特許第6682664号(P6682664)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ エフ.ホフマン−ラ ロシュ アーゲーの特許一覧

特許6682664ナノポア配列決定セルにおける浸透性不均衡の相殺
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6682664
(24)【登録日】2020年3月27日
(45)【発行日】2020年4月15日
(54)【発明の名称】ナノポア配列決定セルにおける浸透性不均衡の相殺
(51)【国際特許分類】
   G01N 27/00 20060101AFI20200406BHJP
   C12Q 1/6869 20180101ALI20200406BHJP
   C12M 1/34 20060101ALI20200406BHJP
【FI】
   G01N27/00 Z
   C12Q1/6869 Z
   C12M1/34 Z
【請求項の数】16
【全頁数】37
(21)【出願番号】特願2018-567690(P2018-567690)
(86)(22)【出願日】2017年6月27日
(65)【公表番号】特表2019-526043(P2019-526043A)
(43)【公表日】2019年9月12日
(86)【国際出願番号】EP2017065782
(87)【国際公開番号】WO2018002005
(87)【国際公開日】20180104
【審査請求日】2019年2月6日
(31)【優先権主張番号】62/355,114
(32)【優先日】2016年6月27日
(33)【優先権主張国】US
(73)【特許権者】
【識別番号】591003013
【氏名又は名称】エフ.ホフマン−ラ ロシュ アーゲー
【氏名又は名称原語表記】F. HOFFMANN−LA ROCHE AKTIENGESELLSCHAFT
(74)【代理人】
【識別番号】100140109
【弁理士】
【氏名又は名称】小野 新次郎
(74)【代理人】
【識別番号】100118902
【弁理士】
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100106208
【弁理士】
【氏名又は名称】宮前 徹
(74)【代理人】
【識別番号】100120112
【弁理士】
【氏名又は名称】中西 基晴
(72)【発明者】
【氏名】コマディナ,ジェイソン
(72)【発明者】
【氏名】バラル,ジェフリー
(72)【発明者】
【氏名】ロイェク,マルチン
【審査官】 村田 顕一郎
(56)【参考文献】
【文献】 特表2014−531196(JP,A)
【文献】 国際公開第2013/137209(WO,A1)
【文献】 特表2014−519823(JP,A)
【文献】 特表2011−501806(JP,A)
【文献】 特表2016−504593(JP,A)
【文献】 国際公開第2005/071405(WO,A1)
【文献】 特開2014−178121(JP,A)
【文献】 特表2009−536107(JP,A)
【文献】 米国特許出願公開第2014/0001056(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 27/00−27/10
G01N 27/14−27/24
G01N 33/48−33/98
C12M 1/00−1/42
C12Q 1/00−1/70
(57)【特許請求の範囲】
【請求項1】
分子を分析する方法であって、
第1の貯蔵部と第2の貯蔵部とを仕切る脂質二重層を形成するステップであって、ここで前記第1の貯蔵部は第1の貯蔵部の浸透圧モル濃度を有し、前記第2の貯蔵部は第2の貯蔵部の浸透圧モル濃度を有するものである、
電解液を前記第1の貯蔵部に流動させるステップであって、ここで前記電解液は前記第1の貯蔵部の浸透圧モル濃度とは異なる電解液の浸透圧モル濃度を有し、それにより、前記第1の貯蔵部の浸透圧モル濃度と前記第2の貯蔵部の浸透圧モル濃度との比に第1の変化を生じさせる前記ステップ、および、
前記脂質二重層を横断する電圧を印加するステップであって、ここで前記脂質二重層はナノポアを含み、前記電圧は前記第1の貯蔵部と前記第2の貯蔵部との間のイオンの正味の移動をもたらし、それにより前記第1の貯蔵部の浸透圧モル濃度と前記第2の貯蔵部の浸透圧モル濃度との前記比に第2の変化を生じさせ、前記比への前記第1の変化と前記比への前記第2の変化とを実質的に互いに相殺する前記ステップ、
と備える、前記方法。
【請求項2】
前記第1の貯蔵部の体積は前記電解液を流動する前の初期値を有し、ここで前記第1の貯蔵部の浸透圧モル濃度と前記第2の貯蔵部の浸透圧モル濃度との前記比への前記第1の変化が前記脂質二重層を横断する水の流動をもたらし、それにより前記第1の貯蔵部の前記体積に第1の変化をもたらし、ここで前記第1の貯蔵部の浸透圧モル濃度と前記第2の貯蔵部の浸透圧モル濃度との前記比への前記第2の変化が、水の前記脂質二重層を横断する流動をもたらし、それにより前記第1の貯蔵部の前記体積に第2の変化をもたらし、ここで前記第1の貯蔵部の前記体積への前記第1の変化と前記第1の貯蔵部の前記体積への前記第2の変化とは実質的に相殺される、請求項1に記載の方法。
【請求項3】
前記第1の貯蔵部と前記第2の貯蔵部との間の前記正味のイオンの移動は、前記第2の貯蔵部から前記第1の貯蔵部への正味のイオンの流出を含む、請求項1に記載の方法。
【請求項4】
前記第2の貯蔵部から前記第1の貯蔵部への前記正味のイオンの流出は前記第1の貯蔵部の浸透圧モル濃度と前記第2の貯蔵部の浸透圧モル濃度との前記比を増大させ、前記第1の貯蔵部への前記電解液の流動は前記第1の貯蔵部の浸透圧モル濃度と前記第2の貯蔵部の浸透圧モル濃度との前記比を減少させる、請求項3に記載の方法。
【請求項5】
前記第1の貯蔵部と前記第2の貯蔵部との間の前記正味のイオンの移動は、前記第1の貯蔵部から前記第2の貯蔵部への正味のイオンの流入を含む、請求項1に記載の方法。
【請求項6】
前記電解液を前記第1の貯蔵部に流動させる前に、前記ナノポアを前記脂質二重層に挿入するステップをさらに含む、請求項1に記載の方法。
【請求項7】
前記電解液を前記第1の貯蔵部に流動させた後に、前記ナノポアを前記脂質二重層に挿入するステップをさらに含む、請求項1に記載の方法。
【請求項8】
前記脂質二重層は前記第2の貯蔵部の全体に及び、前記第1の貯蔵部は前記第2の貯蔵部の外部にあり、前記第1の貯蔵部は第1の貯蔵部の体積を有し、前記第2の貯蔵部は第2の貯蔵部の体積を有し、前記第1の貯蔵部の体積は前記第2の貯蔵部の体積より大きいものである、請求項1に記載の方法。
【請求項9】
前記脂質二重層を横断して印加される前記電圧が交流電圧である、請求項1に記載の方法。
【請求項10】
配列決定チップ内の分子を分析するためのシステムまたは器具であって、
前記システムまたは器具が、
セルアレイを備える配列決定チップ、ここで前記セルの各々がウェルを備えるものである、
前記配列決定チップに連結された貯蔵部、および、
プロセッサまたは回路、
を備え、
ここで前記プロセッサまたは回路は、
前記貯蔵部と前記セルアレイのうちの1つの前記ウェルとを仕切る脂質二重層を形成するように構成され、ここで前記貯蔵部は第1の貯蔵部の浸透圧モル濃度を有し、前記ウェルは第2の貯蔵部の浸透圧モル濃度を有し、
電解液を前記貯蔵部に流動させるように構成され、ここで前記電解液は、前記第1の貯蔵部の浸透圧モル濃度とは異なる電解液の浸透圧モル濃度を有し、それにより前記第1の貯蔵部の浸透圧モル濃度と前記第2の貯蔵部の浸透圧モル濃度との比に第1の変化を生じさせ、および、
前記脂質二重層を横断する電圧を印加するように構成され、ここで前記脂質二重層はナノポアを含み、前記電圧は前記貯蔵部と前記ウェルとの間の正味のイオンの移動をもたらし、それにより第1の第1の貯蔵部の浸透圧モル濃度と前記第2の貯蔵部の浸透圧モル濃度との前記比に第2の変化を生じさせ、前記比への前記第1の変化と前記比への前記第2の変化とを実質的に互いに相殺する、
前記システムまたは器具。
【請求項11】
前記貯蔵部と前記ウェルとの間の前記正味のイオンの移動は、前記ウェルから前記貯蔵部への正味のイオンの流出を含む、請求項10に記載のシステムまたは器具。
【請求項12】
前記貯蔵部と前記ウェルとの間の前記正味のイオンの移動は、前記貯蔵部から前記ウェルへの正味のイオンの流入を含む、請求項10に記載のシステムまたは器具。
【請求項13】
前記プロセッサまたは前記回路は、前記電解液が前記貯蔵部に流動される前に、前記ナノポアを前記脂質二重層内へ挿入するようにさらに構成される、請求項10に記載のシステムまたは器具。
【請求項14】
前記プロセッサまたは前記回路は、前記電解液が前記貯蔵部に流動された後に、前記ナノポアを前記脂質二重層内へ挿入するようにさらに構成される、請求項10に記載のシステムまたは器具。
【請求項15】
前記脂質二重層は前記ウェル全体に及び、前記貯蔵部は前記ウェルの外部にあり、前記貯蔵部は貯蔵部の体積を有し、前記ウェルはウェルの体積を有し、前記貯蔵部の体積は前記ウェルの体積より大きいものである、請求項10に記載のシステムまたは器具。
【請求項16】
前記脂質二重層を横断して印加される前記電圧が交流電圧である、請求項10に記載のシステムまたは器具。
【発明の詳細な説明】
【背景技術】
【0001】
ナノポア配列決定システムは通常、より大きな外部貯蔵部(例えば、ウェルの上にある)にも存在する電解液を収容するウェル(例えば、円筒状のウェル)の上に浮かべられた平面脂質二重層(PLB)上のタンパク質細孔を使用する。作用電極および対電極が、ウェルおよび外部貯蔵部全体に電気的バイアスを印加するために使用される。PLBは、ウェル上に延在し、電気的かつ物理的にウェルを封止し、PLBはウェルをより大きな外部貯蔵部から分離する。水および溶存ガスなどの中性分子は、PLBを通過し得るのに対して、イオンは通過し得ない。PLB内のタンパク質ポアは、イオンがウェルの内外に電導される経路を提供する。
【0002】
アルファ溶血素(aHL)などのタンパク質ポアは、陰イオンまたは陽イオンのどちらかを優先的に導電すること、および正負の電気的バイアス下で、異なる導電性を有することが知られている(Noskovら、(2004)Biophys J.87:2299)。そのような特性は、ウェルと外部貯蔵部との間の電解質濃度を平衡させるために、PLBを通る水の拡散の原因となり、ウェルからの流出からウェル内への流入の原因となる。そのような拡散は、不安定の原因となり得る。
【発明の概要】
【0003】
供給される分子を分析する1つの方法は、第1の貯蔵部と第2の貯蔵部とを仕切る脂質二重層を形成するステップを含む。第1の貯蔵部は第1の貯蔵部の浸透圧モル濃度を有し、第2の貯蔵部は第2の貯蔵部の浸透圧モル濃度を有する。前記方法は、電解液を第1の貯蔵部に流動させるステップをさらに含み、電解液は第1の貯蔵部の浸透圧モル濃度とは異なる電解液の浸透圧モル濃度を有し、それにより第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に第1の変化を生じさせる。前記方法は、脂質二重層を横断する電圧を印加するステップをさらに含み、脂質二重層はナノポアを含み、電圧は第1の貯蔵部と第2の貯蔵部との間のイオンの正味の移動をもたらし、それにより第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に第2の変化を生じさせる。第1の比への変化および第2の比への変化は、実質的に互いに相殺する。
【0004】
いくつかの実施形態では、第1の貯蔵部と第2の貯蔵部との間の正味のイオンの移動は、第2の貯蔵部から第1の貯蔵部への正味のイオンの流出を含む。いくつかの実施形態では、第2の貯蔵部から第1の貯蔵部へのイオンの正味の流出は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を増大させ、第1の貯蔵部への流動は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を減少させる。いくつかの実施形態では、電解液浸透圧モル濃度は、電解液が、第1の貯蔵部に流動される前、第2の貯蔵部の浸透圧モル濃度より低い。いくつかの実施形態では、本方法は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第1の変化を生じさせるために、電解液浸透圧モル濃度を当初の電解液浸透圧モル濃度から最終的な電解液浸透圧モル濃度へ、次第に低減させるステップをさらに含む。
【0005】
いくつかの実施形態では、第1の貯蔵部と第2の貯蔵部との間の正味のイオンの移動は、第1の貯蔵部から第2の貯蔵部への正味のイオンの流入を含む。いくつかの実施形態では、第1の貯蔵部から第2の貯蔵部へのイオンの正味の流入は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を減少させ、第1の貯蔵部への流動は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を増大させる。いくつかの実施形態では、電解液浸透圧モル濃度は、電解液が、第1の貯蔵部に流動される前、第2の貯蔵部の浸透圧モル濃度より高い。いくつかの実施形態では、本方法は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第1の変化を生じさせるために、電解液浸透圧モル濃度を当初の電解液浸透圧モル濃度から最終的な電解液浸透圧モル濃度へ、次第に増大させるステップをさらに含む。
【0006】
いくつかの実施形態では、本方法は、電解液を第1の貯蔵部に流動させる前に、ナノポアを脂質二重層に挿入するステップをさらに含む。いくつかの実施形態では、本方法は、電解液を第1の貯蔵部に流動させる後に、ナノポアを脂質二重層に挿入するステップをさらに含む。いくつかの実施形態では、脂質二重層は、第2の貯蔵部の全体に及び、第1の貯蔵部は、第2の貯蔵部の外部に位置する。いくつかの実施形態では、第1の貯蔵部は、第1の貯蔵部の体積を有し、第2の貯蔵部は、第2の貯蔵部の体積を有し、第1の貯蔵部の体積は、第2の貯蔵部の体積より大きい。いくつかの実施形態では、脂質二重層を横断して印加される電圧は、交流電圧である。いくつかの実施形態では、脂質二重層を横断して印加される電圧は、直流電圧である。
【0007】
さらに、配列決定チップで分子を分析するためのシステムが提供されるとき、システムは、セルアレイを含む配列決定チップを備え、セルの各々は、ウェルを含む。システムは、配列決定チップに連結された貯蔵部を含む。システムは、貯蔵部と、セルアレイのうちの1つのウェルとを仕切る脂質二重層を形成するように構成された、プロセッサまたは回路をさらに含む。貯蔵部は、第1の貯蔵部の浸透圧モル濃度を有し、ウェルは、第2の貯蔵部の浸透圧モル濃度を有する。プロセッサまたは回路は、電解液を貯蔵部に流動させるようにさらに構成され、電解液は、第1の貯蔵部の浸透圧モル濃度とは異なる電解液の浸透圧モル濃度を有し、それにより、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第1の変化を生じさせる。プロセッサまたは回路は、脂質二重層を横断する電圧を印加するようにさらに構成され、脂質二重層は、ナノポアを含み、電圧は、貯蔵部とウェルとの間のイオンの正味の移動の原因となり、それにより、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第2の変化を生じさせる。第1の比への変化および第2の比への変化は、実質的に互いに相殺する。
