(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6682357
(24)【登録日】2020年3月27日
(45)【発行日】2020年4月15日
(54)【発明の名称】熱感知器
(51)【国際特許分類】
G08B 17/06 20060101AFI20200406BHJP
G01J 5/02 20060101ALI20200406BHJP
G01J 5/04 20060101ALI20200406BHJP
G08B 17/00 20060101ALI20200406BHJP
【FI】
G08B17/06 K
G01J5/02 L
G01J5/04
G08B17/00 G
【請求項の数】4
【全頁数】8
(21)【出願番号】特願2016-105562(P2016-105562)
(22)【出願日】2016年5月26日
(65)【公開番号】特開2017-211879(P2017-211879A)
(43)【公開日】2017年11月30日
【審査請求日】2019年2月15日
(73)【特許権者】
【識別番号】000003403
【氏名又は名称】ホーチキ株式会社
(74)【代理人】
【識別番号】100113549
【弁理士】
【氏名又は名称】鈴木 守
(74)【代理人】
【識別番号】100115808
【弁理士】
【氏名又は名称】加藤 真司
(72)【発明者】
【氏名】中村 嘉夫
【審査官】
永田 義仁
(56)【参考文献】
【文献】
米国特許出願公開第2015/0379847(US,A1)
【文献】
特開2011−192245(JP,A)
【文献】
特開2011−192244(JP,A)
【文献】
特開2010−218044(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01J 5/00− 5/62
G01K 1/00−19/00
G08B 17/00−17/12
(57)【特許請求の範囲】
【請求項1】
監視領域の温度を監視するための熱感知器であって、
前記監視領域から熱を受ける受熱板と、
前記受熱板に対向して配置され、赤外線を検出して温度を検知する非接触温度センサと、
前記受熱板から離隔して配置され、前記受熱板と前記非接触温度センサとの間に介在して前記受熱板から放射された赤外線を透過する窓と、
前記非接触温度センサによる検知結果に基づいて外部に熱感知信号を送出する電気回路と、
前記非接触温度センサ及び前記電気回路を収納する筐体と、
を備え、
前記受熱板の前記非接触温度センサと対向する面は黒体塗装されている熱感知器。
【請求項2】
離隔して配置された前記受熱板と前記窓との間の空間を気流が流通可能である、請求項1記載の熱感知器。
【請求項3】
前記窓は前記筐体に設けられ、一面が前記受熱板の前記非接触温度センサと対向する面に対向し、他面が前記非接触温度センサに対向して配置される、請求項1又は2に記載の熱感知器。
【請求項4】
前記筐体の一部が前記窓を構成している請求項3記載の熱感知器。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、監視領域における熱を感知して警報等を行う熱感知器に関する。
【背景技術】
【0002】
従来から、火災により発生する熱で火災の発生を感知する熱感知器が知られている。従来の熱感知器は、温度に応じて抵抗値が変化するサーミスタが用いられることが多かった。こうした熱感知器では、サーミスタを熱気流にさらして温度を測定するために、サーミスタを筐体から突出させていた。
【0003】
ところが、サーミスタに棒体等が衝突して外力が加わると、変形して正確な温度測定ができなくなることがあった。この課題に鑑み、特許文献1では、熱感知器の薄型化を図った熱感知器が提案されている。特許文献1に記載された熱感知器は、熱感知器本体と、該本体に設けられたカーボン製吸熱板と、該カーボン製吸熱板の内面と対向する位置であって、該カーボン製吸熱板と離して設けられた非接触温度センサとを有する。この熱感知器は、熱伝導率と赤外線放射率が共に高いカーボン製の吸熱板を用いているので、熱が伝わり易いと共に赤外線放射エネルギーが大きく、吸熱板の温度及びそれに対応する赤外線放射エネルギーが迅速に変化し、周囲環境の温度変化を検出し易くなっている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許5236539号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、上記した熱感知器では、吸熱板(受熱板)は監視領域に晒されているものであるにもかかわらず、吸熱板の材質がカーボン製に限定されてしまっており、熱感知器の見栄えが悪いという問題があった。吸熱板の機能を確保するために材質が限定されていることに起因して、感知器の構造にも制約があった。また、熱応答性のさらなる向上に対する要求もあった。
