(58)【調査した分野】(Int.Cl.,DB名)
【発明の開示】
【発明が解決しようとする課題】
【0007】
特許文献1に記載の方法は、増幅産物より発される蛍光を読み取ることにより標的核酸の存在の有無又は存在量を検出する定量的PCRにおいては有効な手段であるが、インターカレーターにより増幅核酸を検出する系には応用できない。また、プライマーダイマー自体の発生は抑制できないため、プライマーダイマーに起因する非特異的増幅産物の生成によるプライマーの枯渇を防ぐことはできない。
【0008】
特許文献2及び3に記載の方法は、非特異的増幅の原因であるプライマーダイマーの発生自体を抑制するものである。しかし、これらの文献には修飾又は改変ヌクレオチドを導入する位置について「3つの3´末端ヌクレオチド位置内」又は「3´末端から4ヌクレオチド以内」などの抽象的な記載しか無く、より効果的に非特異的増幅を抑制できる修飾プライマーの設計の方法については開示が無い。
【0009】
このような状況下において、本発明の解決しようとする課題は、プライマーダイマー又はループ構造に起因する非特異的増幅が生じにくい変異プライマーの新規の設計方法を提供することにある。
【課題を解決するための手段】
【0010】
上記課題を解決する本発明は、核酸増幅法に用いる、変異が導入されたプライマーの設計方法であって、
鋳型DNAに完全に相補的な塩基配列を基礎プライマー配列として設計する基礎配列設計工程と、
該基礎プライマー配列に含まれる1又は2以上のヌクレオチド残基であって、以下の(1)〜(4)からなる群から選ばれる1又は2以上の条件に合致するヌクレオチド残基を変異導入部位として選択する変異導入部位選択工程を備える、設計方法である。
(1)プライマーダイマーの形成に寄与する可能性のあるヌクレオチド残基。
(2)プライマー1分子内でのループ構造の形成に寄与する可能性のあるヌクレオチド残基。
(3)前記基礎プライマー配列からなるプライマーがプライマーダイマーを形成することが予測される場合において、プライマーが相補的又は非相補的にハイブリダイズする領域以外の領域に位置するヌクレオチド残基。
(4)前記基礎プライマー配列からなるプライマーが1分子内でループ構造を形成することが予測される場合において、ループ構造を構成する領域以外の領域に位置するヌクレオチド残基。
【0011】
本発明の設計方法によれば、プライマーダイマー又はループ構造に起因する非特異的増幅が生じにくい変異プライマーを容易に設計することができる。
【0012】
本発明においては、変異プライマーに導入された変異をDNAポリメラーゼがヌクレオチド残基と認識しないものとすることが好ましい。
このような形態とすることによって、より非特異的増幅が生じにくいプライマーを設計することができる。
【0013】
本発明の好ましい形態では、変異が以下の(A)〜(D)からなる群から選ばれる1種又は2種以上である。
(A)前記変異導入部位の前後に位置するヌクレオチド残基の5´末端及び3´末端と、それぞれ5´末端及び3´末端を結合してなるヌクレオチド残基又はポリヌクレオチド。
(B)炭素鎖又はPEG鎖からなるスペーサー鎖。
(C)一般式1で表されるテトラヒドロフラン誘導体からなるスペーサー鎖。
一般式1
【化1】
(一般式1中、RはH,または水酸基、nは自然数を示す。)
(D)光分解性修飾のされたスペーサー鎖。
変異プライマーに導入する変異を(A)〜(D)とすることによって、さらに非特異的増幅を生じにくいプライマーを設計することができる。
【0014】
また、本発明は、上述の設計方法により設計されたプライマー及び当該プライマーを用いる核酸増幅法にも関する。
本発明のプライマー及び核酸増幅方法によれば、核酸増幅における非特異的増幅を低減することができる。
【0015】
本発明の核酸増幅補法は、等温増幅法に適用することが特に好ましい。
等温増幅法はPCR法とは異なり、二本鎖DNAの変性工程を含まず非特異的増幅が生じ易いため、本発明の核酸増幅法を適用することが特に好ましい。
【0016】
