(58)【調査した分野】(Int.Cl.,DB名)
蓋(62)が、凝固の際に液体表面(14、15)をすっかり覆い、また不活性ガス(9)が、蓋と鋳造用テーブルとの間に区画された室(65)の中に導入され、また鋳造用穴(10)内の圧力が室(65)内の圧力より低くなるように、ポンプ(101)でもって鋳造用穴(10)内に吸引力を保つ、請求項1から3のいずれか一つに記載の方法。
前記分配器(7)の第一のファブリックの高さh1が、壁(720、721、730、731)の周囲の上部面を起点にして測定され、h1≧0.3hであり、ここでhは分配器の壁の総高さを意味する、請求項1から6のいずれか一つに記載の方法。
第一のファブリックによって覆われている分配器(7)の溶融金属中に浸っている壁(720、721、730、731)の高さが、分配器の壁の総高さの少なくとも20%である、請求項1から7のいずれか一つに記載の方法。
第一のファブリックによって覆われる表面部分が、長手方向部分(720)および(721)については30〜90%、ならびに/または側面部分(730、731)については30〜70%である、請求項1から8のいずれか一つに記載の方法。
合金が、重量%でCu:3.0〜3.9、Li:0.7〜1.3、Mg:0.1〜1.0、Zr、MnおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.06〜0.15重量%、Mnでは0.05〜0.8重量%、およびTiでは0.01〜0.15重量%であり、Ag:0〜0.7、Znは0.25以下、Siは0.08以下、Feは0.10以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含む、請求項1から10のいずれか一つに記載の方法。
【背景技術】
【0002】
アルミニウム合金製の圧延製品は、特に航空産業および航空宇宙産業用の構造部材を製造するために開発されている。
【0003】
アルミニウム−銅−リチウム合金は、このタイプの製品を製造するのに特に有望である。航空産業によって課されている疲労耐性についての仕様は、高度なものである。厚みのある製品については、それは達成するのが特に困難である。実際、鋳造スラブが取り得る厚みを考慮すると、熱間変形による厚みの減少はかなり少なく、したがって疲労亀裂が起こる鋳造に関連する部分には、熱間変形中に大きさの減少は認められない。
【0004】
リチウムは特に酸化しやすいので、一般にアルミニウム−銅−リチウム合金の鋳造は、リチウムを含まない2XXXタイプの合金、または7XXXタイプの合金よりも多数の疲労亀裂開始箇所をもたらす。したがって、リチウムを含まない2XXXタイプの合金、または7XXXタイプの合金製の厚い圧延製品を得るために通常見られる解決案では、アルミニウム−銅−リチウム合金に十分な疲労特性を得ることができない。
【0005】
Al−Cu−Li合金製の厚みのある製品は、米国特許出願公開第2005/0006008号明細書、および米国特許出願公開第2009/0159159号明細書において特に記述されている。
【0006】
国際公開第2012/110717号において、特に少なくとも0.1%のMg、および/または0.1%のLiを含むアルミニウム合金の特性、特に疲労特性を改善するために、鋳造の際に超音波処理を実施することが提案されている。しかしながらこのタイプの処理は、厚みのあるシートメタルの製造に必要な量に対して、実行するのが困難なままである。
【0007】
米国特許出願公開第2009/0142222号明細書は、Cuを3.4〜4.2重量%、Liを0.9〜1.4重量%、Agを0.3〜0.7重量%、Mgを0.1〜0.6重量%、Znを0.2〜0.8重量%、Mnを0.1〜0.6重量%、および少なくとも結晶粒組織制御元素を0.01〜0.6重量%含むことができ、残余がアルミニウム、付随的元素および不純物である合金を記述している。
【発明の概要】
【発明が解決しようとする課題】
【0009】
有利な靭性特性および静的機械的耐性特性を有しつつ、特に疲労特性の面で、公知の製品と比較して改善された特性を有するアルミニウム−銅−リチウム合金製の厚みのある製品に対するニーズが存在する。さらに、これらの製品の単純で経済的な獲得方法に対するニーズが存在する。
【課題を解決するための手段】
