(58)【調査した分野】(Int.Cl.,DB名)
前記SAB層上にコンタクトエッチストップ層を更に含み、前記フローティングゲートは、前記SAB層によって前記コンタクトエッチストップ層から分離される、請求項1に記載の単一ポリNVMセル。
前記共有ドーピング領域上に第2サリサイド層を更に含み、前記第2サリサイド層は、前記第1側壁スペーサの底部の縁部と連続するが、前記第2側壁スペーサの底部の縁部から所定の距離を保つ、請求項1記載の単一ポリNVMセル。
前記ドレインドーピング領域上に第3サリサイド層を更に含み、前記第3サリサイド層は、前記第2側壁スペーサの底部の縁部から所定の距離を保つ、請求項7に記載の単一ポリNVMセル。
前記SAB層は、前記フローティングゲートの上面、前記第2側壁スペーサの表面、前記共有ドーピング領域の一部のみ及び前記ドレインドーピング領域の一部のみを覆い、かつ、それらと直接接触している、請求項1に記載の単一ポリNVMセル。
【発明の概要】
【0007】
本発明の目的の1つは、改良された単一ポリ不揮発性メモリセル構造に向上したプログラム効率を提供することである。
【0008】
第1の実施形態によると、単一ポリ不揮発性メモリ(NVM)セルは、半導体基板と、半導体基板内のイオンウェル(ion well)と、イオンウェル上の選択トランジスタと、選択トランジスタに直列接続されるフローティングゲートトランジスタ(floating gate transistor)とを含む。シリサイドブロック(SAB:silicide block)層は、フローティングゲートを覆う。コンタクトエッチストップ層(contact etch stop layer)は、SAB層上に配置される。層間誘電体(ILD:inter‐layer dielectric)層は、コンタクトエッチストップ層上に堆積される。
【0009】
選択トランジスタは、選択ゲートと、選択ゲートと半導体基板との間の選択ゲート酸化層と、イオンウェル内のソースドーピング領域と、ソースドーピング領域と合併される(merged with)第1低濃度ドープドレイン(LDD:lightly doped drain)領域と、ソースドーピング領域から離間される共有ドーピング領域(commonly shared doping region)
と、共有ドーピング領域と合併される第2LDD領域とを含む。
【0010】
フローティングゲートトランジスタは、フローティングゲートと、フローティングゲートと半導体基板との間のフローティングゲート酸化層と、共有ドーピング領域と、共有ドーピング領域と合併される第3LDD領域と、共有ドーピング領域から離間されるドレインドーピング領域とを含む。LDD領域が、ドレインドーピング領域と合併されない。
【0011】
第1側壁スペーサは、選択ゲートのいずれかの側壁上に設けられ、第2側壁スペーサは、フローティングゲートのいずれかの側壁上に設けられる。第1サリサイド層(first salicide layer)は、ソースドーピング領域上に配置される。第1サリサイド層は、側壁スペーサの底部の縁部に延伸する。
【0012】
第2サリサイド層は、共有ドーピング領域上に配置される。第2サリサイド層は、第1側壁スペーサの底部の縁部と連続するが、第2側壁スペーサの底部の縁部から所定の距離を保つ。
【0013】
第3サリサイド層は、ドレインドーピング領域上に配置される。第3サリサイド層は、第2側壁スペーサの底部の縁部から所定の距離を保つ。
【0014】
第2の実施形態によると、単一ポリNVMセルは、半導体基板と、半導体基板内のイオンウェルと、イオンウェル上の選択トランジスタと、選択トランジスタに直列接続されるフローティングゲートトランジスタとを含む。SAB層は、フローティングゲートを覆う。コンタクトエッチストップ層は、SAB層上に配置される。ILD層は、コンタクトエッチストップ層上に堆積される。
【0015】
選択トランジスタは、選択ゲートと、選択ゲートと半導体基板との間の選択ゲート酸化層と、イオンウェル内のソースドーピング領域と、ソースドーピング領域と合併される第1LDD領域と、ソースドーピング領域から離間される共有ドーピング領域と、共有ドーピング領域と合併される第2LDD領域とを含む。
【0016】
フローティングゲートトランジスタは、フローティングゲートと、フローティングゲートと半導体基板との間のフローティングゲート酸化層と、共有ドーピング領域と、共有ドーピング領域から離間されるドレインドーピング領域とを含む。LDD領域が、ドレインドーピング領域と合併されない。