また、本発明は、上述の設計方法の各工程を手順としてコンピュータに実行させるためのプログラムにも関する。
本発明のプログラムによれば、非特異的増幅を生じにくい変異プライマーを簡便に設計することができる。
【発明の効果】
【0017】
本発明によれば、非特異的増幅を生じにくい変異プライマー及び核酸増幅法を提供することができる。
【図面の簡単な説明】
【0018】
【
図2】(A)の変異が導入されたプライマーの構造を表す図である。
【
図3】(B)の変異として炭素鎖が導入されたプライマーの構造を表す図である。
【
図4】(B)の変異としてPEG鎖が導入されたプライマーの構造を表す図である。
【
図5】(C)の変異として一般式1で表されるテトラヒドロフラン誘導体からなるスペーサー鎖が導入されたプライマーの構造を表す図である。
【
図6】(D)の変異として光分解性修飾のされたスペーサー鎖が導入されたプライマーの構造を表す図である。
【
図7】プライマーダイマーの模式図である。黒塗りの矢印は変異導入部位を表す。左右方向の矢印は核酸合成が行われる方向を表す。2つのプライマー間の縦線は水素結合を表す。
【
図8】変異が導入されたプライマーの模式図である。mは変異を示す。×印は核酸合成が行われないことを表す。2つのプライマー間の縦線は水素結合を表す。
【
図9】ループ構造の模式図である。黒塗りの矢印は変異導入部位を表す。左方向の矢印は核酸合成が行われる方向を表す。縦線は水素結合を表す。
【
図10】変異が導入されたプライマーの模式図である。mは変異を示す。×印は核酸合成が行われないことを表す。2つのプライマー間の縦線は水素結合を表す。
【
図11】プライマーダイマーの模式図である。黒塗りの矢印は変異導入部位を表す。左右方向の矢印は核酸合成が行われる方向を表す。2つのプライマー間の縦線は水素結合を表す。
【
図12】変異が導入されたプライマーの模式図である。mは変異を示す。×印と左右方向の矢印は、×印の位置において矢印の方向の核酸合成が停止することを表す。2つのプライマー間の縦線は水素結合を表す。
【
図13】非特異的増幅産物が新たな非特異的増幅のプライマーとして機能し非特異的増幅が連鎖する様子を表す模式図である。黒塗りの矢印は変異導入部位を表す。左右方向の矢印は核酸合成が行われる方向を表す。2つのプライマー間の縦線は水素結合を表す。
【
図14】変異の導入によりプライマーの形成に起因する非特異的増幅の連鎖が抑制されることを表す模式図である。mは変異を示す。
【
図15】ループ構造の模式図である。黒塗りの矢印は変異導入部位を表す。左方向の矢印は核酸合成が行われる方向を表す。縦線は水素結合を表す。
【
図16】変異の導入によりループ構造の形成に起因する非特異的増幅の連鎖が抑制されることを表す模式図である。mは変異を示す。
【
図18】時間軸を拡大した試験例1の増幅曲線を表す。
【
図20】時間軸を拡大した試験例2の増幅曲線を表す。
【
図21】2つのFプライマーのプライマーダイマーにより非特異的増幅が生じ、非特異的増幅産物であるP1が形成される様子を表す図である。
【
図22】非特異的増幅産物であるP1がプライマー、Rプライマーが鋳型として非特異的増幅が生じ、非特異的増幅の産物であるP2が形成される様子を表す図である。
【
図23】プライマーセット2により非特異的増幅反応が抑制されるメカニズムを説明する図である。変異が導入された2つのFプライマーのプライマーダイマーにより非特異的増幅が生じ、非特異的増幅産物であるP1´が形成される様子を表す。
【
図24】プライマーセット2により非特異的増幅反応が抑制されるメカニズムを説明する図である。非特異的増幅産物であるP1´がプライマー、Rプライマーが鋳型として非特異的増幅が生じ、非特異的増幅の産物であるP2´が形成される様子を表す。
【
図25】プライマーセット3により非特異的増幅反応が抑制されるメカニズムを説明する図である。変異が導入された2つのFプライマーのプライマーダイマーにより非特異的増幅が生じ、非特異的増幅産物であるP1´´が形成される様子を表す。
【