【0010】
本発明の第一の目的は、厚みが少なくとも80mmのアルミニウム合金製のシートメタルの製造方法であって、以下の工程を含む。
(a)重量%でCu:2.0〜6.0、Li:0.5〜2.0、Mg:0〜1.0、Ag:0〜0.7、Zn:0〜1.0、ならびにZr、Mn、Cr、Sc、HfおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.05〜0.20重量%、Mnでは0.05〜0.8重量%、CrおよびScではそれぞれ0.05〜0.3重量%、Hfでは0.05〜0.5重量%、およびTiでは0.01〜0.15重量%であり、Siは0.1以下、Feは0.1以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含む合金製の溶融金属浴を調製する工程、
(b)前記合金を垂直半連続鋳造によって鋳造し、凝固の際に、以下であるように厚みTおよび幅Wのスラブを得る工程、
−前記溶融金属浴(1)の水素含有量が、0.4ml/100g未満である、
−液体表面(14、15)の上で測定される酸素含有量が、0.5体積%未満である、
−鋳造用に用いられる分配器(7)が、主として炭素を含むファブリックで作製され、該分配器が、下部面(76)と、溶融金属が導入される開口部を画定する上部面(71)と、実質的に長方形の
部分の壁とを含み、該壁が、幅Wに平行な二つの長手方向部分(720、721)と、厚みTに平行な二つの横方向部分(730、731)とを含み、前記横方向部分および長手方向部分が、鋳造の間の分配器の形状保持を確保するほぼふさがれてかつ半剛性の第一のファブリック(77)と、液体の通過および濾過を可能にするふさがれていない第二のファブリック(78)である少なくとも二つのファブリックから形成され、前記第一および第二のファブリックが、重なり合うことなくまたは重なり合って、それらを隔てる隙間なく互いに接合しており、前記第一のファブリックが、連続的に前記壁部分(720、721、730、731)の表面の少なくとも30%を覆い、また液体表面が
全体の部分にわたって第一のファブリックと接触するように位置づけられている、
(c)熱間変形が可能な圧延用スラブを得るために、前記スラブを任意に機械加工する前または後に、均質化する工程、
(d)厚みが少なくとも80mmであるシートメタルを得るために、このように均質化された前記圧延用スラブを熱間圧延、および任意に冷間圧延する工程、
(e)前記シートメタルを溶体化処理、および焼入れする工程、
(f)任意には、このように溶体化処理された前記シートメタルに、少なくとも1%の変形を伴う塑性変形による応力除去を行う工程、
(g)このように溶体化処理され、また任意に応力除去の行われた前記シートメタルを
時効する工程。
【0011】
本発明の別の目的は、本発明による方法によって得ることができる、厚みが少なくとも80mmのシートメタルであって、重量%でCu:2.0〜6.0、Li:0.5〜2.0、Mg:0〜1.0、Ag:0〜0.7、Zn:0〜1.0、ならびにZr、Mn、Cr、Sc、HfおよびTiの中から少なくとも1つの元素が選択され、選択されたときの前記元素の量がZrでは0.05〜0.20重量%、Mnでは0.05〜0.8重量%、CrおよびScではそれぞれ0.05〜0.3重量%、Hfでは0.05〜0.5重量%、およびTiでは0.01〜0.15重量%であり、Siは0.1以下、Feは0.1以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含むアルミニウム合金製のシートメタルであって、
時効した質別T8で、
図1aによる平滑試験片で、
LT方向において半分の厚みのところで、最大応力振幅242MPa、周波数50Hz、応力比R=0.1で測定されたその疲労対数平均が、少なくとも250000サイクルであることを特徴とする、シートメタルである。
【0012】
本発明のさらに別の目的は、航空機の構造要素、好ましくは翼桁、リブまたはフレームを作製するための、本発明によるシートメタルの使用法である。
【発明を実施するための形態】
【0014】