【0017】
第1側壁スペーサは、選択ゲートのいずれかの側壁上に設けられ、第2側壁スペーサは、フローティングゲートのいずれかの側壁上に設けられる。LDD領域が、第2側壁スペーサの直下の共有ドーピング領域と合併されない。
【0018】
第3の実施形態によると、単一ポリNVMセルは、半導体基板と、半導体基板内のイオンウェルと、イオンウェル上の選択トランジスタと、選択トランジスタに直列接続されるフローティングゲートトランジスタとを含む。SAB層は、フローティングゲートを覆う。コンタクトエッチストップ層は、SAB層上に配置される。ILD層は、コンタクトエッチストップ層上に堆積される。
【0019】
選択トランジスタは、選択ゲートと、選択ゲートと半導体基板との間の選択ゲート酸化層と、イオンウェル内のソースドーピング領域と、ソースドーピング領域と合併される第1LDD領域と、ソースドーピング領域から離間される共有ドーピング領域と、共有ドーピング領域と合併される第2LDD領域とを含む。
【0020】
フローティングゲートトランジスタは、フローティングゲートと、フローティングゲートと半導体基板との間のフローティングゲート酸化層と、共有ドーピング領域と、共有ドーピング領域と合併される第3PLDD領域と、共有ドーピング領域から離間されるドレインドーピング領域と、ドレインドーピング領域と合併されるN型LDD(NLDD:N‐type LDD)領域とを含む。
【0021】
第4の実施形態によると、単一ポリNVMセルは、半導体基板と、半導体基板内のイオンウェルと、イオンウェル上の選択トランジスタと、選択トランジスタに直列接続されるフローティングゲートトランジスタとを含む。SAB層は、フローティングゲートを覆う。コンタクトエッチストップ層は、SAB層上に配置される。ILD層は、コンタクトエッチストップ層上に堆積される。
【0022】
選択トランジスタは、選択ゲートと、選択ゲートと半導体基板との間の選択ゲート酸化層と、イオンウェル内のソースドーピング領域と、ソースドーピング領域と合併される第1LDD領域と、ソースドーピング領域から離間される共有ドーピング領域と、共有ドーピング領域と合併される第2LDD領域とを含む。
【0023】
フローティングゲートトランジスタは、フローティングゲートと、フローティングゲートと半導体基板との間のフローティングゲート酸化層と、共有ドーピング領域と、共有ドーピング領域と合併される第3PLDD領域と、共有ドーピング領域から離間されるドレインドーピング領域と、ドレインドーピング領域と合併されるP
−LDD領域とを含む。P
−LDD領域は、第3PLDD領域のドーピング濃度よりも低いドーピング濃度を有する。
【0024】
本発明の上記及びその他の目的が、種々の図形及び図面に図示される好ましい実施形態の以下の詳細な説明を読むと、当業者に明白になることは言うまでもない。
【発明を実施するための形態】
【0027】
以下の記載において、多くの特定の詳細が発明の完全な理解を提供するように与えられる。しかし、当業者にとって、これらの特定の詳細なしに発明を実施できることは明らかである。更に、一部の周知のシステム構成及びプロセス工程は、当業者にとって周知であるため、詳細に開示されていない。他の実施形態を利用することができ、かつ、本発明の範囲から逸脱することなく構造的、論理的及び電気的な変更を行うことができる。
【0028】
同様に、装置の実施形態を示している図面は、準概略的であり、縮尺通りではなく、一部の寸法は、説明を明確にするために図中で誇張されている。また、複数の実施形態が一部の共通の特徴、同様又は類似の特徴を有するように開示され、かつ、記載されている場合には、その例示及び説明を容易にするために、同様又は類似の特徴は、同様の参照番号で通常説明されている。
【0029】
図1を参照されたい。
図1は、本発明の第1の実施形態に従った、単一ポリ不揮発性メモリデバイスの概略的な断面図である。
【0030】
図1で示すように、ユニットセル1は、選択トランジスタSTと、選択トランジスタSTに直列接続されるフローティングゲートトランジスタFTとを含む。本発明の第1の実施形態によると、選択トランジスタST及びフローティングゲートトランジスタFTは、P型シリコン基板などの半導体基板100上に配置され得る。Nウェル(NW:N well)110は、半導体基板100に配置され得る。本発明の第1の実施形態によると、選択トランジスタST及びフローティングゲートトランジスタFTは、PMOSトランジスタでよい。
【0031】
