【課題を解決するための手段】
【0015】
供給ライン内の流量及び粘度に依存する短所を克服するために、本発明によるシステムは、投入システムが各インジェクタ毎に、及び/又は各シリンダ毎に流量測定部を含み、流量測定部が閉路調整で使用される制御部と接続されることが特徴である。
【0016】
本発明による方法は、インジェクタ当たりの実際の油の投入量の各々のインジェクタ毎の局所的流量測定及び/又はシリンダの中央流量測定により、制御部に流量測定の結果を送信し、期待又は計画された油量と実際の油の投入量の流量測定を比較し、及び必要な範囲まで油のタイミング及び量を調整するための開閉部に制御部が制御信号を送信することが特徴である。
【0017】
これに関連して、インジェクタの作動から流量信号の始動までの期間は、システムの注入タイミングの調節のために用いることができる。このように、粘度状況によるタイミングの起こり得る変化(潤滑油の遅延及び加速された搬送)のために余裕をもたせることができる。粘度状況における偏差は、時間的実行を決定し、注入のための高速又は低速のタイミングを引き起こす場合があるので、興味深い。
【0018】
本発明によるインジェクタは、開閉バルブがボールバルブ本体及び相互に作用する弁座を含み、バルブ本体のステムと開閉バルブのバルブガイド内の壁との間に10μmを超える幅をもつギャップがあることが特徴である。
【0019】
ノズル口の断面寸法は、典型的には、円形ノズル口の直径である。
【0020】
本発明のさらなる実施形態によれば、投入システムは、制御部が各々のシリンダ毎に局所的制御ボックスを含み、シリンダ毎の全てのインジェクタのタイミング及び投入を制御することが特徴である。
【0021】
本発明のさらなる実施形態によれば、投入システムは、4〜10個のインジェクタが各々のシリンダ毎に用いられることが特徴である。
【0022】
本発明のさらなる実施形態によれば、投入システムは、各々のインジェクタ毎に、又は個々のシリンダに連結された全てのインジェクタ毎に、局所的蓄圧器を備えることが特徴である。
【0023】
本発明のさらなる実施形態によれば、投入システムは、潤滑油供給源に超過油を導くために、又は圧力測定の実行のために、各々のインジェクタが戻り管路との接続のための排出口をもっていることが特徴である。
【0024】
本発明のさらなる実施形態によれば、投入システムは、各々のインジェクタが1ユニットとして作られ、開閉バルブがボールバルブ本体及び相互に作用する弁座を含み、バルブ本体のステムと開閉バルブのバルブガイド内の壁との間に10μmを超える幅をもつギャップがあることが特徴である。
【0025】
本発明のさらなる実施形態によれば、投入システムは、各々のインジェクタが1ユニットとして作られ、開閉バルブは、潤滑油の投入のためにインジェクタ内に内蔵された電気機械的なバルブであり、電気機械的な開閉バルブがばね付勢のバルブステムを含むことが特徴である。
【0026】
本発明のさらなる実施形態によれば、投入システムは、各々のインジェクタ及び各々のシリンダ毎に同じ動作範囲をもつ流量測定部を含み、制御部は、全ての流量測定部と接続され、且つ比較的に大きな流量でインジェクタにて流量測定部から信号を受信し、比較的に小さな流量でシリンダの中央流量測定部から信号を受信することに適していることが特徴である。
【0027】
本発明のさらなる実施形態によれば、投入システムは、各々のインジェクタ及び各々のシリンダ毎に異なる動作範囲をもつ流量測定部を含み、制御部は、全ての流量測定部と接続され、最小の動作範囲をもつ流量測定部は、インジェクタと接続された局所的流量測定部であり、最大の動作範囲をもつ流量測定部は、シリンダの中央流量測定部であることが特徴である。
【0028】
本発明のさらなる実施形態によれば、投入システムは、インジェクタと接続された少なくとも1つの局所的流量測定部と結合する、単一のシリンダの中央流量測定部を単に含むことが特徴である。
【0029】
本発明のさらなる実施形態によれば、投入システムは、シリンダの局所的流量測定部とインジェクタの局所的流量スイッチとの組合せを含むことが特徴である。
【0030】