異なる記載がなければ、合金の化学組成に関する全ての表示は、合金の総重量に基づく重量パーセンテージとして表記される。1.4Cuという表記は、重量%で表示された銅の含有量に1.4乗じることを意味する。合金の名称は、当業者には公知のアルミニウム協会の規則に従ったものとなっている。異なる記載がなければ、欧州規格EN 515において示されている質別の定義が適用される。
【0015】
引張りにおける静的機械的特徴、言い換えると破断強度R
m、0.2%伸びの慣例の弾性限界R
p0.2、および破断伸びA%は、NF EN ISO 6892−1規格による引張り試験によって測定され、試験のサンプリングおよび試験の趣旨は、EN 485−1規格によって定義されている。
【0016】
応力拡大係数(K
1C)は、ASTM E399規格にしたがって決定する。
【0017】
平滑試験片での疲労特性は、方向TLにおいてシートメタルの半分の幅および半分の厚みのところで採取される
図1aで示されるような試験片で、周囲空気で、最大応力振幅242MPa、周波数50Hz、応力比R=0.1で測定される。試験の条件は、ASTM E466規格にしたがう。少なくとも4つの試験片で得られる結果の対数平均を測定する。
【0018】
切欠き試験片での疲労特性は、方向L−TおよびT−Lにおいてシートメタルの中心および半分の厚みのところで採取される、K
t=2.3である
図1bで示されるような試験片で、周囲空気で、さまざまな応力レベルについて、周波数50Hz、応力比R=0.1で、測定される。ウォーカーの方程式が、100000サイクルで50%が破断しないことを表す最大応力値を決定するために用いられた。そのために、疲労品質指標(FQI)が、ヴェーラー曲線の各点について式
【数1】
を用いて計算される。式内のσ
maxは、所与のサンプルに適用された最大応力であり、Nは破断に至るまでのサイクル数であり、N
0は100000に等しく、n=−4.5である。中央値、すなわち100000サイクルで50%の破断に相当するFQIが報告される。
【0019】
本発明の範囲において
、厚みのある
展伸シートメタルは、厚みが少なくとも80mm、好ましくは少なくとも100mmの製品である。本発明の一実施形態において、シートメタルの厚みは少なくとも120mm、または好ましくは140mmである。本発明による厚みのあるシートメタルの厚みは、典型的には最大で240mmであり、一般的には最大で220mm、好ましくは最大で180mmである。
【0020】
異なる記載がなければ、EN 12258規格の定義が適用される。特にシートメタルとは、本発明によると、厚みが一定で少なくとも6mmであり、かつ幅の10分の1を超えることのない、長方形の横断面の圧延製品である。
【0021】
本明細書において、機械構造物の「構成要素」または「構造要素」と呼ばれるのは、静的および/または動的機械的特性が構造の性能にとって特に重要であり、また通常構造計算が規定または実現されている機械部品である。典型的にはそれは、その不具合が前記構造物、その利用者、その使用者、または他者の安全を危険に曝す可能性のある要素である。航空機についてはこれらの構造要素は、特に胴体を構成する要素(胴体の外板(英語でfuselage skin)、胴体のスティフナまたはストリンガ(stringers)、気密隔壁(bulkheads)、胴体フレーム(circumferential frames)など)、主翼(翼外板(wing skin)、スティフナ(stringersまたはstiffeners)、リブ(ribs)および翼桁(spars)など)、特に水平安定板および垂直安定板(horizontal or vertical stabilisers)から成る尾翼、並びにフロアビーム(floor beams)、シートトラックレール(seat tracks)、扉を含む。
【0022】
本明細書において「鋳造設備全体」と呼ばれるのは、任意の形状の金属を、液相を経て、未加工の半製品に機械加工することを可能にする装置の全体である。鋳造設備は、金属の溶融に必要な炉(「溶解炉」)および/またはその温度維持に必要な炉(「保持炉」)および/または溶融金属の調製作業や組成の調整作業に必要な炉(「生産炉」)である単数または複数の炉、溶融金属中に溶解している、および/または懸濁状態にある不純物の除去処理を行うための単数または複数の槽(または「取鍋」)、といった多数の装置を含むことができ、この処理は「濾過用取鍋」内で濾材を通して溶融金属を濾過すること、あるいは「脱ガス用取鍋」内で不活性または反応性であり得るいわゆる「処理用」ガスを浴に導入することからなり得るものであり、ならびに、鋳型(または「鋳塊鋳型」)、溶融金属供給装置(または「とりべ」)、冷却システムなどの装置を含むことができる鋳造用穴内における直接冷却による垂直半連続鋳造による溶融金属の凝固装置(または「鋳造作業機」)を含むことができ、これらの多様な炉、槽および凝固装置は、溶融金属をその中で運ぶことができる「樋」と呼ばれる移動装置、または出湯樋で互いに連結されている。