【0008】
いくつかの実施形態では、貯蔵部とウェルとの間の正味のイオンの移動は、ウェルから貯蔵部内への正味のイオンの流出を含む。いくつかの実施形態では、ウェルから貯蔵部へのイオンの正味の流出は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を増大させ、貯蔵部への流動は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を減少させる。いくつかの実施形態では、電解液浸透圧モル濃度は、電解液が、貯蔵部に流動される前、第2の貯蔵部の浸透圧モル濃度より低い。いくつかの実施形態では、本方法は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第1の変化を生じさせるために、電解液浸透圧モル濃度を当初の電解液浸透圧モル濃度から最終的な電解液浸透圧モル濃度へ、次第に低減させるステップをさらに含む。
【0009】
いくつかの実施形態では、貯蔵部とウェルとの間の正味のイオンの移動は、貯蔵部からウェル内への正味のイオンの流入を含む。いくつかの実施形態では、貯蔵部からウェルへのイオンの正味の流入は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を減少させ、貯蔵部への流動は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を増大させる。いくつかの実施形態では、電解液浸透圧モル濃度は、電解液が、貯蔵部に流動される前、第2の貯蔵部の浸透圧モル濃度より高い。いくつかの実施形態では、方法は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第1の変化を生じさせるために、電解液浸透圧モル濃度を当初の電解液浸透圧モル濃度から最終的な電解液浸透圧モル濃度へ、次第に増大させるステップをさらに含む。
【0010】
いくつかの実施形態では、プロセッサまたは回路は、電解液が貯蔵部に流動される前に、ナノポアを脂質二重層内へ挿入するようにさらに構成される。いくつかの実施形態では、プロセッサまたは回路は、電解液が貯蔵部に流動される後に、ナノポアを脂質二重層内へ挿入するようにさらに構成される。いくつかの実施形態では、脂質二重層は、ウェルの全体に及び、貯蔵部は、ウェルの外部に位置する。いくつかの実施形態では、貯蔵部は、貯蔵部の体積を有し、ウェルは、ウェルの体積を有し、貯蔵部の体積は、ウェルの体積より大きい。いくつかの実施形態では、脂質二重層を横断して印加される電圧は、交流電圧である。いくつかの実施形態では、脂質二重層を横断して印加される電圧は、直流電圧である。
【0011】
本発明の実施形態の性質および利点のより良好な理解は、以下の詳細な説明および添付図面を参照することで得られ得る。
【図面の簡単な説明】
【0012】
図1】ナノポアベースの配列決定チップ内のセル100の一実施形態を示す図である。
図2】ナノ−SBS技術を用いてヌクレオチド配列決定を実行するセル200の一実施形態を示す図である。
図3】予め装填されたタグを用いたヌクレオチド配列決定を実行しようとしているセルの一実施形態を示す図である。
図4】予め装填されたタグを用いた核酸配列決定のためのプロセス400の一実施形態を示す図である。
図5】ナノポアベースの配列決定チップ内のセル500の一実施形態を示す図である。
図6図6Aは初期に時刻tにおいて、ナノポア606が、ナノポアベースの配列決定チップのセル内のウェル602の全体に及ぶ平面脂質二重層604内に挿入されることを示す図である。図6Bはその後時刻tにおいて、電圧が、脂質二重層を横断して印加され、浸透性不均衡が、脂質二重層の上下の電解液間に発生することを示す図である。図6Cはその後時刻tにおいて、脂質二重層を横断する正味の水の流動が、脂質二重層が破裂する、またはそれが機能しない、もしくはナノポアが脂質二重層から離脱することをもたらす段階まで、形状を変化させる原因となる、脂質二重層上にひずみを生じさせることを示す図である。
図7図7Aは初期に時刻tにおいて、ナノポア706が、ナノポアベースの配列決定チップのセル内のウェル702の全体に及ぶ平面脂質二重層704内に挿入されることを示す図である。図7Bはその後時刻tにおいて、電圧が、脂質二重層を横断して印加され、浸透性不均衡が、脂質二重層の上下の電解液間に発生することを示す図である。図7Cはその後時刻tにおいて、脂質二重層を横断する正味の水の流動およびその結果のウェル内の水の体積の増加が、脂質二重層を外側へ押圧し、脂質二重層が機能しない段階まで、脂質二重層の形状に変化をもたらすことを示す図である。
図8】分子の分析用のナノポアベースの配列決定チップのセル内の脂質二重層内に挿入された、ナノポアの有効期間を延長する、改善された技術のための、プロセス800のフローチャートである。
図9】液体およびガスが、チップ表面上のセンサの上を通過し接触することを可能にする、シリコンチップを取り囲む改善された流動室を有する、ナノポアベースの配列決定システム900の上面図である。
図10】ナノポアベースの配列決定チップ内の脂質二重層を形成するためのプロセス1000のフローチャートである。
図11図11Aは平面脂質二重層がウェルと外部貯蔵部との間の所定の位置にある間に、ウェル内に初期に存在する電解液より低い電解液濃度を、脂質二重層上に流動させることによって、過剰な水がウェル内へと押し込まれ、平面脂質二重層を上方に反らせることを示す図である。図11Bは時刻tにおいて、より低い濃度の電解質の初期流動により、事前にウェル内へと押し込まれた過剰な体積の水によって、より大きい体積の水が、平面脂質二重層が破裂する前に、ウェルから除去されることを可能させることを示す図である。図11Cは時刻tにおいて、比較の方法として、ウェルから除去された大量の水が、ナノポアに平面脂質二重層を抜け出るように強いることを示す図である。
図12A】外部貯蔵部およびウェルの浸透圧モル濃度が両方とも300mMである、比較の方法の平均的なナノポアの有効期間を示す図である。
図12B】外部貯蔵部の浸透圧モル濃度が300mM、ウェルの浸透圧モル濃度が340mMである、一実施形態による方法の平均的なナノポアの有効期間を示す図である。
図12C】外部貯蔵部の浸透圧モル濃度が300mM、ウェルの浸透圧モル濃度が360mMである、一実施形態による方法の平均的なナノポアの有効期間を示す図である。
図13A】ナノポアベースの配列決定チップのセル内の回路1300の一実施形態を示す図である。回路は、形成済みの脂質二重層が破壊しないように、脂質二重層がセル内に構成されるか否かを検出するように構成され得る。
図13B図13Aに示した図と同様の、ナノポアベースの配列決定チップのセル内の回路1300の回路図である。図13Aと比較して、作用電極と対電極との間に、脂質膜/二重層を示す代わりに、作用電極および脂質膜/二重層の電気特性を表す電気モデルを示す。
図14】1サイクルの明モードおよび1サイクルの暗モードのデータポイントのセットを示す図である。
図15】実施形態によるシステムおよび方法と共に使用可能な一例のコンピュータシステムのブロック図である。
【発明を実施するための形態】
【0013】
用語
「ナノポア」は、膜内に、形成または配置された、細孔、流路または通路を示す。膜は、脂質二重層などの有機膜、または高分子材料から形成される膜などの合成膜であり得る。ナノポアは、例えば相補型金属酸化膜半導体(CMOS)または電界効果トランジスタ(FET)回路などの、検知回路に結合された検知回路または電極に、隣接または近接して配置され得る。いくつかの実施例では、ナノポアは、0.1ナノメートル(nm)〜約1000nmの水準の特徴的な幅または直径を有する。一部のナノポアは、タンパク質である。
【0014】
浸透性濃度としても知られている「浸透圧モル濃度」は、溶質濃度の尺度である。浸透圧モル濃度は、溶液の単位体積当たりの溶質のオスモル数を測定する。オスモルは、溶液の浸透圧に寄与する溶質のモル数の測定値である。浸透圧モル濃度により、溶液の浸透圧を測定することを可能にし、溶媒がどれだけ、異なる浸透性濃度の2つの溶液を分離する半透性膜(浸透性)を横切り拡散することになるかを判断することを可能にする。
【0015】
「浸透圧調節物質」は、本明細書で使用する場合、溶液内に溶かされるとき、その溶液の浸透圧モル濃度を増大させる任意の可溶性化合物を示す。
【0016】
「ポリメラーゼ」は、鋳型を用いたポリヌクレオチドの合成を行う酵素を示す。この用語は、完全な長さのポリペプチドとポリメラーゼ活性を有する範囲とを両方を包含する。DNAポリメラーゼは、当業者によく知られており、それだけに限定されないが、パイロコッカス・フリオサス、サーモコッカス・リトラリス、およびサーモトガ・マリティマ、またはその変形版を含む。それらは、DNA依存性ポリメラーゼと、逆転写酵素などのRNA依存性ポリメラーゼとを両方とも含む。DNA依存性DNAポリメラーゼは、ほとんどがA、B、およびCに分類されるものの、少なくとも5つのファミリーが知られている。多様なファミリー間での、配列の類似性はわずかまたは皆無である。最多のファミリーAポリメラーゼは、ポリメラーゼ、3’→5’エキソヌクレアーゼ活性および5’→3’エキソヌクレアーゼ活性を含む、複数の酵素機能を含み得る、単鎖のタンパク質である。ファミリーBポリメラーゼは通常、ポリメラーゼおよび3’→5’エキソヌクレアーゼ活性を有する単一の触媒領域、ならびに副次的要素を有する。ファミリーCポリメラーゼは通常、ポリメラーゼおよび3’→5’エキソヌクレアーゼ活性を有するマルチサブユニットのタンパク質である。大腸菌では、DNAポリメラーゼI(ファミリーA)、II(ファミリーB),およびIII(ファミリーC)の、3つのタイプのDNAポリメラーゼが見つかっている。真核細胞では、3つの異なるファミリーBのポリメラーゼである、DNAポリメラーゼα、δ、およびεが、核の複製に関与し、ファミリーAポリメラーゼであるポリメラーゼγが、ミトコンドリアDNA複製に使用される。他のタイプのDNAポリメラーゼは、ファージポリメラーゼを含む。同様に、RNAポリメラーゼは通常、ファージおよびウイルスポリメラーゼだけでなく、真核性RNAポリメラーゼI、II、およびIII、ならびにバクテリアRNAポリメラーゼを含む。RNAポリメラーゼは、DNA依存性およびRNA依存性であり得る。
【0017】
「核酸」は、デオキシリボヌクレオチドまたはリボヌクレオチド、および一本または二本鎖のいずれかの形態の、その重合体を指し得る。この用語は、合成の、自然発生的、非自然発生的であり、参照核酸と同様の結合特性を有し、参照ヌクレオチドと同様の挙動で代謝する、周知のヌクレオチドのまたは類似物または修飾された主鎖の残基または連鎖を含む核酸を包含し得る。そのような類似物の例は、それだけには限らないが、ホスホロチオエート、ホスホルアミダイト、メチルホスホン酸塩、キラルメチルホスホン酸塩、2−メチルリボヌクレオチド、ペプチド核酸(PNA)を含み得る。
【0018】
別途規定されていない限り、個々の核酸配列は、明示的に示された配列だけでなく、従来の方法で修飾されたその変形形態(例えば、縮重コドン置換)および相補的配列を、暗黙的に包含する。具体的には、縮重コドン置換は、1つまたは複数の選択された(または全ての)コドンの第3の位置が、混合塩基および/またはデオキシイノシン残基で置換される、配列を発生させることによって達成され得る。(Batzerら、Nucleic
Acid Res.19:5081 (1991)、Ohtsukaら、J.Biol.Chem.260:2605−2608(1985)、Rossoliniら、Mol.Cell.Probes 8:91−98(1994))用語、核酸は、遺伝子、cDNA、mRNA、オリゴヌクレオチド、およびポリヌクレオチドと交換可能に用いられる。
【0019】
「鋳型」は、相補的核酸鎖が、DNAポリメラーゼ、例えばプライマー伸長反応によって合成される、核酸の鎖を示す。
【0020】
「ヌクレオチド」は、自然に発生するリボヌクレオチドまたはデオキシリボヌクレオチド単量体を指すことに加えて、状況が明確にそうでないことを示さない限り、ヌクレオチドが使用されている個々の状況(例えば、相補的塩基へのハイブリッド形成法)に関して、機能的に同等である誘導体および類似物を含む、関連するその構造的変形形態を指すと理解され得る。
【0021】
「タグ」は、原子または分子、あるいは原子または分子の集合であり得る、検出可能な部分を指す。タグは、光学的、電気化学的、磁気的、静電的(例えば、誘導性、容量性)識別特性を提供し得、その識別特性がナノポアの支援により検出され得る。通常、ヌクレオチドにタグが取り付けられているとき、それは、「タグ付けされたヌクレオチド」と呼ばれる。タグは、リン酸塩部分を介してヌクレオチドに取り付けられ得る。
【0022】
「実質的に相殺する」は、本明細書で用いられるように、初期の値または状態に対する2つ以上の変化間の関係を示し、その正味の効果は、初期の値または状態からの違いが60%以下である値または状態への変化である。初期値は、例えば、2つの異なる溶液、または貯蔵部内部の大量の液体の、浸透圧モル濃度値の比であり得る。初期値に対する2つの変化は、変化の正味の効果が、初期値に対して、60%小さい、55%小さい、50%小さい、45%小さい、40%小さい、35%小さい、30%小さい、25%小さい、20%小さい、18%小さい、16%小さい、14%小さい、12%小さい、10%小さい、8%小さい、6%小さい、4%小さい、2%小さい、同一である、2%大きい、4%大きい、6%大きい、8%大きい、10%大きい、12%大きい、14%大きい、16%大きい、18%大きい、20%大きい、25%大きい、30%大きい、35%大きい、40%大きい、45%大きい、50%大きい、55%大きい、または60%大きい新たな値(すなわち、浸透圧モル濃度値の新たな比)をもたらすとき、互いに実質的に相殺されると考慮され得る。別の例として、2つの変化は、2つの変化間の差の値が、第1または第2の変化のどちらかの値で除算されて、60%未満であるとき、互いに実質的に相殺し得る。
【0023】
別法として、初期の値または状態に対して2つの変化は、2つの変化の大きい方が、2つの変化の小さい方の大きさよりも60%を超えない大きさを有するとき、互いに実質的に相殺すると考慮され得る。例えば、大きい方の変化は、小さい方の大きさの160%以下、150%以下、140%以下、130%以下、120%以下、110%以下、108%以下、106%以下、104%以下、または102%以下の大きさを有し得る。
【0024】
詳細な説明
本明細書で開示される技術は、ナノポアベースのDNA配列決定に関し、より具体的には、配列決定セル内のナノポアの安定性および寿命を増大させるために、浸透性不均衡を利用することに関する。実施形態は、浸透圧モル濃度の不均衡を利用して、二重層が、ポアの放出または二重層破損のどちらかをもたらす状態に入る時刻を調節し得る。この方法で、実施形態は、ポア放出または二重層破損を遅延させ得る(または早期にそうなることを防止する)。そのような技術は、ナノポアを含む脂質二重層の両側(シスおよびトランス側)で、より均一な体積を維持することを支援する。
