(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】6684977
(24)【登録日】2020年4月1日
(45)【発行日】2020年4月22日
(54)【発明の名称】統合回転翼の製造方法及びそのブレードの切削加工プログラム
(51)【国際特許分類】
F01D 5/34 20060101AFI20200413BHJP
F01D 5/12 20060101ALI20200413BHJP
B23Q 15/00 20060101ALI20200413BHJP
G05B 19/19 20060101ALI20200413BHJP
【FI】
F01D5/34
F01D5/12
B23Q15/00
G05B19/19
【請求項の数】12
【全頁数】11
(21)【出願番号】特願2020-508634(P2020-508634)
(86)(22)【出願日】2019年8月30日
(86)【国際出願番号】JP2019034196
【審査請求日】2020年2月14日
【早期審査対象出願】
(73)【特許権者】
【識別番号】000114787
【氏名又は名称】ヤマザキマザック株式会社
(74)【代理人】
【識別番号】110001184
【氏名又は名称】特許業務法人むつきパートナーズ
(72)【発明者】
【氏名】原田 幸英
(72)【発明者】
【氏名】藤田 哲司
【審査官】
高吉 統久
(56)【参考文献】
【文献】
特開2009−262320(JP,A)
【文献】
特開2017−131898(JP,A)
【文献】
特開2010−180877(JP,A)
【文献】
特開2003−120203(JP,A)
【文献】
中国特許出願公開第102436216(CN,A)
【文献】
中国特許出願公開第103616850(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01D 5/34
F01D 5/12
B23Q 15/00
G05B 19/19
(57)【特許請求の範囲】
【請求項1】
正圧面及び負圧面をそれぞれ主面に有する三次元板状のブレードをローターディスクに一体化させた統合回転翼の製造方法であって、
前記ブレードの前縁及び後縁の稜線を所定数にそれぞれにおいて分割して仮想格子点を設定し、前記ローターディスク側から同一番目の前記前縁及び前記後縁のそれぞれの前記仮想格子点を前記正圧面及び前記負圧面を経由して周回する閉曲線を設定し、前記閉曲線をらせん状に連続させて旋削工具の刃先を移動させるように補間した加工指令を作成し、前記加工指令に従って前記刃先の位置に対応する切削点を前記ブレードの周囲を周回するよう移動させて切削加工を行っていくことを特徴とする統合回転翼の製造方法。
【請求項2】
前記閉曲線は微分可能であることを特徴とする請求項1記載の統合回転翼の製造方法。
【請求項3】
前記加工指令は前記刃先の向きを前記切削点での面法線に平行に作成することを特徴とする請求項2記載の統合回転翼の製造方法。
【請求項4】
前記閉曲線が前記統合回転翼の動作時にブレード上を流れる気流に沿うように前記仮想格子点を設定することを特徴とする請求項1乃至3のうちの1つに記載の統合回転翼の製造方法。
【請求項5】
前記稜線を等間隔に分割しこの分割点から前記仮想格子点を選択して設定することを特徴とする請求項4記載の統合回転翼の製造方法。
【請求項6】
前記旋削工具に対する切削情報に対応して前記加工指令を変更し前記切削加工を行うことを特徴とする請求項1記載の統合回転翼の製造方法。
【請求項7】
正圧面及び負圧面をそれぞれ主面に有する三次元板状のブレードをローターディスクに一体化させた統合回転翼のブレードの切削加工プログラムであって、
前記ブレードの前縁及び後縁の稜線を所定数にそれぞれにおいて分割して仮想格子点を設定し、前記ローターディスク側から同一番目の前記前縁及び前記後縁のそれぞれの前記仮想格子点を前記正圧面及び前記負圧面を経由して周回する閉曲線を設定するステップと、
前記閉曲線をらせん状に連続させて旋削工具の刃先を移動させるように補間した加工指令を作成する加工指令データ作成ステップと、
前記加工指令に従って前記刃先の位置に対応する切削点を前記閉曲線に沿うように前記ブレードの周囲を周回するよう移動させて切削加工を実行させることを特徴とする統合回転翼のブレードの切削加工プログラム。
