【実施例】
【0095】
さらなる説明なしに、当業者であれば、ここまでの説明ならびに次の具体的な方法および実施例により、本発明を作成して使用し、かつ請求項に記載された方法を実施することができるであろう。したがって、次の実施例は、本発明のいくつかの実施形態、特徴および利点を具体的に示すが、本開示の残りの部分を限定するものとして決して解釈されるべきではない。実施例は、単に本発明を明確にするに過ぎない。
【0096】
方法
細胞培養:
PER.C6(登録商標)細胞(Fallaux et al.,1998)を、10mMのMgCl
2を添加した10%ウシ胎児血清(FBS)含有ダルベッコ変法イーグル培地(DMEM)中で維持した。
【0097】
pAdApt35プラスミドおよびpshuttle26プラスミドにおけるアデノウイルスベクターの構築
異なる双方向性プロモーター構築物をpAdApt35プラスミド(Vogels et al.2007)またはpshuttle26プラスミドにクローニングした。Pshuttle26は、以前に記載されたpAdapt26プラスミド(Abbink et al.,2007)に基づいて構築した。Ad26ベクターゲノムの右側部分を含む2−Kb断片を合成し、CMVプロモーターのSpeI部位が最初に単一bp置換の導入によって破壊されたpAdApt26.Lucにサブクローニングした。結果として、pshuttle26は、Ad26コスミドとの相同組換えにより、またはAd26完全長ゲノムプラスミドとの相同組換えにより、アデノウイルスベクターを構築するために使用され得る。
【0098】
pAdapt35プラスミドおよびpshuttle26プラスミドは、1つのプロモーターおよび1つのSV40由来ポリAシグナルを有する標準的な一方向性発現カセットのみを有するため、別の導入遺伝子とBGHポリAシグナルを配置するための制限部位を融合PCRによって付加した。SpeI、NotI−BGHポリA−EcoRI−ルシフェラーゼ−KpnI、SalI、AvrIIを含む融合PCR産物を、SpeIおよびAvrII制限部位を介した分子クローニングによって正しい配向でプラスミドに挿入した。結果として、一方向性hCMVプロモーターは、隣接制限部位AvrIIおよびHindIIIを用いて双方向性プロモーター配列によって置換され得る。導入遺伝子を双方向性プロモーターの両側に、一方の側はHindIIIおよびXbaI制限部位を使用して、他方の側はAvrII、SalIまたはKpnIを使用して配置した(
図3A)。AvrII、SalIまたはKpnIの選択は、プラスミド配列における制限部位の独自性に依存した。異なる双方向性プロモーターコンストラクトを有する完全な双方向性発現カセットをpShuttle26プラスミドにクローニングし、SpeIまたはNotIおよびXbaI制限部位を用いてpAdapt35プラスミドに移した。コザック配列(5’GCCACC3’)が各ATG開始コドンの直前に含まれ、2つの停止コドン(5’TGA TAA3’)が各コード配列末端に付加された。本明細書に記載のように、組換えアデノウイルスおよびベクターは、一般に、rAdまたはrAdベクターと称され、より具体的にはrAd35またはrAd26および関連ベクターと称される。
【0099】
アデノウイルスの生成、感染および増殖
全てのアデノウイルスをPER.C6細胞中で相同組換えにより生成し、以前に記載されているようにして生成した(rAd35では(Havenga et al.,2006);rAd26では(Abbink et al.,2007))。簡単に記載すると、PER.C6細胞を、製造業者(Life Technologies)によって提供された使用説明書に従ってリポフェクタミンを使用して、プラスミドをコードするrAdベクターでトランスフェクトした。rAd35ベクターをレスキューするために、pAdApt35プラスミドおよびpWE/Ad35.pIX−rITR.dE3.5orf6コスミドを使用し、一方、rAd26ベクターのためにpShuttle26プラスミドおよびpWE.Ad26.dE3.5orf6コスミドを使用した。十分な細胞変性効果(CPE)に達した1日後に細胞を収集し、凍結解凍させ、3,000rpmで5分間遠心分離し、−20℃で貯蔵した。次いで、ウイルスを、マルチウェル24組織培養プレートの単一ウェルで培養したPER.C6細胞内でプラーク精製し、増幅させた。T25組織培養フラスコを使用して培養されたPER.C6細胞において、さらに増幅させた。
【0100】
発現の分析
発現の強度および発現バランスを評価するために、高感度緑色蛍光タンパク質(eGFPタンパク質アクセッション番号AAB02572.1)およびホタルルシフェラーゼ(ルシフェラーゼタンパク質アクセッション番号ACH53166)をコードするレポーター遺伝子を用いてウイルスベクターを作製した。相対eGFP平均蛍光強度(MFI)およびルシフェラーゼ相対発光量(RLU)を、HEK293細胞(pAdAptベクターまたはpshuttleベクターによる一過性トランスフェクション)またはA549細胞(ウイルス感染)との各プロモーターおよびレポーター遺伝子の組み合わせについて記録した。ルシフェラーゼ活性は、Luminoskan(商標)Ascentマイクロプレート照度計において、0.1%DTT(1M)の存在下、細胞溶解物中で測定した。eGFP蛍光は、フローサイトメーター(FACS)において、トリプシン処理、遠心分離、およびPBS/1%FBS(非ウイルス物質)またはCellFix(ウイルス物質)における細胞ペレットの再懸濁により測定した。
【0101】
PER.C6細胞内のアデノウイルスベクターの遺伝的安定性試験
PER.C6細胞内にいくつかの継代を含む生産工程における遺伝的安定性を確実にするために、ワクチンベクターの遺伝的安定性試験を実施した。組換えワクチンベクターの作製、プラーク精製、およびT25形態への増殖を上述のように行った。簡単に記載すると、組換えウイルスをE1相補細胞株PER.C6においてプラスミドトランスフェクションによって作製し、プラーク精製した。マルチウェル24(MW24)からT25フラスコへの規模拡大のために5つのプラークを選択した。続いて、新しいPER.C6細胞をウイルス継代数13までT25形態で感染させた。感染の2日後に完全細胞変性効果を与える所定の感染性容積(rAd35では50、rAd26では900のウイルス粒子/細胞比の範囲内にあることが遡及的に判定された)を使用してウイルスを増殖させた。ウイルスDNAをp13材料から単離し、PCR分析により、完全導入遺伝子発現カセットの存在を試験した。ワクチンベクターをPER.C6細胞内で継代数13まで増殖させた。感染の2日後に完全なCPEを与える方法で増殖を行った。rAd35ウイルスは、完全CPEの2日後に回収し、一方、rAd26ウイルスは、完全CPEの1日後に回収した。ウイルスDNAを継代2、継代5、継代10、および継代13で単離し、導入遺伝子発現カセットの両側に位置するプライマーを使用したPCR分析により、欠失が存在しないことを試験した。欠失変異体の欠如は、以下のパラメータによって定義した:PCR産物のバンドサイズは、陽性対照(ウイルスレスキューのために使用されたプラスミドのPCR産物)に一致し、予測されたPCR産物を下回るバンドはなく(追加的なバンドが非特異的なPCR産物であることが示されない限り、それらは、陽性対照にも存在するため)、承認されたアッセイ:PCR H
2O対照においてバンドがない。遺伝的安定性をさらに確認するために、発現カセットおよびいくつかのプラーク隣接領域のPCR産物の配列を決定した。
【0102】
実施例1:双方向性プロモーターコンストラクトの設計
強力な双方向マウスCMV(mCMV)プロモーターを、以前の研究(国際公開第2016/166088号パンフレット)の、アデノウイルスベクターのE1領域における双方向性発現カセットからの2つの抗原の発現に有用なプロモーターとして同定した。mCMV双方向性プロモーターを有するベクターは、抗原を発現し、遺伝的に安定であり、コードされた抗原の両方に対する免疫応答を誘導したが、抗原発現および誘導された免疫応答は、以下に説明するようにバランスがとれていなかった。双方向性プロモーターの右側に置かれた抗原の発現は、双方向性プロモーターの左側に置かれた抗原よりも高く、双方向性プロモーターの右側に置かれた抗原に対してより高い免疫応答を生じた。mCMVの発現レベルの双方向の差は、約10倍であった。しかし、1つの抗原のみを発現する2つのベクターの混合物を置換するために、特定の用途では、両方の抗原の同等レベルの抗原発現を誘導するバランスのとれた双方向性プロモーターが望ましい。さらに、双方向性プロモーターのサイズが比較的小さい場合に有益であろう。
【0103】
