(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6688331
(24)【登録日】2020年4月7日
(45)【発行日】2020年4月28日
(54)【発明の名称】炭素繊維回收装置
(51)【国際特許分類】
C08J 11/10 20060101AFI20200421BHJP
B29B 17/02 20060101ALI20200421BHJP
【FI】
C08J11/10ZAB
B29B17/02
【請求項の数】26
【全頁数】19
(21)【出願番号】特願2018-38490(P2018-38490)
(22)【出願日】2018年3月5日
(65)【公開番号】特開2019-123849(P2019-123849A)
(43)【公開日】2019年7月25日
【審査請求日】2018年3月5日
(31)【優先権主張番号】107101347
(32)【優先日】2018年1月12日
(33)【優先権主張国】TW
(73)【特許権者】
【識別番号】517015100
【氏名又は名称】永虹先進材料股▲ふん▼有限公司
(74)【代理人】
【識別番号】100169904
【弁理士】
【氏名又は名称】村井 康司
(74)【代理人】
【識別番号】100159916
【弁理士】
【氏名又は名称】石川 貴之
(72)【発明者】
【氏名】王智永
【審査官】
井上 能宏
(56)【参考文献】
【文献】
登録実用新案第3216274(JP,U)
【文献】
国際公開第2016/051572(WO,A1)
【文献】
特開2011−122032(JP,A)
【文献】
特表2016−521295(JP,A)
【文献】
特開2013−199607(JP,A)
【文献】
特開2013−249386(JP,A)
【文献】
特開2008−285601(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08J 11/10−11/28
B29B 17/00−17/04
(57)【特許請求の範囲】
【請求項1】
炭素繊維高分子複合材料中からの第一炭素繊維の回収に適用される炭素繊維回收装置であって、
前記炭素繊維高分子複合材料は、高分子基材及び前記第一炭素繊維を有し、前記高分子基材は、前記第一炭素繊維と結合し、前記第一炭素繊維は、第一炭素繊維長軸方向を有し、
前記炭素繊維回收装置は、少なくとも1個の第一マイクロウェーブ供給ユニット及び少なくとも1個のチャンバーを有し、
前記第一マイクロウェーブ供給ユニットは、第一マイクロウェーブを生成でき、前記第一マイクロウェーブは、第一マイクロウェーブ方向を有し、前記第一マイクロウェーブは、前記チャンバーの内部へと伝えられ、
前記第一マイクロウェーブは、第一電場を有し、前記第一電場は、前記チャンバーの内部において、第一電場方向を有し、前記第一マイクロウェーブ方向と前記第一電場方向は互いに直交し、
前記第一炭素繊維長軸方向と前記第一マイクロウェーブ方向は互いに直交し、或いは前記第一炭素繊維長軸方向と前記第一電場方向は互いに平行であり、
前記チャンバーは、チャンバー長軸方向を有し、
前記第一マイクロウェーブ供給ユニットは、前記第一マイクロウェーブを調整でき、これにより前記第一電場方向と前記チャンバー長軸方向との間の角度が改変される、
ことを特徴とする、
炭素繊維回收装置。
【請求項2】
前記第一炭素繊維長軸方向と前記第一電場方向は、互いに平行である
ことを特徴とする、
請求項1に記載の炭素繊維回收装置。
【請求項3】
前記チャンバー長軸方向、前記第一電場方向及び前記第一炭素繊維長軸方向は、互いに平行である
ことを特徴とする、
請求項2に記載の炭素繊維回收装置。
【請求項4】
前記第一マイクロウェーブは、第一磁場を有し、前記第一磁場は、前記チャンバーの内部において、第一磁場方向を有し、前記第一炭素繊維長軸方向と前記第一磁場方向は、互いに直交する
ことを特徴とする、
請求項2に記載の炭素繊維回收装置。
【請求項5】
前記チャンバーの内部には、収容設置空間が設けられ、