【請求項8】
前記閉曲線は微分可能であることを特徴とする請求項7記載の統合回転翼のブレードの切削加工プログラム。
【請求項9】
前記統合回転翼の動作時にブレード上を流れる気流に沿うように前記仮想格子点を設定することを特徴とする請求項7又は8のうちの1つに記載の統合回転翼のブレードの切削加工プログラム。
【請求項10】
前記稜線を等間隔に分割しこの分割点から前記仮想格子点を選択して設定することを特徴とする請求項9記載の統合回転翼のブレードの切削加工プログラム。
【請求項11】
前記加工指令は、前記切削点、前記刃先の位置、前記旋削工具の方向を示す工具ベクトル、及び前記切削点での面法線の方向を示す面法線ベクトルの組の複数からなることを特徴とする請求項7記載の統合回転翼のブレードの切削加工プログラム。
【請求項12】
前記旋削工具に対する切削情報に対応して前記加工指令を変更することを特徴とする請求項11記載の統合回転翼のブレードの切削加工プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ローターディスクとブレードを一体化した統合回転翼の製造方法、そのブレードの切削加工プログラム及びこれを与えた統合回転翼に関する。
【背景技術】
【0002】
航空機用ガスタービンエンジンのファンや圧縮機ロータなどにおいて、ローターディスクとブレードとを一体化した統合回転翼(IBR: Integrally Bladed Rotor)、通称、ブリスク(BLISK:bladed in disk)の採用が提案されている。かかる統合回転翼により、該エンジンの大幅な重量軽減が可能となり、燃費向上が期待できるのである。この製造方法では、別工程で製造されたブレードをディスクに摩擦圧接の如き接合法によって一体化する方法の他に、ディスクブランクからブレードの外形を切削加工する方法が知られている。
【0003】
例えば、特許文献1では、複雑な三次元形状を有する統合回転翼のブレード加工において、半球形切削ヘッドを有するカッターを用いた点接触フライス加工の方法が開示されている。半径方向軸を中心として捩れた板状で且つブレード根元からブレード先端に向かってテーパ状となった複雑形状のブレードでは、粗フライス加工後、凹状の正圧側及び凸状の負圧側並びに環状部をフライス加工によって仕上げ削りする。ここで、両側面はカッターの切削エッジによって等幅の切削ストリップをブレードの間の気流流れ方向と一致するようにフライス加工し、空力損失の低いブレードを与え得るとしている。
【0004】
一方、フライス加工によって複雑な三次元形状のブレードを加工しようとすると、ビビリ(振動)や変形が生じ易くなり、高速での加工ではより大きな問題となる。そこで、他の方法として、旋削チップを用いた切削加工が考慮される。かかる切削加工による曲面加工については、旋削工具が円弧半径方向に向くように工具主軸の回転を制御しつつこれを円弧補間運動させる「オービットボーリング」と称される加工制御方法が知られている。
【0005】
例えば、特許文献2では、オービットボーリングによる制御軸の速度クランプ処理によって、切削負荷の変化を抑制しつつ、高速動作を与え得る方法について述べている。一般に、半径方向の移動速度が制限されると、旋回動作を継続できても軸移動に時間がかかり、旋削工具のアプローチ及び退避動作時間が長くなってしまう。また、旋回速度が高い場合には、半径方向速度を制限しても各軸で許容速度を超過し、各軸の同期が取れず、加工を継続できなくなってしまう。そこで、制御軸の許容送り速度を超えないように制御軸を制御する速度クランプ処理を移動モードに応じて変更するとしている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2009−262320号公報
【特許文献2】再表2018/003089号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
近年、航空機用ガスタービンエンジンなどへの燃費要求の高まりなどから、より高度な設計の統合回転翼が提案され、これとともに、その加工精度はよりシビアとなり、特に、薄肉のブレードを精度良く加工することが求められる。
【0008】