強力でよりバランスのとれた双方向性プロモーターを特定するために、新しい双方向性プロモーターのパネルを設計した。アデノウイルスベクターの全体的なサイズ制限のため、抗原のための十分な空間を保持するために最大サイズ2kBを有する小さいサイズの双方向性プロモーターの設計が好ましかった。さらに、アデノウイルスベクターにおける相同組換えによる欠失を防ぐために、配列同一性の広範なストレッチのない(<15ヌクレオチド)構築ブロックが好ましかった。本発明の双方向性プロモーターは、双方向性プロモーター配列の両側に配置された遺伝子の発現を制御する双方向様式で遺伝子を発現させる。これらの双方向性プロモーターは、プロモーターエレメントの他にエンハンサーエレメントおよびイントロンエレメントを含み、本明細書中に記載される構築ブロックによって定義される連続遺伝子調節配列である。合成双方向性プロモーターの設計に使用される構築ブロックは、既知の強力な一方向性プロモーター、エンハンサーおよびイントロン配列に由来する。プロモーターは、プロモーター配列の下流に配置された1つの遺伝子の発現を駆動し、通常、TATAボックス配列および転写開始部位(TSS)を含む。エンハンサー配列は、プロモーターからの遺伝子発現を増強することができる。イントロン配列は、インビトロ、および特にインビボでの遺伝子発現を増加させると記載されている。
【0104】
双方向性プロモーターコンストラクトの以下のパネルを設計し、試験した。
1.rCMV−hEF1α I(
図1A、配列番号1)
2.rCMV−hEF1α II(
図1B、配列番号2)
3.rhCMV−CAG1(
図1C、配列番号3)
4.hCMV−rhCMV(
図1D、配列番号4)
5.rCMV−CAG(
図1E、配列番号5)
6.rhCMV−CAG2(
図1F、配列番号6)
7.rCMV bidir 1(
図1G、配列番号10)
8.rCMV bidir 2(
図1H、配列番号8)
9.rCMV bidir 1.1(
図1I、配列番号7)
10.hCMV−CAG4(
図1J、配列番号11)
【0105】
以前の特許出願(国際出願第PCT/欧州特許出願公開第2016/057982号明細書)中の他の双方向性プロモーターコンストラクトも試験した。
1.mCMV bidir.
2.hCMV−CAG
3.mCMV−CAG
【0106】
双方向性プロモーター設計およびそれらの構築ブロックの概略図を
図1に示し、以下により詳細に説明する。
【0107】
異なる設計で使用されるプロモーターおよびエンハンサー構築ブロックは、サイトメガロウイルス最初期(IE)領域(本明細書中では、通常、hCMVプロモーターおよびhCMVエンハンサーと称され、ときにhCMV IEとも称される)、ニワトリベータアクチン/ウサギベータグロビンプロモーター配列、およびヒト伸長因子1αプロモーター(hEF1αプロモーター)配列に由来する。イントロンは、キメラニワトリベータアクチン/ウサギベータグロビン配列、hEF1α第1イントロンおよびヒトアポリポタンパク質A−1イントロン(hApoA1イントロン)に由来する。
【0108】
ヒトサイトメガロウイルス主要最初期プロモーターは、種々の哺乳動物細胞株における強力なプロモーターとして知られている(Powell et al.,2015)。hCMVおよび他のヘルペスウイルスは、3期、すなわち最初期(IE)、初期および後期において遺伝子を発現する。主要最初期プロモーターは、種々の哺乳動物細胞株において高レベルで異種遺伝子を活性化する。
【0109】
ヒトサイトメガロウイルスの主要最初期プロモーターおよびエンハンサーは、導入遺伝子発現カセットの設計において最も頻繁に使用される(Addison,Hitt,Kunsken,&Graham,1997;C.Harro et al.,2009)が、マウス(mCMV)(Addison et al.,1997;Chatellard et al.,2007;C.Harro et al.,2009)、ラット(rCMV)(Sandford&Burns,1996;Voigt,Sandford,Hayward,&Burns,2005)およびアカゲザル(rhCMV)(Barry,Alcendor,Power,Kerr,&Luciw,1996;Chan,Chiou,Huang,&Hayward,1996;Chang et al.,1993;Hansen,Strelow,Franchi,Anders,&Wong,2003)などの他の種に感染するサイトメガロウイルスの主要最初期プロモーターおよびエンハンサーも知られており、強力な発現カセットの設計に使用され得る。具体的には、アカゲザルCMV配列は、オナガザルヘルペスウイルス5型(Cercopithecine herpesvirus 5)の主要最初期領域に由来する。アカゲザルCMVショートプロモーター部分をhCMVおよびチンパンジーCMVショートプロモーターとのアラインメントによって同定した。hEF1αプロモーターも哺乳動物細胞における異種遺伝子発現のための強力なプロモーター配列であると記載されている(Kim,Uetsuki,Kaziro,Yamaguchi,&Sugano,1990)。
【0110】
hCMVエンハンサー、ニワトリベータアクチンプロモーター(A)およびハイブリッドニワトリベータアクチン/ウサギベータグロビンイントロン(G)配列からなるキメラプロモーターCAGは、異種遺伝子の発現のための強力なプロモーターであると記載され、短縮することができ、抗原の発現に利用することができる(Richardson et al.,2009)。Richardsonらによる研究は、ハイブリッドイントロンが有意に短縮されたΔ829CAGプロモーターバージョンを生じるCAGプロモーターの改変を記載している。このhCMVエンハンサーを含まないΔ829CAGプロモーターバージョン(Δ829AG)を双方向性プロモーターの設計のためのビルディングブロックとして使用した(図面ではAG部分として示すが、双方向性プロモーターの名称ではCAGと称し、本明細書全体を通してCAGまたはAGと称する)。
【0111】
以下では、双方向性プロモーター配列を設計するための構築ブロックの配置を記載する。
【0112】
短縮されたAGプロモーターおよびhEF1αプロモーターは、記載された強力な調節配列の重要な部分としてイントロンを有する。AGプロモーターまたはhEF1αプロモーターが双方向性プロモーター設計において使用された場合、本発明者らはまた、双方向性プロモーター設計の反対側に異種イントロン配列を配置した。rCMV最初期プロモーターの異なる潜在的な双方向性プロモーター設計をマウスCMVプロモーターの天然の双方向性に基づいて作製した。
【0113】
hEF1α由来のイントロンおよびmCMVプロモーター配列の合成組み合わせにより、強力な調節配列が得られることは以前から記載されている。したがって、hEF1α配列をrCMVプロモーター(mCMVのようなムロメガロウイルスに由来する別のプロモーター)およびエンハンサーのエレメントと組み合わせて、双方向性プロモーター配列rCMV−hEF1αIおよびrCMV−hEF1αIIを設計した(例えば、
図1Aおよび1Bを参照されたい)。hEF1αイントロンは、発現レベルを増加させると記載されているが、非常に長い配列であるため、本発明者らの設計では、CAGプロモーターについての実験的方法(Richardson et al.,2009)によって記載されるように、hEF1αイントロン配列を有意に短縮することを試みた。この目的のために、記載されたスプライスドナー、スプライスアクセプターおよび推定分岐点部位、さらに記載された細胞因子結合部位を保存しながら、イントロン配列の一部を除去した。プロモーター/イントロン組み合わせhEF1α Iがプロモーター/イントロン組み合わせhEF1α IIよりも多くの部位を保存し、双方向性プロモーターrCMV−hEF1α IおよびrCMV−hEF1α IIが得られる、2種の異なるバージョンの短縮イントロンを設計した。
【0114】
さらなる双方向性プロモーターの設計は、アカゲザルCMV(rhCMV)、ラットCMV(rCMV)およびヒトCMV(hCMV)を含む、異なる種に由来するサイトメガロウイルス主要最初期プロモーターのエンハンサーおよびプロモーター配列と組み合わせた、短縮されたAGプロモーターに基づく。これらの双方向性プロモーターは、rhCMV−CAG1、rhCMV−CAG2、hCMV−CAG4およびrCMV−CAGと呼ばれる。rhCMV−CAG1とrhCMV−CAG2との間の差異は、rhCMVエンハンサー配列の配向である。
【0115】
さらなる双方向性プロモーター設計は、hCMVエンハンサー、ヒトCMVプロモーター(hCMV)、およびアカゲザルCMVプロモーター(rhCMV)の組み合わせに基づいて行った。得られた双方向性プロモーターコンストラクトは、本文全体を通してhCMV−rhCMVと呼ばれる。