【0023】
本発明者たちは驚くべきことに、以下の方法を用いてこれらのシートメタルを調製することにより、改善された疲労性能を有するアルミニウム−銅−リチウム合金製の厚みのあるシートメタルを得ることができることを確認した。
【0024】
第一の工程において、重量%でCu:2.0〜6.0、Li:0.5〜2.0、Mg:0〜1.0、Ag:0〜0.7、Zn:0〜1.0、ならびにZr、Mn、Cr、Sc、HfおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.05〜0.20重量%、Mnでは0.05〜0.8重量%、CrおよびScではそれぞれ0.05〜0.3重量%、Hfでは0.05〜0.5重量%、およびTiでは0.01〜0.15重量%であり、Siは0.1以下、Feは0.1以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含み、残余がアルミニウムである合金製の溶融金属浴を調製する。
【0025】
本発明による方法にとって有利な合金は、重量%でCu:3.0〜3.9、Li:0.7〜1.3、Mg:0.1〜1.0、ならびにZr、MnおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.06〜0.15重量%、Mnでは0.05〜0.8重量%、Tiでは0.01〜0.15重量%であり、Ag:0〜0.7、Znは0.25以下、Siは0.08以下、Feは0.10以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含み、残余がアルミニウムである。
【0026】
有利には、銅含有量は、少なくとも3.2重量%である。リチウム含有量は、好ましくは0.85〜1.15重量%、また好ましくは0.90〜1.10重量%である。マグネシウム含有量は、好ましくは0.20〜0.6重量%ある。マンガンおよびジルコニウムの同時添加が、一般的に有利である。
【0027】
好ましくは、マンガン含有量は、0.20〜0.50重量%であり、またジルコニウム含有量は、0.06〜0.14重量%である。有利には、銀含有量は、0.20〜0.7重量%である。銀含有量が少なくとも0.1重量%であることが有利である。本発明の一実施形態において、銀含有量は、少なくとも0.20重量%である。別の実施形態において、銀含有量は0.15重量%に制限され、また亜鉛含有量は少なくとも0.3重量%である。
【0028】
好ましくは、銀含有量は、最大で0.5重量%である。本発明の一実施形態において、銀含有量は0.3重量%に制限される。好ましくは、ケイ素含有量は最大で0.05重量%であり、鉄含有量は最大で0.06重量%である。有利には、チタン含有量は0.01〜0.08重量%である。
【0029】
本発明の一実施形態において、亜鉛含有量は、最大で0.15重量%である。好ましいアルミニウム−銅−リチウム合金は、AA2050合金である。
【0030】
この溶融金属浴は、鋳造設備の炉内で調製される。例えば米国特許第5415220号明細書で、鋳造設備への合金の移動の際に合金を不動態化するために、溶解炉内で、混合物KCl/LiClのようなリチウムを含む溶融塩を使用することが公知である。本発明者たちはしかしながら、溶解炉内でリチウムを含む溶融塩を使用するのではなく、酸素含有量の少ない雰囲気をこの炉内に維持することによって、厚みのあるシートメタルについての優れた疲労特性を得ており、溶解炉内の塩の存在が、特定の場合において厚みのある
展伸製品の疲労特性に有害な影響を与える可能性があり得ると考えている。有利には、鋳造設備全体において、リチウムを含む溶融塩は使用されない。
【0031】