本発明は、以上のような状況に鑑みてなされたものであって、その目的は、切削加工によりブレードを高精度に加工する統合回転翼の製造方法、そのブレードの切削加工プログラム及び統合回転翼を提供することにある。
【課題を解決するための手段】
【0009】
本発明による統合回転翼の製造方法は、正圧面及び負圧面をそれぞれ主面に有する三次元板状のブレードをローターディスクに一体化させた統合回転翼の製造方法であって、ブレードの前縁及び後縁の稜線を所定数にそれぞれにおいて分割して仮想格子点を設定し、ローターディスク側から同一番目の前縁及び後縁のそれぞれの仮想格子点を正圧面及び負圧面を経由して周回する閉曲線を設定し、閉曲線をらせん状に連続させて旋削工具の刃先を移動させるように補間した加工指令を作成し、加工指令に従って刃先の位置に対応する切削点をブレードの周囲を周回するよう移動させて切削加工を行っていくことを特徴とする。
【0010】
かかる発明によれば、閉曲線をらせん状に連続させるように補間した経路で連続して一定の圧力で旋削工具の刃先を移動させ得るため、閉曲線を断面に有する空力特性に優れたブレードを高精度に加工できるのである。
【0011】
また、本発明による統合回転翼のブレードの切削加工プログラムは、正圧面及び負圧面をそれぞれ主面に有する三次元板状のブレードをローターディスクに一体化させた統合回転翼のブレードの切削加工プログラムであって、ブレードの前縁及び後縁の稜線を所定数にそれぞれにおいて分割して仮想格子点を設定し、ローターディスク側から同一番目の前縁及び後縁のそれぞれの仮想格子点を正圧面及び負圧面を経由して周回する閉曲線を設定するステップと、閉曲線をらせん状に連続させて旋削工具の刃先を移動させるように補間した加工指令を作成する加工指令データ作成ステップと、加工指令に従って刃先の位置に対応する切削点をブレードの周囲を周回するよう移動させて切削加工を実行させることを特徴とする。
【0012】
かかる発明によれば、閉曲線をらせん状に連続させるように補間した経路で切削点を移動させ、これに合わせて旋削工具の刃先を連続して一定の圧力で移動させ得て、閉曲線を断面に有し空力特性に優れるブレードを高精度に加工できるのである。
【0013】
更に、本発明による統合回転翼は、正圧面及び負圧面をそれぞれ主面に有する三次元板状のブレードをローターディスクに一体化させた統合回転翼であって、ブレードの前縁及び後縁の径方向に沿った稜線を所定数にそれぞれにおいて分割して仮想格子点を設定され、ローターディスク側から同一番目の前縁及び後縁のそれぞれの仮想格子点を正圧面及び負圧面を経由して周回する閉曲線の内部にブレードを位置させた切削を与えられていることを特徴とする。
【0014】
かかる発明によれば、閉曲線を断面に有し空力特性に優れるのである。
【図面の簡単な説明】
【0015】
【
図1】本発明による製造方法の1つの実施例によって得られる統合回転翼の斜視図である。
【
図2】切削加工前の統合回転翼のブレード部分の斜視図である。
【
図5】ブレードに設定された閉曲線を示す斜視(透視)図である。
【
図6】本実施例に用いられる加工機械の一例を示す斜視図である。
【
図7A】従来のブレードの仕上げ加工に用いられたエンドミルの正面図である。
【
図7B】エンドミルによる切削抵抗の時間変化のグラフである。
【
図7C】エンドミルによる回転加工後のブレード表面近傍を示す断面図である。
【
図8】統合回転翼のブレードの切削加工プログラムの1実施例の使用方法を示すフローチャートである。
【
図9】ブレードの3次元モデルの一例を示す斜視(透視)図である。
【発明を実施するための形態】
【0016】
以下、本発明による統合回転翼の製造方法について
図1乃至
図7を用いて詳細に説明する。
【0017】
図1に示すように、統合回転翼10は、環円状の板体であるローターディスク1と、その外周に並べて設けられた複数のブレード2とを一体化させたものである。ブレード2は、正圧面21及び負圧面22をそれぞれ主面に有する三次元板状体である。
【0018】
図2に示すように、統合回転翼10のブレード2のそれぞれは、予め粗加工されて羽根形状を有している。ここで、ブレード2の仕上げ加工では、一般的にはエンドミルなどの回転工具による加工を行うが、本実施例では旋削工具の刃先をブレードの表面に沿って移動させながら切削加工を行う。すなわち、同図の矢印に示すように、ブレード2の前縁23上の点から負圧面22、後縁24、正圧面21(又は前縁23上の点から正圧面21、後縁24、負圧面22)を順に経由して前縁23上に戻ってくるよう旋削工具30の刃先32を周回させて切削を行う。詳細には、このようにブレード2を周回する閉曲線C(