【0116】
2つのプロモーターが隣接した1つのエンハンサーの配置が2つの目的遺伝子の協調発現をもたらすことが以前に記載されている(Amendola et al,2005)ため、強力なプロモーターおよびエンハンサー構築ブロックの使用は、理論的には同等の強度およびバランスの双方向性プロモーターをもたらす。
【0117】
合成双方向性プロモーター設計に加えて、rCMV mIE領域に由来する潜在的に天然の双方向性プロモーターを双方向性プロモーター配列rCMV bidir 1およびrCMV bidir 2およびrCMV bidir 1.1のベースとして使用した。3つの双方向性プロモーターの設計の全ては、rCMVエンハンサー配列の両側に推定最小rCMVプロモーターおよび推定最小rCMV vOX2プロモーターを有するが、設計は、エンハンサー断片の長さおよびエンハンサー断片の配向が異なる。vOX2プロモーターは、MIE領域の直接右側のラット細胞CD200(vOX2)遺伝子の転写を駆動している(Voigt et al.,2005)。
【0118】
実施例2:レポーター遺伝子の強力でバランスのとれた発現のための異なるプロモーターコンストラクトのスクリーニング
第1のスクリーニング実験において、異なる双方向性プロモーターコンストラクトからの発現を、レポーター遺伝子ルシフェラーゼおよびeGFPを使用して、HEK293における一過性トランスフェクションにより、定量的強度読み出しについて評価した。pAdapt35プラスミドの一過性トランスフェクションでは、双方向性プロモーターは、双方向性プロモーターの左側にルシフェラーゼ導入遺伝子を、右側にeGFP導入遺伝子を有した。
【0119】
異なる双方向性プロモーター設計を有するプラスミドを用いて、3つの独立したトランスフェクション実験を行った。実験1(
図2A)では、プロモーターrCMV bidir.2、rCMV−hEF1α II、rhCMV−hEF1α I、rhCMV−CAG1およびhCMV−rhCMVを試験した。rCMV bidir.2、rCMV−EF1α IIおよびrhCMV−CAG1は、一方向制御のhCMVプロモーター(配列番号9)よりも効力が低いものの、常に双方向性プロモーター機能を示すが、rCMV−hEF1α Iは、eGFP発現について陰性対照を上回るプロモーター強度を示さず、ルシフェラーゼ発現についてそれほど低いプロモーター強度を示さない。実験1では、hCMV−rhCMVが最も強力な双方向性プロモーターである。驚くべきことに、hCMV−rhCMVは、一方向性hCMVプロモーターより発現レベルがわずかに低いものの、非常にバランスのとれた導入遺伝子発現を有する強力な双方向性プロモーターである。スクリーニング実験2(
図2B)では、プロモーターhCMV−CAG4、rCMV bidir.1.1、rCMV−CAGを試験した。hCMV−CAG4プロモーターは、両側で強力なプロモーター活性を示し、それは、この実験における一方向性hCMV対照と同等であるか、またはそれよりもさらに高かった。rCMV bidir.1.1プロモーターは、予想に反して両側で低いプロモーター強度を示した。双方向性rCMV−CAGプロモーターは、hCMV一方向性対照の強度と比較して両側からより低く、また双方向性hCMV−rhCMVプロモーター(このデータは
図2Aに示されている)と比較しても両側でより低く、かつバランスがとれていない双方向性プロモーター強度を示す。第3のスクリーニング実験では、2つの新しい双方向性プロモーターrhCMV−CAG2、rCMV bidir.1、および2つの既に試験した双方向性プロモーターhCMV−rhCMVおよびhCMV−CAG4を試験した。rhCMV−CAG2は、一方向性hCMV対照と比較して弱いものの、双方向性プロモーター強度を示したが、rCMV bidir1は、プロモーターの右側に配置されたeGFPの発現のみを誘導し、ルシフェラーゼ活性は、非トランスフェクト細胞対照の範囲であった。この実験3では、双方向性プロモーターhCMV−rhCMVおよびhCMV−CAG4を再び試験し、それらの有望な強度およびバランスを確認した。このような細胞に基づく生物学的トランスフェクション実験において予想されるように、実験1と実験3との間にいくらかの変動が観察される。hCMV−rhCMVおよびhCMV−CAG4の両方は、一方向性hCMVプロモーター対照と比較して実験1よりも実験3において低い強度を示す。hCMV−rhCMVは、hCMV−CAG4よりも効力が低いが、eGFPおよびルシフェラーゼ発現に関してよりバランスがとれている。したがって、hCMV−rhCMVは、非常にバランスのとれた導入遺伝子発現を有する強力な双方向性プロモーターであり、かつまた比較的短いという利点を有する。
【0120】
驚くべきことに、構築ブロックの全ての組み合わせが、強力でバランスのとれた双方向性プロモーターをもたらしたわけではない。例えば、hCMV−CAG4、およびrhCMV−CAG1、およびrhCMV−CAG2は、それらの構築ブロックに関して類似している。3つの異なる設計は、全て異なる種に由来するが、記載された強力なCMV由来のエンハンサーおよびプロモーターと、以前に記載された同一の強力なCAGプロモーターとを使用する。しかし、驚くべきことに、hCMV−CAG4は、rhCMV−CAG1およびrhCMV−CAG2よりも強力である。さらに、CAGプロモーター部分は、hCMVプロモーターより強力であると記載されているが、双方向性の設定では、hCMVプロモーター構築ブロックに結合した導入遺伝子の発現は、CAGプロモーター構築ブロックに結合した導入遺伝子の発現を超えていた。これは、他のコンステレーションにおいて使用された場合、以前から知られている構築ブロックから新たな双方向性プロモーターを作製することの予測が不可能であることを明確に示している。試験した双方向性プロモーターコンストラクトのセットから、hCMV−rhCMVは、強力な双方向性プロモーターコンストラクトの最もバランスのとれた候補として特定された。記載された強力なプロモーターおよびエンハンサーの構築ブロックからのhCMV−rhCMVプロモーターの設計から、このプロモーターが強力であり(他の新規なhCMV−CAG4双方向性プロモーターよりもやや弱いが)、かつ非常にバランスがとれている(国際公開第2016/166088号パンフレットに記載されたmCMV双方向性プロモーターよりもはるかにバランスがとれており、さらにhCMV−CAG4双方向性プロモーターよりもいくぶんバランスがとれている)ことは予測できなかった。さらに、双方向性hCMV−rhCMVプロモーターは、他のプロモーター設計よりもかなり短い(1kB未満の長さを有する)という利点を有する。これは、この双方向性プロモーターの使用が他の双方向性プロモーターと比較して、rAdsなどの空間制限を有するベクターにおいて、導入遺伝子のためのより多くの空間を残す(すなわちより長い導入遺伝子を可能にする)ことを意味する。異なる一方向性プロモーター構築ブロックからなる残りの試験された合成双方向性プロモーター設計は、主に良好な双方向性プロモーター機能を示したが、それらは、一般に、hCMV−rhCMVプロモーターよりも強力でなく、かつバランスがとれていなかった。
【0121】
rCMV最初期プロモーターを、マウスCMV双方向性プロモーターに匹敵するが、それほど強力ではない双方向性プロモーターとして設計することができる。これらの結果は、構築ブロックのいずれの組合せが双方向性プロモーターの良好な機能(両方向における強力な発現、すなわちhCMV一方向性プロモーターの制御下で少なくとも10%、好ましくは少なくとも20%、より好ましくは少なくとも30%の発現)を提供するかを予測することは不可能であることを示している。
【0122】
構築ブロックの同一性および配向についての注釈を含むhCMV−rhCMVの概略図を
図3に示す。双方向性hCMV−rhCMVプロモーターの右側は、アカゲザルCMVプロモーター構築ブロック(rhCMV)を含み、双方向性hCMV−rhCMVプロモーターの左側は、hCMVプロモーター構築ブロックと、hCMVプロモーターと同じ方向の双方向性プロモーターの左側を指すように逆向きのhCMVエンハンサー構築ブロックとを含む。ここでの「左」および「右」という用語は、説明を容易にするために用いられているが、当業者は、双方向性hCMV−rhCMVプロモーターコンストラクトも向きを変え、逆向きで用いられ得ることを直ちに認識するであろう。hCMV−rhCMVプロモーターは、1kb未満の比較的小さいサイズであり、組換えアデノウイルスベクターにおける双方向性プロモーターとしての使用によく適していることにも留意されたい。
【0123】
実施例3:hCMV−rhCMV発現カセットを有するアデノウイルスベクターからの導入遺伝子発現の強度およびバランス