本発明のさらなる実施形態によれば、方法は、シリンダ毎の中央の流量測定と組み合わせて、インジェクタの局所的流量測定が実行されることが特徴である。このように、比較的に大規模な流量によって、個々のインジェクタの局所的流量計からの測定結果を用いることができ、少ない流量によって(例えば、低いエンジン速度で、及び小量の投入量によって)シリンダ中央の流量計が用いられるより、正確な測定が実現される。これの理由は、インジェクタ毎の投入量が比較的に広域を「カバーする」必要があるということである。
【0031】
他の実施例は、(同じ能力をもつ)同じ流量計を用いる代わりに、異なる流量範囲をもつ異なる流量測定部を用いてもよいということだろう。ここで、最小の流量範囲をもつ流量測定部は、個々のインジェクタ上で局所的に位置しており、最大の流量範囲をもつ流量計は、シリンダの中央に位置している。この方法は、流量測定システムが、全流量範囲を通じて正確な流量測定を容易に提供することができることをもたらす。
【0032】
他の実施例は、複数のインジェクタの中の1つのインジェクタ上に取り付けられた最小限の1つの流量計と、中央の流量計とを組み合わせることだろう。そのようにすることで、少流量だけでなく大きな流量も扱うことができる測定システムを提供することができ、流量計の数が制限されている場合に、より安く、よりメンテナンス不要な構成を提供することができる。
【0033】
本発明のさらなる実施形態によれば、本方法は、供給ライン内の供給圧力を監視することが特徴である。
【0034】
本発明のさらなる実施形態によれば、本方法は、投入量を制御するためのパラメータとして、供給ライン内の供給圧力を用いることが特徴である。
【0035】
本発明のさらなる実施形態によれば、本方法は、潤滑油を投入するために、潤滑油の注入により開閉バルブのバルブステムを移動させるために、インジェクタ内に内蔵された電気機械的なバルブの形式の開閉バルブを作動させることにより、潤滑油の投入が実行されることが特徴である。
【0036】
本発明のさらなる実施形態によれば、本方法は、電気機械的なバルブの開閉時間によりタイミング及び投入量が制御されることが特徴である。
【0037】
本発明のさらなる実施形態によれば、本方法は、同じ動作範囲をもつ流量測定部が各々のインジェクタ及び各々のシリンダ毎に設定され、制御部は、全ての流量測定部と接続され、大きな流量によってインジェクタからの測定が選択され、比較的に小さな流量によってシリンダの中央流量測定部からの測定が選択されることが特徴である。
【0038】
本発明のさらなる実施形態によれば、本方法は、各々のインジェクタ及び各々のシリンダ毎に異なる動作範囲をもつ流量測定部が設定され、最小の動作範囲をもつ流量測定部は、インジェクタと接続された局所的流量測定部として選択され、最大の動作範囲をもつ流量測定部は、シリンダの中央流量測定部として選択されることが特徴である。
【0039】
本発明のさらなる実施形態によれば、本方法は、1つのシリンダの中央流量測定だけが実行され、これがインジェクタにおいて少なくとも1つの局所的流量測定と結合されることが特徴である。
【0040】
本発明のさらなる実施形態によれば、本方法は、シリンダの局所的流量測定部によるシリンダの局所的流量測定と、インジェクタの局所的流量スイッチによるインジェクタの局所的流量登録の組合せとして流量測定が実行されることが特徴である。
【0041】
本発明のさらなる実施形態によれば、インジェクタは、弁座が円錐形であることが特徴である。
【0042】
本発明のさらなる実施形態によれば、インジェクタは、ギャップの領域が少なくともインジェクタのノズル口の全領域に対応することが特徴である。
【0043】
本発明のさらなる実施形態によれば、インジェクタは、インジェクタが濾過器を含み、開閉バルブのギャップが少なくとも濾過器のメッシュ幅の半分に対応する同じ幅をもつことが特徴である。
【0044】
本発明のさらなる実施形態によれば、インジェクタは、好ましくは電磁バルブ又は圧電素子の形式の電気機械式アクチュエータを含むことが特徴である。
【0045】
本発明のさらなる実施形態によれば、インジェクタは、超過油を排出させるために、又は圧力測定を実行するために、戻り管路との接続のための排出口をもっていることが特徴である。