図5参照)を仮想的に作成し、この閉曲線Cに基づいて定められる経路Rに沿うようにブレード2に対して旋削工具30を相対的に移動させつつ切削加工を行う。
【0019】
図3及に示すように、この切削加工は、ブレード2の先端側から根元側に向けて送りをかけながら行われる。すなわち、仮想的に設定した閉曲線C(
図5参照)を先端側から根元側に向けて予め複数並べておき、それぞれの閉曲線Cに沿うようにブレード2を周回する切削を閉曲線Cの数だけ繰り返しながら送りをかける。つまり、閉曲線C上の開始点から閉曲線Cに沿うように周回しつつ、1周の周回を完了した時点では隣の閉曲線上の開始点の上に移動するよう送りをかけられる。このように、1周毎に隣り合う閉曲線上に移動するようらせん状に周回する。このらせん状に周回する曲線を経路Rとする。つまり、経路Rは閉曲線Cをらせん状に連続させるように補間した曲線である。これによってブレード2の正圧面21、負圧面22、前縁23及び後縁24の全面を切削することができる。
【0020】
さらに
図4を併せて参照すると、この閉曲線Cに沿うように周回しつつ送りをかけながら切削したとき、チップ31の先端の切削点は、切削加工前の面25及び切削加工後の面26の間の段差27と、切削加工後の面26との間の隅部に形成される曲線上を移動したということになる。つまりこの曲線が経路Rである。このとき、特に、旋削工具30の先端に装着されたチップ31の刃先32の延びる向きをブレード2の切削点の面法線に平行にすることが好ましい。つまり、切削点を常に面法線の定められる滑らかな曲面上を移動させると、ビビリの発生を抑制し得て好ましい。この場合、経路Rは、その上を移動する切削点において常に接線を定められる滑らかに連続した曲線であって微分可能である。経路Rは閉曲線Cに沿ってブレード2を周回する軌道に送りを付加したものであり、閉曲線Cを微分可能な曲線として補間することで微分可能となる。このとき、前縁23及び後縁24は、正圧面21及び負圧面22と連続した連続曲面で形成される。また、経路Rは、上記したように切削加工後の表面に沿うべきものであり、厳密には、加工後の理想の形状(モデル)の上に作成した閉曲線Cを補間して定められる。なお、刃先32の延びる向きを切削点の面法線に対して傾けてリード角を設けるようにしてもよい。
【0021】
図5に示すように、閉曲線Cは、前縁23及び後縁24のそれぞれの稜線の上に設定された仮想の格子点Pを通るようにされる。格子点Pは、前縁23側の稜線及び後縁24側の稜線の上で互いに同数とし、それぞれの稜線を所定数に分割して配置される。そして、それぞれローターディスク1側から同一番目の格子点同士を経由するように閉曲線Cを設定する。さらに、上記した経路Rは、例えば、この格子点Pのうち、一方の稜線上の格子点Pを経由するようにして曲線Cを補間して定めることができる。まず、最初の格子点から次の格子点までのベクトルを得る。また、閉曲線C上の各点において、格子点からその点までの閉曲線C上の長さの閉曲線Cの長さに対する比率を求める。そして、各点においてかかるベクトルに各点で得た比率を乗じたベクトルを加算して新たな点を得て、この新たな点で補間することで経路Rを得ることができる。なお、格子点Pは、例えば、それぞれの稜線を等間隔に分割した分割点から選択されるようにしてもよい。等間隔の分割点から選択することで格子点Pの設定の手間を小さくし得る。また、等間隔で格子点Pを設定すると、一周毎の切削量を一定にして切削加工を全体として安定させ、高精度の加工に資する。また、この閉曲線Cは、統合回転翼10をタービンに組み込んで動作させたときに発生するブレード2上の気流(矢印W参照)に沿うように設定されることが好ましい。なお、図面上、矢印Wを1つのみ表示したが、ブレード2上の各部において異なる気流のそれぞれに対応して閉曲線Cが設定される。切削痕を気流の方向に沿うようにできて、空力特性に優れる。
【0022】