アデノウイルスベクターのE1領域からの発現の強度およびバランスをさらに評価するために、本発明者らは、E1領域にhCMV−rhCMV双方向性発現カセットを有するAd26ベクターおよびAd35ベクターを生成した。4つの異なるベクトル、すなわちAd26.eGFP.hCMV−rhCMV.Luc、Ad26.Luc.hCMV−rhCMV.eGFP、Ad35.eGFP.hCMV−rhCMV.LucおよびAd35.Luc.hCMV−rhCMV.eGFPを作成し、非相補性A549細胞の形質導入時のレポーター遺伝子発現の強度およびバランスを評価した。形質導入は、100VP/細胞および1000VP/細胞で行った。両方のVP/細胞比での結果は、類似していたため、1000VP/細胞での形質導入の結果のみを
図4に示す。100VP/細胞および1000VP/細胞での発現の10倍の差異を推定するために、一方向性hCMVプロモーターの制御下でレポーター遺伝子を発現する陽性対照ベクターAd.LucおよびAd.eGFPの形質導入を示す。パネル4Aは、hCMV−rhCMVが、1000VP/細胞でのAd26.LucおよびAd26.eGFP対照ベクターよりわずかに低い発現レベルにおいて、Ad26 E1双方向性発現カセットからの両方のレポーター遺伝子の強力な発現を誘導することを示す。Ad26.Luc.hCMV−rhCMV.eGFPをAd26.Luc.mCMV bidir.eGFPとさらに直接比較すると、Ad26.Luc.hCMV−rhCMV.eGFPは、mCMV bidirと比べてeGFP導入遺伝子の発現の低下を示すが、全体的によりバランスのとれた導入遺伝子の発現も示している。パネル4Bは、Ad35ベクターにおけるhCMV−rhCMV双方向性発現カセットからの導入遺伝子の発現を示す。興味深いことに、Ad35ベクターにおける発現プロフィールは、Ad26ベクターにおける発現プロフィールとわずかに異なっていた。したがって、強力な双方向性プロモーターは、異なる血清型に由来するrAdVにおいて使用され得るが、異なるプロモーターは、1つのrAdVにおける使用が他のものよりも最適であり得、さらに、プロモーターおよび発現カセットの複雑な設計が最適なウイルスベクターのために必要とされることを例示する。
【0124】
実施例4:E1領域にhCMV−rhCMV双方向性発現カセットを有するアデノウイルスベクターの遺伝的安定性試験
導入遺伝子の発現に加えて、AdVを産生している間の遺伝的安定性は、2つの抗原を発現する有用なAdVにとって重要なパラメータである。したがって、先行出願の国際公開第2016/166088号パンフレットに記載のように遺伝的安定性を試験した。簡潔に記載すると、ベクターAd26.Luc.hCMV−rhCMV.eGFPおよびAd26.eGFP.hCMV−rhCMV.LucをPER.C6細胞におけるプラスミドトランスフェクションによって生成し、ウイルス集団をプラークピッキングによって単離した。1ベクター当たり10個のプラークをウイルス継代数(vpn)3まで増殖させた。その後、5つのプラークを選択し、vpn13まで継代を延長した。遺伝的安定性をE1発現カセット領域(
図5)ならびにE3およびE4領域(E3およびE4PCRのデータは示さず)の同一性PCRによって評価した。小さい欠失または点変異の欠如をvpn13のE1 PCR産物の標準的なサンガーシーケンシングによって確認した。Ad26.Luc.hCMV−rhCMV.eGFPおよびAd26.eGFP.hCMV−rhCMV.Lucの両方の5つのプラークのうちの5つがvpn13まで遺伝的に安定なままであった。
【0125】
結論
上記のように、新しい双方向性プロモーターコンストラクトのパネルをスクリーニングすることにより、いずれの双方向性プロモーターコンストラクトが所望のプロモーター特性を与えるかを予測することは不可能であることがわかった。実際、非常に類似しているように思われる双方向性プロモーターコンストラクトでさえ、必ずしも同じ結果を与えない。例えば、左側にヒトCMVプロモーター(hCMV)および右側に短いアカゲザルCMVプロモーター(rhCMV)を有する双方向性hCMV−rhCMVプロモーターは、特にrAd26およびrAd35ベクターのE1領域からの2つの異なる導入遺伝子のバランスのとれた発現を示した。驚くべきことに、双方向性hCMV−rhCMVプロモーターは、導入遺伝子発現の強度およびバランスを兼ね備え、かつまた長さが1kB未満と非常に小さい。双方向性hCMV−rhCMVプロモーターを有するrAdは、PER.C6細胞においてP13に連続継代した後でさえも遺伝的に安定であることがわかった。したがって、本発明の双方向性hCMV−rhCMVプロモーターは、遺伝子治療およびワクチンに使用することができる組換えウイルスベクターでの使用、特にバランスのとれた強力な発現が重要である場合、および/または小サイズの双方向性hCMV−rhCMVプロモーターが有用である場合の使用に驚くほど好ましい特性を備えたプロモーターである。
【0126】
【表1】
以下の態様を包含し得る。
[1] 1つの方向において第1の導入遺伝子に、かつ逆方向において第2の導入遺伝子に作動可能に連結された双方向性プロモーター(hCMV−rhCMVプロモーター)を含む組換え核酸分子であって、前記hCMV−rhCMVプロモーターは、
(i)エンハンサーと、その両側に配置されている、
(ii)前記エンハンサーの一方の側のヒトサイトメガロウイルス主要最初期プロモーター(hCMVプロモーター)と、
(iii)前記エンハンサーの他方の側のアカゲザルサイトメガロウイルス主要最初期プロモーター(rhCMVプロモーター)と
を含み、
(iv)前記第1の導入遺伝子は、前記hCMVプロモーターの下流に位置し、および
(v)前記第2の導入遺伝子は、前記rhCMVプロモーターの下流に位置する、組換え核酸分子。
[2] 前記エンハンサーは、ヒトサイトメガロウイルス主要最初期エンハンサー(hCMVエンハンサー)である、上記[1]に記載の組換え核酸分子。
[3] 前記第1および第2の導入遺伝子は、異なり、およびそれらの少なくとも1つは、抗原をコードする、上記[1]または[2]に記載の組換え核酸分子。
[4] 上記[1]〜[3]のいずれか一項に記載の組換え核酸分子を含む組換えベクターまたは組換えウイルス。
[5] プラスミドベクターである、上記[4]に記載の組換えベクター。
[6] アデノウイルスである、上記[4]に記載の組換えウイルス。
[7] 前記アデノウイルスは、E1領域に欠失を有する、上記[6]に記載の組換えアデノウイルス。
[8] ヒトアデノウイルス血清型35またはヒトアデノウイルス血清型26である、上記[6]または[7]に記載の組換えアデノウイルス。
[9] 遺伝的に安定な組換えアデノウイルスであって、前記アデノウイルスが標的細胞に感染すると、それぞれが強力に発現される第1および第2の導入遺伝子を含む遺伝的に安定な組換えアデノウイルスを製造する方法であって、
a)1つの方向において第1の導入遺伝子に、かつ逆方向において第2の導入遺伝子に作動可能に連結された上記[1]に記載の双方向性hCMV−rhCMVプロモーターを含むコンストラクトを調製する工程と、
b)前記コンストラクトを前記組換えアデノウイルスのゲノムに組み込む工程と
を含む方法。
[10] 前記エンハンサーは、hCMVエンハンサーである、上記[9]に記載の方法。
[11] 前記組換えアデノウイルスは、そのゲノムのE1領域に欠失を有する、上記[9]または[10]に記載の方法。
[12] 前記第1および第2の導入遺伝子は、異なり、およびそれらの少なくとも1つは、抗原をコードする、上記[9]〜[11]のいずれか一項に記載の方法。
[13] 前記組換えアデノウイルスは、ヒトアデノウイルス血清型35またはヒトアデノウイルス血清型26である、上記[9]〜[12]のいずれか一項に記載の方法。
[14] 細胞内で少なくとも2つの導入遺伝子を発現させる方法であって、上記[4]〜[8]のいずれか一項に記載の組換えベクターまたは組換えウイルスを細胞に提供する工程を含む方法。
[15] 少なくとも2つの抗原に対する免疫応答を誘導する方法であって、上記[4]〜[8]のいずれか一項に記載の組換えベクターまたは組換えウイルスを対象に投与する工程を含む方法。
[16] 上記[6]〜[8]のいずれか一項に記載の組換えアデノウイルスのゲノムを含む組換えDNA分子。
[17] 上記[4]〜[8]のいずれか一項に記載の組換えベクターまたは組換えウイルスと、薬学的に許容される担体または賦形剤とを含む医薬組成物。
【0127】
参考文献
米国特許文献:
US5057540A(10/15/1991).“Saponin adjuvant”.Kensil,Charlotte A.;Marciani,Dante J.