選択トランジスタSTは、選択ゲート(SG:select gate)12と、選択ゲート(SG)12と半導体基板100との間の選択ゲート酸化層120と、選択ゲート(SG)12の各側壁上に設けられる側壁スペーサ122と、Nウェル(NW)110内のP
+ソースドーピング領域112と、P
+ソースドーピング領域112と合併されるP型低濃度ドープドレイン(PLDD:p‐type lightly doped drain)領域112aと、P
+ソースドーピング領域112から離間されるP
+ドーピング領域114と、P
+ドーピング領域114と合併されるPLDD領域114aとを含む。動作中、P型チャネルは、選択ゲート(SG)12下部のPLDD領域114aとPLDD領域112aとの間に形成され得る。
【0032】
フローティングゲートトランジスタFTは、フローティングゲート(FG:floating gate)14と、フローティングゲート(FG)14と半導体基板100との間のフローティングゲート酸化層140と、フローティングゲート(FG)14のいずれかの側壁上の側壁スペーサ142と、P
+ドーピング領域114と、P
+ドーピング領域114と合併されるPLDD領域114bと、P
+ドーピング領域114から離間されるP
+ドレインドーピング領域116とを含む。P
+ドーピング領域114は、選択トランジスタST及びフローティングゲートトランジスタFTによって共有される。第1の実施形態によると、選択ゲート(SG)12及びフローティングゲート(FG)14は、単一層ポリシリコンから作られ、これは、ロジックプロセスと完全な互換性がある。
【0033】
本発明の第1の実施形態によると、ドレイン側延伸改質領域(drain‐side extension modified region)60は、ユニットセル1のドレイン側における側壁スペーサ142の直下に配置される。ドレイン側延伸改質領域60は、P
+ドレインドーピング領域116に近接している。PLDD領域が、P
+ドレインドーピング領域116とは合併されず、それにより、P
+ドーピング領域114とP
+ドレインドーピング領域116との間に非対称的なLDD構成を形成する。ドレイン側延伸改質領域60のドーピング濃度は、Nウェル(NW)110のドーピング濃度と同じである。
【0034】
そのような構成を提供することによって、より多くの電子及び正孔の対がプログラミング動作中に誘導され得る。より多くの電子は、プログラミング動作中にフローティングゲート(FG)14内に注入され得る。代替的に、破壊(breakdown)を回避するように、特に、160アングストローム超(Gox>160Å)の物理的ゲート酸化膜厚を有するメモリセルのために、ユニットセル1のプログラム電圧は低減され得る。
【0035】
自己整列したシリサイド(サリサイド)層(self‐alighned silicide layer)212は、P
+ソースドーピング領域112上に設けられる。サリサイド層212は、側壁スペーサ122の底部の縁部に延伸することができる。選択ゲート(SG)12の反対側において、サリサイド層214は、P
+ドーピング領域114上に設けられる。サリサイド層214は、側壁スペーサ122の底部の縁部と連続するが、側壁スペーサ142の底部の縁部から所定の距離を保つ。つまり、サリサイド層212は、P
+ソースドーピング領域112の全表面領域を覆うことができる一方で、サリサイド層214は、P
+ドーピング領域114の表面領域を部分的にのみ覆うことができる。本発明の第1の実施形態によると、サリサイド層214は、スペーサ142の縁部から離間されている。
【0036】
同様に、フローティングゲート(FG)14の反対側において、サリサイド層216は、P
+ドレインドーピング領域116上に設けられる。サリサイド層216は、スペーサ142の底部の縁部から所定の距離を保つ。本発明の第1の実施形態によると、サリサイド層210は、選択ゲート(SG)12の上面上に設けられ得る。
【0037】
特筆すべきことは、シリサイド層が、フローティングゲート(FG)14の上面上には形成されないということである。サリサイドブロック(SAB:salicide block)層300は、フローティングゲート(FG)14を覆うように設けられ得る。第1の実施形態によると、SAB層300は、酸化ケイ素を含むことができるが、それに限らない。
【0038】
本発明の第1の実施形態によると、SAB層300は、フローティングゲート(FG)14の上面、スペーサ142の表面、P
+ドーピング領域114の表面の一部及びP