【0025】
例のナノポアシステム、回路、および配列決定動作が、最初に説明され、その後に、配列決定セル内のナノポアの有効寿命を延長させる技術例へと続く。本発明は、多数の方法で実施可能であり、多数の方法は、プロセス、装置、システム、組成物、コンピュータ可読記憶媒体上で具現化されるコンピュータプログラム製品、および/または、プロセッサ、例えばプロセッサに結合されたメモリに記憶されるおよび/またはメモリによって提供される命令を実行するように構成されたプロセッサを含む。
【0026】
本発明は、分子を分析する方法を提供し、その方法は、
第1の貯蔵部と第2の貯蔵部とを仕切る、脂質二重層を形成するステップであって、第1の貯蔵部は、第1の貯蔵部の浸透圧モル濃度を有し、第2の貯蔵部は、第2の貯蔵部の浸透圧モル濃度を有する、ステップと、電解液を第1の貯蔵部に流動させるステップであって、電解液は、第1の貯蔵部の浸透圧モル濃度とは異なる電解液の浸透圧モル濃度を有し、それにより、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第1の変化を生じさせる、ステップと、脂質二重層を横断する電圧を印加するステップであって、脂質二重層は、ナノポアを含み、電圧は、第1の貯蔵部と第2の貯蔵部との間のイオンの正味の移動の原因となり、それにより、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第2の変化を生じさせ、比への第1の変化および比への第2の変化は、実質的に互いに相殺する、ステップとを、含む。
【0027】
第1の貯蔵部の体積は、電解液を流動する前の初期値を有し得、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比への第1の変化が、水の脂質二重層を横断する流動をもたらし、それにより第1の貯蔵部の体積に第1の変化をもたらし、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比への第2の変化が、水の脂質二重層を横断する流動をもたらし、それにより第1の貯蔵部の体積に第2の変化をもたらし、第1の貯蔵部の体積への第1の変化は、第1の貯蔵部の体積への第2の変化と、実質的に相殺する。
【0028】
第1の貯蔵部と第2の貯蔵部との間の正味のイオンの移動は、第2の貯蔵部から第1の貯蔵部への正味のイオンの流出を含み得る。このとき、第2の貯蔵部から第1の貯蔵部への正味のイオンの流出は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を増大させ得、第1の貯蔵部への電解液の流動は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を減少させ得る。ある電解液では、浸透圧モル濃度は、電解液が、第1の貯蔵部に流動される前、第2の貯蔵部の浸透圧モル濃度より低いことがあり、方法は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第1の変化を生じさせるために、電解液浸透圧モル濃度を当初の電解液浸透圧モル濃度から最終的な電解液浸透圧モル濃度へ、次第に低減させるステップをさらに含み得る。
【0029】
第1の貯蔵部と第2の貯蔵部との間の正味のイオンの移動は、第1の貯蔵部から第2の貯蔵部への正味のイオンの流入を別法として含み得る。このとき、第1の貯蔵部から第2の貯蔵部へのイオンの正味の流入は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を減少させ、第1の貯蔵部への流動は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を増大させる。ある実施形態では、電解液浸透圧モル濃度は、電解液が、第1の貯蔵部に流動される前、第2の貯蔵部の浸透圧モル濃度より高く、方法は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第1の変化を生じさせるために、電解液を当初の電解液浸透圧モル濃度から最終的な電解液浸透圧モル濃度へ、次第に増大させるステップをさらに含み得る。
【0030】
電解液が第1の貯蔵部に流動させる前または後に、ナノポアは、脂質二重層内に挿入され得る。脂質二重層は、第2の貯蔵部の全体に及び得、第1の貯蔵部は、第2の貯蔵部の外部にあり、第1の貯蔵部は、第1の貯蔵部の体積を有し、第2の貯蔵部は、第2の貯蔵部の体積を有し、第1の貯蔵部の体積は、第2の貯蔵部の体積より大きい。脂質二重層を横断して印加される電圧は、交流電圧または直流電圧である。
【0031】
本発明は、上述の方法による配列決定チップ内の分子を分析するための器具およびシステムを、さらに提供する。器具およびシステムは、セルアレイを備える配列決定チップを備え、セルの各々は、ウェルと、ナノポアベースの配列決定チップに連結された流動室と、プロセッサまたは回路とを含み、プロセッサまたは回路は、
【0032】
貯蔵部と、セルアレイのうちの1つのウェルとを仕切る、脂質二重層を形成するように構成され、貯蔵部は、第1の貯蔵部の浸透圧モル濃度を有し、ウェルは、第2の貯蔵部の浸透圧モル濃度を有し、プロセッサまたは回路は、電解液を貯蔵部に流動させるように構成され、電解液は、第1の貯蔵部の浸透圧モル濃度とは異なる電解液の浸透圧モル濃度を有し、それにより、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第1の変化を生じさせ、プロセッサまたは回路は、脂質二重層を横断する電圧を印加するように構成され、脂質二重層は、ナノポアを含み、電圧は、貯蔵部とウェルとの間のイオンの正味の移動の原因となり、それにより、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第2の変化を生じさせ、比への第1の変化および比への第2の変化は、実質的に互いに相殺する。
【0033】
そのような器具またはシステムでは、貯蔵部とウェルとの間の正味のイオンの移動は、ウェルから貯蔵部内への正味のイオンの流出を含み得る。このとき、ウェルから貯蔵部へのイオンの正味の流出は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を増大させ得、貯蔵部への流動は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を減少させ得る。ある実施形態では、電解液浸透圧モル濃度は、電解液が、貯蔵部に流動される前、第2の貯蔵部の浸透圧モル濃度より低いことがある。初期の電解液浸透圧モル濃度からの電解液浸透圧モル濃度は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第1の変化を生じさせるために、最終的な電解液浸透圧モル濃度へ、次第に低減させられ得る。
【0034】
貯蔵部とウェルとの間の正味のイオンの移動は、貯蔵部からウェル内への正味のイオンの流入を含み得る。このとき、貯蔵部からウェルへのイオンの正味の流入は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を減少させ得、貯蔵部への流動は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比を増大させ得る。ある実施形態では、電解液浸透圧モル濃度は、電解液が、貯蔵部に流動される前、第2の貯蔵部の浸透圧モル濃度より高い。初期の電解液浸透圧モル濃度からの電解液浸透圧モル濃度は、第1の貯蔵部の浸透圧モル濃度と第2の貯蔵部の浸透圧モル濃度との比に、第1の変化を生じさせるために、最終的な電解液浸透圧モル濃度へ、次第に増大させられ得る。
【0035】
プロセッサまたは回路は、電解液が貯蔵部に流動される前または後に、ナノポアを脂質二重層内へ挿入するようにさらに構成され得る。脂質二重層は、ウェル全体に及び得、その結果、貯蔵部は、ウェルの外部であり、貯蔵部は、貯蔵部の体積を有し、ウェルは、ウェルの体積を有し、貯蔵部の体積は、ウェルの体積より大きい。脂質二重層を横断して印加される電圧は、交流電圧または直流電圧である。
【0036】
I.ナノポアシステム
A.ナノポア配列決定セル
内径が1ナノメートル程度のポアサイズを有するナノポア膜装置は、迅速なヌクレオチド配列決定において見込みを示してきた。電位が導電性流体に浸漬されたナノポア全体に印加されたとき、ナノポアを通過するイオンの伝導に起因するわずかなイオン電流が観察可能である。電流の量は、ポアサイズに影響される。
【0037】
ナノポアベースの配列決定チップは、核酸(例えば、DNA)配列決定のために用いられてもよい。ナノポアベースの配列決定チップは、アレイとして構成される多数のセンサセルを組み込む。例えば、100万個のセルのアレイは、1000行×1000列のセルを含み得る。
【0038】
図1は、ナノポアベースの配列決定チップを形成するセルアレイ内のセル100の一実施形態を示す。膜102は、セルの表面にわたって形成される。いくつかの実施形態では、膜102は、脂質二重層である。可溶性タンパク質ナノポア膜貫通分子複合体(PNTMC)および対象の分析物(例えば、DNAなどの単一の重合体分子)を含むバルク電解質114は、セルの表面上に直接配置され得る。単一のPNTMC104は、電気穿孔法によって膜102内に挿入され得る。アレイ内の個々の膜は、化学的にも電気的にも互いに接続されていない。それゆえ、アレイ内の各セルは、独立した配列決定機械であり、PNTMCと結合した単一の重合体分子に固有のデータを生成する。PNTMC104は、そうでなければ不透過性の二重層を介してイオン電流を調節し得る。
【0039】
アナログ測定回路112(例えば、金属からなる)は、酸化膜106内に形成されたウェルの内部の電解質の体積108によって覆われた作用電極110に接続されている。電解質の体積108は、イオン不浸透性膜102によって、バルク電解質114から分離される。PNTMC104は、膜102を横切り、イオン電流がバルク液体から作用電極110へと流れるための唯一の経路を提供する。セルは、対電極(CE)116も含む。セルは、電気化学的電位センサとして役割を果たし得る基準電極117をさらに含み得る。
【0040】
図5は、ナノポアベースの配列決定チップ内のセル500の一実施形態を示す。セル500は、2つの側壁および底部を有するウェル505を含む。ある実施形態では、各側壁は、誘電体層504を備え、底部は、作用電極502を備える。ある実施形態では、作用電極502は、上面および底面を有する。別の実施形態では、502の上面は、ウェル505の底部を構成し、一方、作用電極502の底面は、誘電体層501と接触している。別の実施形態では、誘電体層504は、誘電体層501の上にある。誘電体層504は、作用電極502が底部に配置されている、ウェル505を囲む側壁を形成する。本発明で使用するのに適した誘電体材料(例えば、誘電体層501または504)は、それだけには限らないが、磁器(セラミック)、ガラス、マイカ、プラスチック、酸化物、窒化物(シリコン一窒化物すなわちSiN)、シリコン酸窒化物、金属酸化物、金属窒化物、金属ケイ酸塩、遷移金属酸化物、遷移金属窒化物、遷移金属ケイ酸塩、金属酸窒化物、金属アルミン酸塩、ジルコニウムケイ酸塩、ジルコニウムアルミン酸塩、ハフニウム酸化物、絶縁材料(例えば、重合体、エポキシ、フォトレジスト、など)、またはそれらの組合せを含む。当業者には、本発明での使用に適切である他の誘電体材料を識別されよう。
【0041】
図5に示すように、ナノポアセル500は、シリコン基板などの基板530上に形成され得る。誘電体層501は、基板530上に形成され得る。誘電体層501を形成するために用いられる誘電体材料は、例えば、ガラス、酸化物、窒化物、その他を含み得る。電気的刺激を制御し、ナノポアセル500から検出されるデータを処理する電気回路522は、基板530上および/または誘電体層501内部に形成され得る。例えば、複数のパタニングされた金属層(例えば、金属1〜金属6)が、誘電体層501内に形成され、複数の能動デバイス(例えば、トランジスタ)が、基板530上に製造され得る。いくつかの実施形態では、信号源528は、電気回路522の一部に含まれる。電気回路522は、例えば、増幅器、積算器、アナログデジタルコンバータ、ノイズフィルタ、フィードバック制御ロジック、および/または多様な他の構成要素を含み得る。電気回路522は、メモリ526に結合されたプロセッサ524にさらに結合され得、ここでプロセッサ524は、アレイ内に配列されている重合体分子の配列を決定するために、配列決定データを分析することができる。
【0042】
ある態様では、セル500は、1つまたは複数の撥水性層をさらに含む。図5に示すように、各誘電体層504は、上面を有する。ある実施形態では、各誘電体層504の上面は、撥水性層を備え得る。ある実施形態では、シラン処理は、誘電体層504の上面の上に撥水性層520を形成する。例えば、(i)6〜20の炭素長鎖を含む(例えば、オクタデシル−トリクロロシラン、オクタデシル−トリメトキシシラン、またはオクタデシル−トリエトキシシラン)、(ii)ジメチルオクチルクロロシラン(DMOC)、あるいは(iii)有機官能性アルコキシシラン分子(例えば、ジメチルクロロ−オクトデシル−シラン、メチルジクロロ−オクトデシル−シラン、トリクロロ−オクトデシル−シラン、トリメチル−オクトデシル−シラン、またはトリエチル−オクトデシル−シラン)を含むシラン分子を有するシラン処理が、誘電体層504の上面に施され得る。ある実施形態では、撥水性層は、シラン処理された層またはシラン層である。ある実施形態では、シラン層は、1分子の厚さであり得る。ある態様では、誘電体層504は、膜の粘着に適した上面を備える(例えば、ナノポアを備える脂質二重層)。ある実施形態では、膜の粘着に適した上面は、本明細書で説明されるようなシラン分子を含む。別法として、撥水性層は、やはり誘電体であるポリイミド層であってもよい。ポリイミド材料は、耐熱性、良好な化学的耐性、および優れた機械的特性を有する。いくつかの実施形態では、撥水性層520は、ナノメートル(nm)またはマイクロメートル(μm)で提供される厚さを有する。他の実施形態では、撥水性層は、誘電体層504の全体または一部に沿って下方に延在し得る(その全体が引用することにより本明細書に組み込まれる、DavisらのU.S.20140034497も参照のこと)。
【0043】
