時を減じて求めた所要時間が保持される。通過点の項目には、出発地から到着地までに経由した1以上の地点の系列が保持される。
【0034】
その後、移動状況判定装置1のモデル生成部14は、履歴モデルを生成する(S4)。履歴モデルとは、移動履歴における習慣性の傾向を表す統計情報であり、後述する移動状況判別処理において指標として用いられる。本ステップでは、
図4に示したような統計情報に、曜日及び時間帯ごとに集計した目的地への到達回数が記録される。すなわち、モデル生成部14は、S3において生成された移動履歴情報を読み出し、到着情報の日時に基づいて該当する曜日及び時間帯のセルの、該当する目的地(到着情報のPOI)の到着回数に1をインクリメントする。また、本ステップでは、習慣性の判断において用いる指標として、ある曜日のある時間帯における訪問回数が最多の目的地と、その他(訪問回数が2番目以下)の目的地との間の訪問回数の比率を求めておくものとする。例えば、次の数1に示すような指標を、曜日ごと且つ時間帯ごとに求めておき、指標が所定の閾値以上である場合、曜日及び時間帯に対応付けて訪問回数が最多の目的地を「習慣的目的地」として保持しておく。
【数1】
【0035】
以上で、モデル生成処理は終了する。移動体3が移動を開始する度に
図7のモデル生成処理が開始され、履歴モデルが更新される。
【0036】
<状況判別処理>
次に、履歴モデルを用いた状況判別処理について説明する。状況判別処理は、移動体3の移動中に実行される。すなわち、上述したモデル作成処理において、例えば位置情報の取得処理と並行して実行される。
【0037】
図10は、状況判別処理の一例を示す処理フロー図である。移動状況判定装置1の目的地取得部15は、記憶部11から目的地の情報を取得する(
図10:S11)。なお、目的地の情報は、例えばランドマーク又はメッシュの形式で記憶部11に記憶されている。また、目的地の情報は、ユーザがナビゲーション装置等に入力した情報に基づくものでもよいし、移動状況判定装置1又はナビゲーション装置等によって推定されたものでもよい。なお、目的地の推定処理については後述する。
【0038】
また、移動状況判定装置1の自宅位置取得部16は、記憶部11から自宅の情報を取得する(S12)。なお、自宅の情報は、例えばメッシュの形式で記憶部11に記憶されている。また、自宅の位置も、ユーザがナビゲーション装置等に入力した情報に基づくものでもよいし、移動状況判定装置1又はナビゲーション装置等によって推定されたものでもよい。なお、自宅位置の推定処理についても後述する。
【0039】
その後、移動状況判定装置1の生活圏内外判定部17は、移動体3の移動が移動体3のユーザの生活圏内におけるものであるか否か判定する(S13)。例えば、生活圏内外判定部17は、位置情報取得部12が取得した、移動体3の今回の移動に係る出発地、及び目的地取得部15が取得した目的地の両者が、自宅位置取得部16が取得した自宅の位置から所定距離以内であれば生活圏内であると判定する。一方、出発地又は目的地のいずれか一方でも自宅から所定距離内でなければ、生活圏外であると判定する。なお、所定距離以内とは、例えば自宅からの直線距離が3km以内のように、閾値が予め定められているものとする。
【0040】
なお、S13では、生活圏内外判定部17は、例えば移動履歴において通過頻度が所定の閾値以上であるメッシュ又は区間を、生活圏内と判断するようにしてもよい。
図11は、通過頻度が閾値以上のメッシュを説明するための模式的な図である。なお、
図11の例では、便宜上、メッシュの縦方向にA〜J、横方向に1〜10の符号を付している。また、メッシュF5にユーザの自宅があるものとする。そして、
図9に示した移動履歴の出発情報に係るメッシュ、到着情報に係るメッシュ、及び通過点に係るメッシュを用いて、過去所定期間における各メッシュの通過回数を集計し、通過回数を多いほどドットの数が多くなるようなパターンで塗りつぶしている。さらに、通過回数が所定の閾値以上であったメッシュを太枠で示すと、
図11のようになったものとする。ここでは、便宜上、通過回数が所定の閾値以上であったメッシュ群(すなわち、太枠で囲われたメッシュ)を、メッシュセットとも呼ぶ。