図6を参照すると、統合回転翼10のこのような切削加工を行う加工機械としては、例えば、以下のようなものを用い得る。すなわち、統合回転翼10をローターディスク1の中心軸A2を鉛直方向に向けて固定するテーブル40と、旋削工具30を保持して回転軸A1周りに回転可能な工具保持装置35とを備える加工機械である。工具保持装置35は、旋削工具30を保持することで、旋削工具30の刃先32の向きを回転軸A1周りに回転可能とする。工具保持装置35の回転軸A1は例えば水平に設定され、ローターディスク1の内部に向けられる。ここで、テーブル40と工具保持装置35とは、回転軸A1に垂直な面内で水平なX軸方向と鉛直なY軸方向、回転軸A1に平行なZ軸方向の直線3軸の方向にそれぞれ相対的に移動可能である。また、テーブル40は中心軸A2の周りに回転可能とされる。つまり、直線3軸+回転2軸によって上記したような切削加工を可能とする。
【0023】
上記したように切削加工中は、旋削工具30の先端に固定されたチップ31の刃先32の延びる向きをブレード2の切削点の面法線に平行にすることが好ましい。刃先32の向きは回転軸A1に略垂直とされており(
図3参照)、例えば、刃先32の向きをXY平面内で傾けたいときは、工具保持装置35を回転軸A1の周りで回転させればよい。また、刃先32の向きをXZ平面内で傾けたいときは、X軸方向の直線移動とローターディスク1の中心軸A2の周りでの回転とを組み合わせればよい。これらのXY平面内での傾きとXZ平面内での傾きとを組み合わせることで、刃先32の向きを切削点の面法線に平行にすることができる。これに、上記した直線3軸の移動を組み合わせることで、ブレード2を閉曲線Cに沿うように周回しつつ経路Rに倣って切削加工できる。つまり、閉曲線Cの内部にブレード2を位置させるように切削された統合回転翼10を得ることができる。
【0024】
特に、統合回転翼であれば、刃先32の向きをXZ平面内で傾ける必要のないようなブレード2の形状とする場合がある。このような場合であれば、テーブル40の中心軸A2回りの回転を不要として、直線3軸+回転1軸(工具保持装置35の回転軸A1周りの回転)によって上記した切削加工を可能とする。
【0025】
他方、上記した直線3軸+回転2軸に対して、さらに回転1軸を加えた直線3軸+回転3軸とした加工機械を用いても良い。例えば、X軸と平行な中心軸でテーブル40を回転可能とするのである。このようにすることで、切削加工の自由度を向上させ得る。
【0026】
ところで、
図7Aに示すように、従来、統合回転翼のブレード部分の仕上げ加工にはエンドミル100のような回転工具が用いられてきた。このような回転工具を用いると、
図7Bに示すように被切削物への刃先の接触が断続的になるため、切削抵抗も断続的に変化する。そのため、加工中にビビリが発生しやすい。また、
図7Cに断面形状で示すように、断続的な接触となるため、切削痕によって切削面が波打つようになってしまうこともある。
【0027】
これに対して本実施例によれば、ブレード2を周回する閉曲線Cをらせん状に連続させるように補間して得られた経路R上で切削点を移動させる切削によって一定の切削荷重を得られてビビリの発生を抑制でき、また平滑な切削面を得られるため、ブレード2を高精度に加工することができる。また、上記したように切削痕があってもこれを気流の方向に沿うようにすると、空力特性にも優れる。
【0028】
次に、このような統合回転翼10のブレード2の切削加工プログラムについて
図8に沿って説明する。
【0029】
図8を参照すると、まず、製造する統合回転翼10のブレード2の3次元モデルを入手する(S1)。この3次元モデルは3次元の座標系に沿ってメッシュが切られており、各メッシュとブレード2の表面との交点を座標で示すものである(
図9参照)。これを所定のPCなどのコンピュータに入力する。使用する加工機械に直接入力してもよい。
【0030】
そして、この3次元モデル上で、ブレード2を周回する閉曲線Cを設定する(S2)。詳細には、まず、前縁23側の稜線及び後縁24側の稜線の上で互いに同数の格子点Pを設定する。この格子点Pの数や位置等は作業者によって入力される。そして、双方の稜線上でローターディスク1側から同一番目の格子点Pと、正圧面21及び負圧面22とを経由するよう、閉曲線Cをそれぞれの格子点について設定させる(
図5参照)。
【0031】
次いで、工具寸法を定義する(S3)。旋削工具30における刃先32の向きとその先端の位置や、旋削工具30を工具保持装置35に保持したときの工具保持35及びその回転軸A1に対する刃先32の向きや位置などである。これを作業者によって入力する。