【0046】
本発明のさらなる実施形態によれば、インジェクタは、インジェクタが視覚的に又は電気的に実際の流量を示すための流量点検窓又は流量スイッチを含むことが特徴である。
【0047】
本発明のさらなる実施形態によれば、インジェクタは、3MPa(30バール)〜10MPa(100バール)の間の供給圧力にて動作するのに適していることが特徴である。
【0048】
本発明のさらなる実施形態によれば、インジェクタは、コンパクトな一つ又は複数の噴出口とともに動作するのに適していることが特徴である。
【0049】
本発明のさらなる実施形態によれば、インジェクタは、一つ又は複数の霧噴霧器とともに動作するのに適していることが特徴である。
【0050】
本発明のさらなる実施形態によれば、インジェクタは、バルブ本体のステムと、ステムが受け入れられるボーリングとの間のギャップ幅が、少なくともノズル口の断面寸法のサイズの半分であることが特徴である。
【0051】
各々のインジェクタ、又はシリンダに連結された全てのインジェクタについて、脈流が同時に測定される。
【0052】
あるインジェクタが故障した場合には、他のインジェクタが、制御部及び閉路調整における制御に基づいて、1つ以上の故障したインジェクタを自動的に補完/置換することができる。
【0053】
搬送された量を消費量/流量の実測値に基づいて制御することができるように制御が設計されるのと並行して、インジェクタ内に内蔵された投入部の開閉機能をもつことは好適であり、これによって、粘度(温度、油の種類)、供給ラインの距離、及び直径による不確実性を排除できる。
【0054】
加圧された潤滑油の1つの共通の供給ラインをもつ(戻り管路の必要がない)ことのみによってケーブルの配管及び引き出しの両方が認知できるほどに単純化されるように、内蔵された開閉バルブ、好ましくは電磁バルブをもつインジェクタを用いる根本概念は、投入量が開閉電磁バルブの開く時間に比例することを定める。好ましくは、船のエンジン/制御部からの信号に基づいてインジェクタの開閉を行うために用いられる個別の局所的制御ボックスがある。
【0055】
大型のディーゼルエンジンのシリンダ潤滑のために設計された電気機械的に調整されたインジェクタは、従来技術の潤滑システムに対して、必然的に有利性を伴う。システム的には、潤滑油の量及びタイミングに関して個々に調整することができる。
【0056】
本機能は、各々の単一インジェクタを個別に、又はタイミング及び開時間に関して一緒に制御することができる制御ボックスにのみ依存する。これは、他の開閉バルブとは別個に生じる場合があり、インジェクタ内の開閉バルブが開閉サイクルを実行することができる速度によってのみ制限される。
【0057】
測定流量は、計画量に対する搬送量を制御するために用いられる。所定の期間の間の所定のサイズの偏差により、連結された局所的制御ボックスは、連結されたインジェクタのための一つ又は複数の電磁バルブのための開時間を修正することができる。
【0058】
インジェクタは、ノズル口より小さく、ギャップ幅より大きな粒子には損傷を受けない。それによって、油の比較的に粗い濾過により動作することができる。油が10μm以上のサイズをもつ小型の粒子を含有していても、バルブ本体/ボールが詰まるというリスクはない。それは、開閉バルブ内の10μm〜0.3mmまで又はそれ以上のギャップ幅で動作することに問題はない。バルブ内のシートは、典型的には円錐形であり、チェックバルブ内のシートとして設計されており、バルブ内の油圧は、閉子/ばねとともにバルブを閉じ続ける。
【0059】
ギャップ幅より大きい粒子は、弁座とバルブステムとが整列しない中央から外れた位置にバルブステムが傾斜又は移動させられるように、(バルブ本体/バルブステムの半径と、バルブステムが配置されるバルブハウジングのボーリングの半径との間の差(半径差)として測定された)バルブに入っても、ボール形状が、バルブを締め続けることを保証するだろう。
【0060】
傾斜位は、場合によっては、エンジン振動により生じる場合もある。この締め付け性も、また、ボーリング内のバルブ本体と壁との間の比較的に大きなギャップ開口部により保証される。
【0061】