前記収容設置空間には中空管体が設置され、
前記中空管体の内部中空部分には、管体収容設置空間が設けられ、前記炭素繊維高分子複合材料は、前記管体収容設置空間に置くことができる
ことを特徴とする、
請求項2に記載の炭素繊維回收装置。
【請求項6】
前記中空管体は、マイクロウェーブが貫通可能な材質により製造される
ことを特徴とする、
請求項5に記載の炭素繊維回收装置。
【請求項7】
前記中空管体は、石英管、水晶管或いはガラス管である
ことを特徴とする、
請求項6に記載の炭素繊維回收装置。
【請求項8】
前記チャンバーは、金属チャンバーである
ことを特徴とする、
請求項2に記載の炭素繊維回收装置。
【請求項9】
前記第一マイクロウェーブ供給ユニットは、第一マイクロウェーブ源及び第一導波管を有し、
前記第一導波管の一端は、前記第一マイクロウェーブ源と連結し、前記第一導波管の他端は、前記チャンバーと連結する
ことを特徴とする、
請求項2に記載の炭素繊維回收装置。
【請求項10】
前記炭素繊維回收装置は、凝結装置を有し、前記チャンバーと前記凝結装置は、相互に連通する
ことを特徴とする、
請求項2に記載の炭素繊維回收装置。
【請求項11】
前記炭素繊維回收装置は、第二マイクロウェーブ供給ユニットを有し、
前記第二マイクロウェーブ供給ユニットは、第二マイクロウェーブを生成でき、前記第二マイクロウェーブは、前記チャンバーの内部へと伝えられ、
前記第二マイクロウェーブは、第二電場を有し、前記第二電場は、第二電場方向を有し、前記第二電場方向は、前記第一電場方向と直交する
ことを特徴とする、
請求項2に記載の炭素繊維回收装置。
【請求項12】
前記チャンバーは、チャンバー長軸方向を有し、
前記第一マイクロウェーブ供給ユニット及び前記第二マイクロウェーブ供給ユニットは、前記チャンバー長軸方向に沿って、順番に配列される
ことを特徴とする、
請求項11に記載の炭素繊維回收装置。
【請求項13】
前記チャンバーは、チャンバー長軸方向を有し、前記第一電場方向と前記チャンバー長軸方向との間は、傾斜角を呈し、
前記傾斜角は、0度より大きく、且つ、90度より小さいか等しい
ことを特徴とする、
請求項2に記載の炭素繊維回收装置。
【請求項14】
前記チャンバーは、中空円柱体である
ことを特徴とする、
請求項2に記載の炭素繊維回收装置。
【請求項15】
前記チャンバーは、中空多角柱体を呈する
ことを特徴とする、
請求項11に記載の炭素繊維回收装置。
【請求項16】
前記チャンバーは、チャンバー長軸方向を有し、前記中空多角柱体の外周囲は、複数の外表面により構成され、前記第一マイクロウェーブ供給ユニット及び前記第二マイクロウェーブ供給ユニットは、前記チャンバー長軸方向に沿って、前記中空多角柱体の内の1個の前記外表面に順番に配列される
ことを特徴とする、
請求項15に記載の炭素繊維回收装置。
【請求項17】
前記チャンバーは、チャンバー長軸方向を有し、
前記中空多角柱体の外周囲は、複数の外表面により構成され、複数の前記外表面の内の2個の前記外表面は、それぞれ第一外表面及び第二外表面であり、前記第一外表面及び前記第二外表面は、1個の前記第一マイクロウェーブ供給ユニット及び1個の前記第二マイクロウェーブ供給ユニットをそれぞれ有し、
前記第一マイクロウェーブ供給ユニット及び前記第二マイクロウェーブ供給ユニットは、前記チャンバー長軸方向に沿って、順番に配列され、
前記第一外表面の前記第一マイクロウェーブ供給ユニットと前記第二外表面の前記第一マイクロウェーブ供給ユニットは、同一の高度にはなく、且つ、前記第一外表面の前記第二マイクロウェーブ供給ユニットと前記第二外表面の前記第二マイクロウェーブ供給ユニットは、同一の高度にはない
ことを特徴とする、
請求項15に記載の炭素繊維回收装置。
【請求項18】
前記第一外表面及び前記第二外表面は、相互に隣り合う
ことを特徴とする、
請求項17に記載の炭素繊維回收装置。
【請求項19】
前記チャンバーは、チャンバー長軸方向を有し、