+ドレインドーピング領域116の一部を覆う。上述のサリサイド層214及び216は、SAB層300によって覆われていない領域114及び116の表面領域上のみに形成される。
【0039】
別の実施形態において、
図5に示すように、SAB層300は、選択ゲート12の上面に延伸することができ、かつ、選択ゲート12の上面を部分的に覆うことができる。
【0040】
スペーサ142とサリサイド層214との間のP
+ドーピング領域114内の非サリサイド化領域(non‐salicided region)と、スペーサ142とサリサイド層216との間のP
+ドレインドーピング領域116内の非サリサイド化領域とは、欠陥誘発BTB(BTB:band‐to‐band)トンネリング外乱(tunneling disturbance)を減らすことができる。
【0041】
一部の場合において、全P
+ドーピング領域114をSAB層300で覆うことができるので、P
+ドーピング領域114上にはシリサイドが形成されないということが理解される。
【0042】
選択的に、コンフォーマルコンタクトエッチストップ層(CESL:conformal contact etch stop layer)312は、SAB層300上方に堆積されて選択ゲート(SG)12、フローティングゲート(FG)14、サリサイド層212、214及び216を覆うことができる。第1の実施形態によると、コンフォーマルなCESL312は、窒化シリコン層でよく、かつ、化学気相成長プロセスを用いることによって堆積され得る。
【0043】
コンフォーマルなCESL312におけるケイ素対窒素の割合は、その電子トラップ機能を低下させるように(例えば、反応チャンバ内のSiH
4/NH
3の割合を調整することによって)調整され得る。特筆すべきことは、CESL312は、SAB層300のため、フローティングゲート(FG)14又はスペーサ142と直接接触しないということである。フローティングゲート(FG)14をSAB層300と共にCESL312から分離することによって、単一ポリNVMのデータ保持特性は向上する。
【0044】
層間誘電体(ILD)層320は、CESL312上に堆積され得る。ILD層320は、CESL312よりも厚く、かつ、選択ゲート(SG)12とフローティングゲート(FG)14との間の空間を完全に埋めるように堆積される。必要であれば、化学機械研磨(CMP:chemical mechanical polishing)プロセスを行ってILD層320の上面を平坦化することができる。ソースラインコンタクト321及びビットラインコンタクト322が、ILD層320に形成される。ソースライン(SL:source line)及びビットライン(BL:bit line)は、第1金属層内で画定されてソースラインコンタクト321及びビットラインコンタクト322にそれぞれ
接続することができる。
【0045】
図2を参照されたい。
図2は、本発明の第2の実施形態に従った単一ポリ不揮発性メモリデバイスのユニットセルを示す概略的な断面図である。
【0046】
図2に示すように、同様に、ユニットセル2は、選択トランジスタSTと、選択トランジスタSTに直列接続されるフローティングゲートトランジスタFTとを含む。本発明の第2の実施形態によると、選択トランジスタST及びフローティングゲートトランジスタFTは、P型シリコン基板などの半導体基板100上に配置され得る。Nウェル(NW)110は、半導体基板100に形成され得る。
【0047】
選択トランジスタSTは、選択ゲート(SG)12と、選択ゲート(SG)12と半導体基板100との間の選択ゲート酸化層120と、選択ゲート(SG)12のいずれかの側壁上に設けられる側壁スペーサ122と、Nウェル(NW)110内のP
+ソースドーピング領域112と、P
+ソースドーピング領域112と合併されるP型低濃度ドープドレイン(PLDD)領域112aと、P
+ソースドーピング領域112から離間されるP
+ドーピング領域114と、P
+ドーピング領域114と合併されるPLDD領域114aとを含む。動作中、P型チャネルは、選択ゲート(SG)12下部のPLDD領域114aとPLDD領域112aとの間に形成され得る。
【0048】
フローティングゲートトランジスタFTは、フローティングゲート(FG)14と、フローティングゲート(FG)14と半導体基板100との間のフローティングゲート酸化層140と、フローティングゲート(FG)14のいずれかの側壁上の側壁スペーサ142と、P
+ドーピング領域114と、P