図11の例では、自宅の周囲のメッシュの通過回数が比較的高くなっているが、自宅からほぼ等距離にあるメッシュであっても、通過回数には偏りがある。このような情報を用いて、例えば、出発地及び目的地の両者が、メッシュセットのいずれかである場合、生活圏内における移動であると判断することもできる。また、出発地から目的地までに通過が予測されるメッシュのうち、所定の割合以上がメッシュセットのいずれかである場合に、生活圏内における移動であると判断するようにしてもよい。同様に、メッシュセットを用いることで、自宅以外であって訪問頻度の高い場所についても生活圏内(換言すれば、土地勘のある地域)であると判断することもできる。
【0041】
そして、移動状況判定装置1の習慣性判定部18は、移動体3の今回の移動が習慣性のある移動であるか否か判断する(S14)。本ステップでは、モデル作成処理において作成された履歴モデル及び指標を用いて、習慣性の有無を判断する。例えば、移動体3の目的地が、過去の同一曜日且つ同一時間帯における最多訪問回数の目的地である場合に、習慣性のある移動であると判断する。さらに、S11において取得した目的地が、S4で求めた習慣的目的地である場合、習慣性のある移動であると判断するようにしてもよい。すなわち、当該曜日且つ当該時間帯における訪問確率が所定ポイント以上高い目的地である場合に、習慣性のある移動であると判断する。
【0042】
その後、移動状況判定装置1の情報出力部19は、移動状況の判断結果に応じた情報を、ネットワーク2を介して移動体3へ出力する(S15)。本ステップでは、
図5に示した、非日常且つホーム、非日常且つアウェイ、日常且つホーム、又は日常且つアウェイの4種類の移動状況によって、異なる情報を出力する。情報は、メッシュに関連付けて記憶部11に記憶されているものとし、例えば移動体3が通過中のメッシュ又は目的地までの経路に存在するメッシュに関連付けられた情報を出力する。
【0043】
本実施形態では、ホームの場合、ユーザにとって土地勘のある地域、すなわち生活圏内での移動であると判断する。したがって、例えば新規店舗の開店のような地域の情報や、生活に密着したお勧め情報を提供する。一方、アウェイの場合は、観光スポットの情報や、運転経路の提案、危険ポイント等の交通情報等、ユーザの移動の目的に応じて様々な情報を出力する。また、日常の場合は、変わった提案は行わず、所定の時刻に遅刻しないように目的地までの交通情報を案内する。一方、非日常の場合は、時間的な余裕がある可能性があると判断し、地域の様々な情報を出力したり、経路や目的地に関する提案を行ったりする。以下、組み合わせに係る4種類の移動状況で出力される情報を例示する。
【0044】
<出力例1>
非日常且つアウェイの場合、地域の様々な情報を紹介するようにしてもよい。例えば、歴史に関連して地域にまつわる武将の情報や、観光地の歴史的なエピソード、地名の由来等を出力する。また、地域の交通機関や乗り物を紹介するようにしてもよいし、例えば廃墟のような観光地を紹介するようにしてもよい。このような情報は、ユーザ(移動体)の
移動履歴に基づいて推定された嗜好に応じて出力されるようにしてもよいし、移動履歴とは無関係に新たな提案を行うようにしてもよい。
【0045】
<出力例2>
同様に、非日常且つアウェイの場合、状況に応じて再生する音楽を提案するようにしてもよい。例えば、音楽は、通過中の地域にまつわるものを提案する。また、図示していない統計処理部が、本実施形態に係るシステムのユーザから位置情報と当該地点において再生した音楽の識別情報とを受信し、他のユーザが移動している地域において再生される割合の高い音楽を提案するようにしてもよい。このとき、音楽データが配信される構成にしてもよい。
【0046】
<出力例3>
非日常且つアウェイの場合、観光プランを提案するようにしてもよい。この場合、例えばユーザの移動履歴を用いて嗜好や家族構成等を推定し、推定に基づいた観光地を提案する。
【0047】
<出力例4>