US5122458A(6/16/1992).“Use of a bGH gDNA polyadenylation signal in expression of non−bGH polypeptides in higher eukaryotic cells”.Post,Leonard E.;Palermo,Daniel P.;Thomsen,Darrell R.;Rottman,Fritz M.;Goodwin,Edward C.;Woychik,Richard P.
US5559099A(9/24/1996).“Penton base protein and methods of using same”.Wickham,Thomas J.;Kovesdi,Imre;Brough,Douglas E.;McVey,Duncan L.;Brader,Joseph T.
US5837511A(11/17/1998).“Non−group C adenoviral vectors”.Falck Pedersen,Erik S.;Crystal,Ronald G.;Mastrangeli,Andrea;Abrahamson,Karil
US5837520A(11/17/1998).“Method of purification of viral vectors”.Shabram,Paul W.;Huyghe,Bernard G.;Liu,Xiaodong;Shepard,H.Michael
US5846782A(12/8/1998).“Targeting adenovirus with use of constrained peptide motifs”.Wickham,Thomas J.;Roelvink,Petrus W.;Kovesdi,Imre
US5851806A(12/22/1998).“Complementary adenoviral systems and cell lines”.Kovesdi,Imre;Brough,Douglas E.;McVey,Duncan L.;Bruder,Joseph T.;Lizonova,Alena
US5891690A(4/6/1999).“Adenovirus E1−complementing cell lines”.Massie,Bernard
US5965541A(10/12/1999).“Vectors and methods for gene transfer to cells”.Wickham,Thomas J.;Kovesdi,Imre;Brough,Douglas E.
US5981225A(11/9/1999).“Gene transfer vector,recombinant adenovirus particles containing the same,method for producing the same and method of use of the same”.Kochanek,Stefan;Schiedner,Gudrun
US5994106A(11/30/1999).“Stocks of recombinant,replication−deficient adenovirus free of replication−competent adenovirus”.Kovesdi,Imre;Brough,Douglas E.;McVey,Duncan L.;Bruder,Joseph T.;Lizonova,Alena
US5994128A(11/30/1999).“Packaging systems for human recombinant adenovirus to be used in gene therapy”.Fallaux,Frits Jacobus;Hoeben,Robert Cornelis;Van der Eb,Alex Jan;Bout,Abraham;Valerio,Domenico
US6020191A(2/1/2000).“Adenoviral vectors capable of facilitating increased persistence of transgene expression”.Scaria,Abraham;Gregory,Richard J.;Wadsworth,Samuel C.
US6040174A(3/21/2000).“Defective adenoviruses and corresponding complementation lines”.Imler,Jean Luc;Mehtali,Majid;Pavirani,Andrea
US6083716A(7/4/2000).“Chimpanzee adenovirus vectors”.Wilson,James M.;Farina,Steven F.;Fisher,Krishna J.
US6113913A(9/5/2000).“Recombinant adenovirus”.Brough,Douglas E.;Kovesdi,Imre
US6225289B1(5/1/2001).“Methods and compositions for preserving adenoviral vectors”.Kovesdi,Imre;Ransom,Stephen C.
US6261823B1(7/17/2001).“Methods for purifying viruses”.Tang,John Chu Tay;Vellekamp,Gary;Bondoc,Jr.,Laureano L.
US6485958B2(11/26/2002).“Method for producing recombinant adenovirus”.Blanche,Francis;Guillaume,Jean Marc
US7326555B2(2/5/2008).“Methods of adenovirus purification”.Konz,Jr.,John O.;Lee,Ann L.;To,Chi Shung Brian;Goerke,Aaron R
US8932607B2(1/13/2015).“Batches of recombinant adenovirus with altered terminal ends”.Custers,Jerome H.H.V.;Vellinga,Jort
欧州特許文献:
EP1230354B1(1/7/2004).“PERMANENT AMNIOCYTE CELL LINE,THE PRODUCTION THEREOF AND ITS USE FOR PRODUCING GENE TRANSFER VECTORS”.KOCHANEK,Stefan;SCHIEDNER,Gudrun
EP1601776B1(7/2/2008).“EXPRESSION VECTORS COMPRISING THE MCMV IE2 PROMOTER”.CHATELLARD,Philippe;IMHOF,Markus
EP853660B1(1/22/2003).“METHOD FOR PRESERVING INFECTIOUS RECOMBINANT VIRUSES,AQUEOUS VIRAL SUSPENSION AND USE AS MEDICINE”.SENE,Claude
国際特許出願公報:
WO2003049763A1(6/19/2003).“COMPOSITION FOR THE PRESERVATION OF VIRUSES”.SETIAWAN,Kerrie;CAMERON,Fiona,Helen
WO2003061708A1(7/31/2003).“STABILIZED FORMULATIONS OF ADENOVIRUS”.PUNGOR,Erno
WO2003078592A2(9/25/2003).“METHOD FOR THE PURIFICATION,PRODUCTION AND FORMULATION OF ONCOLYTIC ADENOVIRUSES”.MEMARZADEH,Bahram;PENNATHUR−DAS,Rukmini;WYPYCH,Joseph;YU,De Chao
WO2003104467A1(12/18/2003).“MEANS AND METHODS FOR THE PRODUCTION OF ADENOVIRUS VECTORS”.VOGELS,Ronald;BOUT,Abraham
WO2004001032A2(12/31/2003).“STABLE ADENOVIRAL VECTORS AND METHODS FOR PROPAGATION THEREOF”.VOGELS,Ronald;HAVENGA,Menzo,Jans,Emco;ZUIJDGEEST,David,Adrianus,Theodorus
WO2004004762A1(1/15/2004).“ISCOM PREPARATION AND USE THEREOF”.MOREIN,Bror;LOeVGREN BENGTSSON,Karin
WO2004020971A2(3/11/2004).“CHROMATOGRAPHIC METHODS FOR ADENOVIRUS PURIFICATION”.SENESAC,Joseph
WO2004037294A2(5/6/2004).“NEW SETTINGS FOR RECOMBINANT ADENOVIRAL−BASED VACCINES”.HAVENGA,Menzo,Jans,Emco;HOLTERMAN,Lennart;KOSTENSE,Stefan;PAU,Maria,Grazia;SPRANGERS,Mieke,Caroline;VOGELS,Ronald
WO2004055187A1(7/1/2004).“RECOMBINANT VIRAL−BASED MALARIA VACCINES”.PAU,Maria Grazia;HOLTERMAN,Lennart;KASPERS,Jorn;STEGMANN,Antonius,Johannes,Hendrikus
WO2005002620A1(1/13/2005).“QUIL A FRACTION WITH LOW TOXICITY AND USE THEREOF”.MOREIN,Bror;LOeVGREN BENGTSSON,Karin;EKSTROeM,Jill;RANLUND,Katarina
WO2005071093A2(8/4/2005).“CHIMPANZEE ADENOVIRUS VACCINE CARRIERS”.CIRILLO,Agostino;COLLOCA,Stefano;ERCOLE,Bruno,Bruni;MEOLA,Annalisa;NICOSIA,Alfredo;SPORENO,Elisabetta
WO2005080556A2(9/1/2005).“VIRUS PURIFICATION METHODS”.WEGGEMAN,Miranda;VAN CORVEN,Emile Joannes Josephus Maria
WO2006053871A2(5/26/2006).“MULTIVALENT VACCINES COMPRISING RECOMBINANT VIRAL VECTORS”.HAVENGA,Menzo,Jans,Emco;VOGELS,Ronald;SADOFF,Jerald;HONE,David;SKEIKY,Yasir Abdul Wahid;RADOSEVIC,Katarina
WO2006108707A1(10/19/2006).“VIRUS PURIFICATION USING ULTRAFILTRATION”.WEGGEMAN,Miranda
WO2006120034A1(11/16/2006).“VACCINE COMPOSITION”.ERTL,Peter,Franz;TITE,John,Philip;VAN WELY,Catherine Ann
WO2007073513A2(6/28/2007).“METHOD FOR PROPAGATING ADENOVIRAL VECTORS ENCODING INHIBITORY GENE PRODUCTS”.GALL,Jason,G.,D.;BROUGH,Douglas,E.;RICHTER,King,C.