唯一の重要な摩耗面は、インジェクタ内のバルブ機能の高い信頼性提供する、自動調整である弁座である。
【0062】
他の実施形態は、流量の直接測定をもつ流量測定部を用いる代わりに、流量を判定するための間接的な方法が用いられるということになり得る。例えば、信号継続時間を測定することができるように、圧力と温度とが一定であることが想定される流量スイッチ(流量監視器)が用いられる流量測定部を用いることができるであろうし、それによって、投入量に比例した信号を制御部に提供する。例えば、このような他の実施形態は、ボールがボールシートから離昇され、且つセンサがこの条件の検出のために取り付けられる流量測定部の形式で備えることができる。粘度とは無関係の測定を行なうために、例えば、サーモスタットの温度制御により、一定温度をもつボックス内の流量測定部を内蔵することが必要かもしれない。
【0063】
他の実施形態は、流量が全てのインジェクタに存在することを確実に同時に提供しつつ、消費量の全測定値が取得されるように、いくつかのインジェクタの局所的流量スイッチ(流量監視器)とこれを組み合わせて、シリンダ毎の中央の流量測定部が用いられるように投入システムを設計することだろう。このように、シリンダの中への全流量の監視だけが実行されるので、及び局所的流量測定部が単に流量の有無を示す単純な流量スイッチ(典型的には1インジェクタ毎に1つ)と取り替えられる場合、投入システムの流量測定は、単純化される。流量測定部は、個々のシリンダのためのインジェクタを制御する制御部又は局所的制御ボックスに接続され、計画流量と実際の流量とがここで比較される。偏差の場合には、いくつかのインジェクタが動作を中止したかを考慮に入れるために流量スイッチを用いることができる。
【0064】
上記の投入システムに対する他の実施形態は、制御部又は局所的シリンダ制御ボックスは、シリンダ毎の実際の総消費量の測定に加えて、同じシリンダに連結された種々のインジェクタ間の流量スイッチ信号を同時に比較し、例えば流量信号がある時間が20%であるなどの、任意の値を超える偏差が生じた場合に、ユーザーに対して警告又は警報を引き起こすようすることであり得る。
【0065】
上記の流量信号の他の用途は、インジェクタの作動から流量計上の流量パルスの始動までの期間を測定するということであり得る。この測定値は、インジェクタの作動からインジェクタの投入開始までの間に経過する時間のシステム特有の点検測定値と比較される。推測上では、両方の測定値は、流量測定部からの信号を何の問題もなく常に直接用いることができるように、互いに相当近いだろう。このように、偏差が任意の値に到達する場合におけるタイミング(つまりソレノイドを作動させる時間)を調節しなければならないか否かを制御することができる。
【0066】
投入システムのさらなる可能性のある実施形態は、従来の楕円形の回転子系の流量測定部の形式の流量測定部を含み得る。この種の測定部の短所は、回転子を1回転作動させるために所定量が必要であり、それによって信号の放出を引き起こすので、典型的には、特に大規模な流量範囲には適していないということである。これには、潤滑油の拍動性の搬送が流量測定部の一様な動作をもたらさないことが加わる。ある利用可能な測定値を取得するために、パルスをカウントする期間を変更するように要求されてもよい。期待流量から始めて、局所的制御ボックスは、流量パルスがカウントされる期間を変更するためのものであり、同時に、連続的にオーバーラップする期間で連続的な計算を好ましくは行う。所定の流量測定部については、経験的な実験に基づいて、所定の流量間隔とパルス数との間の相関が設定されるべきであり、局所的制御ボックス内に一体化されるべきである。
【0067】
シリンダについては、エンジンのサイズ及び種類に応じて、4個〜10個のインジェクタの間で用いられる。
【0068】
投入システムは、潤滑油とともに加圧された供給ラインによって動作する。潤滑油は定圧に維持される。そして、個々のシリンダ/インジェクタに対する加圧された供給ライン内の障害/変動を最小化することに関連して、シリンダ毎に及び/又はインジェクタ毎に中央にアキュムレータを配置する必要性があってもよい。
【0069】