また、非日常且つアウェイの場合、安全運転を促す交通情報を出力するようにしてもよい。事故多発等の統計情報に基づいて注意喚起を行うことにより、見知らぬ土地での運転を支援することができる。
【0048】
<出力例5>
非日常且つアウェイの場合、移動状況判定装置1が訪問履歴のない地域へのドライブ計画を提案するようにしてもよい。移動状況判定装置は、例えば上述したような嗜好等の推定に応じて経路や立寄り地点、休憩地点等の計画を生成する。
【0049】
<出力例6>
また、非日常且つホームと判断された場合であって、習慣性のある移動よりも早めに出発したと判断されるときは、喫茶店やファストフード店等への立寄りを提案するようにしてもよい。特に非日常と判断された場合は、通常の行動パターンと異なるため、ユーザとの対話形式で提案を行うことが好ましい。
【0050】
<出力例7>
状況の推定が難しいケースでは、不適切な提案を行うよりも対話形式で移動の目的を適切に把握することが好ましい。履歴に記録のない深夜に移動を開始したような場合、ユーザに目的の入力を求めることで、例えば家族が急病なのか、車中泊をしてスキー場へ向かうのか、適切に把握することができる。
【0051】
以上のように、本実施形態によれば、移動体の移動に関する履歴情報に基づき、ユーザの置かれている状況や移動の目的を推定することができる。よって、移動の目的や状況に応じて、適切な情報を出力することができるようになる。特に、自宅や目的地の位置も推定するようにすれば、ユーザからは何ら情報の入力を受け付けることなく履歴情報に基づいて、あるユーザのある移動に適切と判断された情報を提供することができるようになる。次に、自宅推定処理と目的地推定処理の内容を例示する。
【0052】
<自宅推定処理>
自宅推定処理では、
図9に示した履歴情報を読み出し、到着情報のメッシュ(すなわち、訪問先)ごとの到達回数を集計する。そして、到達回数が最大のメッシュを、自宅の存在するエリアであると判断する。ユーザは自宅を起点として移動するため、自宅は最も訪問する回数が多くなると考えられるからである。なお、訪問頻度が所定の閾値以上である
という条件をさらに加えて判断するようにしてもよい。このようにすれば、例えば訪問回数の拮抗した2位のメッシュが存在する場合に、判断が保留される。このような自宅推定処理によれば、ユーザから情報の入力を受けることなく自宅の位置を推定することができる。また、本願のように自宅の位置をピンポイントの緯度及び経度でなく面積のあるメッシュという単位で保持するようにすれば、ユーザの住所に係るプライバシーに対して配慮したシステムとなる。
【0053】
<目的地推定処理>
本実施形態に係る目的地推定処理は、例えば、出発時の予測処理に用いる予測モデルと、移動時の予測処理に用いる予測モデルとを予め生成しておくものとする。なお、出発時の予測処理に用いる予測モデルとして、(1)隠れマルコフモデル方式と、(2)ベイジアンネットワーク方式とを例示する。一方、移動時の予測処理に用いる予測モデルとしては、(3)類似度方式と、(4)ベイズ更新方式とを例示する。そして、移動体3が移動を開始すると、予測モデルを用いて目的地を推定する。以下、各方式について説明する。
【0054】
(1)隠れマルコフモデル方式
隠れマルコフモデル方式では、過去の出発地及び目的地(すなわち、訪問先)の組み合わせを複数含む系列のパターンと、現在地に至るまでの移動に係る経由地の系列のパターンとの類似性に基づき、今回の移動の目的地を確率的に予測する。本実施形態では、過去所定回数(N)分の出発地から目的地への移動履歴に基づいて(いわゆるN階マルコフ連鎖に基づいて)目的地を推定するものとする。すなわち、過去所定回数分の出発地と目的地との組み合わせを予測モデルする。このようにすれば、移動体の移動が所定の経路で目的地を巡回するような規則性を有する場合、適切に目的地を予測可能となる。なお、曜日や出発時刻、天気等の条件を加味して予測モデルを生成するようにしてもよい。このように、移動体が移動を開始した直後において、過去に経由した目的地に基づいて次の目的地を推定することができる。
【0055】
(2)ベイジアンネットワーク方式