図26】プライマーセット3により非特異的増幅反応が抑制されるメカニズムを説明する図である。非特異的増幅産物であるP1´´がプライマー、Rプライマーが鋳型として非特異的増幅が生じ、非特異的増幅の産物であるP2´´が形成される様子を表す。
【
図28】時間軸を拡大した試験例3の増幅曲線を表す。
【
図30】時間軸を拡大した試験例4の増幅曲線を表す。
【発明を実施するための形態】
【0019】
以下、本発明の実施の形態について詳しく説明を加える。なお、本発明の技術的範囲は以下の実施の形態に限定されるものではない。
【0020】
本発明において核酸増幅法とは核酸を増幅する全ての方法を含み、PCR法;PCR法より派生した逆転写PCR法、リアルタイムPCR法、DNAシークエンシング法;LAMP法、SmartAmp法、また再表2012/124681号公報に記載の核酸増幅法(TRIAmp増幅法)のような等温増幅法を含む。
本発明の設計方法は特に等温増幅法に用いるためのプライマーの設計のために適用することが好ましい。
【0021】
本発明においてプライマーとは核酸増幅反応においてDNAポリメラーゼが核酸を合成する際に3´OHを供給する役割をもつ短い核酸の断片のことをいい、DNA及びRNAを含む。以下の説明において特に断りが無い場合には、プライマーとはDNAプライマーのことを指す。
【0022】
本発明は変異が導入されたプライマーの設計方法である。本発明において「変異を導入する」とは、通常の核酸を構成するヌクレオチド残基(アデニンヌクレオチド残基、グアニンヌクレオチド残基、チミンヌクレオチド残基、シトシンヌクレオチド残基、ウラシルヌクレオチド残基)を、修飾が施されたヌクレオチド残基、改変されたヌクレオチド残基、ヌクレオチド残基以外の化学構造、又は通常とは異なる結合態様のヌクレオチド残基等に置換することをいい、「変異」とは上述の化学構造のことをいう。
【0023】
本発明における変異としては、従来スペーサーとして利用されている化学構造を利用することができる。
【0024】
特に好ましい変異としては、DNAポリメラーゼがヌクレオチド残基と認識しない化学構造が挙げられる。このような変異として具体的には以下の(A)〜(D)の化学構造が挙げられる。
(A)前記変異導入部位の前後に位置するヌクレオチド残基の5´末端及び3´末端と、それぞれ5´末端及び3´末端を結合してなるヌクレオチド残基又はポリヌクレオチド。
(B)炭素鎖又はPEG鎖からなるスペーサー鎖。
(C)一般式1で表されるテトラヒドロフラン誘導体からなるスペーサー鎖。
(D)光分解性修飾のされたスペーサー鎖。
【0025】
通常、核酸を構成するヌクレオチド残基は、その3´末端において他のヌクレオチド残基の5´末端と結合し、他方、その5´末端において他のヌクレオチド残基の3´末端と結合している(
図1)。
(A)の変異が導入されたプライマーは通常のヌクレオチド残基で構成されているが、変異導入部位におけるヌクレオチド残基又はポリヌクレオチドの結合様式が通常とは逆転しているため、DNAポリメラーゼがこれをヌクレオチド残基であると認識できず、核酸合成反応を継続することができない(
図2)。また、当該変異が導入されたプライマーが相補鎖とハイブリダイゼーションする際に、当該変異は相補鎖側の塩基と水素結合を形成しない。
【0026】
(B)の変異はヌクレオチド残基とは全く構造が異なるため、DNAポリメラーゼがこれをヌクレオチド残基であると認識できず、核酸合成反応を継続することができない(
図3及び4)。また、当該変異が導入されたプライマーが相補鎖とハイブリダイゼーションする際に、当該変異は相補鎖側の塩基と水素結合を形成しない。
【0027】
導入する変異を炭素鎖とする場合には、置換するヌクレオチド残基1個当たりの当該炭素鎖の炭素鎖長は、好ましくは3〜9とすることができる。
また、導入する変異をPEG鎖とする場合には、置換するヌクレオチド残基1個当たりの当該PEG鎖の重合度は、好ましくは1〜3とすることができる。
【0028】