+ドーピング領域114から離間されるP
+ドレインドーピング領域116とを含む。P
+ドーピング領域114は、選択トランジスタST及びフローティングゲートトランジスタFTによって共有される。第2の実施形態によると、選択ゲート(SG)12及びフローティングゲート(FG)14は、単一層ポリシリコンから作られ、これは、ロジックプロセスと完全な互換性がある。
【0049】
本発明の第2の実施形態によると、ドレイン側延伸改質領域60は、ユニットセル2のドレイン側において側壁スペーサ142直下に配置される。ドレイン側延伸改質領域60は、P
+ドレインドーピング領域116に近接する。延伸改質領域62は、側壁スペーサ142直下に配置される。延伸改質領域62は、P
+ドーピング領域114に近接する。PLDD領域が、P
+ドレインドーピング領域116と合併されず、PLDD領域が、スペーサ142の下でP
+ドーピング領域114と合併されず、それにより、P
+ドーピング領域114とP
+ドレインドーピング領域116との間に非LDD構成を形成する。
【0050】
自己整列したシリサイド(サリサイド)層212は、P
+ソースドーピング領域112上に設けられる。サリサイド層212は、側壁スペーサ122の底部の縁部に延伸することができる。選択ゲート(SG)12の反対側において、サリサイド層214は、P
+ドーピング領域114上に設けられる。サリサイド層214は、側壁スペーサ122の底部の縁部と連続するが、側壁スペーサ142の底部の縁部から所定の距離を保つ。つまり、サリサイド層212は、P
+ソースドーピング領域112の全表面領域を覆うことができる一方で、サリサイド層214は、P
+ドーピング領域114の表面領域を部分的にのみ覆うことができる。本発明の第2の実施形態によると、サリサイド層214は、スペーサ142の縁部から離間される。
【0051】
同様に、フローティングゲート(FG)14の反対側において、サリサイド層216は、P
+ドレインドーピング領域116上に設けられる。サリサイド層216は、スペーサ142の底部の縁部から所定の距離を保つ。本発明の第2の実施形態によると、サリサイド層210は、選択ゲート(SG)12の上面上に設けられ得る。
【0052】
特筆すべきことは、シリサイド層が、フローティングゲート(FG)14の上面上には形成されないということである。サリサイドブロック(SAB)層300は、フローティングゲート(FG)14を覆うように設けられ得る。第2の実施形態によると、SAB層300は、酸化ケイ素を含むことができるが、それに限らない。
【0053】
本発明の第2の実施形態によると、SAB層300は、フローティングゲート(FG)14の上面、スペーサ142の表面、P
+ドーピング領域114の表面の一部及びP
+ドレインドーピング領域116の一部を覆う。上述のサリサイド層214及び216は、SAB層300によって覆われていない領域114及び116の表面領域上のみに形成される。
図5に図示するように、SAB層300は、選択ゲート12の上面に延伸することができ、かつ、選択ゲート12の上面を部分的に覆うことができる。
【0054】
選択的に、コンフォーマルコンタクトエッチストップ層(CESL)312は、SAB層300上方に堆積されて選択ゲート(SG)12、フローティングゲート(FG)14、サリサイド層212、214及び216を覆うことができる。第2の実施形態によると、コンフォーマルなCESL312は、窒化シリコン層でよく、かつ、化学気相成長プロセスを用いることによって堆積され得る。
【0055】
コンフォーマルなCESL312におけるケイ素対窒素の割合は、その電子トラップ機能を低下させるように(例えば、反応チャンバ内のSiH
4/NH
3の割合を調整することによって)調整され得る。特筆すべきことは、CESL312は、SAB層300のため、フローティングゲート(FG)14又はスペーサ142と直接接触しないということである。フローティングゲート(FG)14をSAB層300と共にCESL312から分離することによって、単一ポリNVMのデータ保持特性は向上する。
【0056】
層間誘電体(ILD)層320は、CESL312上に堆積され得る。ILD層320は、CESL312よりも厚く、かつ、選択ゲート(SG)12とフローティングゲート(FG)14との間の空間を完全に埋めるように堆積される。必要であれば、化学機械研磨(CMP)プロセスを行ってILD層320の上面を平坦化することができる。ソースラインコンタクト321及びビットラインコンタクト322がILD層320に形成される。ソースライン(SL)及びビットライン(BL)は、第1金属層内で画定されてソースラインコンタクト321及びビットラインコンタクト322にそれぞれ