有利な一実施形態において、鋳造設備全体において溶融塩は使用されない。好ましくは、鋳造設備の単数または複数の炉内で、酸素含有量を0.5体積%未満、好ましくは0.3体積%未満に維持する。しかしながら、鋳造設備の単数または複数の炉内で、少なくとも0.05体積%の酸素含有量、また少なくとも0.1体積%の酸素含有量でさえも容認することができ、これは本方法の経済的側面にとって特に有利である。有利には、鋳造設備の単数または複数の炉は誘導炉である。本発明者たちは、このタイプの炉が、誘導加熱によって発生する混合にもかかわらず有利であることを確認した。
【0032】
この溶融金属浴は次に、脱ガス用取鍋内および濾過用取鍋内で処理され、特にその水素含有量が0.4ml/100g未満、好ましくは0.35ml/100g未満になる。溶融金属の水素含有量は、当業者にとって公知の商標ALSCAN
TMの名称で商品化されている器具のような商業機器を使って測定され、プローブは、窒素スイープ下で維持される。有利には、溶解炉内において、脱ガス、濾過工程の際に溶融金属浴と接触する雰囲気の酸素含有量は、0.5体積%未満、好ましくは0.3体積%未満である。好ましくは、溶融金属浴と接触する雰囲気の酸素含有量は、鋳造設備全体に対して0.5体積%未満、好ましくは0.3体積%未満である。しかしながら、鋳造設備全体に対して、少なくとも0.05体積%の酸素含有量、そして少なくとも0.1体積%の酸素含有量さえも容認することができ、これは本方法の経済的側面にとって特に有利である。
【0033】
溶融金属浴は次に、スラブ形状に凝固される。スラブは、長さL、幅W、および厚みTの、実質的に平行6面体形状のアルミニウムブロックである。凝固の際に、液体表面上の雰囲気が制御される。凝固の際に液体表面上の雰囲気の制御を可能にする装置の例が、
図2に示されている。
【0034】
この適切な装置の例において、樋(63)からの溶融金属は、上下移動(81)できるストッパーロッド(8)によって制御されるとりべ(4)の中を通って、擬似底(21)の上に置かれた鋳塊鋳型(31)の中に導入される。アルミニウム合金は、直接冷却(5)によって凝固する。アルミニウム合金(1)は、少なくとも一つの固体表面(11、12、13)、および少なくとも一つの液体表面(14、15)を有する。昇降機(2)は、液体表面(14、15)の高さをほぼ一定に保つことを可能にする。分配器(7)は、溶融金属の分配を可能にする。蓋(62)は、液体表面をすっかり覆う。蓋は、鋳造用テーブル(32)との気密性を確保するためにパッキン(61)を含むことができる。樋(63)の中の溶融金属は、有利には蓋(64)によって保護されることができる。不活性ガス(9)が、蓋と鋳造用テーブルとの間に区画された室(65)の中に導入される。不活性ガスは有利には、希ガス、窒素、および二酸化炭素、またはこれらのガスの混合物の中から選択される。好ましい不活性ガスは、アルゴンである。酸素含有量が、室(65)の中で液体表面の上で測定される。不活性ガスの流量は、所望の酸素含有量に達するように調整され得る。しかしながら、ポンプ(101)でもって鋳造用穴(10)内に十分な吸引力を保つことが有利である。実際、本発明者たちは、一般に鋳塊鋳型(31)と凝固金属(5)との間に十分な気密性は存在せず、これにより鋳造用穴(10)から室(65)への雰囲気の拡散が導かれることを確認した。有利にはポンプ(101)の吸引力は、囲い(10)内の圧力を室(65)内の圧力よりも低くなるようにするものであり、これは好ましくは、鋳造用穴の開いた表面を介して、少なくとも2m/秒、好ましくは少なくとも2.5m/秒の雰囲気の速度を課すことによって得られる。典型的には、室(65)内の圧力は大気圧に近く、また囲い(10)内の圧力は大気圧より低く、典型的には大気圧の0.95倍である。本発明による方法を用いると、記述されている装置により、室(65)内は、酸素含有量0.5体積%未満、好ましくは0.3体積%未満に保たれる。
【0035】
本発明による方法の分配器(7)の一例が、
図3および
図4に示されている。本発明による方法の分配器は、主として炭素を含むファブリックで作製され、該分配器は、下部面(76)と、溶融金属を導入する開口部を画定する典型的には空いている上部面(71)と、典型的には実質的に一定の実質的に長方形の