(B)の変異としては、3-(4,4'-Dimethoxytrityloxy)propyl-1-[(2-cyanoethyl)-(N,N-diisopropyl)]- phosphoramiditeから誘導される構造(通称Spacer C3)、8-O-(4,4'-Dimethoxytrityl)-triethyleneglycol, 1-[(2-cyanoethyl)- (N,N-diisopropyl)]-phosphoramiditeから誘導される構造(通称Spacer 9)などが例示できる。
【0029】
(C)の変異は塩基を有さないため、DNAポリメラーゼがこれをヌクレオチド残基であると認識できず、核酸合成反応を継続することができない(
図5)。また、当該変異が導入されたプライマーが相補鎖とハイブリダイゼーションする際に、当該変異は相補鎖側の塩基と水素結合を形成しない。
【0030】
(C)の変異としては、5'-O-Dimethoxytrityl-1',2'-Dideoxyribose-3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramiditeから誘導される構造(通称dSpacer)、5-O-Dimethoxytrityl-1-O-tert-butyldimethylsilyl-2-deoxyribose-3-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite(通称Abasic)から誘導される構造などが例示できる。
なお、AbasicのTBDMS保護基(tert-butyldimethylsily基)はプライマー合成の際に脱保護される。そのため、Abasicを導入した後のプライマーの構造は、
図5においてRをOHとした構造となる。
【0031】
なお、導入する変異を一般式1で表されるテトラヒドロフラン誘導体からなるスペーサー鎖とする場合には、置換するヌクレオチド残基1個当たりのnの値は、好ましくは1とすることができる。
【0032】
(D)の変異はヌクレオチド残基とは全く構造が異なるため、DNAポリメラーゼがこれをヌクレオチド残基であると認識できず、核酸合成反応を継続することができない(
図6)。また、当該変異が導入されたプライマーが相補鎖とハイブリダイゼーションする際に、当該変異は相補鎖側の塩基と水素結合を形成しない。
【0033】
なお、光分解性修飾のされたスペーサー鎖とはUVまたは可視光の曝露によって分解する性質を持つ化合物で修飾されたスペーサー鎖であって、本明細書においてはニトロベンゼン骨格を有することを特徴の一つとして有している化合物群(特許第4870791号参照)を指す。
【0034】
(D)の変異としては、1-[2-Nitro-5-(6trifluoroacetylcaproamidomethyl)phenyl]-ethyl- [2-cyano-ethyl(N,N-diisopropyl)]phosphoramidite から誘導される構造(通称PC 5'-Amino-Modifier)、1-[2-Nitro-5-(6-(N-(4,4'dimethoxytrityl))biotinamidocaproamidomethyl)phenyl]-ethyl-[2cyanoethyl-(N,N-diisopropyl)]phosphoramidite から誘導される構造(通称PC 5'-Biotin)、3-(4,4'-Dimethoxytrityl)-1-(2nitrophenyl)-propane-1,3-diol-[2cyanoethyl-(N,N-diisopropyl)]phosphoramidite から誘導される構造(通称PC Linker)、[4-(4,4'-Dimethoxytrityloxy)butyramidomethyl)-1-(2-nitrophenyl)-ethyl]-2-cyanoethyl-(N,N-diisopropyl)-phosphoramiditeから誘導される構造(通称PC Spacer)などが例示できる。
【0035】
1つのプライマーに導入する変異の数はプライマーの特異性を失わない範囲で適宜設定することができる。プライマーの特異性は一般的なプライマー設計ツールにより算出することができる。