接続することができる。
【0057】
図3を参照されたい。
図3は、本発明の第3の実施形態に従った単一ポリ不揮発性メモリデバイスのユニットセルを示す概略的な断面図である。
【0058】
図3に示すように、同様に、ユニットセル3は、選択トランジスタSTと、選択トランジスタSTに直列接続されるフローティングゲートトランジスタFTとを含む。本発明の第3の実施形態によると、選択トランジスタST及びフローティングゲートトランジスタFTは、P型シリコン基板などの半導体基板100上に配置され得る。Nウェル(NW)110は、半導体基板100に形成され得る。
【0059】
選択トランジスタSTは、選択ゲート(SG)12と、選択ゲート(SG)12と半導体基板100との間の選択ゲート酸化層120と、選択ゲート(SG)12のいずれかの側壁上に設けられる側壁スペーサ122と、Nウェル(NW)110内のP
+ソースドーピング領域112と、P
+ソースドーピング領域112と合併されるP型低濃度ドープドレイン(PLDD)領域112aと、P
+ソースドーピング領域112から離間されるP
+ドーピング領域114と、P
+ドーピング領域114と合併されるPLDD領域114aとを含む。動作中、P型チャネルは、選択ゲート(SG)12下部のPLDD領域114aとPLDD領域112aとの間に形成され得る。
【0060】
フローティングゲートトランジスタFTは、フローティングゲート(FG)14と、フローティングゲート(FG)14と半導体基板100との間のフローティングゲート酸化層140と、フローティングゲート(FG)14のいずれかの側壁上の側壁スペーサ142と、P
+ドーピング領域114と、P
+ドーピング領域114と合併されるPLDD領域114bと、P
+ドーピング領域114から離間されるP
+ドレインドーピング領域116とを含む。ドレイン側延伸改質領域60は、ユニットセル3のドレイン側において側壁スペーサ142直下に配置される。ドレイン側延伸改質領域60は、P
+ドレインドーピング領域116に近接する。本発明の第3の実施形態によると、ドレイン側延伸改質領域60は、P
+ドレインドーピング領域116の導電性タイプとは異なる導電性タイプを有する。
【0061】
本発明の第3の実施形態によると、N型低濃度ドープドレイン(NLDD)領域116aは、ドレイン側延伸改質領域60内に形成される。N型低濃度ドープドレイン(NLDD)領域116aは、スペーサ142直下でP
+ドレインドーピング領域116と合併される。P
+ドーピング領域114は、選択トランジスタST及びフローティングゲートトランジスタFTによって共有される。第3の実施形態によると、選択ゲート(SG)12及びフローティングゲート(FG)14は、単一層ポリシリコンから作られ、これは、ロジックプロセスと完全な互換性がある。
【0062】
自己整列したシリサイド(サリサイド)層212は、P
+ソースドーピング領域112上に設けられる。サリサイド層212は、側壁スペーサ122の底部の縁部に延伸することができる。選択ゲート(SG)12の反対側において、サリサイド層214は、P
+ドーピング領域114上に設けられる。サリサイド層214は、側壁スペーサ122の底部の縁部と連続するが、側壁スペーサ142の底部の縁部から所定の距離を保つ。つまり、サリサイド層212は、P
+ソースドーピング領域112の全表面領域を覆うことができる一方で、サリサイド層214は、P
+ドーピング領域114の表面領域を部分的にのみ覆うことができる。本発明の第3の実施形態によると、サリサイド層214は、スペーサ142の縁部から離間される。
【0063】
同様に、フローティングゲート(FG)14の反対側において、サリサイド層216は、P
+ドレインドーピング領域116上に設けられる。サリサイド層216は、スペーサ142の底部の縁部から所定の距離を保つ。本発明の第3の実施形態によると、サリサイド層210は、選択ゲート(SG)12の上面上に設けられ得る。
【0064】
特筆すべきことは、シリサイド層が、フローティングゲート(FG)14の上面上には形成されないということである。サリサイドブロック(SAB)層300は、フローティングゲート(FG)14を覆うように設けられ得る。第3の実施形態によると、SAB層300は、酸化ケイ素を含むことができるが、それに限らない。