【0032】
次いで、工具経路を定義する(S4)。ここでは、上記した閉曲線Cに沿ってブレード2を周回しつつ、ブレード2の先端側から根元側へ向けて送りをかけた経路R、すなわち、閉曲線Cをらせん状に連続させるように補間した経路Rを定め、これを工具経路とする。また、経路R上の各切削点に対して、上記した3次元モデル上の面法線をそれぞれ算出して定めさせる。
【0033】
次いで、工具の軸方向を定義する(S5)。ここでは、上記したような直線3軸+回転1軸、直線3軸+回転2軸、直線3軸+回転3軸のいずれかを作業者が定め、その結果を入力する。例えば、ローターディスク1の中心軸A2の周りでの回転を必要としない場合には、直線3軸+回転1軸として、加工機械の移動軸を決定し、作業者が入力する。
【0034】
次いで、上記した工具経路(経路R)上の各切削点に対し、旋削工具30の刃先32の向きを定義する(S6)。つまり、S4にて定めた面法線に刃先32の向きが平行になるように旋削工具30を保持する工具保持装置35の回転軸A1の周りの回転角度などを定めさせる。上記したようにリード角を持たせてもよい。
【0035】
その上で、工具経路に沿って加工指令データを作成する(S7)。すなわち、各切削点について、刃先32の位置、旋削工具の方向(例えば刃先32の向き)を示す工具ベクトル、面法線のベクトルの組を作成させ、これに基づいて、旋削工具30の移動方向を定めさせる。
【0036】
次いで、加工機械に工具情報と切削位置を入力する(S8)。ここでは、加工対象となる粗加工済みの統合回転翼10を固定した上で旋削工具30を加工機械に保持し、その初期位置を作業者が加工機械に入力する。また、上記でコンピュータに作成させた加工指令データも加工機械に入力する。
【0037】
次いで、加工指令データに基づき加工機械に切削加工を実行させる。すなわち、上記したような経路Rに沿った切削加工によってブレード2の仕上げ加工を行う。
【0038】
次いで、加工後のブレード2の寸法検査を行い、加工終了寸法になっているか加工機械上で確認させる(S10)。すなわち、上記した3次元モデルの寸法に対して所定の誤差範囲内の寸法であるか否かを検査し、切削情報として保持させる。
【0039】
ここで、加工終了寸法でなかった場合(S10:No)、加工終了寸法とそこまでの取り代(必要な加工量)に基づき、工具情報に修正を加え、作業者が工具情報を再入力した上で(S8)、さらに同様の切削加工を行わせる(S9)。つまり、上記した切削情報に対応して修正した工具情報を基に加工指令データも変更される。加工終了寸法となった場合(S10:Yes)、仕上げ加工を終了する。
【0040】
このようにして、加工機械に上記した閉曲線Cをらせん状に連続させるように補間した経路Rに沿った切削加工を行わせることで、空力特性に優れるブレード2を高精度に加工できる。
【0041】
以上、本発明による代表的な実施例及びこれに伴う変形例について述べたが、本発明は必ずしもこれに限定されるものではなく、適宜、当業者によって変更され得る。すなわち、当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。
【符号の説明】
【0042】
1 ローターディスク
2 ブレード
10 統合回転翼
21 正圧面
22 負圧面
23 前縁
24 後縁
25 切削加工前の面
26 切削加工後の面
27 段差
30 旋削工具
31 チップ
32 刃先
A1 軸
A2 中心軸
C 閉曲線
R 経路
【要約】
本発明は、切削加工によりブレードを高精度に加工する統合回転翼の製造方法である。本発明による統合回転翼の製造方法は、正圧面及び負圧面をそれぞれ主面に有する三次元板状のブレードをローターディスクに一体化させた統合回転翼の製造方法である。ブレードの前縁及び後縁の稜線を所定数にそれぞれにおいて分割して仮想格子点を設定し、ローターディスク側から同一番目の前縁及び後縁のそれぞれの仮想格子点を正圧面及び負圧面を経由して周回する閉曲線を設定し、閉曲線をらせん状に連続させて旋削工具の刃先を移動させるように補間した加工指令を作成し、加工指令に従って刃先の位置に対応する切削点ブレードの周囲を周回するよう移動させて切削加工を行っていくことを特徴とする。