部分および典型的には実質的に一定の高さhをもつ壁とを含み、該壁は、スラブの幅Wに平行な二つの長手方向部分(720、721)とスラブの厚みTに平行な二つの横方向部分(730、731)とを含み、前記横方向部分および長手方向部分は、鋳造の間の分配器の形状保持を確保するほぼふさがれてかつ半剛性の第一のファブリック(77)と、液体の通過および濾過を可能にするふさがれていない第二のファブリック(78)である少なくとも二つのファブリックから形成され、前記第一および第二のファブリックは、重なり合うことなくまたは重なり合って、それらを隔てる隙間なく互いに接合しており、前記第一のファブリックは、連続的に前記壁部分(720、721、730、731)の表面の少なくとも30%を覆い、また液体表面が分配器の
全体の部分にわたって第一のファブリックと接触するように位置づけられている。本発明の一実施形態において、分配器の壁の
部分は、高さhに対応して直線状に、典型的には分配器の下部面の表面が分配器の上部面の表面より最大で10%大きいかまたは小さくなるように変化する。このように、側面壁と垂直線との間に形成される角度は、およそ5°にまで達することができる。第一および第二のファブリックが重なり合うことなく、または重なり合って、かつそれらを隔てる隙間なく、すなわち接触するように互いに縫い合わされているので、溶融金属は、例えば国際公開第99/44719号パンフレットの
図2から
図5において記述されているようなコンボバッグにおける場合のように、第一のファブリックを通過することはできないが、第二のファブリックの方にそれることができる。第一のファブリックによって確保される保持により、分配器は半剛性であり、鋳造の際に変形することはほとんどない。有利な一実施形態において、第一のファブリックは高さh1を有するが、この高さは、壁(720、721、730、731)の周囲の上部面を起点にして測定され、h1≧0.3h、好ましくはh1≧0.5hのようなものであり、ここでhは分配器の壁の総高さを意味する。
【0036】
液体表面が、ふさがれている前記第一のファブリックと接触しているため、溶融金属は、壁の各部分の特定の方向における液体表面下でしか分配器を通過しない。好ましくは、第一のファブリックによって覆われている、分配器(7)の壁(720、721、730、731)の溶融金属中に浸っている高さは、浸っている壁の総高さの少なくとも20%、好ましくは40%、より好ましくは60%に等しい。
【0037】
図4は、底部および長手方向の壁部分を示している。底部(76)は、典型的には第一および/または第二のファブリックで覆われている。有利には、第一のファブリックは、少なくとも底部(76)の中心部分において長さL1に渡って、ならびに/または長手方向部分(720)および(721)の中心部分において高さh全体および長さL2に渡って、位置している。
【0038】
有利には、第一のファブリックによって覆われる表面部分は、長手方向部分(720)および(721)については30〜90%、好ましくは50〜80%、ならびに/または側面部分(730、731)については30〜70%、好ましくは40〜60%、ならびに/または底部(76)については30〜100%、好ましくは50〜80%である。
【0039】
底部(76)に位置する第一のファブリックの長さL1が、長手方向壁(720)および(721)の部分に位置する第一のファブリックの、底部と接触している長さL2を超えることが有利である。
【0040】
本発明者らは、分配器の幾何学形状により、特に溶融金属の流れの質の改善、乱流の減少、ならびに温度の分配の改善が可能になると考えている。
【0041】
第一のファブリックおよび第二のファブリックは、有利には、主として炭素を含むワイヤーの製織によって得られる。グラファイトワイヤーの製織が、特に有利である。ファブリックは、典型的には互いに縫い合わされている。第一および第二のファブリックに代わって、多少なりとも高密度の、少なくとも二つの製織領域を有するただ一つのファブリック製ディフューザーを使用することもまた可能である。
【0042】
製織を容易にするために、炭素を含むワイヤーが、滑りを容易にする層でコーティングされていることが有利である。この層は、例えばテフロン(登録商標)のようなフッ素ポリマー、またはキシロンのようなポリアミドを含むことができる。