そこで、本発明は、吸熱板の構造を工夫した熱感知器を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の熱感知器は、監視領域の温度を監視するための熱感知器であって、前記監視領域から熱を受ける受熱板と、前記受熱板から離隔して設けられると共に、前記受熱板から放射された赤外線を検出する非接触温度センサと、前記非接触温度センサによる検出結果に基づいて外部に熱感知信号を送出する電気回路と、前記非接触温度センサ及び前記電気回路を収納する筐体とを備え、前記受熱板の前記非接触温度センサと対向する面は黒体塗装されている。
【0007】
このように受熱板の非接触温度センサと対向する面を黒体塗装することにより、赤外線の放射率を高めることができると共に、受熱板としては熱伝導性の高い任意の材料を用いることができるので、受熱板の材質の選択の自由度を高めることができる。
【0008】
本発明の熱感知器は、前記筐体の一部が前記受熱板を構成している。この構成により、監視領域の熱を筐体の一部で吸収し、内部にある非接触温度センサにて受熱板の温度を検出できる。
【0009】
本発明の熱感知器は、前記筐体から前記監視領域に向かって延びる支持部材を備え、前記受熱板は、前記支持部材に支持されている。この構成により、受熱板の上下面を気流が通過するので、監視領域の熱が効率良く受熱板に伝導し、熱感知器の熱応答性を向上させることができる。
【0010】
本発明の熱感知器において、前記筐体は、ポリエチレン樹脂によって構成される。温度による火災検知には、60〜80℃(333〜353K)の温度が用いられるところ、この温度の物体から出る赤外線の波長は10マイクロメートル近辺である。ポリエチレン樹脂は、10マイクロメートル近辺の波長を有する赤外線を透過するので、筐体をポリエチレン樹脂で構成することにより、受熱板から放射された赤外線が筐体を透過し、非接触温度センサにて受熱板の温度変化を捉えることができる。
【0011】
本発明の熱感知器において、前記筐体は、防水構造を有する。この構成により、筐体内部の非接触温度センサや電気回路を湿気等から保護すると共に、受熱板を筐体から分離して監視領域の気流から熱を受けやすくすることができる。
【0012】
本発明の熱感知器において、前記受熱板の前記監視領域側の面は、前記非接触温度センサと対向する面とは異なる表面処理がなされている。この構成により、受熱板の監視領域側の面と筐体側の面で機能を分け、筐体側の面で赤外線放射率の高さを担保すると共に、監視領域側の面で外観を良くすることで、熱感知器の見栄えを良くすることができる。
【発明の効果】
【0013】
本発明は、受熱板の材質の選択の自由度を高めることができるという効果を有する。また、受熱板の材質の自由度向上に起因して、感知器の構造を従来よりも自由に設計することが可能になり、意匠性の向上を図ることができる。また、受熱板を黒体塗装する構成によって熱応答性を高めることもできる。
【図面の簡単な説明】
【0014】
【
図1】第1の実施の形態の熱感知器の外観を示す斜視図である。
【
図2】第1の実施の形態の熱感知器の構成を示す断面図である。
【
図3】第2の実施の形態の熱感知器の構成を示す断面図である。
【
図4】第3の実施の形態の熱感知器の構成を示す断面図である。
【発明を実施するための形態】
【0015】
以下、本発明の実施の形態の熱感知器について図面を参照しながら説明する。
(第1の実施の形態)
図1は、第1の実施の形態の熱感知器1の外観を示す斜視図である。熱感知器1は、監視領域の熱を感知して火災を判断する部品を収容した略円筒状の筐体10と、筐体10に突設された複数の支持部材16で支持された受熱板17とを有している。熱感知器1は、受熱板17を有する側が監視領域に向けられ、受熱板17と反対側が天井や壁等の設置面に取り付けられる。受熱板17を支持する支持部材16は、樹脂等の熱を通しにくい材質によって構成される。これにより、受熱板17にて吸収した熱が支持部材16を介して筐体10へと逃げるのを防止し、受熱板17の温度上昇によって、監視領域の温度上昇をいち早く検知することができる。