前記中空多角柱体の外周囲は、複数の外表面により構成され、複数の前記外表面の内の2個の前記外表面は、それぞれ第一外表面及び第二外表面であり、前記第一外表面及び前記第二外表面は、1個の前記第一マイクロウェーブ供給ユニット及び1個の前記第二マイクロウェーブ供給ユニットをそれぞれ有し、
前記第一マイクロウェーブ供給ユニット及び前記第二マイクロウェーブ供給ユニットは、前記チャンバー長軸方向に沿って、順番に配列され、
前記第一外表面の前記第一マイクロウェーブ供給ユニットと前記第二外表面の前記第二マイクロウェーブ供給ユニットは、同一の高度にあり、且つ、前記第一外表面の前記第二マイクロウェーブ供給ユニットと前記第二外表面の前記第一マイクロウェーブ供給ユニットは、同一の高度にある
ことを特徴とする、
請求項15に記載の炭素繊維回收装置。
【請求項20】
前記第一外表面及び前記第二外表面は、相互に隣り合う
ことを特徴とする、
請求項19に記載の炭素繊維回收装置。
【請求項21】
前記中空多角柱体の外周囲は、複数の外表面により構成され、複数の前記外表面中の前記各外表面は、1個の前記第一マイクロウェーブ供給ユニット及び1個の前記第二マイクロウェーブ供給ユニットをそれぞれ有し、
任意の2個の隣り合う前記外表面の内の1個の前記外表面の前記第一マイクロウェーブ供給ユニットともう1個の前記外表面の前記第一マイクロウェーブ供給ユニットは、同一の高度にない
ことを特徴とする、
請求項15に記載の炭素繊維回收装置。
【請求項22】
前記中空多角柱体の外周囲は、複数の外表面により構成され、複数の前記外表面中の前記各外表面は、1個の前記第一マイクロウェーブ供給ユニット及び1個の前記第二マイクロウェーブ供給ユニットをそれぞれ有し、
任意の2個の隣り合う外表面の内の1個の前記外表面の前記第一マイクロウェーブ供給ユニットともう1個の前記外表面の前記第二マイクロウェーブ供給ユニットは、同一の高度にある
ことを特徴とする、
請求項15に記載の炭素繊維回收装置。
【請求項23】
前記中空多角柱体の外周囲は、複数の外表面により構成され、複数の前記外表面の内の2個の前記外表面は、それぞれ第一外表面及び第二外表面であり、前記第一外表面及び前記第二外表面は、相互に隣り合い、前記中空多角柱体の内周囲は、複数の内表面により構成され、複数の前記内表面は、前記第一外表面と相互に対応する第一内表面、及び、前記第二外表面と相互に対応する第二内表面を有し、前記第一外表面及び前記第二外表面間は、挟角を呈し、或いは前記第一内表面及び前記第二内表面間は、挟角を呈し、前記挟角は、60度〜160度の間である
ことを特徴とする、
請求項15に記載の炭素繊維回收装置。
【請求項24】
前記挟角は、90度〜150度の間である
ことを特徴とする、
請求項23に記載の炭素繊維回收装置。
【請求項25】
前記挟角は、120度〜144度の間である
ことを特徴とする、
請求項23に記載の炭素繊維回收装置。
【請求項26】
前記挟角は、120度である
ことを特徴とする、
請求項23に記載の炭素繊維回收装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は炭素繊維回收装置に関し、特にマイクロウェーブを運用し、炭素繊維高分子複合材料中から炭素繊維を回収する炭素繊維回收装置に関する。
【背景技術】
【0002】
今日、炭素繊維高分子複合材料(Carbon Fiber Reinforced Polymer/Plastic,CFRP)は、航空宇宙産業、ゴルフクラブ、テニスラケット、自動車、風力発電,及び医療器械等工業領域に幅広く応用されている。
それは、炭素繊維高分子複合材料が、高強度、高弾性モジュラス、及び優れた耐熱性と抗腐蝕性を備えるためである。
製造段階で産生する端材或いは使用寿命が尽きた廃棄製品の炭素繊維高分子複合材料等廃棄物には、処理の問題が存在する。
炭素繊維高分子複合材料は、燃焼の方式を使用しても、樹脂しか取り除けず、炭素繊維はなお残留する。
よって、炭素繊維高分子複合材料の廃棄物は、通常、不可燃固体廃棄物として埋め立て方式により処理されている。
しかし、埋め立て方式は、土地資源の浪費と周辺環境の悪化を招く。