本方式では、蓄積された移動履歴に基づき、出発時の条件ごとに各目的地(すなわち、訪問先)に到達した確率である予測モデルを算出する。例えば、出発時の条件である出発地、出発曜日、出発時刻の組み合わせごとに、各目的地への遷移確率を算出する。詳細には、次のような処理を行う。
(1−1)移動履歴の中から新たに生成された1つのレコードを読み出し、出発地、出発曜日、出発時刻等の組み合わせとして表される出発時の条件を抽出する。なお、出発地及び目的地は、例えば、4分の1地域メッシュ又はPOIで表すものとする。
(1−2)抽出した出発時の条件に基づき、読み出したレコードを所定のカテゴリに分類する。例えば、目的地ごと、且つ出発時刻を0時から4時間刻みの6つの時間帯ごと、且つ曜日ごとの条件の組み合わせで表されるカテゴリに分類する。
(1−3)上述の組み合わせに基づく条件付確率表(CPT:Conditional Probability Table)のセルに対応付けて記憶される当該目的地の総訪問回数に所定の調整値uを加算
する。なお、一般的にはu=1として1回の訪問につき1を加算するが、最近の移動履歴を高く重みづけしてもよい。例えば、uを次の数2のように定義する。なお、dは、例えば、移動履歴の最も古い日にちから当該処理対象のレコードの生成された日にちまでの日数とする。
【数2】
以上のようにして集計した重み付きの訪問回数を正規化し、確率分布を求める。
【0056】
図12は、条件付き確率表の一例を示す図である。条件付き確率表の各セルは、上述の
条件の組み合わせで表されるカテゴリに相当する。また、各カテゴリにおいて、目的地別の頻度を示す確率分布が集計される。このような条件付き確率表が、出発地ごとに生成される。後述する目的地推定処理では、出発時の条件に基づいて目的地の確率分布を読み出し、最も確率の高い目的地を予測された目的地とする。なお、モデル生成処理において、出発曜日が月曜から金曜であれば平日、土曜又は日曜であれば休日としてカテゴリに分類してもよい。なお、天候情報等をさらに用いて予測モデルを生成するようにしてもよい。このようにすれば、移動体が移動を開始した直後において、過去の同一出発地、同一曜日、同一時間帯、同一天候等といった条件のもとで集計された確率分布に基づいて次の目的地を推定することができる。
【0057】
(3)類似度方式
次に、移動時の目的地予測に用いる予測モデルについて説明する。なお、移動時の予測処理においては、位置情報を隣接するメッシュ間の有向グラフ(区間とも呼ぶ)で表すものとする。類似度方式では、出発地から現在地までの経路に存在する区間の類似度に基づいて、各目的地の尤もらしさを表すスコアを算出する。
【0058】
図13は、メッシュ間の有向グラフを説明するための図である。
図13の例では、便宜上、メッシュの縦方向にA〜J、横方向に1〜10の符号を付している。また、
図13には、A1〜J10の100個のメッシュが示されている。ここで、G2からD8まで直線的に移動する場合の経路を表す位置情報の系列について説明する。まず、移動体はG2からG3に向かって移動する。このような方向を有する隣接メッシュのペアによって、経路を表すものとする。その後、移動体は、G3からF3へ、F3からF4へ、F4からF5へ、F5からE5へ、E5からE6へ、E6からE7へ、E7からD7へ、D7からD8へ移動し、目的地へ到着する。
【0059】
類似度方式では、移動履歴に基づいて、方向を有する隣接メッシュのペアを要素とする特徴ベクトルを目的地ごとに生成する。この特徴ベクトルが本方式における予測モデルに相当する。
【0060】
そして、予測処理においては、出発地から現在地までの経路を示す特徴ベクトルと、予測モデルに係る特徴ベクトルとの類似度を算出し、いずれの目的地が尤もらしいか判断する。具体的には、出発地から現在地までの経路を示す特徴ベクトルと、予測モデルに係る特徴ベクトルとの類似度を算出し、いずれの目的地が尤もらしいか判断する。なお、特徴ベクトルの類似度については、例えば2つのベクトルのなす角が小さいほど類似していると判断する等、既存の判断手法により評価することができる。また、変形Jaccard係数を