WO2007100908A2(9/7/2007).“CHIMERIC ADENOVIRAL VECTORS”.TUCKER,Sean,N.
WO2007104792A2(9/20/2007).“RECOMBINANT ADENOVIRUSES BASED ON SEROTYPE 26 AND 48,AND USE THEREOF”.BAROUCH,Dan H.;HAVENGA,Menzo Jans Emko
WO2007110409A1(10/4/2007).“COMPOSITIONS COMPRISING A RECOMBINANT ADENOVIRUS AND AN ADJUVANT”.HAVENGA,Menzo Jans Emko;RADOSEVIC,Katarina
WO2009026183A1(2/26/2009).“USE OF CHIMERIC HIV/SIV GAG PROTEINS TO OPTIMIZE VACCINE−INDUCED T CELL RESPONSES AGAINST HIV GAG”.NABEL,Gary,J.;YANG,Zhi−Yong;SHI,Wei;BAROUCH,Dan,H.
WO2009117134A2(9/24/2009).“AEROSOLIZED GENETIC VACCINES AND METHODS OF USE”.ROEDERER,Mario;RAO,Srinivas;NABEL,Gary,J.;ANDREWS,Charla,Anne
WO2010085984A1(8/5/2010).“SIMIAN ADENOVIRUS NUCLEIC ACID− AND AMINO ACID−SEQUENCES,VECTORS CONTAINING SAME,AND USES THEREOF”.COLLOCA,Stefano;NICOSIA,Alfredo;CORTESE,Riccardo;AMMENDOLA,Virginia;AMBROSIO,Maria
WO2010086189A2(8/5/2010).“SIMIAN ADENOVIRUS NUCLEIC ACID− AND AMINO ACID−SEQUENCES,VECTORS CONTAINING SAME,AND USES THEREOF”.COLLOCA,Stefano;NICOSIA,Alfredo;CORTESE,Riccardo;AMMENDOLA,Virginia;AMBROSIO,Maria
WO2010096561A1(8/26/2010).“SYNTHETIC HIV/SIV GAG PROTEINS AND USES THEREOF”.NABEL,Gary J.;YANG,Zhi−yong;SHI,Wei;BAROUCH,Dan H.
WO2011045378A1(4/21/2011).“METHOD FOR THE PURIFICATION OF ADENOVIRUS PARTICLES”.DE VOCHT,Marcel,Leo;VEENSTRA,Marloes
WO2011045381A1(4/21/2011).“PROCESS FOR ADENOVIRUS PURIFICATION FROM HIGH CELL DENSITY CULTURES”.DE VOCHT,Marcel,Leo;VEENSTRA,Marloes
WO2013139911A1(9/26/2013).“VACCINE AGAINST RSV”.RADOSEVIC,Katarina;CUSTERS,Jerome H.H.V.;VELLINGA,Jort;WIDJOJOATMODJO,Myra N.
WO2013139916A1(9/26/2013).“VACCINE AGAINST RSV”.RADOSEVIC,Katarina;CUSTERS,Jerome H.H.V.;VELLINGA,Jort;WIDJOJOATMODJO,Myra,N.
他の参考文献:
書籍
Ausubel et al.,Current Protocols in Molecular Biology,Wiley Interscience Publishers,NY(1995)
Ausubel F.M.,et al.(editors).Current Protocols in Molecular Biology;the series Methods in Enzymology,Academic Press,Inc.(1987)
Freshney,R.I.,Culture of animal cells:A manual of basic technique,fourth edition,Wiley−Liss Inc.,ISBN 0−471−34889−9(2000)
Frokjaer S.and Hovgaard L.(editors),Pharmaceutical Formulation Development of Peptides and Proteins,Taylor&Francis(2000)
Gennaro,A.R.(editor),Remington’s Pharmaceutical Sciences,18th edition,.,Mack Publishing Company(1990)
Horowitz,M.S.,Adenoviruses,Chapter 68,in Virology,(B.N.Fields et al.(editors),3rd Ed.,Raven Press,Ltd.,New York(1996)
Kibbe A.(editor),Handbook of Pharmaceutical Excipients,3rd edition,Pharmaceutical Press(2000)
Kruse and Paterson(editors),Tissue Culture,Academic Press.(1973)
MacPherson M.J.,Hams B.D.,Taylor G.R.(editors),PCR2:A Practical Approach(1995)
Sambrook et al.,Molecular Cloning,a Laboratory Manual,2nd Ed.,Cold Spring Harbor Press,Cold Spring Harbor,N.Y.(1989)
Sambrook,Fritsch and Maniatis,Molecular Cloning:A Laboratory Manual,2nd Ed.,(1989)
Shenk,Thomas,Adenoviridae and their Replication,Chapter 67,in Virology,B.N.Fields et al.(editors).,3rd Ed.,Raven Press,Ltd.,New York(1996)
Watson et al.,Recombinant DNA,2nd ed.,Scientific American Books.(1992)
学術誌
Abbink,P.,Lemckert,A.A.,Ewald,B.A.,Lynch,D.M.,Denholtz,M.,Smits,S.,...Barouch,D.H.(2007).Comparative seroprevalence and immunogenicity of six rare serotype recombinant adenovirus vaccine vectors from subgroups B and D.J Virol,81(9),4654−4663.doi:10.1128/JVI.02696−06
Abbink,P.,Maxfield,L.F.,Ng’ang’a,D.,Borducchi,E.N.,Iampietro,M.J.,Bricault,C.A.,...Barouch,D.H.(2015).Construction and evaluation of novel rhesus monkey adenovirus vaccine vectors.J Virol,89(3),1512−1522.doi:10.1128/JVI.02950−14
Abrahamsen,K.,Kong,H.L.,Mastrangeli,A.,Brough,D.,Lizonova,A.,Crystal,R.G.,&Falck−Pedersen,E.(1997).Construction of an adenovirus type 7a E1A−vector.J Virol,71(11),8946−8951.