この他、炭素繊維高分子複合材料内部には、高価値の炭素繊維を含んでおり、埋め立て方式の使用は、炭素繊維資源の大きな無駄であることは疑いもない。
【0003】
従来の技術中には、上述の問題を解決する多くの方法が提供されている。
それらは主に、炭素繊維高分子複合材料中の高分子を分解し、これにより、その中の炭素繊維は分離され、炭素繊維回收の目的を達成する。
高分子分解の方法は、熱分解、無機強酸分解、有機溶剤分解、及び超臨界流体分解等を含む。
有機溶剤分解後にはきれいな炭素繊維を得ることができるが、回收過程では大量の有機溶剤を使用する必要があるため、環境を汚染し、しかも使用後の溶剤分離操作過程は複雑で、回收コストが高くなってしまう。
超臨界流体処理方法はクリーンで汚染ゼロの特徴を備えるが、高温高圧の反応条件下で行う必要があるため、反応設備に対する要求が高く、しかも分解後の産物と流体とは混ざりあっているため、分離しにくい。
【0004】
従来の技術中で、工業化の可能性が最も高いのは、熱分解により、廃棄された炭素繊維高分子複合材料を処理するものである。
熱分解方法は、廃棄された炭素繊維高分子複合材料を、熱空気中において分解させるもので、この方法は、金属等異質が混在する炭素繊維高分子複合材料の処理効果がよく、しかも連続操作が可能である。
しかし、反応で得られた炭素繊維は、酸化反応が深刻で、しかも反応器或いは分離器中で激しくぶつかるため、力学性能が劣る。
よって、まったく新しいハードウェア設計により、すべての角度設置の高純度と高性能の炭素繊維を回収し、及びエネルギーインプットを大幅に低下させ、時間と人的コストを節減することが、炭素繊維回收等関連産業における開発業者と研究人員が取り組んでいる課題である。
【発明の概要】
【発明が解決しようとする課題】
【0005】
前述の先行技術には、実際の実施時に多くの欠点がある。
【課題を解決するための手段】
【0006】
本発明はマイクロウェーブを炭素繊維高分子複合材料中の炭素繊維に放射することで、炭素繊維はマイクロウェーブエネルギーを急速に吸収し温度急上昇の目的を達成し、これにより効果的に熱分解し、大部分の炭素繊維高分子複合材料の高分子基材を除去し、炭素繊維回収の目的を確実に達成する炭素繊維回收装置に関する。
【0007】
本発明による炭素繊維回收装置は、炭素繊維高分子複合材料中からの第一炭素繊維の回収に適用され、該炭素繊維高分子複合材料は、高分子基材及び該第一炭素繊維を有し、該高分子基材は、該第一炭素繊維と結合し、該第一炭素繊維は、第一炭素繊維長軸方向を有する。
該炭素繊維回收装置は、少なくとも第一マイクロウェーブ供給ユニット及びチャンバーを有する。
該第一マイクロウェーブ供給ユニットは、第一マイクロウェーブを生成できる。
該第一マイクロウェーブは、第一マイクロウェーブ方向を有する。
該第一マイクロウェーブは、該チャンバーの内部へと伝えられる。
該第一マイクロウェーブは、第一電場を有し、該第一電場は、該チャンバーの内部において、第一電場方向を有する。
該第一マイクロウェーブ方向と該第一電場方向は、互いに直交する。
該第一炭素繊維長軸方向と該第一マイクロウェーブ方向は互いに直交し、或いは該第一炭素繊維長軸方向と該第一電場方向は、互いに平行である。
【0008】
上記した炭素繊維回收装置において、該第一炭素繊維長軸方向と該第一電場方向は、互いに平行である。
【0009】
上記した炭素繊維回收装置において、該チャンバーは、チャンバー長軸方向を有する。
該チャンバー長軸方向、該第一電場方向及び該第一炭素繊維長軸方向は、互いに平行である。
【0010】
該第一マイクロウェーブは、第一磁場を有し、該第一磁場は、該チャンバーの内部において、第一磁場方向を有する。
上記した炭素繊維回收装置において、該第一炭素繊維長軸方向と該第一磁場方向は、互いに直交する。
【0011】
上記した炭素繊維回收装置において、該チャンバーの内部には、収容設置空間が設けられ該収容設置空間には中空管体が設置され、該中空管体の内部中空部分には、管体収容設置空間が設けられ、該炭素繊維高分子複合材料は、該管体収容設置空間に置くことができる。