別の態様では、ウェル505(誘電体層壁504によって形成される)は、作用電極502の上層の塩溶液506体積をさらに含む。全体に、本発明の方法は、浸透圧調節物質を含む溶液(例えば、塩溶液、塩緩衝溶液、電解質、電解液、またはバルク電解質)の使用を含む。本発明では、浸透圧調節物質は、ナノポア配列決定システムの構造、例えば、本明細書で説明されるような塩溶液またはバルク電解質を収容するウェル、の内部の溶液内に可溶性を有する化合物である。したがって、本発明の浸透圧調節物質は、浸透性、詳細には脂質二重層を横切る浸透性に影響を及ぼす。本発明で使用される浸透圧調節物質は、それだけには限らないが、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、グルタミン酸リチウム、グルタミン酸ナトリウム、グルタミン酸カリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化カルシウム(CaCl)、塩化ストロンチウム(SrCl)、塩化マンガン(MnCl)、および塩化マグネシウム(MgCl)などのイオン塩と、グリセロール、エリトリトール、アラビトール、ソルビトール、マンニトール、キシリトール、マンニサイドマンニトール、グリコシルグリセロール、ブドウ糖、フルクトース、蔗糖、トレハロース、およびイソフルオロサイドなどの多価アルコールと砂糖と、デキストラン、レバン、およびポリエチレングリコールなどの重合体と、グリシン、アラニン、アルファ−アラニン、アルギニン、プロリン、タウリン、ベタイン、オクトピン、グルタミン酸塩、サルコシン、y−アミノ酪酸、およびトリメチルアミンN−オキシド(「TMAO」)などのいくつかのアミノ酸とそれらの派生物とを含み得る(例えば、その全体が参照により本明細書に組み込まれる、FisherらのU.S.20110053795をさらに参照のこと)。ある実施形態では、本発明は、浸透圧調節物質を含む溶液を利用し、浸透圧調節物質は、イオン性塩である。当業者には、本発明での使用に適切な浸透圧調節物質である他の化合物を識別されよう。別の態様では、本発明は、2つ以上の異なる浸透圧調節物質を含む溶液を提供する。いくつかの実施形態では、塩溶液506の薄膜は、3マイクロメートル(μm)の厚さを有する。
【0044】
本明細書で説明するナノポアベースの配列決定チップの構造は、ナノリットル(nL)、ピコリットル(pL)、フェムトリットル(fL)、アトリットル(aL)、ゼプトリットル(zL)、およびヤコリットル(yL)の容量を含む、多様な体積容量を有するウェル(例えば、図5)のアレイを備える。例えば、電解質108(例えば、図1)または塩溶液506(例えば、図5)の体積は、nL、pL、fL、aL、zL、またはyLの規模で提供される。本発明の実施形態では、本発明のウェル(例えば図5のウェル505)よって形成される電解質または塩溶液の体積、または本明細書で説明する方法で使用される電解質または塩溶液の体積は、ナノリットル(nL)、ピコリットル(pL)、フェムトリットル(fL)、アトリットル(aL)、ゼプトリットル(zL)、またはヤコリットル(yL)の規模で提供され得る。ウェルは、立方マイクロメートルでのその体積によって、またはむしろ体積でない同様の寸法によって、代替的に示され得る。当業者ならば、例えば立方マイクロメートルからピコリットル、フェムトリットルなどへの、単位間の必要な変換を算出することが可能であろう。
【0045】
図5に示すように、膜は、誘電体層504の上面に形成され、ウェル505全体に及ぶ。例えば、膜は、疎水性層520の上面に形成された脂質単一層518を含む。膜がウェル505の開口に達したとき、脂質単一層は、ウェルの開口全体に及ぶ脂質二重層514に遷移する。脂質単一層518はまた、誘電体層504の垂直面(すなわち、側壁)の全体または一部に沿って延在してもよい。ある実施形態では、単一層518が沿って延在する垂直の表面504は、撥水性層を備える。タンパク質ナノポア膜貫通分子複合体(PNTMC)および対象の分析物を含むバルク電解質508は、ウェルの上に直接配置される。単一のPNTMC/ナノポア516は、脂質二重層514内に挿入される。ある実施形態では、二重層内への挿入は、電気穿孔法による。ナノポア516は、脂質二重層514を横切り、バルク電解質508から作用電極502へのイオン電流のための唯一の経路を提供する。バルク電解質508は、以下の、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、グルタミン酸リチウム、グルタミン酸ナトリウム、グルタミン酸カリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化カルシウム(CaCl)、塩化ストロンチウム(SrCl)、塩化マンガン(MnCl)、および塩化マグネシウム(MgCl)、のうちの1つをさらに含み得る。
【0046】
セル500は、バルク電解質508に電気的に接する対電極(CE)を含む。セル500は、参照電極512を任意選択で含み得る。いくつかの実施形態では、対電極510は、複数のセル間で共有され、それゆえ、共通電極とも称される。共通電極は、共通の電位を、測定セル内のナノポアと接触するバルク液体に印加するように構成可能である。共通の電位および共通電極は、測定セルの全てに共通である。
【0047】
いくつかの実施形態では、作用電極502は、金属電極である。非ファラデー性伝導のために、作用電極502は、腐食および酸化に耐性を示す、例えば、白金、金などの金属、チタン窒化物、およびグラファイトで形成され得る。例えば、作用電極502は、電気めっきを用いた白金電極であってもよい。例えば、作用電極502は、チタン窒化物(TiN)作用電極であってもよい。
【0048】
図5に示すように、ナノポア516は、ウェル505上に浮かべられた平面脂質二重層514内に挿入される。電解液は、ウェル505の内側、すなわちトランス側(塩溶液506を参照のこと)、および潜在的にかなりさらに大きい外部貯蔵部522、すなわち、シス側(バルク電解質508を参照のこと)の両方に存在する。外部貯蔵部522内のバルク電解質508は、ナノポアベースの配列決定チップの複数のウェルの上にあり得る。脂質二重層514は、ウェル505を覆って延在し、単一層が撥水性層520に付着されたところで脂質単一層518に遷移する。この形状は、電気的かつ物理的にウェル505を封止し、ウェルをより大きい外部貯蔵部から分離する。水および溶存ガスなどの中性分子は、脂質二重層514を通過し得るのに対して、イオンは通過し得ない。脂質二重層514内のナノポア516は、イオンが、ウェル505の内外に電導される単一の経路を提供する。
【0049】
核酸配列決定のために、ポリメラーゼがナノポア516に付着される。DNAの鋳型は、ポリメラーゼによって保持される。ポリメラーゼは、鋳型に対して不足するものを補う溶液から六リン酸モノヌクレオチド(HMN)を取り込むことによって、DNAを合成する。固有の重合体のタグが、各HMNに取り付けられる。取込みの間、タグは、対電極510と作用電極502との間の電圧により生み出される電界の勾配の支援のもと、ナノポアに装填される。タグは、ナノポア516を部分的に閉塞し、ナノポア516を通過するイオン電流での測定可能な変化をもたらす。いくつかの実施形態では、交流(AC)バイアスまたは直流(DC)電圧が、電極間に印加される。
【0050】
B.合成によるナノポアベースの配列決定
いくつかの実施形態では、ナノポアアレイは、合成による単分子ナノポアベースの配列決定(ナノ−SBS)技術を用いる並行配列決定を可能にする。図2は、ナノ−SBS技術を用いてヌクレオチド配列決定を実行するセル200の一実施形態を示す。ナノ−SBS技術では、配列決定されるべき鋳型202およびプライマーは、セル200に導入される。この鋳型−プライマー複合体に対して、異なってタグ付けされた4つのヌクレオチド208は、バルク水相に添加される。正しくタグ付けされたヌクレオチドがポリメラーゼ204と複合体を形成すると、タグの尾部は、ナノポア206の筒内に位置決めされる。ナノポア206の筒内に保たれるタグは、固有のイオン遮断信号210を生成し、それにより、付加された塩基を、タグの異なる化学構造により電子的に同定する。
【0051】
図3は、予め装填されたタグを用いたヌクレオチド配列決定を実行しようとしているセルの一実施形態を示す。ナノポア301は、膜302内に形成される。酵素303(例えば、DNAポリメラーゼのようなポリメラーゼ)は、ナノポアと結合している。いくつかの場合では、ポリメラーゼ303は、ナノポア301に共有結合している。ポリメラーゼ303は、配列決定されるべき核酸分子304と結合している。いくつかの実施形態では、核酸分子304は環状である。いくつかの場合では、核酸分子304は線状である。いくつかの実施形態では、核酸プライマー305は、核酸分子304の一部にハイブリダイズしている。ポリメラーゼ303は、ヌクレオチド306のプライマー305上への、一本鎖核酸分子304を鋳型として用いる取込みを触媒する。ヌクレオチド306は、タグ種(「タグ」)307を備える。
【0052】
図4は、予め装填されたタグを用いた核酸配列決定のためのプロセス400の一実施形態を示す。段階Aは、図3において説明したような構成要素を示す。段階Cは、ナノポア内に装填されるタグを示す。「装填された」タグは、認識可能な長さの時間、例えば、0.1ミリ秒(ms)から10,000msの間、ナノポア内に位置決めされる、および/または、ナノポア内または近くに留まるタグでもよい。いくつかの場合では、予め装填されるタグは、ヌクレオチドから放出される前に、ナノポア内に装填される。いくつかの例では、タグが、ヌクレオチド組み込み事象の際に放出された後にナノポアを通過する(および/またはナノポアにより検出される)確率が適度に高い、例えば90%から99%である場合、タグは予め装填される。
【0053】
段階Aにおいて、タグ付けされたヌクレオチド(4つの異なるタイプ:A、T、GまたはCのうちの1つ)は、ポリメラーゼと結合していない。段階Bにおいて、タグ付けされたヌクレオチドは、ポリメラーゼと結合している。段階Cにおいて、ポリメラーゼは、ナノポアにドッキングする。タグは、ドッキングの間、電気的な力、例えば、膜および/またはナノポア全体に印加される電圧により生成される電界の存在下で生成される力によってナノポア内に引き込まれる。
【0054】
結合したタグ付けされたヌクレオチドのいくつかは、核酸分子と塩基対合しない。これらの塩基対合しなかったヌクレオチドは、典型的には、正しく対合したヌクレオチドがポリメラーゼと結合したままである時間スケールより短い時間スケール内で、ポリメラーゼによって拒絶される。対合しなかったヌクレオチドは、一時的にのみポリメラーゼと結合するので、図4に示すプロセス400は、典型的には、段階Dを越えて進行しない。例えば、対合しなかったヌクレオチドは、段階Bにおいて、または、プロセスが段階Cに入った少し後に、ポリメラーゼによって拒絶される。
【0055】
多様な実施形態では、ポリメラーゼがナノポアにドッキングする前、ナノポアのコンダクタンスは、約300ピコジーメンス(300pS)である。段階Cにおいて、ナノポアのコンダクタンスは、約60pS、80pS、100pSまたは120pSであり、それぞれは、タグ付けされたヌクレオチドの4つのタイプのうちの1つに対応する。ポリメラーゼは、異性化およびリン酸基転移反応を経て、ヌクレオチドを成長している核酸分子内に組み込み、タグ分子を放出する。特に、タグがナノポア内に保たれるとき、固有のコンダクタンス信号(例えば、図2の信号210を参照)は、タグの異なる化学構造により生成され、それにより、付加された塩基を電子的に同定する。サイクル(すなわち、段階AからEまたは段階AからF)を繰り返すことにより、核酸分子の配列決定が可能になる。段階Dにおいて、放出されたタグは、ナノポアを通過する。
【0056】
いくつかの場合では、図4の段階Fに見られるように、成長している核酸分子内に組み込まれていないタグ付けされたヌクレオチドも、ナノポアを通過することになる。組み込まれていないヌクレオチドは、いくつかの例では、ナノポアによって検出され得るが、その方法は、組み込まれたヌクレオチドと組み込まれなかったヌクレオチドとを、ヌクレオチドがナノポア内で検出される時間に少なくとも部分的に基づいて区別するための手段を提供する。組み込まれなかったヌクレオチドに結合したタグは、ナノポアを迅速に通過し、短期間(例えば、10ms未満)の間検出され、一方、組み込まれたヌクレオチドに結合したタグは、ナノポア内に装填され、長期間(例えば、少なくとも10ms)の間検出される。
【0057】
ナノポアベースの配列決定に関するさらなる詳細は、例えば、「Nanopore−Based Sequencing With Varying Voltage Stimulus(電圧刺激を変化させるナノポアベースの配列決定)」という名称の米国特許出願第14/577,511、「Nanopore−Based Sequencing With Varying Voltage Stimulus(電圧刺激を変化させるナノポアベースの配列決定)」という名称の米国特許出願第14/971,667、「Non−Destructive Bilayer Monitoring Using Measurement Of Bilayer Response To Electrical Stimulus(電気的刺激に応答した二重層の測定を用いた非破壊二重層モニタリング)」という名称の米国特許出願第15/085,700、および「Electrical Enhancement Of Bilayer Formation(二重層形成の電気的促進)」という名称の米国特許出願第15/085,713の中で見つけることができる。
【0058】
II.測定回路
図13Aは、セルの作用電極1314と対電極1316との間にあり、その結果、電圧が脂質膜/二重層1312を横断して印加される脂質膜すなわち脂質二重層1312を示す。脂質二重層は、脂質分子の2層からなる薄膜である。脂質膜は、いくつかの(2より多い)脂質分子の厚さを有する薄膜である。脂質膜/二重層1312は、バルク液体/電解質1318とも接触する。なお、作用電極1314、脂質膜/二重層1312、および対電極1316が、図1の作用電極、脂質二重層、および対電極と比較して、上下反対に描かれていることに留意されたい。いくつかの実施形態では、対電極は、複数のセル間で共有され、それゆえ、共通電極とも称される。共通電極は、共通電極を電圧源Vliq1320に接続することによって、共通の電位を、測定セル内の脂質膜/二重層と接触するバルク液体に印加するように構成可能である。共通の電位および共通電極は、測定セルの全てに共通である。共通電極とは対照的に、作用セル電極は、各測定セル内に存在し、作用セル電極1314は、他の測定セル内の作用セル電極から独立して、異なる電位を印加するように構成可能である。
【0059】
図13Bは、図13Aに示した図と同様の、ナノポアベースの配列決定チップのセル内の回路1300を示す。図13Aと比較して、作用電極と対電極との間に、脂質膜/二重層を示す代わりに、作用電極および脂質膜/二重層の電気特性を表す電気モデルを示す。
【0060】
電気モデル1322は、作用電極1314の電気特性を表すコンデンサ1324を含む。作用電極1314に関連付けられたキャパシタンスは、2重層キャパシタンス(C2重層)とも称される。電気モデル1322は、脂質膜/二重層に関連付けられたキャパシタンスをモデル化するコンデンサ1326(C二重層)と、ナノポア内の個々のタグの存在に基づいて変化し得る、ナノポアに関連付けられた抵抗をモデル化する抵抗器1328(Rポア)とをさらに含む。
【0061】
電圧源Vliq1320は、交流(AC)電圧源である。対電極1316は、バルク液体1318に浸漬され、AC非ファラデー性モードが利用され、方形波電圧Vliqを調節し、それを測定セル内の脂質膜/二重層と接触するバルク液体に印加する。いくつかの実施形態では、Vliqは、±200〜250mVの振幅および25〜100Hzの周波数を有する方形波である。