Addison,C.L.,Hitt,M.,Kunsken,D.,&Graham,F.L.(1997).Comparison of the human versus murine cytomegalovirus immediate early gene promoters for transgene expression by adenoviral vectors.J Gen Virol,78(Pt 7),1653−1661.doi:10.1099/0022−1317−78−7−1653
Amendola,M.,Venneri,M.A.,Biffi,A.,Vigna,E.,&Naldini,L.(2005).Coordinate dual−gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters.Nat Biotechnol,23(1),108−116.
Andrianaki,A.,Siapati,E.K.,Hirata,R.K.,Russell,D.W.,&Vassilopoulos,G.(2010).Dual transgene expression by foamy virus vectors carrying an endogenous bidirectional promoter.Gene Ther,17(3),380−388.doi:10.1038/gt.2009.147
Bangari,D.S.,&Mittal,S.K.(2006).Development of nonhuman adenoviruses as vaccine vectors.Vaccine,24(7),849−862.doi:10.1016/j.vaccine.2005.08.101
Barry,P.A.,Alcendor,D.J.,Power,M.D.,Kerr,H.,&Luciw,P.A.(1996).Nucleotide sequence and molecular analysis of the rhesus cytomegalovirus immediate−early gene and the UL121−117 open reading frames.Virology,215(1),61−72.doi:10.1006/viro.1996.0007
Barski,O.A.,Siller−Lopez,F.,Bohren,K.M.,Gabbay,K.H.,&Aguilar−Cordova,E.(2004).Human aldehyde reductase promoter allows simultaneous expression of two genes in opposite directions.Biotechniques,36(3),382−384,386,388.
Belousova,N.,Harris,R.,Zinn,K.,Rhodes−Selser,M.A.,Kotov,A.,Kotova,O.,...Alvarez,R.D.(2006).Circumventing recombination events encountered with production of a clinical−grade adenoviral vector with a double−expression cassette.Mol Pharmacol,70(5),1488−1493.
Brough,D.E.,Lizonova,A.,Hsu,C.,Kulesa,V.A.,&Kovesdi,I.(1996).A gene transfer vector−cell line system for complete functional complementation of adenovirus early regions E1 and E4.J Virol,70(9),6497−6501.
Chan,Y.J.,Chiou,C.J.,Huang,Q.,&Hayward,G.S.(1996).Synergistic interactions between overlapping binding sites for the serum response factor and ELK−1 proteins mediate both basal enhancement and phorbol ester responsiveness of primate cytomegalovirus major immediate−early promoters in monocyte and T−lymphocyte cell types.J Virol,70(12),8590−8605.
Chang,Y.N.,Jeang,K.T.,Chiou,C.J.,Chan,Y.J.,Pizzorno,M.,&Hayward,G.S.(1993).Identification of a large bent DNA domain and binding sites for serum response factor adjacent to the NFI repeat cluster and enhancer region in the major IE94 promoter from simian cytomegalovirus.J Virol,67(1),516−529.
Chatellard,P.,Pankiewicz,R.,Meier,E.,Durrer,L.,Sauvage,C.,&Imhof,M.O.(2007).The IE2 promoter/enhancer region from mouse CMV provides high levels of therapeutic protein expression in mammalian cells.Biotechnol Bioeng,96(1),106−117.doi:10.1002/bit.21172
Cohen,C.J.,Xiang,Z.Q.,Gao,G.P.,Ertl,H.C.,Wilson,J.M.,&Bergelson,J.M.(2002).Chimpanzee adenovirus CV−68 adapted as a gene delivery vector interacts with the coxsackievirus and adenovirus receptor.J Gen Virol,83(Pt 1),151−155.
Collins,P.J.,Kobayashi,Y.,Nguyen,L.,Trinklein,N.D.,&Myers,R.M.(2007).The ets−related transcription factor GABP directs bidirectional transcription.PLoS Genet,3(11),e208.doi:10.1371/journal.pgen.0030208
Fallaux,F.J.,Bout,A.,van der Velde,I.,van den Wollenberg,D.J.,Hehir,K.M.,Keegan,J.,...Hoeben,R.C.(1998).New helper cells and matched early region 1−deleted adenovirus vectors prevent generation of replication−competent adenoviruses.Hum Gene Ther,9(13),1909−1917.
Farina,S.F.,Gao,G.P.,Xiang,Z.Q.,Rux,J.J.,Burnett,R.M.,Alvira,M.R.,...Wilson,J.M.(2001).Replication−defective vector based on a chimpanzee adenovirus.J Virol,75(23),11603−11613.doi:10.1128/JVI.75.23.11603−11613.2001
Gao,G.P.,Engdahl,R.K.,&Wilson,J.M.(2000).A cell line for high−yield production of E1−deleted adenovirus vectors without the emergence of replication−competent virus.Hum Gene Ther,11(1),213−219.doi:10.1089/10430340050016283
Geisbert,T.W.,Bailey,M.,Hensley,L.,Asiedu,C.,Geisbert,J.,Stanley,D.,...Sullivan,N.J.(2011).Recombinant adenovirus serotype 26(Ad26)and Ad35 vaccine vectors bypass immunity to Ad5 and protect nonhuman primates against ebolavirus challenge.J Virol,85(9),4222−4233.doi:10.1128/JVI.02407−10
Goerke,A.R.,To,B.C.,Lee,A.L.,Sagar,S.L.,&Konz,J.O.(2005).Development of a novel adenovirus purification process utilizing selective precipitation of cellular DNA.Biotechnol Bioeng,91(1),12−21.doi:10.1002/bit.20406
Hansen,S.G.,Strelow,L.I.,Franchi,D.C.,Anders,D.G.,&Wong,S.W.(2003).Complete sequence and genomic analysis of rhesus cytomegalovirus.J Virol,77(12),6620−6636.
Harro,C.D.,Robertson,M.N.,Lally,M.A.,O’Neill,L.D.,Edupuganti,S.,Goepfert,P.A.,...Mehrotra,D.V.(2009).Safety and immunogenicity of adenovirus−vectored near−consensus HIV type 1 clade B gag vaccines in healthy adults.AIDS Res Hum Retroviruses,25(1),103−114.
Harro,C.,Sun,X.,Stek,J.E.,Leavitt,R.Y.,Mehrotra,D.V.,Wang,F.,...Merck,V.Study Group.(2009).Safety and immunogenicity of the Merck adenovirus serotype 5(MRKAd5)and MRKAd6 human immunodeficiency virus type 1 trigene vaccines alone and in combination in healthy adults.Clin Vaccine Immunol,16(9),1285−1292.doi:10.1128/CVI.00144−09
Havenga,M.,Vogels,R.,Zuijdgeest,D.,Radosevic,K.,Mueller,S.,Sieuwerts,M.,...Goudsmit,J.(2006).Novel replication−incompetent adenoviral B−group vectors:high vector stability and yield in PER.C6 cells.J Gen Virol,87(Pt 8),2135−2143.
Heilbronn,R.,&Weger,S.(2010).Viral vectors for gene transfer:current status of gene therapeutics.Handb Exp Pharmacol(197),143−170.doi:10.1007/978−3−642−00477−3_5
Hoganson,D.K.,Ma,J.C.,Asato,L.,Ong,M.,Printz,M.A.,Huyghe,B.G.,...D’Andrea,M.J.(2002).Development of a Stable Adenoviral Vector Formulation.BioProcessing J.,1(1),43−48.
Holman,D.H.,Wang,D.,Raviprakash,K.,Raja,N.U.,Luo,M.,Zhang,J.,...Dong,J.Y.(2007).Two complex,adenovirus−based vaccines that together induce immune responses to all four dengue virus serotypes.Clin Vaccine Immunol,14(2),182−189.