その代わりに、システムの中でアキュムレータを用いることについては、パイプが単独でアキュムレータになるように、大きな離間距離で供給管を用い得る。潤滑油を投入するタイミングは、局所的に又は中央で制御される。
【0070】
潤滑油を投入するタイミングは、局所的に又は中央で制御される。起動時間は、エンジンの基準信号に応じて、連続的に適応する。
【0071】
インジェクタの機能を監視するために、各種の解決手段を用いることができる。第1に、実際の投入量が期待流量と比較される並流量測定が用いられる。この流量測定は、インジェクタ毎に中央に、又はシリンダ毎に局所的に、実際の投入量を閉路調整のために用いることができるように実行することができる。
【0072】
偏差の場合には、これらが、局所的制御ボックス又は中央制御ボックスによってそれぞれ処理され/扱われる。例えば、制御は、1つ以上のインジェクタに関するいかなる問題も識別することができることである。
【0073】
上記の流量測定と組み合わせて、供給圧力を、加圧された供給ライン内で監視することができる。
【0074】
他の実施形態は、中央の流量測定部の形式で付加的な制御をもつだけでなく、流量測定部を局所的に用いることができるということであり得る。
【0075】
ある程度までシステムが圧力における変化を補ってもよく、それによって、搬送量を個々の開閉時間として個々に調節することができることは注目されるべきである。
【0076】
他の実施形態は、(インジェクタ又はシリンダ毎の個別の制御ボックスともつ)シリンダのためのインジェクタが、例えば、個々の潤滑点で、又は場合によっては、シリンダ中央の制御ボックスを介して、投入量を増加させる形式で、相互にエラーの取り扱いを保証するということであり得る。
【0077】
エンジン(ロード、フライホイール位置など)から基準信号に応じて、制御ボックスは、シリンダ毎に1つ以上のインジェクタのタイミング及び投入量を制御する。
【0078】
局所的制御ボックスは、インジェクタに直接的に接続して備えるか、又はその代わりに、個々のインジェクタ内に一体化することができる。
【0079】
投入量は、送り速度、調整アルゴリズムの選択、油分析、及び他のエンジン特定パラメータ、硫黄割合、燃料種類(残余のTBN、Fe含有量など)から計算される。これらのパラメータは、自動的に且つ直接的に、又は中央制御装置を介して間接的に読み取られる。
【0080】
その代わりに、シリンダライニングの全領域に基づいて、又は注入バルブ下の領域に排他的に基づいて、シリンダに、供給されるべき潤滑油の最小量を決定してもよい。後半の搬送及び始点は、その後、複数の別のパラメータの中のいくつかのパラメータと場合によって組み合わせた、シリンダ内の領域状況の機能として取り分け見出される。
【0081】
その代わりに、排油の分析を、能動的制御パラメータとして用いることができる。排油の分析は、オンライン又は手動で実行され得るし、この背景では、潤滑油の量は、Fe粒子の含有量に比例して調整される。そして、これが所定の時間内の測定値を改善できない場合、警報が出される。
【0082】
その代わりに、搬送の調節のために、又は増加した潤滑油量と搬送の変化との組合せとして、直接、残余のTBNのオンライン測定値の分析を用いてもよい。
【0083】
本発明によるインジェクタは、ボールバルブ本体と、典型的には円錐形であるが、ボール形に対応する形でも形成できる相互に作用する弁座とを装備している。シーリングは、大きなギャップ領域によってでもギャップ領域が流量制限ではないように保証され、インジェクタ毎のいくつかのノズル口の場合においてノズル口領域の合計が用いられるように、ギャップの領域が全体のノズル口領域に少なくとも対応することを意味する。
【0084】
実際には、これは、約0.01mmの粒子がバルブ本体を一方に圧することができ、且つギャップ幅を0.01mmに増加させることができるので、ギャップが0.005mmほどの大きさしかないようにすることができることを意味しうる。これによって、ボール本体がシートに対してフィットするので、バルブ本体の動作を阻まず、且つバルブの漏れを伴わない、0.01mmのサイズの粒子の経路が可能である。
【0085】