【0062】
パスデバイス1306は、脂質膜/二重層および電極を測定回路1300と接続または切断するために使用され得るスイッチである。スイッチは、セル内の脂質膜/二重層を横断して印加され得る電圧刺激を有効化または無効化する。脂質が、脂質二重層を形成するためにセルに堆積される前では、2つの電極間のインピーダンスは、セルのウェルが封止されていないため、非常に低く、それゆえスイッチ1306は、短絡状態を回避するために開路に維持される。スイッチ1306は、脂質溶媒がセルに堆積されてセルのウェルを封止した後、閉じられ得る。
【0063】
回路1300は、チップ上に作製された積分コンデンサ1308(ncap)をさらに含む。積分コンデンサ1308は、リセット信号1303を使用しスイッチ1301を閉じ、その結果、積分コンデンサ1308が電圧源Vpre1305に接続されることによって、予備充電される。いくつかの実施形態では、電圧源Vpre1305は、900mVの大きさの固定の正電圧を供給する。スイッチ1301が閉じられているとき、積分コンデンサ1308は、電圧源Vpre1305の正電圧レベルまで予備充電される。
【0064】
積分コンデンサ1308が予備充電された後、リセット信号1303が使用されスイッチ1301が開路され、その結果、積分コンデンサ1308は、電圧源Vpre1305から切断される。この時点では、Vliqのレベルにより、対電極1316の電位は、作用電極1314の電位より高いレベルにあり、またはその逆でもあり得る。例えば、方形波Vliqの正位相の間(すなわち、AC電圧源信号サイクルの暗期間)、対電極1316の電位は、作用電極1314の電位より高いレベルにある。同様に、方形波Vliqの負位相の間(すなわち、AC電圧源信号サイクルの明期間)、対電極1316の電位は、作用電極1314の電位より低いレベルにある。この電位差により、積分コンデンサ1308は、AC電圧源信号サイクルの明期間中に充電され、AC電圧源信号サイクルの暗期間中に放電され得る。
【0065】
アナログデジタルコンバータ(ADC)1310のサンプリング速度により、積分コンデンサ1308は、一定の期間中、充電または放電し、次に、積分コンデンサ1308内に蓄えられる電圧は、ADC1310によって読み出され得る。ADC1310によるサンプリングの後、積分コンデンサ1308は、リセット信号1303を使用しスイッチ1301を閉じ、その結果、積分コンデンサ1308が電圧源Vpre1305に再接続されることによって、再び予備充電される。いくつかの実施形態では、ADC1310のサンプリング速度は、1500〜2000Hzである。いくつかの実施形態では、ADC1310のサンプリング速度は、最高で5kHzである。例えば、1kHzのサンプリング速度で、積分コンデンサ1308は、約1msの期間中、充電または放電し、次に、積分コンデンサ1308内に蓄えられる電圧は、ADC1310によって読み出される。ADC1310によるサンプリングの後、積分コンデンサ1308は、リセット信号1303を使用しスイッチ1301を閉じ、その結果、積分コンデンサ1308が電圧源Vpre1305に再接続されることによって、再び予備充電される。積分コンデンサ1308を予備充電するステップと、積分コンデンサ1308が充電または放電する一定の期間を待機するステップと、積分コンデンサ内に蓄えられた電圧をADC1310によってサンプリングするステップとが、次に、システムの脂質二重層測定段階の間中サイクルで繰り返される。
【0066】
デジタルプロセッサ1330は、例えば、正規化のために、ADC値を分析し得る。デジタルプロセッサは、ハードウェア(例えば、GPU、FPGA、ASICの内部の)またはハードウェアとソフトウェアとの組合せとして実装され得る。いくつかの実施形態では、デジタルプロセッサ1330は、さらに下流の処理を実行し得る。
【0067】
回路1300は、脂質膜/二重層と接触するバルク液体に印加されるデルタ電圧変化(ΔVliq)に応答した積分コンデンサ1308(ncap)におけるデルタ電圧変化ΔVADCを監視することによって、脂質二重層がセル内に形成されるか否かを検出するために、使用され得る。脂質二重層測定段階中、回路1300は、直列に接続されたC二重層1326、C2重層1324、およびncap1308を有する電圧分割器としてモデル化され得、電圧分割器の中間点で取り出される電圧変化は、脂質二重層が形成されたか否かを判定するADC1310によって、読み出され得る。
【0068】
測定回路に関するさらなる詳細は、例えば、「Nanopore−Based Sequencing With Varying Voltage Stimulus(電圧刺激を変化させるナノポアベースの配列決定)」という名称の米国特許出願第14/577,511、「Nanopore−Based Sequencing With Varying Voltage Stimulus(電圧刺激を変化させるナノポアベースの配列決定)」という名称の米国特許出願第14/971,667、「Non−Destructive Bilayer Monitoring Using Measurement Of Bilayer Response To Electrical Stimulus(電気的刺激に応答した二重層の測定を用いた非破壊二重層モニタリング)」という名称の米国特許出願第15/085,700、および「Electrical Enhancement Of Bilayer Formation(二重層形成の電気的促進)」という名称の米国特許出願第15/085,713の中で見つけることができる。
【0069】
III.配列決定動作
配列決定を実行するために、ADC(例えば、1310)の値は、ヌクレオチドが、核酸に加えられる間に、測定され得る。ヌクレオチドのタグは、ナノポアを横断して印加された電界によって、VliqがVpreより高くなるような印加電圧のとき、ナノポア内へ押し入れられ得る。
【0070】
A.充填
配列決定動作の状況での充填事象とは、タグ付けされたヌクレオチドが、DNA断片に取り付けられ、タグがウェルの内外に進むときに存在する。これは、充填事象の間に複数回発生し得る。タグがウェル内にあるとき、電流のより低いADC測定値が発生することになる。
【0071】
充填中、いくつかのサイクル(すなわちACサイクルの)は、ウェル内のタグを有さないことになる。明モードは、タグが、ウェル内に取り付けられ得るモードである。暗モードは、タグがウェル外へ押し出されるときである。開経路は、タグがウェル内になく、そのため電流が最高(V=IR)になる。
【0072】
B.明および暗サイクル
いくつかの実施形態では、AC電圧は、例えば、80Hzでシステム全体に印加される。ADCの取得速度は、約1900Hzであり得る。このように、ACサイクル(AC方形波のサイクル)毎に取得される約23〜24のデータポイント(電圧測定値)が存在し得る。ACサイクル(すなわち配列決定サイクル)毎のポイントセットが存在し、各ポイントセットは、AC波形の1サイクルに対応する。ACサイクルの1つのセットには、VliqがVpreより高いときの1つのサブセットが存在し、タグがナノポア内へ押し入れられ得るときなので、明モード(チャネル)と呼ばれる。別のセットは、タグが、印加される電界によってナノポアの外に押し出される、暗モード(流路)に対応する。
【0073】
C.サイクル内で測定された電圧における、データ収集サイクル内での減衰、および減少
データポイント毎に、スイッチ1301が開路のとき、ncapでの電圧は、VliqがVpreより高いとき、Vliqへと増大し、VliqがVpreより低いとき、Vliqへと減少するように、減衰する挙動で変化していく。測定される電圧は、スイッチ1301が開路するときに対する所定時刻に存在し得る。電圧は、測定毎にほぼ同一であると期待され得るが、電荷が、C2重層1324として増大する場合はそうならない。結果的に、電圧は変位され、それにより測定値がサイクル内のデータポイント毎に減少するという結果をもたらし得る。したがって、サイクル内で、データポイント値は、あるデータポイントから、サイクル内のVpreにより近い次のデータポイントへ、ある程度変化していく。VpreからのΔADC値は、サイクル内で、ポイント毎に減少する。システムの時定数は、約200〜500msであり得る。
【0074】
したがって、スイッチ1301が開路で、ADC値が測定されるとき、各データポイントは、Vpreへの充電または放電のための減衰の結果である。スイッチが閉路のとき、ADC値は、Vpreへ戻るよう動かされる。減衰は、高速度の測定が用いられても、全ては測定されないことがあり、各減衰サイクル中に1データポイントだけ測定されたされることになり得る。減衰は、ナノポアを含み得、結果として分子(例えば、タグ付けされたヌクレオチド)を含み得る、二重層の抵抗値によって支配される。
【0075】
スイッチは、データ収集の時刻に動作する。スイッチは、2データの取得間の比較的短時間に閉路し得る。スイッチは、通常、ADC測定の直後に変化し得る。スイッチは、複数のデータポイントが、サイクル毎に収集されることを可能にする。そうでなければ、ADC値は、Vliqまで減衰し、そこに留まり得る。そのような複数の測定は、固定されたADC(例えば、平均化され得る、より多数の測定による8ビットから14ビット)を用いたより高い分解能を可能にさせ得る。
【0076】
複数の測定は、動態情報をさらに提供し、例えば、それらは、ナノポア内に充填される分子に関する情報を提供し得る。時間の情報により、どれだけの長さで充填事象が続くのかを決定することを可能にさせ得る。これは、複数のヌクレオチドが、配列決定されつつあるDNA鎖に加えられた否かを判定することを支援することに用いられ得る。スイッチを有することは、より長い期間、電圧がナノポアを横断して印加されることをさらに可能にし、そうでなければ、タグは、ナノポアの外へ移動し得、さらに1データポイントを取得することだけに関係する。
【0077】
図14は、ACサイクルの明期間および暗期間中のナノポアセルから取得されたデータポイントの例を示す。図14では、データポイントでの変化は、図解目的用に強調されている。作用電極または積分コンデンサに印加される電圧(VPRE)は、例えば、900mVなどの一定のレベルにある。ナノポアセルの対電極に印加される電圧信号1410(VLIQ)は、矩形波として示されるAC信号であり、このときデューティサイクルは、例えば約40%の50%以下のような任意の好適な値であり得る。
【0078】
明期間1420の間、対電極に印加される電圧信号1410(VLIQ)は、作用電極に印加される電圧VPREより低く、その結果、タグは、作用電極および対電極に印加される、異なる電圧レベルに起因する電界によって、ナノポアの筒内に押し込まれ得る(例えば、タグ上の電荷および/またはイオンの流れにより)。スイッチ1301が開路のとき、ADCの前のノードでの(積分コンデンサでの)電圧は、減少していく。電圧データポイントが取得された後(例えば、指定された期間の後)、スイッチ1301は、閉路され得、測定ノードでの電圧は、VPREへと再び戻るように増大していく。プロセスは、複数の電圧データポイントを測定するために繰り返され得る。このようにして、複数のデータポイントは、明期間の間に取得され得る。
【0079】
図14に示すように、VLIQ信号の符号の変化の後の明期間内の第1のデータポイント1422(第1のポイントデルタ(FPD)とも呼ばれる)は、後続のデータポイント1424よりも低いことがあり得る。これは、ナノポア内にタグが存在しないからであり(開経路)、それゆえ、それは低抵抗および高放電率を有するためであり得る。いくつかの例では、第1のデータポイント1422は、図14に示すようなVLIQレベルを超え得る。これは、信号をチップコンデンサに結合する二重層のキャパシタンスに起因し得る。データポイント1424は、充填事象が発生した、すなわち、タグがナノポアの筒内に押し込まれた後取得され得、このときナノポアの抵抗、およびそれゆえの積分コンデンサの放電速度は、ナノポアの筒内に押し込まれるタグの個々のタイプに依存する。データポイント1424は、以下で説明するように、C2重層1324で生成される電荷により、測定毎にわずかに減少し得る。
【0080】
暗期間1430の間、対電極に印加される電圧信号1410(VLIQ)は、作用電極に印加される電圧VPREより高く、その結果、いずれのタグも、ナノポアの筒外に押し出され得る。スイッチ1301が開路のとき、測定ノードでの電圧は、電圧信号1410(VLIQ)の電圧レベルがVPREより高いので、増大する。電圧データポイントが取得された後(例えば、指定された期間の後)、スイッチ1301は、閉路され得、測定ノードでの電圧は、VPREへと再び戻るように減少していく。プロセスは、複数の電圧データポイントを測定するために繰り返され得る。このように、複数のデータポイントは、第1のポイントデルタ1432および後続のデータポイント1434を含む暗期間の間に取得され得る。上述のように、暗期間の間に、いずれのヌクレオチドタグもナノポアの外に押し出され、それゆえ、任意のヌクレオチドタグに関する最小限度の情報が取得され、さらに正規化に用いられる。それゆえ、暗期間中のセルからの出力電圧信号は、ほとんどまたは全く不要である。
【0081】
図14は、明期間1440の間、対電極に印加される電圧信号1410(VLIQ)は、作用電極に印加される電圧VPREより低いにもかかわらず、充填事象が発生しない(開経路)ことをさらに示す。したがって、ナノポアの抵抗は低く、積分コンデンサの放電速度は高い。結果的に、第1のデータポイント1442および後続のデータポイント1444を含む、取得されたデータポイントは、低電圧レベルを示す。
【0082】
明または暗期間の間に測定される電圧は、ナノポアの一定の抵抗(例えば、1つのタグがナノポア内にある間に所与のACサイクルの明モードの間に形成される)の測定毎にほぼ同一であると期待され得るが、このことは、電荷が2重層コンデンサ1324(C2重層)で生成する場合であり得ない。この電荷生成は、ナノポアセルの時定数をより長くさせる結果をもたらし得る。結果的に、電圧レベルは移動し、それにより測定値がサイクル内のデータポイント毎に減少するという結果をもたらし得る。このように、サイクル内で、データポイントは、図14に示すように、ある程度データポイントから別のデータポイントへ変化し得る。
【0083】
D.塩基決定
較正の一部として、多様なチェックが、配列決定セルの作成中に実施され得る。セルが作成された後、さらなる較正ステップが、例えば、所望されるように実行している配列決定セル(例えば、セル内のあるナノポア)を識別するために、実行されてもよい。そのような較正チェックは、物理的チェック、電圧較正、開放流路較正、および単一のナノポアを有するウェルの識別を含み得る。
【0084】
チップの有効なセルが識別された後、生成モードが、有効なセル毎に1つ、核酸を配列決定するために、実行され得る。配列決定中に測定されるADC値は、より高い精度を提供するために、正規化され得る。正規化は、サイクル形状およびベースラインシフトなどの偏位効果を引き起こし得る。正規化の後、実施形態は、充填された経路の電圧のクラスタを決定し得、異なる塩基間の区別のための分離電圧を決定するために、クラスタを用い得る。