【0012】
上記した炭素繊維回收装置において、該中空管体は、マイクロウェーブが貫通可能な材質により製造される。
【0013】
上記した炭素繊維回收装置において、該中空管体は、石英管、水晶管或いはガラス管である。
【0014】
上記した炭素繊維回收装置において、該チャンバーは、金属チャンバーである。
【0015】
上記した炭素繊維回收装置において、該第一マイクロウェーブ供給ユニットは、第一マイクロウェーブ源及び第一導波管を有する。
該第一導波管の一端は、該第一マイクロウェーブ源と連結し、該第一導波管の他端は、該チャンバーと連結する。
【0016】
上記した炭素繊維回收装置において、該炭素繊維回收装置は、凝結装置を有し、該チャンバーと該凝結装置は、相互に連通する。
【0017】
上記した炭素繊維回收装置において、該炭素繊維回收装置は、第二マイクロウェーブ供給ユニットを有し、該第二マイクロウェーブ供給ユニットは、第二マイクロウェーブを生成でき、該第二マイクロウェーブは、該チャンバーの内部へと伝えられる。
該第二マイクロウェーブは、第二電場を有し、該第二電場は、第二電場方向を有し、該第二電場方向は、該第一電場方向と直交する。
【0018】
上記した炭素繊維回收装置において、該チャンバーは、チャンバー長軸方向を有する。
該第一マイクロウェーブ供給ユニット及び該第二マイクロウェーブ供給ユニットは、該チャンバー長軸方向に沿って、順番に配列される。
【0019】
上記した炭素繊維回收装置において、該チャンバーは、該チャンバー長軸方向を有し、該第一電場方向と該チャンバー長軸方向との間は、傾斜角を呈する。
【0020】
上記した炭素繊維回收装置において、該チャンバーは、中空円柱体である。
【0021】
上記した炭素繊維回收装置において、該チャンバーは、中空多角柱体を呈する。
【0022】
上記した炭素繊維回收装置において、該チャンバーは、該チャンバー長軸方向を有し、該中空多角柱体の外周囲は、複数の外表面により構成され、該第一マイクロウェーブ供給ユニット及び該第二マイクロウェーブ供給ユニットは、該チャンバー長軸方向に沿って、該中空多角柱体の内の1個の該外表面に順番に配列される。
【0023】
上記した炭素繊維回收装置において、該チャンバーは、該チャンバー長軸方向を有し、該中空多角柱体の外周囲は、複数の該外表面により構成され、複数の該外表面の内の2個の該外表面は、それぞれ第一外表面及び第二外表面で、該第一外表面及び該第二外表面は、1個の該第一マイクロウェーブ供給ユニット及び1個の該第二マイクロウェーブ供給ユニットをそれぞれ有し、しかも該第一マイクロウェーブ供給ユニット及び該第二マイクロウェーブ供給ユニットは、該チャンバー長軸方向に沿って、順番に配列される。
該第一外表面の該第一マイクロウェーブ供給ユニットと該第二外表面の該第一マイクロウェーブ供給ユニットは、同一高度になく、しかも、該第一外表面の該第二マイクロウェーブ供給ユニットと該第二外表面の該第二マイクロウェーブ供給ユニットは、同一高度にない。
【0024】
上記した炭素繊維回收装置において、該チャンバーは、該チャンバー長軸方向を有し、該中空多角柱体の外周囲は、複数の該外表面により構成され、複数の該外表面中の2個の該外表面は、それぞれ該第一外表面及び該第二外表面で、該第一外表面及び該第二外表面は、1個の該第一マイクロウェーブ供給ユニット及び1個の該第二マイクロウェーブ供給ユニットをそれぞれ有し、しかも、該第一マイクロウェーブ供給ユニット及び該第二マイクロウェーブ供給ユニットは、該チャンバー長軸方向に沿って、順番に配列される。
該第一外表面の該第一マイクロウェーブ供給ユニットと該第二外表面の該第二マイクロウェーブ供給ユニットは、同一高度にあり、しかも、該第一外表面の該第二マイクロウェーブ供給ユニットと該第二外表面の該第一マイクロウェーブ供給ユニットは、同一高度にある。
【0025】