しかしながら、インジェクタのノズル口は、典型的には0.3mm以上であるので、ギャップ幅(半径差)は、典型的には約0.15mm以上になるだろう。同様に、濾過器は、ノズル口のサイズに応じて、より粗くすることができ、大型の粒子を許容できる。
【0086】
ボールバルブ式を使用すれば、ボーリングがバルブステムのためのバルブガイドとして現われないように、バルブ本体のステムとボーリングと間に一定の間隔がある大きなギャップによっても確かな方法で動作することができるので、バルブ本体の動作の遮断から汚れ及び粒子を防止することができる。このような広いギャップは、ニードルバルブを適用するのには適さないだろう。
【0087】
インジェクタを作成することは、精密許容差及び複雑な取り付けがなく、簡単である。
【0088】
投入システムの取り付けも、必要なのはシリンダ毎の共通の供給ラインのみあるため、簡単である。全てのインジェクタは、この供給ラインに連結される。個々のシリンダに局所的に取り付けることができる共通制御ボックスに各々のインジェクタを電気的に接続するだけであるので、戻り管路の必要はない。これは保守性と高信頼性を提供する。
【0089】
電磁バルブ内のソレノイドは、今日用いられるような標準的なソレノイドにすることができる。必要な潤滑油量のみが注入のための圧力レベルまでポンプアップされるので、インジェクタは低電力消費である。
【0090】
圧力、温度を測定する、又は分析のための油試料を採ることができるセンサを含んでもよい特別の実施形態であるシステムの拡張により、インジェクタをよりインテリジェントにすることが可能である。圧力は、ピストン位置決定に関する情報、及びエンジン上のロードに関する知識を提供する。温度は、シリンダ内の条件に関するいくつかのものを表現する。油試料は、潤滑条件の評価の根拠を形作ることができる。データの背景においては、注入時刻と期間は、制御部内の所定の制御アルゴリズムから計算することができる。
【0091】
これによって、一方でネットワーク障害により既に定められたデータ上でインジェクタがその動作を続けるのと同時に、1つ以上のインジェクタが同時に故障する可能性が限られるので、可能な限り高い多重性が実現される。
【0092】
インジェクタが自動調整式であるので、インジェクタの設置及び交換が容易になる。
【0093】
各々のインジェクタは、タイミングと投入量とがインジェクタの開閉時間によって制御される、それ自身の時間制御投入部を有する。
【0094】
インジェクタは、噴霧バルブ、又は1つ以上の噴出口/コンパクト噴出口をもつバルブを備えることができる。インジェクタは、戻り管路なしで、加圧された潤滑油を供給するだけの実施形態において作成することができる。典型的な供給圧力は、3MPa(30バール)〜10MPa(100バール)である。
【0095】
インジェクタのバルブ機能は、ボールバルブである。
【0096】
例えば、電磁バルブ又は圧電性機械構成部品の形式で、インジェクタを電気機械的に始動することができる。
【0097】
他の実施形態は、インジェクタが、視覚的に又は電気的に実際の流量を示すための流量点検窓又は流量スイッチを装備するということであり得る。このように、動作中で且つ機能している個々のインジェクタの直接表示が提供される。いくつかのエンジンにおいては、個々のインジェクタはアクセス困難な位置に置かれており、ここで、局所的に検出されるが中央に報告される電子監視には有用だろう。このような解決手段の例は、ボールを検出するセンサが配置されるボールコントロールグラス内の円錐形のボーリングであり得る。
【0098】
そして、本発明の有利性は、数ある中でも、以下のものを含むと言える。
粘度に依存しないインジェクタ/潤滑システム。
単純化されたインジェクタ設計。
設置面、メンテナンス面で単純化されたシステム。
単一の故障したインジェクタに影響されない堅牢且つ柔軟なシステム。
個々のインジェクタにおける噴霧/潤滑油量を最適化する実現性、及びそれによって、インジェクタが全て均一に分散された従来のシステムとは対照的に、個々のインジェクタの統合最適化(それぞれ少な過ぎず且つ多過ぎず)の実現性。
【0099】
ここで本発明を、添付の図面を参照して、より精密に説明する。