【0036】
次に、本発明の設計方法の各工程について説明する。
本発明のプライマーの設計方法は、基礎配列設計工程を含む。基礎配列設計工程は鋳型DNAに完全に相補的な塩基配列を基礎プライマー配列として設計する工程であり、通常の核酸増幅法におけるプライマーの設計と同様に行うことができる。すなわち、特異性、GC含有量、Tm値などの観点からプライマーに適した15〜50塩基程度の塩基配列を、標的とする塩基配列の中から選択する。特異性やGC含有量、Tm値などの算出方法は制限されず、手計算でもよいし一般的に利用されている計算ツールなどを使用してもよい。
【0037】
1つの系において設計する基礎プライマー配列の数は、目的とする核酸増幅法の系によって適宜変更する。すなわち、目的とする核酸増幅法が、通常のPCR法である場合においてはFプライマーとRプライマーの2種、Lamp法のような3種以上のプライマーを要する系である場合においては3種以上の基礎プライマー配列を設計する。
【0038】
基礎配列設計工程における基礎プライマー配列の設計の後、変異導入部位選択工程を行う。変異導入部位選択工程は、以下の(1)〜(4)からなる群から選ばれる1又は2以上の条件に合致するヌクレオチド残基を基礎プライマー配列から選択し、変異導入部位とする工程である。
(1)プライマーダイマーの形成に寄与する可能性のあるヌクレオチド残基。
(2)プライマー1分子内でのループ構造の形成に寄与する可能性のあるヌクレオチド残基。
(3)前記基礎プライマー配列からなるプライマーがプライマーダイマーを形成することが予測される場合において、プライマーが相補的又は非相補的にハイブリダイズする領域以外の領域に位置するヌクレオチド残基。
(4)前記基礎プライマー配列からなるプライマーが1分子内でループ構造を形成することが予測される場合において、ループ構造を構成する領域以外の領域に位置するヌクレオチド残基。
【0039】
基礎プライマー配列からなるプライマーが、プライマーダイマー又はループ構造を形成するか否か、また形成する場合には何れのヌクレオチド残基が寄与するのか予測する手段は特に限定されず、一般的に利用されている計算ツールなどを使用してもよい。
【0040】
まず、(1)の条件に合致するヌクレオチド残基は、例えば
図7に示すヌクレオチド残基(FプライマーのTAA、RプライマーのTTA)のような、プライマーダイマーの形成に寄与、つまり、相補鎖の塩基と水素結合を形成する可能性のあるヌクレオチド残基である。プライマーダイマーが形成されると、
図7に示すようにプライマー自体が鋳型となり、非特異的増幅が生じてしまう。
(1)の条件に合致するヌクレオチド残基を変異導入部位として選択し(
図7中黒塗り矢印)、変異を導入することでプライマーダイマーの形成を抑制し、非特異的増幅の発生を抑えることができる(
図8)。
【0041】
図7及び8にはFプライマーとRプライマーという互いに異なるプライマー同士のプライマーダイマーの形成を抑制する場合の概要を示したが、同一のプライマー同士のプライマーダイマーの形成に寄与するヌクレオチド残基も(1)の条件に合致することは言うまでもない。
【0042】
(2)の条件に合致するヌクレオチド残基は、例えば
図9に示すヌクレオチド残基(5´側のTAA、3´側のTTA)のような、ループ構造の形成に寄与する可能性のあるヌクレオチド残基である。ループ構造が形成されると、
図9に示すようにプライマー自体が鋳型となり、非特異的増幅が生じてしまう。
(2)の条件に合致するヌクレオチド残基を変異導入部位として選択し(
図9中黒塗り矢印)、変異を導入することでループ構造の形成を抑制し、非特異的増幅の発生を抑えることができる(
図10)。
【0043】
(3)の条件に合致するヌクレオチド残基は、例えば
図11に示すヌクレオチド残基(FプライマーのC、RプライマーのG)のような、基礎プライマー配列からなるプライマーがプライマーダイマーを形成することが予測される場合において、プライマーが相補的又は非相補的にハイブリダイズする領域以外の領域に位置するヌクレオチド残基である。