【0065】
本発明の第3の実施形態によると、SAB層300は、フローティングゲート(FG)14の上面、スペーサ142の表面、P
+ドーピング領域114の表面の一部及びP
+ドレインドーピング領域116の一部を覆う。
図5に図示するように、SAB層300は、選択ゲート12の上面に延伸することができ、かつ、選択ゲート12の上面を部分的に覆うことができる。上述のサリサイド層214及び216は、SAB層300によって覆われていない領域114及び116の表面領域上のみに形成される。
【0066】
選択的に、コンフォーマルコンタクトエッチストップ層(CESL)312は、SAB層300上方に堆積されて選択ゲート(SG)12、フローティングゲート(FG)14、サリサイド層212、214及び216を覆うことができる。第3の実施形態によると、コンフォーマルなCESL312は、窒化シリコン層でよく、かつ、化学気相成長プロセスを用いることによって堆積され得る。
【0067】
コンフォーマルなCESL312におけるケイ素対窒素の割合は、その電子トラップ機能を低下させるように(例えば、反応チャンバ内のSiH
4/NH
3の割合を調整することによって)調整され得る。特筆すべきことは、CESL312は、SAB層300のため、フローティングゲート(FG)14又はスペーサ142と直接接触しないということである。フローティングゲート(FG)14をSAB層300と共にCESL312から分離することによって、単一ポリNVMのデータ保持特性は向上する。
【0068】
層間誘電体(ILD)層320は、CESL312上に堆積され得る。ILD層320は、CESL312よりも厚く、かつ、選択ゲート(SG)12とフローティングゲート(FG)14との間の空間を完全に埋めるように堆積される。必要であれば、化学機械研磨(CMP)プロセスを行ってILD層320の上面を平坦化することができる。ソースラインコンタクト321及びビットラインコンタクト322がILD層320に形成される。ソースライン(SL)及びビットライン(BL)は、第3金属層内で画定されてソースラインコンタクト321及びビットラインコンタクト322にそれぞれ
接続することができる。
【0069】
図4を参照されたい。
図4は、本発明の第4の実施形態に従った単一ポリ不揮発性メモリデバイスのユニットセルを示す概略的な断面図である。
【0070】
図4に示すように、同様に、ユニットセル4は、選択トランジスタSTと、選択トランジスタSTに直列接続されるフローティングゲートトランジスタFTとを含む。本発明の第4の実施形態によると、選択トランジスタST及びフローティングゲートトランジスタFTは、P型シリコン基板などの半導体基板100上に配置され得る。Nウェル(NW)110は、半導体基板100に形成され得る。
【0071】
選択トランジスタSTは、選択ゲート(SG)12と、選択ゲート(SG)12と半導体基板100との間の選択ゲート酸化層120と、選択ゲート(SG)12のいずれかの側壁上に設けられる側壁スペーサ122と、Nウェル(NW)110内のP
+ソースドーピング領域112と、P
+ソースドーピング領域112と合併されるP型低濃度ドープドレイン(PLDD)領域112aと、P
+ソースドーピング領域112から離間されるP
+ドーピング領域114と、P
+ドーピング領域114と合併されるPLDD領域114aとを含む。動作中、P型チャネルは、選択ゲート(SG)12下部のPLDD領域114aとPLDD領域112aとの間に形成され得る。
【0072】
フローティングゲートトランジスタFTは、フローティングゲート(FG)14と、フローティングゲート(FG)14と半導体基板100との間のフローティングゲート酸化層140と、フローティングゲート(FG)14のいずれかの側壁上の側壁スペーサ142と、P
+ドーピング領域114と、P
+ドーピング領域114と合併されるPLDD領域114bと、P
+ドーピング領域114から離間されるP
+ドレインドーピング領域116とを含む。ドレイン側延伸改質領域60は、ユニットセル4のドレイン側において側壁スペーサ142直下に配置される。ドレイン側延伸改質領域60は、P
+ドレインドーピング領域116に近接する。
【0073】
P
−LDD領域116bは、ドレイン側延伸改質領域60内に形成される。P
−LDD領域116bは、スペーサ142直下でP
+ドレインドーピング領域116と合併される。P
−LDD領域116bは、PLDD領域114b及びP