【0085】
配列決定動作に関するさらなる詳細は、例えば、「Nanopore−Based Sequencing With Varying Voltage Stimulus(電圧刺激を変化させるナノポアベースの配列決定)」という名称の米国特許出願第14/577,511、「Nanopore−Based Sequencing With Varying Voltage Stimulus(電圧刺激を変化させるナノポアベースの配列決定)」という名称の米国特許出願第14/971,667、「Non−Destructive Bilayer Monitoring Using Measurement Of Bilayer Response To Electrical Stimulus(電気的刺激に応答した二重層の測定を用いた非破壊二重層モニタリング)」という名称の米国特許出願第15/085,700、および「Electrical Enhancement Of Bilayer Formation(二重層形成の電気的促進)」という名称の米国特許出願第15/085,713の中で見つけることができ、開示のその全体が参照により本明細書に組み込まれる。
【0086】
IV.ナノポア安定させるための浸透性不均衡法
上述したように、各配列決定セルのナノポアにより、イオンの配列決定セルのウェルの内外への移動が可能になり得る。作用電極のバイアスが、対電極に対して正であるとき、負イオン(陰イオン)は、外部貯蔵部からウェル内へ導かれ得、正イオン(陽イオン)は、ウェルから外部貯蔵部内へ導かれ得る。バイアスが、負であるとき、陽イオンは、外部貯蔵部からウェル内へ導かれ、陰イオンは、ウェルから外部貯蔵部内へ導かれる。アルファ溶血素(aHL)などのタンパク質ポアは、陰イオンまたは陽イオンのどちらかを優先的に導くこと、および正負の電気的バイアス下で、異なる導電性を有することが知られている。これらのイオン流流動特性は、正味のウェルからの流入またはウェル内への流出の原因となる。バイアスの結果として、ウェル外へのイオンの正味の流動が存在する場合、水は、脂質二重層を通り、ウェルから外部貯蔵部内へ拡散していき、それらのそれぞれの電解質濃度を平衡させる。ウェル内の流体の体積が削減されるので、もたらされた脂質二重層上のひずみは、挿入されたナノポアを二重層から離脱すること原因になり得る。バイアスの結果として、ウェル内へのイオンの正味の流動が存在する場合、水は、ウェル内へ拡散していく。ウェル内部の水の体積が増大するので、脂質二重層上のひずみは、さらなるタンパク質ポアが、脂質二重層内に挿入される原因になり得る。いずれの場合も、ウェルと外部貯蔵部との間の正味のイオンの移動は、ウェルの浸透圧モル濃度と外部貯蔵部の貯蔵部の浸透圧モル濃度との比を変化させる傾向を有する。
【0087】
平面脂質二重層(PLB)内へ挿入されたナノポアは、対電極と作用電極との間に印加される、交流(AC)または直流(DC)のどちらかの電圧の延長された期間の後、平面脂質二重層を離脱することが分かっている。印加電圧が、著しく低減されるとき、脂質二重層内に挿入されるナノポアの寿命は、増長される。しかし、タグがナノポアに充填し、ナノポア内のタグの存在を測定するために、最低限の電圧は、印加されなければならない。ナノポアの寿命の短縮は、ナノポアによって読み出され得るタグ内のヌクレオチドの数を制限し、それによりナノポアベースの配列決定チップの効率を低減する。
【0088】
A.ナノポアの不安定の原因となるウェルからのイオン流出の比較の事例
図6図6A、6B、および6Cを含む)は、核酸配列決定のための、ある期間にわたって脂質二重層を横断して印加される電圧が、脂質二重層の上下の電解液間の浸透性不均衡の原因となり、そのことが、脂質二重層をウェル内へと内向きに引張し、ナノポアが、脂質二重層から放出される原因となる、ある実施例を説明する。
【0089】
図6Aは、初期に時刻tにおいて、ナノポア606が、ナノポアベースの配列決定チップのセル内のウェル602の全体に及ぶ平面脂質二重層604内に挿入されることを示す。平面脂質二重層604は、ウェルを、ウェルの外部にある貯蔵部608から分離する。初期のtでは、ウェル内部の塩/電解質溶液の浸透圧モル濃度[E]は、外部貯蔵部のバルク電解質溶液の浸透圧モル濃度[E]と同一である。浸透性濃度としても知られている浸透圧モル濃度は、溶質濃度の尺度である。
【0090】
図6Bは、その後時刻tにおいて、電圧が、脂質二重層を横断して印加され、脂質二重層の上下の電解液間の浸透性不均衡が、発生することを示す。この例では、浸透性不均衡は、次にさらに詳細に説明するように、ウェルの外へのイオンの正味の流出に起因し、そのことが、水が浸透性により脂質二重層を通りウェルの外へ拡散する原因となる。
【0091】
電圧が、脂質二重層およびナノポアを横断して印加されるとき、ナノポアは、正イオン(陽イオン)および負イオン(陰イオン)両方をウェルの内外へ導く。例えば、塩化カリウム(KCl)の電解液がウェルおよび外部貯蔵部を満たすとき、正のKイオンおよび負のClイオンが、ウェルの内外へ流動する。具体的には、作用電極のバイアスが、対電極に対して正であるとき、負イオンは、貯蔵部からウェル内へ導かれ、正イオンは、ウェルから貯蔵部内へ導かれる。逆に、作用電極のバイアスが、参照電極に対して負であるとき、正イオンは、貯蔵部からウェル内へ導かれ、負イオンは、ウェルから貯蔵部内へ導かれる。
【0092】
アルファ溶血素(aHL)などのいくつかのナノポアは、陰イオンまたは陽イオンのどちらかを優先的に導き、正負の電気的バイアス下で、異なる導電性を有する。これらの特性のために、ウェル内への正味のイオンの流入、またはウェル外への正味のイオンの流出が、観測され得る。ウェル外へ流動する正味のイオンの流出が存在する場合、そのときウェル内部の塩/電解質溶液の浸透圧モル濃度([E])は、減少し、過渡的に、外部貯蔵部内のバルク電解質溶液の浸透圧モル濃度([E])(すなわち、[E]<[E])より低く低下し、脂質二重層を横断する浸透圧モル濃度の傾斜を形成する。ウェルおよび外部貯蔵部内の電解質の浸透圧モル濃度を平衡させるために、図6Bに示すように、水が、平面脂質二重層を通り、ウェルから外部貯蔵部内に拡散する。
【0093】
図6Cは、その後時刻tにおいて、脂質二重層を横断する正味の水の流動が、脂質二重層が破裂する、またはそれが機能しない、もしくはナノポアが脂質二重層から離脱することをもたらす段階まで、形状を変化させる原因となる、脂質二重層上にひずみを生じさせることを示す。この例では、ウェルの外への正味のイオンの流出が、水をウェルの外へ拡散させ、もたらされたウェルからの水の損失が、脂質二重層を内向きに引張し、脂質二重層が機能しない段階まで、脂質二重層の形状に変化をもたらす、またはナノポアが脂質二重層を離脱する原因となる。
【0094】
B.ナノポアの不安定の原因となるウェルへのイオン流入の比較の事例
図7図7A、7B、および7Cを含む)は、核酸配列決定のための、ある期間にわたって脂質二重層を横断して印加される電圧が、脂質二重層の上下の電解液間の浸透性不均衡の原因となり、そのことが、脂質二重層をウェル外へと外向きに押圧する、ある実施例を説明する。
【0095】
図7Aは、初期に時刻tにおいて、ナノポア706が、ナノポアベースの配列決定チップのセル内のウェル702の全体に及ぶ平面脂質二重層704内に挿入されることを示す。平面脂質二重層704は、ウェルを、ウェルの外部にある貯蔵部708から分離する。初期のtでは、ウェル内部の塩/電解質溶液の浸透圧モル濃度([E])は、外部貯蔵部のバルク電解質溶液の浸透圧モル濃度([E])と同一である。
【0096】
図7Bは、その後時刻tにおいて、電圧が、脂質二重層を横断して印加され、脂質二重層の上下の電解液間の浸透性不均衡が、発生することを示す。この例では、ウェル内へ流動する正味のイオンの流入が存在する場合、ウェル内部の塩/電解質溶液の浸透圧モル濃度([E])は、増大し、過渡的に、外部貯蔵部内のバルク電解質溶液の浸透圧モル濃度([E])(すなわち、[E]>[E])より高く上昇し、脂質二重層を横断する浸透圧モル濃度の傾斜を形成する。ウェルおよび外部貯蔵部内の電解質の浸透圧モル濃度を平衡させるために、図7Bに示すように、水が、平面脂質二重層を通り、外部貯蔵部からウェル内に拡散する。
【0097】
図7Cは、その後時刻tにおいて、脂質二重層を横断する正味の水の流動およびその結果のウェル内の水の体積の増加が、脂質二重層を外側へ押圧し、脂質二重層が機能しない段階まで、脂質二重層の形状に変化をもたらすことを示す。ウェル内部の水の体積が増大するので、平面脂質二重層上のひずみは、さらなるナノポアが、脂質二重層内に挿入される原因にさらになり得る。
【0098】
C.浸透性不均衡の相殺
図8は、分子の分析用のナノポアベースの配列決定チップのセル内の脂質二重層内に挿入された、ナノポアの寿命を延長する、改善された技術のための、プロセス800の一実施形態を説明する。改善された技術が、電解質の流動を平面脂質二重層上に適用し、電解質の流動が、平面脂質二重層下の電解質の浸透圧モル濃度と異なる浸透圧モル濃度(ナノポアを通り移動するイオンの正味の方向に依存する、より低いまたはより高い浸透性濃度)を有する。ある実施形態では、脂質二重層上の電解質の流動は、核酸配列決定のための脂質二重層を横断する電圧印加の前または最中に、適用される。この開示された技術は、ナノポアの寿命を延長させ、ナノポアベースの配列決定チップの効率および収量を増加させることを含む、多くの利点を有する。開示された技術は、水の膜横断流動を可能にするが、イオンの流動に対する浸透性を制限しない、他の半透性膜(例えば、脂質二重層の代わりに)に適用され得ることを理解されたい。いくつかの実施形態では、図8のプロセスに使用されたナノポアベースの配列決定チップは、図1の複数のセル100を含む。いくつかの実施形態では、図8のプロセスに使用されたナノポアベースの配列決定チップは、図5の複数のセル500を含む。
【0099】
プロセス800のステップ802では、配列決定チップのセルの各々で、脂質二重層が形成される。脂質二重層は、セルの各々のウェルとウェル外の貯蔵部(すなわち、第1の貯蔵部)とを仕切る。プロセス800のステップ804では、脂質二重層がセル内に形成された後、ナノポアが、脂質二重層内に挿入される。いくつかの実施形態では、図8に示すように、ステップ806で電解液が外部貯蔵部に流動される前に、ナノポアが、脂質二重層内に挿入される。いくつかの実施形態では、電解液を外部貯蔵部に流動させた後に、ナノポアは、脂質二重層に挿入される。異なる技術が、ナノポアをナノポアベースの配列決定チップのセル内に挿入するために用いられ得る。いくつかの実施形態では、タンパク質またはポリペプチドを形成するナノポアを含む溶液が、流動室を介し、ナノポアベースの配列決定チップのセルを通して流動され、その結果、溶液は、脂質二重層上を流動する。いくつかの実施形態では、攪拌または電気的刺激(例えば、約100mV〜1.0Vを50ms〜1sの間)が、脂質二重層を横断して印加されることで、脂質二重層内を分裂させ、a−溶血素ナノポアを脂質二重層内に挿入することを開始させる。
【0100】
プロセス800のステップ806では、塩/電解質緩衝溶液が、流動室を介してナノポアベースの配列決定チップのセルを通し流される。塩電解質緩衝溶液の濃度または浸透圧モル濃度が、以下にさらに詳細に説明するように、個々の初期の浸透性不均衡を脂質二重層の上下の電解液間に導入するように、選定される。この初期の浸透性不均衡は、外部貯蔵部(すなわち、第1の貯蔵部)の浸透圧モル濃度とウェル(すなわち、第2の貯蔵部)の浸透圧モル濃度との比を変化させることを特徴とする。言い換えると、外部貯蔵部に電解液を流動させることは、外部貯蔵部の浸透圧モル濃度とウェルの浸透圧モル濃度との比(すなわち、初期の浸透性不均衡)を変化させる傾向を有する。初期の浸透性不均衡は、例えば後続の核酸配列決定の間に、ナノポアを通るイオンの正味の移動に起因する、反対の浸透性不均衡によって、打ち消されるまたは相殺される傾向を有する。初期の浸透性不均衡が存在しない場合、そのような正味のイオンの移動は、脂質二重層の内部に挿入されるナノポアの完全性に負の影響を及ぼすのに十分な期間、脂質二重層上に構造的ひずみを形成し得る。対照的に、初期の浸透性不均衡が、その後の正味のイオン移動の効果を実質的に相殺するよう作用することで、そのような構造的ひずみは、低減され、除去され、より過渡的にされて、それにより、挿入されたナノポアの完全性および有効な寿命を改善する。
【0101】
いくつかの実施形態では、電解液の流動に起因する脂質二重層のひずみは、例えば、DC電圧が印加されるとき、配列決定動作中の電圧印加に起因するひずみと同様の大きさを有する。しかし、電解液の流動によって進められるひずみが存在する時間の長さは、配列決定動作の時間スケールに比べて著しく短いこともあり得る。例えば、電解液の流動によるひずみは、配列決定が開始されるまでの、浸透圧モル濃度の不均衡を確立するために要する、短い時間だけ存在し得る。その結果、ひずみのより過渡的な特質は、脂質二重層上により小さな構造的ひずみをもたらし、それらの安定性および完全性を増大させ、ナノポア損失の変化を減少させる。
【0102】
他の実施形態では、電解液の流動に起因する脂質二重層のひずみは、例えば、AC電圧が印加されるとき、配列決定動作中の電圧印加に起因するひずみより小さい大きさを有する。例えば、初期のひずみ(配列決定の前)は、AC信号の正の構成要素に起因するひずみの半分の大きさで、しかしひずみの反対方向で、わずかに外向きであり得る。次に、AC信号が開始した(例えば、最初に正の部分)後、脂質二重層は、電圧に起因する大きさの半分で、内向きにひずみを受けることになり得る。次に、AC信号の負の部分は、脂質二重層を再び外向きにひずませ(陰イオンまたは陽イオンの異なる流動により)、それにより、再び外向きにひずみをもたらし、初期のひずみに到達する。この方法で、ひずみは、浸透圧モル濃度の平衡を有するセルに印加される、電圧がもたらす全体の大きさではあり得ない。したがって、いくつかの実施形態では、脂質二重層のひずみは、印加電圧によるひずみと一致する、またはそれ未満であり得る。
【0103】
印加電圧に応答したウェルからの正味のイオンの流出を生成することが分かっているナノポアのタイプのために、ウェル内部の塩/電解質溶液の浸透圧モル濃度([E])は、減少されることが期待され得る。その結果、ウェルの浸透圧モル濃度は、外部貯蔵部内のバルク電解質溶液の浸透圧モル濃度([E])より低く低下し得る。言い換えると、イオン流出中のナノポアに、[E]/[E]は、増大し、1.0より大きくなり得る。ウェルおよび外部貯蔵部内の電解質の浸透圧モル濃度を平衡させるために、図6Bで上述したように、水が、平面脂質二重層を通り、ウェルから外部貯蔵部内に拡散することが期待され得る。
【0104】