プライマーダイマーが形成されると、
図11に示すようにプライマー自体が鋳型となり、DNAポリメラーゼが最大限合成可能な鎖長にまで非特異的増幅が生じてしまう。(3)の条件に合致するヌクレオチド残基を変異導入部位として選択し(
図11中黒塗り矢印)、変異を導入することで、変異導入部位においてDNAポリメラーゼのDNA合成反応を阻害し、非特異的増幅産物の鎖長を短く抑制することができる(
図12)。
【0044】
(3)の条件に合致するヌクレオチド残基を変異導入部位として選択することは、例えば
図13に示すような、非特異的増幅産物が新たな非特異的増幅のプライマーとして機能し得る場合に特に有効である。
図13に示したプライマーにより生じた非特異的増幅産物であるP1とP2は、変性し一本鎖となった後、再び互いにハイブリダイズし、新たな非特異的増幅を引き起こす。この新たな非特異的増幅の産物はさらに別の非特異的増幅を生じるプライマーとして機能し得るため、非特異的増幅の連鎖は止まらないこととなる。
【0045】
この場合に(3)の条件に合致するヌクレオチド残基に変異を導入すると、
図14に示すように非特異的増幅産物P1´及びP2´が新たな非特異的増幅のプライマーとして機能しないため、非特異的増幅の連鎖を防止することができる。
【0046】
図13及び14にはFプライマーとRプライマーという互いに異なるプライマー同士のプライマーダイマーの形成を抑制する場合の概要を示したが、同一のプライマー同士のプライマーの形成に寄与するヌクレオチド残基も(3)の条件に合致することは言うまでもない。
【0047】
(4)の条件に合致するヌクレオチド残基は、例えば
図15に示すヌクレオチド残基(C)のような、基礎プライマー配列からなるプライマーが1分子内でループ構造を形成することが予測される場合において、ループ構造を構成する領域以外の領域に位置するヌクレオチド残基である。ここで、「ループ構造を構成する領域」とは、ループ状となっている配列領域、並びに、プライマーが相補的又は非相補的にハイブリダイズする領域のことをいう。
【0048】
ループ構造が形成されると、
図15に示すようにプライマー自体が鋳型となり、DNAポリメラーゼが最大限合成可能な鎖長にまで非特異的増幅が生じてしまう。(4)の条件に合致するヌクレオチド残基を変異導入部位として選択し(
図15中黒塗り矢印)、変異を導入することで、変異導入部位においてDNAポリメラーゼのDNA合成反応を阻害し、非特異的増幅産物の鎖長を短く抑制することができる(
図16)。
【0049】
(4)の条件に合致するヌクレオチド残基を変異導入部位として選択することは、
図13及び14を参照しながら説明したものと同様の原理によって非特異的増幅産物が新たな非特異的増幅のプライマーとして機能し得る場合に特に有効である。(4)の条件に合致するヌクレオチド残基に変異を導入することで、非特異的増幅の連鎖を防止することができる。
【0050】
本発明の設計方法により設計するプライマーには、非特異的増幅の抑制以外の目的をもって各種修飾を行っても良い。
【実施例】
【0051】
<試験例1>
Mycobacterium bovis BCG str. Tokyo 172株のゲノムDNAにおけるDirect Repeat配列を、再表2012/124681号公報に記載の核酸増幅法(TRIAmp増幅法)により増幅するため、同公報においてDRa-21及びDRb-19として記載のプライマーのセットを用意した。これらプライマーの配列を表1上段にプライマー1F及びプライマー1Rとして示す。なお、特に指定のない場合には、本試験例記載のプライマーの溶媒は1×TE buffer である。
【0052】
ウェブ上で利用可能な、また、ダウンロードすることにより利用可能な一般的な計算プログラムを用いて、プライマー1F及び1Rの配列中、ヘアピンループ、ホモダイマー、ヘテロダイマーの形成に寄与する可能性のあるヌクレオチド残基を選出した。