用いて類似スコアを算出し、類似スコアの高い目的地が尤もらしいと判断するようにしてもよい。なお、変形Jaccard係数は、次の数3によって求めることができる。
【数3】
【0061】
(4)ベイズ更新方式
ベイズ更新方式では、あるメッシュから隣接するメッシュへ移動した場合におけるという条件付きの各目的地(すなわち、訪問先)への到達確率(尤度関数とも呼ぶ)を算出し、隣接するメッシュ間の双方向の移動について移動時の確率表を生成する。そして、出発時の条件付き確率表から推定した目的地に対し、移動時の確率表に基づく推定の修正を繰り返す。なお、出発時の条件付き確率表は、上述の(2)ベイジアンネットワーク方式において生成したものと同様とする。移動時の条件付き確率表は、出発時の条件付き確率表を、出発地別でなく移動した区間別に生成したものとする。
【0062】
図14は、移動時の条件付き確率表の一例を示す図である。移動時の条件付き確率表は、方向を有する隣接メッシュのペアによって表される区間、曜日、時間帯別の目的地到達確率を表す。
図14は、G2からG3への区間に係る確率表である。
図14に示した経路の移動履歴が記憶部11に格納されている場合、G2からG3への区間のほか、G3からF3へ、F3からF4へ、F4からF5へ、F5からE5へ、E5からE6へ、E6からE7へ、E7からD7へ、D7からD8へのそれぞれの区間(すなわち、通過区間のすべて)に係る確率表において、移動した曜日及び時間帯のセルに、目的地への重み付き訪問回数u(例えば、数2)を加算する。以上のようにして、出発時の条件付き確率表及び移動時の条件付き確率表(すなわち、予測モデル)が生成される。
【0063】
また、本実施形態では、ある区間を通過した場合、特定の目的地へ到達する傾向が所定の閾値以上高くなるような区間を、求めるようにしてもよい。このような区間を、特異的区間と呼ぶものとする。特異的区間は、例えば、移動履歴の各レコードについて、出発地から順に各区間のエントロピーを算出することで求める。エントロピーは、次の数4によって算出することができる。
【数4】
そして、エントロピーの最小値を更新した区間を特定し、特定された区間に係る曜日及び時間帯のセルを特異的区間とする。予測処理においては、このような特異的区間であるか否かという情報に基づいて処理を行うようにしてもよい。
【0064】
一方、移動中に目的地の予測を行う場合、出発時の予測処理によって得られた目的地への到達確率を事前確率として、事前確率に対して、新たな区間に関する目的地到達確率を乗ずることにより事後確率を算出(すなわち、ベイズ更新)する。ベイズ更新は、例えば隣接するメッシュに進入する度に実行する。すなわち、事前確率及び事後確率は相対的なものであり、ある区間において算出された事後確率は、次の区間において事前確率として用いられ、当該事前確率を修正した事後確率が算出される。このように、移動体の移動中において、過去の同一区間の移動と最終的な訪問先に基づき、今回の移動に係る目的地到達確率が修正される。より具体的には、事前確率を示す確率分布に尤度関数を乗じ、さらに正規化して事後確率を示す確率分布を得る。
【0065】
例えば、ベイズ更新は次の数5によって表すことができる。なお、ここでは
図15に示すメッシュA〜Iを用いて説明する。
【数5】
ただし、初回の移動時予測処理(S14)では、出発時予測処理の結果を事前確率に用いるため、ベイズ更新は次の数6によって表される。
【数6】
なお、H
iは、図示していない目的地iに向かうという仮説を示し、P(H
i)は出発時予測の結果として得られた目的地iに向かう確率である。また、D
BCは、メッシュBを通過後、メッシュCへ移動するという事象を示し、P(D
BC)は、メッシュBを通過後、メッシュCに移動する確率を示すものとする。すなわち、
図9に示した移動履歴において、
通過点にメッシュBからメッシュCの順に移動したレコードの件数を、通過点にBを含むレコードの件数で除した割合である。ここで、割合の算出に用いるレコードの件数(区間を移動した回数)は、例えば上述の数1に示したような重みづけした値uを用いるようにしてもよい。すなわち、履歴情報のうち時間的に新しい移動ほど影響が大きくなるように重みづけした疑似的な移動回数を用いて、ベイズ更新に係る処理を行うようにしてもよい。また、P(D