【0016】
図2は、熱感知器1の構成を示す断面図である。筐体10の内部には、受熱板17の温度変化を検知する非接触温度センサ14と、非接触温度センサ14を載置したプリント基板11とを有している。プリント基板11は、筐体10の内部において支持部材12によって支持されている。プリント基板11は、受熱板17と対向して配置され、プリント基板11上に載置された非接触温度センサ14も受熱板17と対向している。
【0017】
プリント基板11には、電気回路が搭載されている。電気回路は、CPU等の制御部を含んでいる。制御部は、非接触温度センサ14にて検知した温度が一定の温度に達した場合、または、温度の上昇率が一定の割合を超えた場合に火災と判断する。プリント基板11には、外部の監視装置につながるリード線13が接続されている。通常の監視状態においては、熱感知器1は、リード線13によって監視装置とループ接続されている。制御部が火災と判断した場合には、熱感知器1の内部でリード線を短絡することにより、監視装置に熱感知信号を送出して、火災の発生を発報する。
【0018】
非接触温度センサ14としては、例えばサーモパイルが用いられる。サーモパイルは、物体から放射される赤外線を受け、そのエネルギー量に応じた熱起電力を発生する赤外線センサである。筐体10には、サファイヤガラス等の遠赤外線を透過させる部材によって構成された窓15が設けられている。この窓15を通じて、非接触温度センサ14は受熱板17から放射された赤外線を検知し、受熱板17の温度変化を検知する。なお、窓15は、ポリカーボネート等の樹脂の薄膜(0.1mm程度)によって構成することとしてもよい。
【0019】
受熱板17は、アルミ基材に表面処理を施して構成されている。ここでは、説明の便宜上、受熱板17の監視領域側の面を「表面17a」、筐体10側の面を「裏面17b」という。受熱板の表面17aは、熱感知器1の見栄えを良くするために、着色やシボ加工等の表面処理がなされている。受熱板17bの裏面17bは黒体塗装がなされ、赤外線の放射効率を高めている。
【0020】
以上、第1の実施の形態の熱感知器1について説明した。第1の実施の形態の熱感知器1は、受熱板17を用いているので、従来のサーミスタのような点状部分による熱感知ではなく、面状部分による熱感知を行うことができ、熱応答性を高めることができる。
【0021】
また、受熱板17の表面17aは、受熱板17の裏面17bには黒体塗装がなされていることにより、筐体10側への赤外線の放射率を高め、熱の検知速度やS/Nの向上を図ることができる。これにより、受熱板17の材質の選択の自由度が高まり、表面17aに着色やシボ加工等の表面処理を行うことができるので、熱感知器1の見栄えを良くすることができる。
【0022】
また、受熱板17は、支持部材16によって支持されているので、受熱板17の表面17aのみならず裏面17bに対しても監視領域内の気流が接するので、受熱板17は、監視領域の温度変化を速やかに反映し、熱応答性を高めることができる。
【0023】
(第2の実施の形態)
図3は、第2の実施の形態の熱感知器2の構成を示す断面図である。熱感知器2では、筐体10の一部が受熱板17によって構成されている。
【0024】
筐体10の内部には、受熱板17の温度変化を検知する非接触温度センサ14と、非接触温度センサ14を載置したプリント基板11とを有している。非接触温度センサ14、プリント基板11、及びプリント基板11に接続されたリード線13等の構成は、第1の実施の形態の熱感知器1と同じである。
【0025】
受熱板17は、アルミ基材に表面処理を施して構成されている。受熱板の表面17aは、熱感知器1の見栄えを良くするために、着色やシボ加工等の表面処理がなされている。受熱板17bの裏面17bは黒体塗装がなされ、赤外線の放射効率を高めている。
【0026】
第2の実施の形態の熱感知器2は、筐体10の一部が受熱板17を兼ねているので、熱感知器2の構成をコンパクトにすることができる。また、第2の実施の形態の熱感知器2は、第1の実施の形態の熱感知器1と同様に、面状の受熱板17による熱感知により、熱応答性が高い。