+ドレインドーピング領域116のドーピング濃度よりも低いドーピング濃度を有する。P
+ドーピング領域114は、選択トランジスタST及びフローティングゲートトランジスタFTによって共有される。第4の実施形態によると、選択ゲート(SG)12及びフローティングゲート(FG)14は、単一層ポリシリコンから作られ、これは、ロジックプロセスと完全な互換性がある。
【0074】
自己整列したシリサイド(サリサイド)層212は、P
+ソースドーピング領域112上に設けられる。サリサイド層212は、側壁スペーサ122の底部の縁部に延伸することができる。選択ゲート(SG)12の反対側において、サリサイド層214は、P
+ドーピング領域114上に設けられる。サリサイド層214は、側壁スペーサ122の底部の縁部と連続するが、側壁スペーサ142の底部の縁部から所定の距離を保つ。つまり、サリサイド層212は、P
+ソースドーピング領域112の全表面領域を覆うことができる一方で、サリサイド層214は、P
+ドーピング領域114の表面領域を部分的にのみ覆うことができる。本発明の第4の実施形態によると、サリサイド層214は、スペーサ142の縁部から離間される。
【0075】
同様に、フローティングゲート(FG)14の反対側において、サリサイド層216は、P
+ドレインドーピング領域116上に設けられる。サリサイド層216は、スペーサ142の底部の縁部から所定の距離を保つ。本発明の第4の実施形態によると、サリサイド層210は、選択ゲート(SG)12の上面上に設けられ得る。
【0076】
特筆すべきことは、シリサイド層が、フローティングゲート(FG)14の上面上には形成されないということである。サリサイドブロック(SAB)層300は、フローティングゲート(FG)14を覆うように設けられ得る。第4の実施形態によると、SAB層300は、酸化ケイ素を含むことができるが、それに限らない。
【0077】
本発明の第4の実施形態によると、SAB層300は、フローティングゲート(FG)14の上面、スペーサ142の表面、P
+ドーピング領域114の表面の一部及びP
+ドレインドーピング領域116の一部を覆う。
図5に図示するように、SAB層300は、選択ゲート12の上面に延伸することができ、かつ、選択ゲート12の上面を部分的に覆うことができる。上述のサリサイド層214及び216は、SAB層300によって覆われていない領域114及び116の表面領域上のみに形成される。
【0078】
選択的に、コンフォーマルコンタクトエッチストップ層(CESL)312は、SAB層300上方に堆積されて選択ゲート(SG)12、フローティングゲート(FG)14、サリサイド層212、214及び216を覆うことができる。第4の実施形態によると、コンフォーマルなCESL312は、窒化シリコン層でよく、かつ、化学気相成長プロセスを用いることによって堆積され得る。
【0079】
コンフォーマルなCESL312におけるケイ素対窒素の割合は、その電子トラップ機能を低下させるように(例えば、反応チャンバ内のSiH
4/NH
3の割合を調整することによって)調整され得る。特筆すべきことは、CESL312は、SAB層300のため、フローティングゲート(FG)14又はスペーサ142と直接接触しないということである。フローティングゲート(FG)14をSAB層300と共にCESL312から分離することによって、単一ポリNVMのデータ保持特性は向上する。
【0080】
層間誘電体(ILD)層320は、CESL312上に堆積され得る。ILD層320は、CESL312よりも厚く、かつ、選択ゲート(SG)12とフローティングゲート(FG)14との間の空間を完全に埋めるように堆積される。必要であれば、化学機械研磨(CMP)プロセスを行ってILD層320の上面を平坦化することができる。ソースラインコンタクト321及びビットラインコンタクト322がILD層320に形成される。ソースライン(SL)及びビットライン(BL)は、第4金属層内で画定されてソースラインコンタクト321及びビットラインコンタクト322にそれぞれ
接続することができる。
【0081】
上記の実施形態におけるPLDD領域114bはまた、NLDD領域又はP−LDD領域と入れ替えることができるか、あるいは、省略さえできる。
【0082】
当業者であれば、本発明の教示を維持しながら、装置及び方法の多くの変更及び代替が行われ得ることを容易に気付くだろう。従って、上記の開示は、添付した請求項の境界及び範囲(metes and bounds)によってのみ限定されるものとして理解されるべきである。