これにより選出されたヌクレオチド残基を変異導入部位として選択し、表1に示すプライマーセット2及び3のプライマーを設計し、これを調製した。
また、プライマーセット2及び3における変異導入部位より3´末端側の配列からなるプライマーを用意した(プライマーセット4及び5、表1)。
【0053】
表1に示すFプイライマー及びRプライマーのプライマーセットを用いて、表2に示す反応溶液を調製し、TRIAmp増幅法を行った。TRIAmp増幅反応はThermal Cycler Dice Real Time System Lite TP710を使用して68℃で2時間行い、FAM検出モードにより反応を追跡した。その結果算出された増幅曲線とCt値を
図17、18及び表3にそれぞれ示す。なお、TRIAmp増幅反応はそれぞれのプライマーの組み合わせについて反応溶液を2セット調製し(以下、それぞれのサンプルをサンプル1及びサンプル2という)、それぞれについて増幅曲線とCt値を算出した。
【0054】
【表1】
【0055】
【表2】
【0056】
【表3】
【0057】
図17、18及び表3に示すように、極端にプライマー長が短いプライマーセット5以外のプライマーを用いた場合には、最終的な輝度には多少の差があるものの、その増幅速度はいずれも同程度であった。
これらの結果は、本発明の方法で変異が導入されたプライマーは、同プライマーの変異導入部位から5´末端側を単純に欠損させたプライマーとは機能が異なるということを示している。
【0058】
<試験例2>
表1に示すFプライマー及びRプライマーのプライマーセットを用いて、表2に示す組成においてテンプレートDNAを水に代えた反応溶液を調製し、試験例1と同様の条件でTRIAmp増幅反応を行い増幅曲線及びCt値を算出した。結果を表4及び
図19、20に示す。
なお、TRIAmp増幅反応はそれぞれのプライマーの組み合わせについて反応溶液を4セット調製し(以下、それぞれのサンプルを非特異的サンプル1〜4という)、それぞれについて増幅曲線とCt値を算出した。
【0059】
【表4】
【0060】
図19、20及び表4に示すように、テンプレートDNAを含まない系での核酸増幅、すなわち非特異的増幅速度は、変異が導入されていないプライマーセット1を用いた場合と比較して、変異を導入したプライマーセット2、3を用いた場合の方が顕著に遅くなっていることがわかる。特にプライマーセット3を用いた場合には、4サンプル中3サンプルにおいて核酸の非特異的増幅が起こらなかった。
この結果は、プライマーへの変異の導入により、非特異的増幅が強く抑制されていることを示している。
【0061】
プライマーセット4はプライマーセット2における変異導入部位より3´末端側の配列を有する。表4に示す通り、プライマーセット4を用いてTRIAmp増幅反応を行った場合、プライマーセット1を用いた場合に比べて非特異的増幅速度は遅くなっている。しかし、プライマーセット4よりも、プライマーセット2を用いたときの方が、非特異的増幅速度の抑制効果が強く表れている(表4)。
また、プライマーセット5はプライマーセット3における変異導入部位より3´末端側の配列を有するが、プライマー5を用いた場合では、反応溶液にテンプレートDNAが含まれていたとしても、核酸増幅反応が起こらない。
これらの結果は、本発明の方法で変異が導入されたプライマーは、同プライマーの変異導入部位から5´末端側を単純に欠損させたプライマーとは機能が異なるということを示している。
【0062】
プライマーセット1を用いてTRIAmp増幅反応を行った際に非特異的増幅が生じてしまう原因は、
図21及び22に示すメカニズムによるものであると予想される。すなわち、Fプライマーが他のFプライマーとプライマーダイマーを形成し(
図21上段)、DNA合成反応が進むことで非特異的増幅産物であるP1が生じる(
図21下段)。次いで、変性し一本鎖になったP1がRプライマーとダイマーを形成し(
図22上段)、DNA合成反応が進むことで非特異的増幅産物であるP2が生じる(
図22下段)。そして、P2の3´末端の3ヌクレオチド(GGG)と相補的な配列(CCC)がP1やP2中に存在するため、次々と非特異的増幅が進行してしまう。