【0027】
また、受熱板17の表面17aは、着色やシボ加工等の表面処理がなされ、熱感知器1の見栄えが良いと共に、受熱板17の裏面17bには黒体塗装がなされていることにより、筐体10側への赤外線の放射率を高め、筐体10内に設けられた非接触温度センサ14により受熱板17の温度変化を適切に検知することができる。
【0028】
(第3の実施の形態)
図4は、第3の実施の形態の熱感知器3の構成を示す断面図である。第3の実施の形態の熱感知器3の基本的な構成は、第1の実施の形態の熱感知器1と同じであり、筐体18の内部に、受熱板17の温度変化を検知する非接触温度センサ14や非接触温度センサ14を載置したプリント基板11等を有している。
【0029】
第3の実施の形態の熱感知器3は、波長10マイクロメートルの赤外線を透過させるポリエチレン樹脂によって筐体18が構成されている。筐体18は、ポッティングまたはパッキンにより防水構造が採用されている。そして、この筐体18の上に、支持部材16を介して、受熱板17が設けられている。
【0030】
また、熱感知器3は、筐体18を覆う化粧カバー19を備えている。化粧カバー19は、受熱板17を支持している領域を除き、筐体18を覆っており、熱感知器3の見栄えを良くしている。化粧カバー19が覆われていない領域が赤外線を透過させる窓の役割を有する。
【0031】
受熱板17は、アルミ基材に表面処理を施して構成されている。受熱板の表面17aは、熱感知器1の見栄えを良くするために、着色やシボ加工等の表面処理がなされている。受熱板17の裏面17bは黒体塗装がなされ、赤外線の放射効率を高めている。
【0032】
第3の実施の形態の熱感知器3は防水構造を有する筐体18を備え、筐体18内の部品を湿気などの水分から保護すると共に、支持部材16を介して受熱板17を保持しているので、受熱部を分類して監視領域内の気流から熱を受けやすくするという効果を有する。
【0033】
また、第3の実施の形態の熱感知部3は、第1の実施の形態と同様に、熱応答性を高めることができる。
【0034】
以上、本発明の熱感知器について実施の形態を挙げて詳細に説明したが、本発明は上記した実施の形態に限定されるものではない。
【0035】
上記した第1の実施の形態では、アルミ基材の表面17aと裏面17bに異なる表面処理を施して受熱板17を構成する例について説明したが、受熱板17は、異なる材料からなる複数の層によって構成してもよい。例えば、表面をアルミ層とし、裏面を樹脂薄膜とすることも可能である。
【0036】
上記した実施の形態において、受熱板17の温度を検知する非接触温度センサ14とは別に、筐体10,18の内部の温度を検知する温度センサ(例えば、サーミスタ)を備えることとしてもよい。非接触温度センサ14は受熱板17の温度変化のみならず、筐体10,18内の温度変化をも検知してしまう可能性があるが、温度センサによって筐体10,18内の温度を検知することで、温度補正を行うことができる。
【0037】
上記した実施の形態では、円形の平板状の受熱板17を例として説明したが、受熱板17の形状は、円形や平板状に限定されるものではなく、矩形や湾曲形状であってもよいし、また、その大きさについても実施の形態で説明した例に限定されるものではない。受熱板17を湾曲形状とした場合には、湾曲に沿って気流が流れるので、監視領域の熱を受けやすくなる。また、受熱板17は、熱伝導性の高い部材で連結された複数枚の板で構成されてもよい。これにより、気流の温度が伝導しやすくなる。また、複数の板で受熱板17を構成した場合には、筐体10側に赤外線放射率の高い材質の板を用い、監視領域側に表面処理加工を行いやすい材質の板を用いるという構成とすることもできる。
【0038】
上記した第3の実施の形態では、筐体18を化粧カバー19で覆うと共に、支持部材16によって受熱板17を支持する例を挙げたが、化粧カバー19と支持部材16と受熱板17を一体に形成することとしてもよい。
【産業上の利用可能性】
【0039】
本発明は、監視領域における熱を感知して警報等を行う熱感知器として有用である。
【符号の説明】
【0040】
1〜3 熱感知器
10 筐体
11 プリント基板
12 支持部材
13 リード線
14 非接触温度センサ
15 窓
16 支持部材
17 受熱板
18 筐体
19 化粧カバー