増大することが期待される[E]/[E]浸透圧モル濃度比を相殺するために、プロセス800のステップ806の塩電解質緩衝溶液の濃度または浸透圧モル濃度が、[E]/[E]比の減少するように、比を反対方向に変化させて、選択される。このことは、過剰な水をウェル内に向けて動かす効果を有する。例えば、ステップ806で流動室を介してナノポアベースの配列決定チップのセルを通し流される塩電解質緩衝溶液は、ウェル内に存在する電解液(例えば、340mM)より低い電解液濃度(例えば、300mM)を有し得る。外部貯蔵部内(すなわち、平面脂質二重層のシス側の)を流れる電解液内のより低い電解質濃度に応じて、脂質二重層のシスおよびトランス側での濃度を平準化するために、水が脂質二重層を横断して貯蔵部からウェル内部へと拡散する。この平準化は、水分子が容易に平面脂質二重層を通過して流れ得るので、ほぼ瞬時に起こり得る。平面脂質二重層の両側での濃度は、外部貯蔵部の容量がトランス側(ウェル)の容量より著しく大きいので、シス側(例えば300mM)の濃度に平準化し得る。このことは、ウェルの平面脂質二重層の下の水の体積を効果的に増大させ得、平面脂質二重層を上方へ反らせる。
【0105】
印加電圧に応答したウェル内への正味のイオンの流入を生成することが分かっているナノポアのタイプのために、ウェル内部の塩/電解質溶液の浸透圧モル濃度([E])は、増大され、過渡的に、外部貯蔵部内のバルク電解質溶液の浸透圧モル濃度([E])(すなわち、[E]/[E]比が減少していき、1より小さくなる)より上に上昇することが期待される。ウェルおよび外部貯蔵部内の電解質の浸透圧モル濃度を平衡させるために、水が、平面脂質二重層を通り、外部貯蔵部からウェル内に拡散することが期待される。減少することが期待される[E]/[E]浸透圧モル濃度比を相殺するために、塩電解質緩衝溶液の濃度または浸透圧モル濃度が、[E]/[E]比の増大するように、プロセス800によって決定され、結果として過剰な水をウェルの外に押し出す。例えば、ステップ806で流動室を介してナノポアベースの配列決定チップのセルを通し流される塩電解質緩衝溶液は、ウェル内に存在する電解液(例えば、300mM)より高い電解液濃度(例えば、340mM)を有する。外部貯蔵部内(すなわち、平面脂質二重層のシス側)のより高い濃度の電解液の流動に応じて、脂質二重層のシスおよびトランス側での濃度を平準化するために、水が脂質二重層を横断してウェルから貯蔵部内部へと拡散する。平準化は、水分子が容易に平面脂質二重層を通過して流れるので、ほぼ瞬時に起こる。平面脂質二重層の両側での濃度は、外部貯蔵部の容量がトランス側(ウェル)の容量より著しく大きいので、シス側(例えば340mM)の濃度に平準化する。このことは、ウェルの平面脂質二重層の下の水の体積を効果的に減少させ、平面脂質二重層を下方へ反らせる。
【0106】
プロセス800のステップ806での電解液の濃度は、異なる因子に基づいて選択され得る。初期の流動と、ウェル内の電解液の濃度との間の濃度差は、例えば、ナノポアの寿命を最大化する、ナノポアの平面脂質二重層内への急速な挿入を制限する、または平面脂質二重層の破裂を回避するために、選択または最適化され得る。いくつかの実施形態では、電解液の濃度は、浸透圧モル濃度比への第1の変化(電解液流動に起因する)と、浸透圧モル濃度比への第2の変化(電圧印加に起因する)とが、実質的に相殺するように選択される。いくつかの実施形態では、電解液の濃度は、浸透圧モル濃度への第1の変化と、浸透圧モル濃度比への第2の変化とが、少なくとも部分的に相殺するように選択される。浸透圧モル濃度比への第2の変化と反対方向の、浸透圧モル濃度比への任意の第1の変化は、もたらされる脂質二重層のひずみを少なくとも部分的に低減させるのに十分となることが、理解されよう。
【0107】
プロセス800のステップ810では、電解液の流動(ステップ806)が、繰り返されるべきか否かが判定される。別の基準が、このステップで用いられてもよい。いくつかの実施形態では、ステップ806は、所定の回数だけ実行される。電解液内の電解質の濃度は、ステップ806の繰返し毎に同一である、同様である、または異なることがあり得る。電解質のより低いまたはより高い濃度は、1つまたは複数の追加のサイクルに適用され得る。例えば、ナノポアが、ウェルからの正味のイオンの流出を生成することが分かっていて、ステップ806の各回が繰り返される場合、塩電解液の濃度は、初期の電解質濃度または溶液の浸透圧モル濃度(すなわち、ステップ806の繰返しの最初の状態)から、最終的な電解質濃度または溶液の浸透圧モル濃度(すなわち、ステップ806の繰返しの最終の状態)に、[E]/[E]比が所定の目標の比に減少されるまで、次第に低減される。この比は、システムを出た外部貯蔵部の流体の浸透圧モル濃度測定値を用いることによって、概算され得る。ナノポアが、ウェル内への正味のイオンの流入を生成することが分かっていて、ステップ806の各回が繰り返される場合、塩電解液の濃度は、初期の電解質濃度または溶液の浸透圧モル濃度から、最終的な電解質濃度または溶液の浸透圧モル濃度に、[E]/[E]比が所定の目標の比に増大されるまで、次第に増大される。電解液の流動(ステップ806で)が、繰り返される場合、プロセス800は、ステップ810からステップ806に進み、そうでなければプロセス800は、ステップ812に進む。
【0108】
図8では、プロセス800のステップ806の浸透性不均衡が、ステップ804後に導入されることを示している。この場合、ナノポアは、浸透性不均衡を調整するために、電解液の流動前に、脂質二重層内に挿入される。上で説明したように、他の実施形態では、ステップ806およびステップ810は、ステップ804の最中またはその後に実行され得る。これらの場合、ナノポアは、浸透性不均衡の形成の最中または後に、挿入される。
【0109】
プロセス800のステップ812では、核酸の配列決定が、上述のように実行される。配列決定動作は、脂質二重層を横断して電圧を印加するステップを含み得、電圧が、外部貯蔵部とウェルとの間のナノポアを介した正味のイオンの移動をもたらす。イオンの移動は、外部貯蔵部(すなわち、第1の貯蔵部)の浸透圧モル濃度とウェル(すなわち、第2の貯蔵部)の浸透圧モル濃度との比への第2の変化を生じさせ得る。ステップ806の電解液の流動に起因する浸透圧モル濃度比への第1の変化のために、浸透圧モル濃度比への第2の変化は、実質的に相殺され、脂質二重層は、著しく反るまたはひずむことなく、最初の形状に復帰し得る。プロセス800は、次に、電解質流動により浸透性不均衡を導入する他のサイクルのために繰り返され、配列決定中の電圧印加を通して相殺させ得る。いくつかの実施形態では、プロセス800は、配列決定が開始された後、配列決定動作と並行して作動させられる。プロセス800は、配列決定チップ、ならびに脂質二重層およびナノポアの有効な寿命または効率を向上させるために、継続的に、半継続的に、または必要に応じて離散的に、作動させられ得る。
【0110】
V.改善された流動室
プロセス800は、ステップ(例えば、ステップ802、804、および806)を含み、その中で異なるタイプの流体が流動室を介してナノポアベースの配列決定チップのセルを通り流される。著しく異なる特性(例えば、圧縮性、撥水性、および粘性)を有する複数の流体が、このプロセスおよび他のプロセス中に、ナノポアベースの配列決定チップ表面上のセンサセル(例えば、図1のセル100または図5のセル500などの)のアレイの上を流され得る。これらのプロセスの効率は、アレイ内のセンサセル(「センサ」とも呼ばれる)の各々を、首尾一貫した方法で、流体に曝させることによって、改善され得る。例えば、異なるタイプの流体の各々は、流体がチップ外に送達される前に、流体がセルの各々の表面を均一に覆い接触するように、ナノポアベースの配列決定チップ上を流動させられ得る。上述のように、ナノポアベースの配列決定チップは、アレイとして構成される多数のセンサセルを組み込み得る。ナノポアベースの配列決定チップは、ますます多くのセルを含むために拡大されるので、チップのセル全体を異なるタイプの流体の均一な流れを達成することは、さらに難しくなる。
【0111】
いくつかの実施形態では、図8のプロセス800を実行するナノポアベースの配列決定システムは、流体をチャネルの長さ方向に沿ったチップの異なるセンサ上を横切るように誘導するヘビ状流体流路を有する改善された流動室を含む。流路は、例えば、図1のバルク電解質114または図5のバルク電解質508を収容するために用いられ得る。流路は、例えば、図5の外部貯蔵部522、図6の外部貯蔵部608、または図7の外部貯蔵部708を形成するために用いられ得る。
【0112】
図9は、シリコンチップを取り囲む改善された流動室を有する、ナノポアベースの配列決定システム900の上面図を示す。ヘビ状または曲がりくねった流路908は、内部の収容される流体を、一連のセンサバンク906、例えば、数千のセンサセルを含み得るセンサの行または列の直上を、チップ表面上のセンサバンクの全てが少なくとも1度は横切られるまで、流動するように誘導する。流路のヘビ状の形状は、流体が、入口902を通り流路に入り、センサバンクの列または行に沿って移動し、繰り返し隣接する列または行に沿って進み折り返して戻り、次に出口904を通り流路から出ることを可能にする。センサバンクの各々は、配列決定セルのアレイを含み得る。いくつかの実施形態では、各センサバンクは、数千の配列決定セルを含む。
【0113】
流体のタイプ、流体の濃度、または配列決定システム900の流動速度は、プロセッサによって制御される流体系によって、選択され得る。入口902は、管または針であってもよい。例えば、管または針は、1ミリメートルの直径を有し得る。このことは、代わりに液体またはガスが、流動室の全幅の中に直接挿入される、ヘビ状流路を有さない代替の実施形態とは対照的である。ヘビ状流路908は、上板と、流動室をヘビ状流路になるように仕切る仕切910とを互いに積層してフローセルを形成し、次に、フローセルをチップの上に取り付けることによって、形成され得る。液体またはガス流れは、ヘビ状流路908を通過し流れた後、液体またはガスは、出口904に至るまで導かれ、システム900の外に導かれ得る。
【0114】
システム900によって、流体が、チップ表面上の全てのセンサの上を、より均一に流れることが可能になる。流路幅は、十分狭く、毛細管現象が効果をもつように構成され得る。より詳細には、流体と取り囲む表面との間の表面張力(これは流体内の凝集によって生じる)および粘着力が、流体をまとめて保持する役割を果たし得、それにより流体または気泡が崩壊しデッド領域が形成されることを防止する。例えば、流路は、1ミリメートルまたはそれより短い幅を有し得る。狭小な流路は、流体の制御された流動が可能にし得、先行する流体またはガスの流動からの残余を最小化する。
【0115】
VI.脂質二重層の形成
異なる技術が、例えば、プロセス800のステップ802で実行されるように、脂質二重層をナノポアベースの配列決定チップのセル内に形成するために用いられ得る。図解目的のためだけに、脂質二重層を形成するための、1つの例示のプロセス1000を、図10に示した。
【0116】
プロセス1000の1102では、塩/電解質緩衝溶液が、セル内のウェルを塩緩衝溶液で実質的に充填するために、流動室を介してナノポアベースの配列決定チップのセルを通し流される。本明細書でさらに説明したように、塩緩衝溶液は、以下の浸透圧調節物質である、塩化リチウム(LiCl)、塩化ナトリウム(NaCl)、塩化カリウム(KCl)、グルタミン酸リチウム、グルタミン酸ナトリウム、グルタミン酸カリウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、塩化カルシウム(CaCl)、塩化ストロンチウム(SrCl)、塩化マンガン(MnCl)、および塩化マグネシウム(MgCl)、のうちの少なくとも1つを含み得る。
【0117】
ある態様では、本発明は、外部貯蔵部(例えば、図5の貯蔵部522)内の溶液の濃度より高いウェル(例えば、図5の506)内の溶液(例えば、塩溶液または塩緩衝溶液)の濃度を提供する。別の実施形態では、外部貯蔵部は、第1の貯蔵部の浸透圧モル濃度によって特徴づけられる第1の貯蔵部であり、ウェルは、第2の貯蔵部の浸透圧モル濃度によって特徴づけられる第2の貯蔵部である。ある実施形態では、外部貯蔵部内の溶液の濃度は、約10nm〜3Mである。別の実施形態では、外部貯蔵部内の溶液の濃度は、約10mM、約20mM、約30mM、約40mM、約50mM、約60mM、約70mM、約80mM、約90mM、約100mM、約110mM、約120mM、約130mM、約140mM、約150mM、約160mM、約170mM、約180mM、約190mM、約200mM、約210mM,約220mM、約230mM、約240mM、約250mM、約260mM、約270mM、約280mM、約290mM、約300mM、305mM、約310mM、約315mM、約320mM、約325mM、約330mM、約335mM、約340mM、約345mM、約350mM、約355mM、約360mM、約365mM、約370mM、約375mM、約380mM、約385mM、約390mM、約395mM、約400mM、約450mM、約500mM、約550mM、約600mM、約650mM、約700mM、約750mM、約800mM、約850mM、約900mM、約950mM、約1M、約1.25M、約1.5M、約1.75M、約2M、約2.25M、約2.5M、約2.75M、または約3Mである。別の実施形態では、ウェル内の溶液の濃度は、約305mM、約310mM、約315mM、約320mM、約325mM、約330mM、約335mM、約340mM、約345mM、約350mM、約355mM、約360mM、約365mM、約370mM、約375mM、約380mM、約385mM、約390mM、約395mM、約400mM、約450mM、約500mM、約550mM、約600mM、約650mM、約700mM、約750mM、約800mM、約850mM、約900mM、約950mM、または約1Mである。ある追加の実施形態では、外部貯蔵部内の溶液の濃度は、300mMであり、ウェル内の溶液の濃度は、約310mM、約320mM、約330mM、約340mM、約350mM、約360mM、約370mM、約380mM、約390mM、または約400mMから構成されるグループから選択される。他の実施形態では、溶液の濃度は、(i)外部貯蔵部内の300mMおよびウェル内の310mM、(ii)外部貯蔵部内の300mMおよびウェル内の320mM、(iii)外部貯蔵部内の300mMおよびウェル内の330mM、(iv)外部貯蔵部内の300mMおよびウェル内の340mM、(v)外部貯蔵部内の300mMおよびウェル内の350mM、(vi)外部貯蔵部内の300mMおよびウェル内の360mM、(vii)外部貯蔵部内の300mMおよびウェル内の370mM、(viii)外部貯蔵部内の300mMおよびウェル内の380mM、(ix)外部貯蔵部内の300mMおよびウェル内の390mM、および(x)外部貯蔵部内の300mMおよびウェル内の400mM、から構成されるグループから選択される。
【0118】
プロセス1000のステップ1004では、脂質および溶媒の混合物が、流動室を介してナノポアベースの配列決定チップのセルを通し流される。いくつかの実施形態では、脂質および溶媒の混合物は、ジフィタノイルホスファチジルコリンまたは1,2−ジフィタノイル−sn−グリセロ−3−ホスホコリン(DPhPC)、および1,2−ジ−O−フィタニル−sn−グリセロ−3−ホスホコリン(DOPhPC)などの脂質分子を含む。いくつかの実施形態では、脂質および溶媒の混合物は、デカンまたはトリデカンを含む。脂質および溶媒の混合物がまず脂質二重層を形成するためにセル内に堆積されるとき、セルのいくつかは、自然に形成される脂質二重層を有し得るが、そのセルのいくつかは単に、セルのウェルの各々の全体に広がる厚い脂質膜(脂質分子の複数の層および共に組み合わされた溶媒を伴う)を有し得るにすぎない。