【0043】
第一のファブリックは、ほぼふさがれている。典型的には、それは0.5mm未満、好ましくは0.2mm未満のメッシュサイズを有するファブリックである。第二のファブリックはふさがれておらず、溶融金属の通過を可能にする。典型的には、それは1〜5mm、好ましくは2mm〜4mmのメッシュサイズを有するファブリックである。本発明の一実施形態において、第一のファブリックは、二つのファブリックの間に隙間を残さないように密接に接触して、第二のファブリックを局所的に覆っている。
【0044】
このようにして得られたスラブは、任意に機械加工する前または後に均質化され、熱間変形することができる形状を得る。スラブは圧延用スラブの形状に機械加工され、続いて圧延によって熱間変形される。好ましくは均質化は、470〜540℃の温度で、継続時間2〜30時間で実現される。
【0045】
このように均質化された前記圧延用スラブは、厚みが少なくとも80mmである
展伸製品を得るために、熱間圧延、また任意に冷間圧延される。熱間圧延の温度は、有利には少なくとも350℃、好ましくは少なくとも400℃である。熱間変形率、また任意には冷間変形率、すなわち変形前だが場合によってはあり得る機械加工の後の最初の厚みと最終的な厚みとの間の差と、最初の厚みとの間の比率は、85%未満、好ましくは80%未満である。一実施形態において、変形の際の変形率は、75%未満、好ましくは70%未満である。
【0046】
このようにして得られた
展伸製品は、次に溶体化処理され、焼入れされる。溶体化処理の温度は、有利には470〜540℃、好ましくは490〜530℃であり、継続時間は製品の厚みに適合している。
【0047】
任意には、このように溶体化処理された前記
展伸製品に、少なくとも1%の変形を伴う塑性変形による応力除去を行う。このように溶体化処理された前記
展伸製品に、制御された引張りによる応力除去を、少なくとも1%の、好ましくは2〜5%の永久ひずみを伴って行うことが有利である。
【0048】
最後に、このように溶体化処理されまた任意に応力除去された製品に
時効を行う。
時効は、有利には130〜160℃の温度で、継続時間5〜60時間、単数または複数の段階で実行される。好ましくは、
時効のあとに、特にT851、T83、T84またはT85のような、質別T8が得られる。
【0049】
本発明による方法によって得られる厚みが少なくとも80mmのシートメタルは、有利な特性を有する。
【0050】
図1aによる平滑試験片で
LT方向において半分の厚みのところで、最大応力振幅242MPa、周波数50Hz、応力比R=0.1で測定される、本発明による方法によって得られる厚みが少なくとも80mmのシートメタルの疲労の対数平均は、少なくとも250000サイクルであり、有利には疲労特性は、厚みが少なくとも100mm、好ましくは少なくとも120mmで少なくとも140mmでさえある、本発明による方法によって得られる
展伸製品に対して得られる。
【0051】
少なくとも80mmの厚みの本発明によるシートメタルはまた、切欠き試験片についても有利な疲労特性を示し、そして周波数50Hzで、周囲空気で、R値=0.1で、
図1bによるKt=2.3の切欠き試験片で得られる疲労品質指標FQIは、方向T−Lにおいて少なくとも180MPaであり、好ましくは少なくとも190MPaである。
【0052】
さらに、本発明による方法によって得られるシートメタルは、有利な静的機械的特徴を有する。このように、重量%でCu:3.0〜3.9、Li:0.7〜1.3、Mg:0.1〜1.0、ならびにZr、MnおよびTiの中から少なくとも一つの元素が選択され、選択されたときの前記元素の量がZrでは0.06〜0.15重量%、Mnでは0.05〜0.8重量%、およびTiでは0.01〜0.15重量%であり、Ag:0〜0.7、Znは0.25以下、Siは0.08以下、Feは0.10以下、その他の元素はそれぞれ0.05以下および全体で0.15以下を含み、残余がアルミニウムである、厚みが少なくとも80mmであるシートメタルについて、方向Lにおいて4分の1の厚みのところで測定される弾性限界は、少なくとも450MPa、好ましくは少なくとも470MPaであり、および/または測定される破断強度は、少なくとも480MPa、好ましくは少なくとも500MPaであり、および/または伸びは、少なくとも5%、好ましくは少なくとも6%である。好ましくは、4分の1の厚みのところで測定される、厚みが少なくとも80mmの本発明によるシートメタルの靭性は、K