【0063】
一方、プライマーセット2を用いた場合には、Fプライマーが他のFプライマーとプライマーダイマーを形成し(
図23上段)、DNA合成反応が進んだとしても、その伸長は鋳型となったFプライマーの5´末端から3番目のヌクレオチド残基(G)で停止する(
図23下段)。そのため、この非特異的増幅により生じたP1´が、その3´末端でRプライマーとダイマーを形成することが困難となり、非特異的増幅の連鎖は起こらない。仮にP1´とRプライマーがダイマーを形成し(
図24上段)、DNA合成反応が起こったとしても、その伸長は鋳型となったRプライマーの5´末端から3番目のヌクレオチド残基(C)で停止するため(
図24下段)、この非特異的増幅によって生じたP2´がさらなる非特異的増幅の連鎖を生じる可能性は低い。
【0064】
また、プライマーセット3のFプライマーには、2つのFプライマーによるプライマーダイマーの形成に寄与するヌクレオチド残基に変異が導入されているため、プライマーが形成されにくく、DNA合成反応が非常に生じにくい(
図25上段)。仮に、DNA合成反応が起こり、増幅産物であるP1´´が生じ(
図25下段)、これがRプライマーとプライマーダイマーを形成しDNA合成反応が起こったとしても(
図26上段)、その反応はRプライマーの変異導入部位で停止するため(
図26下段)、その増幅産物であるP2´´がさらなる非特異的増幅の連鎖を生じる可能性は低い。
【0065】
以上の理由から、変異が導入されたプライマーからなるプライマーセット2及び3には、非特異的増幅反応速度の抑制効果があるものと考えられる。
【0066】
<試験例3>
表5に示した配列中、mで表される位置にSpacer C3、dSpacer、Spacer 9、Abasic、又はPC Spacerから誘導される構造が導入されたFプライマー及びRプライマーのプライマーセットを用意した。
【0067】
【表5】
【0068】
表5に示すFプライマー及びRプライマーのプライマーセット及び、表1に示すFプライマー及びRプライマーのプライマーセット1〜3を用いて、表2に示す組成において試験例1と同様の条件でTRIAmp増幅反応を行い増幅曲線及びCt値を算出した。結果を表6及び
図27、28に示す。
なお、プライマーセット3 Abasicの溶媒は0.2Mトリエチルアミン−酢酸溶液を滅菌水で10μMに希釈したものである。
【0069】
【表6】
【0070】
表6及び
図27、28に示すように、プライマーセット1〜3より多少増幅速度が遅いものの、Spacer C3、dSpacer、Spacer 9、Abasic、又はPC Spacerの何れの変異が導入されたプライマーセットを用いた場合であっても、問題なくDNAの増幅を行うことができた。
【0071】
<試験例4>
また、表5に示すFプライマー及びRプライマーのプライマーセット及び、表1に示すFプライマー及びRプライマーのプライマーセット1〜3を用いて、表2に示す組成においてテンプレートDNAを水に代えた反応溶液を調製し、試験例1と同様の条件でTRIAmp増幅反応を行い増幅曲線及びCt値を算出した。結果を表7及び
図29、30に示す。
なお、TRIAmp増幅反応はそれぞれのプライマーの組み合わせについて反応溶液を4セット調製し(以下、それぞれのサンプルを非特異的サンプル1〜4という)、それぞれについて増幅曲線とCt値を算出した。
【0072】
【表7】
【0073】
図27〜30及び表6、7に示すように、テンプレートDNAを含まない系での核酸増幅、すなわち非特異的増幅速度は、炭素鎖又はPEG鎖からなるスペーサー鎖、一般式1で表されるテトラヒドロフラン誘導体からなるスペーサー鎖、光分解性修飾のされたスペーサー鎖、の変異を導入したプライマーセットを用いた場合においても変異を導入していないプライマーセット1と比較して顕著に遅くなっていることがわかる。
この結果は、本発明の方法によるプライマーへの変異の導入により、非特異的増幅が強く抑制されていることを示している。