【0119】
プロセス1000のステップ1006では、塩/電解質緩衝溶液が、外部貯蔵部を塩緩衝溶液で実質的に充填するために、流動室を介してナノポアベースの配列決定チップのセルを通し流される。
【0120】
ステップ1108では、ナノポアベースの配列決定チップの収量(すなわち、適切に形成された脂質二重層およびナノポアを有するナノポアベースの配列決定チップ内のセルの割合)を増加させるために、1つまたは複数のタイプの脂質二重層開始刺激が、追加のセル内の脂質二重層の形成を支援するために、ナノポアベースの配列決定チップに印加され得る。1つまたは複数のタイプの脂質二重層開始刺激が、複数回繰り返され得る(ステップ1010によって決定される)脂質二重層開始刺激段階(ステップ1008)の間に、同時に、または異なる順番で、印加され得る。
【0121】
脂質二重層開始刺激は、厚い脂質膜上の小さな脂質二重層の生成を支援する。厚い脂質膜上の小さな過渡的な脂質二重層が形成された後、さらなる脂質二重層開始刺激の印加は、脂質二重層の表面積を拡大し続けるための正のフィードバックとしての役割を果たす。その結果、ナノポアベースの配列決定チップのセル内の脂質二重層を形成するために必要な時間は、著しく低減されることが可能である。あるタイプの脂質二重層開始刺激は、振動刺激などの機械的刺激である。他のタイプの脂質二重層開始刺激は、電気的な刺激である。当業者には、他のタイプの刺激が、本発明を伴う使用に適切であり得ることが理解されよう。他のタイプの脂質二重層は、物理的刺激である。例えば、塩/電解質緩衝溶液を、流動室を介してナノポアベースの配列決定チップのセルを通して流すことは、各々のセル上に脂質二重層を形成することを支援する。セル上を流される塩緩衝溶液は、任意の過剰な脂質溶媒の除去を支援し、その結果、厚い脂質膜は、薄膜化され、より効果的に脂質二重層へと移行され得る。
【0122】
VII.浸透性不均衡を相殺させる利益
提供される浸透性不均衡を相殺させる方法およびシステムは、ナノポアおよび配列決定セルの延長された有効期間、配列決定アレイ内の機能するセルの大きな割合、および器具の高い効率を含み得るいくつかの利益をもたらす。これらの利益は、浸透性不均衡の能力から発生し、脂質二重層の2つの側面間のイオンおよび水の流動の潜在的に破壊的な効果を相殺し、相殺させることがなされない場合は、下の説明でさらに示すように、形状的な応力を二重層に付加し、破裂またはナノポアの損失をもたらし得る。
【0123】
A.ポアの放出の回避の説明
図11Aは、時刻tにおいて、平面脂質二重層がウェルと外部貯蔵部との間の所定の位置にある間に、ウェル内に初期に存在する電解液より低い電解液濃度を、脂質二重層上に流動させることによって、過剰な水がウェル内へと押し込まれ、平面脂質二重層を上方に反らせることを示す。上述したように、(1)水が、平面脂質二重層を横断して拡散し得、(2)イオンが、ナノポアを通過し得、(3)セルを通り流動される塩電解質緩衝溶液が、時間とともに異なる浸透圧調節物質を外部貯蔵部内へと導入し得るので、外部貯蔵部およびウェル内に保持される液体の体積および浸透圧調節物質含有量の両方が、時間とともに変化し得る。外部貯蔵部は、特定の時間に外部貯蔵部に収容される液体の浸透圧モル濃度である、第1の貯蔵部浸透圧モル濃度によって特徴づけられ得ることが認識され得る。セル内のウェルは、特定の時間にウェル内に収容され、脂質二重層によって閉じ込められる液体の浸透圧モル濃度である、第2の貯蔵部浸透圧モル濃度によってさらに特徴づけられ得る。
【0124】
図11Bは、より低い濃度の電解質の初期流動により、時刻t図11A)において、ウェル内に押し込まれる水の体積が、その後の時刻tにおいて、ウェルから除去される水の体積と実質的に相殺するように作用することを示す。時刻tにおけるウェルからの水の除去は、例えば、上述の配列決定動作中に印加される電圧に起因し得る。本明細書で説明される方法およびシステムは、そのような電圧印加の効果と実質的に相殺する浸透性不均衡を形成し、「あらかじめ反らされた」ウェルは、平面脂質二重層が破裂する、またはその内部に挿入されたナノポアが抜け出るように押し出される前に、より大きい体積の水の除去に耐えることが可能である。
【0125】
図11Cは、浸透性不均衡を相殺することを適用しない、比較の方法では、時刻tにおいてウェルから除去される水の体積が、脂質二重層を破裂させる、またはその挿入されたナノポアを放出することになるのに、十分な大きさであり得ることを示す。図では、二重層の内向きの反りが、ナノポアを放出し、配列決定動作での使用のためのセルの有効性が終了したことを確認し得る。これは、電解質の流動および電圧印加に起因する外向きおよび内向きの反りが、実質的に互いに相殺され、ナノポアおよび脂質二重層は、損なわれないままとなる、図11Bの図解とは対照的である。
【0126】
B.浸透性不均衡を相殺させることによるナノポア寿命の増大の事例
図12A、12B、および12Cは、プロセス800を用いて、セル内のナノポアの平均的な寿命が著しく増大されたことを示す。グラフ毎に、Y軸は、ナノポアの数を表し、X軸は、配列決定動作中に観察される100秒刻みのナノポアの寿命を表す。図12Aでは、流動室を介して配列決定チップのセルを通り流動される電解液と、ウェル内の電解液との両方の濃度は、300mMである。グラフで示すように、ナノポアの平均有効圧力は、約1500秒である。このことは、配列決定の前に浸透性不均衡が適用されない比較の方法(例えば、図11Cにおけるように)と一致し、ナノポア損失は、電圧印加によってもたらされる二重層のひずみを通して発生しているところであり得る。
【0127】
図12Bのグラフでは、流動室を介してナノポアベースの配列決定チップのセルを通り流動される電解液の濃度は、300mMであり、ウェル内の電解液の濃度は、340mMである。このことは、浸透性不均衡が適用される方法と一致し、水は、浸透圧調節物質の濃度を平衡させるために、ウェル内に動かされていき、二重層は、外向きに「あらかじめ反らされ」ていき、電圧印加(例えば、図11Aおよび11Bにおけるように)によってもたらされる二重層のひずみを実質的に相殺する。この事例でのナノポアの平均寿命は、約3200秒に増大される。
【0128】
図12Cのグラフでは、流動室を介してナノポアベースの配列決定チップのセルを通り流動される電解液の濃度は、300mMであり、ウェル内の電解液の濃度は、360mMである。ナノポアの平均な寿命は、約3800秒にさらに増大される。このことは、図12Bのグラフの結果を発生させる同様の方法と一致するが、より大きい浸透性不均衡の形成に伴い、それは、ナノポアの有効な寿命をさらに改善する。そのような実験は、ナノポアの安定性および配列決定セルのロバスト性を改善する上で有効な、電解質濃度を経験的に導出するまたは最適化する、繰返しの方法で継続され得る。
【0129】
VIII.コンピュータシステム
本明細書で説明したコンピュータシステムの任意のものは、任意の適切な数のサブシステムを利用し得る。そのようなサブシステムの例は、図15のコンピュータシステム10内で示した。いくつかの実施形態では、コンピュータシステムは、単一のコンピュータ装置を含み、ここでサブシステムは、コンピュータ装置の構成要素であり得る。他の実施形態では、コンピュータシステムは、各々がサブシステムであり、内部に構成要素を有する、複数のコンピュータ装置を含み得る。コンピュータシステムは、デスクトップおよびラップトップコンピュータ、タブレット、携帯電話、ならびに他の携帯機器を含み得る。
【0130】
図15で示したサブシステムは、システムバス75を介して相互接続されている。プリンタ74、キーボード78、記憶デバイス79、ディスプレイアダプタ82に結合されているモニタ76、およびその他などの付加的なサブシステムを示す。I/O制御装置71に結合された外付けおよび入出力(I/O)デバイスは、入出力(I/O)ポート77(例えば、USB、FIRE WIRE(登録商標))などの当技術分野で知られている任意の数の手段によって、コンピュータシステムに接続され得る。例えば、I/Oポート77または外部インタフェース81(例えば、イーサネット(登録商標)、Wi−Fi、など)は、コンピュータシステム10をインターネットなどの広域ネットワーク、マウス入力装置、またはスキャナに接続するために用いられ得る。システムバス75を介した相互接続により、サブシステム間での情報交換を可能にするだけでなく、セントラルプロセッサ73が、各サブシステムと通信すること、システムメモリ72または記憶デバイス79(例えば、ハードドライブまたは光ディスクなどの固定ディスク)からの複数の命令実行を制御することを可能にする。システムメモリ72および/または記憶デバイス79は、コンピュータ可読媒体を含み得る。別のサブシステムは、カメラ、マイクロフォン、加速度計、その他などのデータ収集デバイス85である。本明細書で説明したデータの任意のものは、ある構成要素から別の構成要素へ出力され得、ユーザに出力され得る。
【0131】
コンピュータシステムは、例えば、外部インタフェース81によって、内部インタフェースによって、またはある構成要素から別の構成要素へ接続および取り外しされ得る取り外し可能な記憶デバイスを介して、共に接続される、複数の同一の構成要素またはサブシステムを含み得る。いくつかの実施形態では、コンピュータシステム、サブシステム、または装置は、ネットワークを通して通信し得る。そのような事例では、あるコンピュータは、クライアント、別のコンピュータは、サーバと考えることができ、ここで各々は、同一のコンピュータシステムの一部であり得る。クライアントおよびサーバは、各々複数のシステム、サブシステム、または構成要素を含み得る。
【0132】
実施形態の態様は、ハードウェア回路(例えば、特定用途向け集積回路またはフィールドプログラマブルゲートアレイ)を用いて、および/またはモジュラーまたは統合された様式の一般にプログラム可能なプロセッサを伴う、コンピュータソフトウェアを用いて、制御ロジックの形態で実施され得る。本明細書で使用されるとき、プロセッサは、専用のハードウェアだけでなく、同一の集積チップ上のシングルコアプロセッサ、マルチコアプロセッサ、または単一の回路基板上のマルチプロセシングユニット、あるいはネットワーク接続されたプロセッサを含み得る。本開示および本明細書で提供された教示に基づいて、ハードウェアならびにハードウェアおよびソフトウェアの組合せを用いて、本発明の実施形態を実施するための他の方法および/または方法が、当業者には、知られ、かつ理解されよう。
【0133】
本出願で説明されるソフトウェアの構成要素または機能の任意のものは、例えばJava(登録商標)、C、C++、C#、Objective−C、Swiftなどの任意の好適なコンピュータ言語、または例えば、従来のまたはオブジェクト指向の技術を用いたPerlもしくはPythonなどのスクリプト言語を用いてプロセッサによって実行されるソフトウェアコードとして実装され得る。ソフトウェアコードは、一連の命令または指令として、保存および/または伝送用の、コンピュータ可読媒体上に格納され得る。好適な非一時的コンピュータ可読媒体は、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、ハードドライブ、フロッピーディスクなどの磁気媒体、コンパクトディスク(CD)もしくはDVD(デジタル多用途ディスク)などの光学的媒体、またはフラッシュメモリ、などを含み得る。コンピュータ可読媒体は、そのような記憶または伝送デバイスの任意の組合せであり得る。
【0134】
そのようなプログラムは、さらにエンコードされ、インターネットを含む、多様なプロトコルに従う有線、光学、および/または無線ネットワークを介した伝送に適応された、搬送波信号を用いて伝送され得る。そのように、コンピュータ可読媒体は、そのようなプログラムを用いてエンコードされたデータ信号を使用して作成され得る。プログラムコードを用いてエンコードされたコンピュータ可読媒体は、互換性のあるデバイスを用いて包装され得、または別個に他のデバイスから供給され得る(例えば、インターネットでのダウンロード)。任意のそのようなコンピュータ可読媒体は、個々のコンピュータ製品(例えば、ハードドライブ、CD、または完全なコンピュータシステム)上にまたは内部に備えられ得、また、システムまたはネットワーク内部の異なるコンピュータ製品上にまたは内部に存在し得る。コンピュータシステムは、本明細書で説明した成果の任意のものをユーザに提供するための、モニタ、プリンタ、または他の好適なディスプレイを含み得る。
【0135】
本明細書で説明した方法の任意のものは、ステップを実行するように構成され得るプロセッサを含むコンピュータシステムを用いて、全体的にまたは部分的に実行され得る。したがって、各ステップまたはステップの各グループを実行する異なる構成要素を潜在的に有する、本明細書で説明した方法の任意のもののステップを、実行するように構成されたコンピュータシステムに、実施形態は、向けられ得る。番号を付されたステップが提示されたが、本明細書の方法のステップは、同時にまたは異なる順序で実行され得る。さらに、これらのステップの部分は、他の方法からの他のステップの部分と共に用いられ得る。また、ステップの全てまたは部分は、任意選択的であり得る。さらに、任意の方法の任意のステップは、モジュール、ユニット、回路、またはこれらのステップを実行するための他の手段を用いて、実行され得る。
【0136】
個々の実施形態の個別の詳細が、本発明の実施形態の技術概念および範囲から逸脱することのなく、任意の好適な方法で組み合わされ得る。しかし、本発明の他の実施形態は、各々の個別の態様に関する特定の実施形態に、またはこれらの個別の態様の特定の組合せに、向けられ得る。
【0137】
用語「約」および「ほぼ同等」は、数値的値を変更し、その値を中心とした定義された範囲を示すために、本明細書で使用される。「X」が値である場合、「約X」または「Xとほぼ同等」は、概して0.90Xから1.10Xの値を示す。「約X」への任意の言及は、少なくとも、値X、0.90X、0.91X、0.92X、0.93X、0.94X、0.95X、0.96X、0.97X、0.98X、0.99X、1.01X、1.02X、1.03X、1.04X、1.05X、1.06X、1.07X、1.08X、1.09X、および1.10Xを示す。したがって、「約X」は、例えば、「0.98X」を開示することを意図される。「約」が、数値的範囲の先頭に適用されるとき、それは、範囲の両端に適用される。したがって、「約6〜8.5」は、「約6〜約8.5」と同等である。「約」が、一連の値の最初の値に適用されるとき、それは、その一連の全ての値に適用される。したがって、「約7、9、または11%」は、「約7、約9、または約11%」と同等である。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12A
図12B
図12C
図13A
図13B
図14
図15