BC|H
i)は、目的地iに向かっている場合において、メッシュBを通過
した後、メッシュCに移動する確率を示している。すなわち、
図9に示した移動履歴において、到着情報のメッシュ又はPOIが目的地iを示しているレコードのうち、通過点においてメッシュBからメッシュCに移動したレコードの件数の割合である。例えば、P(D
AB|H
i)は、次の数7で表すことができる。
【数7】
なお、C
ABは、
図9の移動履歴において、メッシュAの次にメッシュBへ移動したレコード数をカウントした値である。数6では、C
ABからC
AIまでの8方向へ移動したレコードの数を用いている。また、数4のP(H
i|D
AB)は、メッシュAからメッシュBへ移
動した場合において、目的地iに向かっている確率を示すものとする。すなわち、
図9の通過点において、メッシュAからメッシュBへ移動したレコードのうち、到着情報のメッシュ又はPOIが目的地iを示しているレコードの割合である。このような計算を各目的地について実行し、確率分布を更新する。
【0066】
なお、過去に通過したことのない区間へ進入した場合、予測モデルの代わりに予め定められたデフォルトの目的地到達確率を用いてベイズ更新を行うようにしてもよい。
図16は、デフォルトの目的地到達確率の一例である。デフォルトの目的地到達確率は、例えば次のような性質を持つ確率とする。
(1)目的地として、対象の移動体に係る移動履歴に含まれるすべての目的地及び「不明」を有する。
(2)対象の移動体に係る移動履歴に含まれるすべての目的地及び「不明」の各々に確率が与えられ、これらの総和は1とする。
(3)対象の移動体に係る移動履歴に含まれるすべての目的地に関する確率は同一の値とする。
(4)「その他」に関する確率は、対象の移動体に係る移動履歴に含まれるすべての目的地に関する確率の2倍とする。
【0067】
また、新たに進入した区間が上述の特異的区間であるか否かを判断し、特異的区間であると判断された場合に、新たに進入した区間に関する目的地到達確率を乗ずるようにしてもよい。一方、特異的区間でないと判断された場合は、ベイズ更新を行わず、事前確率をそのまま事後確率とするようにしてもよい。
【0068】
自宅推定処理や目的地推定処理によって推定された自宅及び目的地を記憶部11に記憶させておくことにより、
図10のS11やS12において、推定された目的地情報や推定された自宅の位置を取得することができるようになる。移動履歴から推定した情報を用いることで、ユーザは煩わしい情報入力を行う必要がなくなる。
【0069】
<その他>
本発明は上述の処理を実行するコンピュータプログラムを含む。さらに、当該プログラムを記録した、コンピュータ読み取り可能な記録媒体も、本発明の範疇に属する。当該プログラムが記録された記録媒体については、コンピュータに、この記録媒体のプログラムを読み込ませて実行させることにより、上述の処理が可能となる。
【0070】
ここで、コンピュータ読み取り可能な記録媒体とは、データやプログラム等の情報を電気的、磁気的、光学的、機械的、または化学的作用によって蓄積し、コンピュータから読み取ることができる記録媒体をいう。このような記録媒体のうちコンピュータから取り外し可能なものとしては、フレキシブルディスク、光磁気ディスク、光ディスク、磁気テープ、メモリカード等がある。また、コンピュータに固定された記録媒体としては、ハードディスクドライブやROM等がある。
【0071】
また、習慣性の判断は、該当する曜日の該当する時間帯に対して所定以上の到着回数が保持されていない場合には実行しないようにしてもよい。過去の実績がある程度蓄積されていなければ、判断の精度が出ないためである。
【0072】
図1にも示した通り、上述の移動体は乗用車等の車両には限られず、スマートフォン等を有するユーザであってもよい。この場合、移動速度や位置情報に基づいて移動手段を推定し、移動手段に応じた情報を出力するようにしてもよい。例えば車両での移動と電車での移動とでは異なる観光プランを提案するように、適切な情報出力が可能となる。