1C(L−T)が少なくとも25MPa√m、好ましくは少なくとも27MPa√mであり、K
1C(T−L)が少なくとも23MPa√m、好ましくは少なくとも25MPa√mであり、K
1C(S−L)が少なくとも19MPa√m、好ましくは少なくとも21MPa√mであるようなものである。
【0053】
本発明によるシートメタルは、構成要素、好ましくは航空機の構成要素を作製するために有利に利用されることができる。航空機の好ましい構成要素は、翼桁、リブまたは胴体フレームである。本発明は、航空機の主翼の製造のために、ならびに本発明による製品の特性が有利である任意の他の用途のために特に利用される、全体的な機械加工によって得られる複雑な形状の部品に対して、特に有利である。
【0054】
(実施例)
この実施例において、AA2050合金製の厚みのあるシートメタルが調製された。AA2050合金製スラブを、直接冷却式の垂直型半連続鋳造によって鋳造した。合金は、溶解炉内で調製された。実施例1〜7については、溶解炉内で溶融金属の表面にKCL/LiCl混合物が使用された。実施例8および9については、溶解炉内で塩を使用しなかった。実施例8および9について、溶融金属と接触する雰囲気は、鋳造設備全体に対して0.3体積%未満の酸素含有量であった。鋳造設備は、酸素含有量を制限することを可能にする、鋳造用穴の上に配置されるフードを含んでいた。試験8および9について、さらに、囲い(10)内の圧力が室(65)内の圧力より低くなるように、また鋳造用穴の開いた表面を介した雰囲気の速度が少なくとも2m/秒になるように、吸引システム(101)が使用された。酸素含有量が、鋳造の際に、酸素濃度計を用いて測定された。さらに液体アルミニウム中の水素含有量が、窒素スイープ下で、Alscan
TMタイプのプローブを使って測定された。二つのタイプの溶融金属分配器が使用された。例えば国際公開第99/44719号の
図2から6に記載されているような「コンボバッグ」タイプの第一の分配器は、主として炭素を含むファブリックで作製されており、以下で「分配器A」と称され、また以下で「分配器B」と称される、
図3に記載されているような第二の分配器は、グラファイトワイヤーのファブリックで作製されている。
【0055】
実施されたさまざまな試験の鋳造条件が、表1に示される。
【0057】
スラブを、505℃で12時間均質化し、およそ365mmの厚みになるまで機械加工し、最終的な厚みが154〜158mmのシートメタルになるまで熱間圧延し、504℃で溶体化処理し、焼入れし、そして3.5%の永久ひずみを伴う制御された引張りによって応力除去を行った。このようにして得られたシートメタルを、155℃で18時間
時効をした。
【0058】
静的機械的特性および靭性が、4分の1の厚みのところで特徴付けられた。
【0059】
静的機械的特性および靭性が、表2に示される。
【0061】
疲労特性が、半分の厚みのところで採取された特定のサンプルに対して、平滑試験片および切欠き試験片で特徴付けられた。
【0062】
平滑試験片での疲労特性評価について、
図1aで概要が示されている四つの試験片が方向TLにおいて半分の厚み、半分の幅のところで試験され、試験条件は、σ=242MPa、R=0.1であった。200000サイクルの後に中断された試験と、300000サイクルの後に中断された試験がある。
【0063】
切欠き試験片での疲労特性評価について、Kt値が2.3である、
図1bに図示されている試験片が使用された。試験片は、周波数50Hz、周囲空気、R値=0.1で試験された。対応するヴェーラー曲線が、
図6aおよび
図6bに示されている。疲労品質指標FQIが計算された。
【0065】
水素含有量0.4ml/100g未満と、液体表面上で測定される酸素含有量0.3体積%未満と、分配器Bとを組合せることより、優れた疲労性能レベルに達することができる。これらの結果は
図5に示されている。特定の点の上に位置づけられている矢印は、試験が破断まで続けられなかったことから、それが最小値であることを示している。