Holterman,L.,Vogels,R.,van der Vlugt,R.,Sieuwerts,M.,Grimbergen,J.,Kaspers,J.,...Havenga,M.(2004).Novel replication−incompetent vector derived from adenovirus type 11(Ad11)for vaccination and gene therapy:low seroprevalence and non−cross−reactivity with Ad5.J Virol,78(23),13207−13215.doi:10.1128/JVI.78.23.13207−13215.2004
Hu,X.,Meng,W.,Dong,Z.,Pan,W.,Sun,C.,&Chen,L.(2011).Comparative immunogenicity of recombinant adenovirus−vectored vaccines expressing different forms of hemagglutinin(HA)proteins from the H5 serotype of influenza A viruses in mice.Virus Res,155(1),156−162.doi:10.1016/j.virusres.2010.09.014
Kim,D.W.,Uetsuki,T.,Kaziro,Y.,Yamaguchi,N.,&Sugano,S.(1990).Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system.Gene,91(2),217−223.
Kobinger,G.P.,Feldmann,H.,Zhi,Y.,Schumer,G.,Gao,G.,Feldmann,F.,...Wilson,J.M.(2006).Chimpanzee adenovirus vaccine protects against Zaire Ebola virus.Virology,346(2),394−401.doi:10.1016/j.virol.2005.10.042
Lasaro,M.O.,&Ertl,H.C.(2009).New insights on adenovirus as vaccine vectors.Mol Ther,17(8),1333−1339.doi:10.1038/mt.2009.130
Lemckert,A.A.,Grimbergen,J.,Smits,S.,Hartkoorn,E.,Holterman,L.,Berkhout,B.,...Havenga,M.J.(2006).Generation of a novel replication−incompetent adenoviral vector derived from human adenovirus type 49:manufacture on PER.C6 cells,tropism and immunogenicity.J Gen Virol,87(Pt 10),2891−2899.doi:10.1099/vir.0.82079−0
Mullick,A.,Xu,Y.,Warren,R.,Koutroumanis,M.,Guilbault,C.,Broussau,S.,...Massie,B.(2006).The cumate gene−switch:a system for regulated expression in mammalian cells.BMC Biotechnol,6,43.doi:10.1186/1472−6750−6−43
Na,M.,&Fan,X.(2010).Design of Ad5F35 vectors for coordinated dual gene expression in candidate human hematopoietic stem cells.Exp Hematol,38(6),446−452.doi:10.1016/j.exphem.2010.03.007
Nan,X.,Peng,B.,Hahn,T.W.,Richardson,E.,Lizonova,A.,Kovesdi,I.,&Robert−Guroff,M.(2003).Development of an Ad7 cosmid system and generation of an Ad7deltaE1deltaE3HIV(MN)env/rev recombinant virus.Gene Ther,10(4),326−336.doi:10.1038/sj.gt.3301903
Ogun,S.A.,Dumon−Seignovert,L.,Marchand,J.B.,Holder,A.A.,&Hill,F.(2008).The oligomerization domain of C4−binding protein(C4bp)acts as an adjuvant,and the fusion protein comprised of the 19−kilodalton merozoite surface protein 1 fused with the murine C4bp domain protects mice against malaria.Infect Immun,76(8),3817−3823.doi:10.1128/IAI.01369−07
Ophorst,O.J.,Radosevic,K.,Havenga,M.J.,Pau,M.G.,Holterman,L.,Berkhout,B.,...Tsuji,M.(2006).Immunogenicity and protection of a recombinant human adenovirus serotype 35−based malaria vaccine against Plasmodium yoelii in mice.Infect Immun,74(1),313−320.
Pham,L.,Nakamura,T.,Gabriela Rosales,A.,Carlson,S.K.,Bailey,K.R.,Peng,K.W.,&Russell,S.J.(2009).Concordant activity of transgene expression cassettes inserted into E1,E3 and E4 cloning sites in the adenovirus genome.J Gene Med,11(3),197−206.
Post,D.E.,&Van Meir,E.G.(2001).Generation of bidirectional hypoxia/HIF−responsive expression vectors to target gene expression to hypoxic cells.Gene Ther,8(23),1801−1807.doi:10.1038/sj.gt.3301605
Powell,S.K.,Rivera−Soto,R.,&Gray,S.J.(2015).Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy.Discov Med,19(102),49−57.
Richardson,J.S.,Yao,M.K.,Tran,K.N.,Croyle,M.A.,Strong,J.E.,Feldmann,H.,&Kobinger,G.P.(2009).Enhanced protection against Ebola virus mediated by an improved adenovirus−based vaccine.PLoS One,4(4),e5308.doi:10.1371/journal.pone.0005308
Robbins,P.D.,&Ghivizzani,S.C.(1998).Viral vectors for gene therapy.Pharmacol Ther,80(1),35−47.
Sandford,G.R.,&Burns,W.H.(1996).Rat cytomegalovirus has a unique immediate early gene enhancer.Virology,222(2),310−317.doi:10.1006/viro.1996.0428
Schepp−Berglind,J.,Luo,M.,Wang,D.,Wicker,J.A.,Raja,N.U.,Hoel,B.D.,...Dong,J.Y.(2007).Complex adenovirus−mediated expression of West Nile virus C,PreM,E,and NS1 proteins induces both humoral and cellular immune responses.Clin Vaccine Immunol,14(9),1117−1126.
Sullivan,N.J.,Geisbert,T.W.,Geisbert,J.B.,Shedlock,D.J.,Xu,L.,Lamoreaux,L.,...Nabel,G.J.(2006).Immune protection of nonhuman primates against Ebola virus with single low−dose adenovirus vectors encoding modified GPs.PLoS Med,3(6),e177.doi:10.1371/journal.pmed.0030177
Sullivan,N.J.,Geisbert,T.W.,Geisbert,J.B.,Xu,L.,Yang,Z.Y.,Roederer,M.,...Nabel,G.J.(2003).Accelerated vaccination for Ebola virus haemorrhagic fever in non−human primates.Nature,424(6949),681−684.doi:10.1038/nature01876
Tatsis,N.,Blejer,A.,Lasaro,M.O.,Hensley,S.E.,Cun,A.,Tesema,L.,...Ertl,H.C.(2007).A CD46−binding chimpanzee adenovirus vector as a vaccine carrier.Mol Ther,15(3),608−617.doi:10.1038/sj.mt.6300078
Vemula,S.V.,&Mittal,S.K.(2010).Production of adenovirus vectors and their use as a delivery system for influenza vaccines.Expert Opin Biol Ther,10(10),1469−1487.doi:10.1517/14712598.2010.519332
Vogels,R.,Zuijdgeest,D.,van Meerendonk,M.,Companjen,A.,Gillissen,G.,Sijtsma,J.,...Havenga,M.J.(2007).High−level expression from two independent expression cassettes in replication−incompetent adenovirus type 35 vector.J Gen Virol,88(Pt 11),2915−2924.
Vogels,R.,Zuijdgeest,D.,van Rijnsoever,R.,Hartkoorn,E.,Damen,I.,de Bethune,M.P.,...Havenga,M.(2003).Replication−deficient human adenovirus type 35 vectors for gene transfer and vaccination:efficient human cell infection and bypass of preexisting adenovirus immunity.J Virol,77(15),8263−8271.
Voigt,S.,Sandford,G.R.,Hayward,G.S.,&Burns,W.H.(2005).The English strain of rat cytomegalovirus(CMV)contains a novel captured CD200(vOX2)gene and a spliced CC chemokine upstream from the major immediate−early region:further evidence for a separate evolutionary lineage from that of rat CMV Maastricht.J Gen Virol,86(Pt 2),263−274.doi:10.1099/vir.0.80539−0
Walther,W.,&Stein,U.(2000).Viral vectors for gene transfer:a review of their use in the treatment of human diseases.Drugs,60(2),249−271.
Zhou,D.,Cun,A.,Li,Y.,Xiang,Z.,&Ertl,H.C.(2006).A chimpanzee−origin adenovirus vector expressing the rabies virus glycoprotein as an oral vaccine against inhalation infection with rabies virus.Mol Ther,14(5),662−672.doi:10.1016/j.ymthe.2006.03.027
Zhou,D.,Wu,T.L.,Lasaro,M.O.,Latimer,B.P.,Parzych,E.M.,Bian,A.,...Ertl,H.C.(2010).A universal influenza A vaccine based on adenovirus expressing matrix−2 ectodomain and nucleoprotein protects mice from lethal challenge.Mol Ther,18(12),2182−2189.doi:10.1038/mt.2010.202