上記した炭素繊維回收装置において、該中空多角柱体の外周囲は、複数の該外表面により構成され、複数の該外表面中の該各外表面は、1個の該第一マイクロウェーブ供給ユニット及び1個の該第二マイクロウェーブ供給ユニットをそれぞれ有し、しかも任意の2個の隣り合う該外表面の内の1個の該外表面の該第一マイクロウェーブ供給ユニットともう1個の該外表面の該第一マイクロウェーブ供給ユニットは、相互に同一高度にない。
【0026】
上記した炭素繊維回收装置において、該中空多角柱体の外周囲は、複数の該外表面により構成され、複数の該外表面中の該各外表面は、1個の該第一マイクロウェーブ供給ユニット及び1個の該第二マイクロウェーブ供給ユニットをそれぞれ有し、しかも任意の2個の隣り合う外表面の内の1個の該外表面の該第一マイクロウェーブ供給ユニットともう1個の該外表面の該第二マイクロウェーブ供給ユニットは、同一高度にある。
【0027】
上記した炭素繊維回收装置において、該中空多角柱体の外周囲は、複数の外表面により構成され、複数の該外表面中の2個の該外表面は、それぞれ該第一外表面及び該第二外表面で、該第一外表面及び該第二外表面は、相互に隣り合い、該中空多角柱体の内周囲は、複数の内表面により構成され、複数の該内表面中には、該第一外表面と相互に対応する第一内表面を有し、複数の該内表面中には、該第二外表面と相互に対応する第二内表面を有し、該第一外表面及び該第二外表面間は、挟角を呈し、或いは該第一内表面及び該第二内表面間は、挟角を呈し、該挟角は、60度〜160度の間である。
【0028】
上記した炭素繊維回收装置において、該挟角は、90度〜150度の間である。
【0029】
上記した炭素繊維回收装置において、該挟角は、120度〜144度の間である。
【0030】
上記した炭素繊維回收装置において、該挟角は、120度である。
【図面の簡単な説明】
【0031】
【
図1】本発明による炭素繊維回收装置の第一実施形態の装置全体の模式図である。
【
図2】本発明による炭素繊維回收装置の第一実施形態のマイクロウェーブ供給ユニットとチャンバー設置の断面図である。
【
図3】本発明による炭素繊維回收装置の第一実施形態のマイクロウェーブ供給ユニットとチャンバー設置の立体模式図である。
【
図4】本発明による炭素繊維回收装置の第一実施形態のマイクロウェーブ進行方向の模式図である。
【
図5】本発明による炭素繊維回收装置の第二実施形態のマイクロウェーブ供給ユニットとチャンバー設置の立体模式図である。
【
図6】本発明による炭素繊維回收装置の第二実施形態のマイクロウェーブ進行方向の模式図である。
【
図7】本発明による炭素繊維回收装置の第三実施形態のマイクロウェーブ供給ユニットとチャンバー設置の立体模式図である。
【
図8】本発明による炭素繊維回收装置の第三実施形態のマイクロウェーブ進行方向の模式図である。
【
図9】本発明による炭素繊維回收装置の第四実施形態のマイクロウェーブ供給ユニットとチャンバー設置の立体模式図である。
【
図10】本発明による炭素繊維回收装置の第四実施形態のマイクロウェーブ進行方向の模式図である。
【
図11】本発明による炭素繊維回收装置の第五実施形態のマイクロウェーブ供給ユニットとチャンバー設置の立体模式図である。
【
図12】本発明による炭素繊維回收装置の第六実施形態のマイクロウェーブ供給ユニットとチャンバー設置の立体模式図である。
【発明を実施するための形態】
【0032】
(一実施形態)
貴審査委員が本発明の技術特徴、内容、長所及びそれが達成可能な効果について理解できるよう、本発明は図を対応させ、実施形態の方式で以下の通り詳述する。
使用する図は、説明を補助するために用いるのであって、図の比率と配置により、本発明の実際実施上の範囲を限定するものではない。
【0033】
先ず、
図1〜
図4に示す通り、本発明の第一実施形態の炭素繊維回收装置1は、炭素繊維高分子複合材料2中からの第一炭素繊維21の回収に適用される。
炭素繊維高分子複合材料2は、高分子基材24Polymer matrix)及び第一炭素繊維21を有する。
高分子基材24は、第一炭素繊維21と結合する。
第一炭素繊維21は、第一炭素繊維長軸方向Xを有する。
第一炭素繊維長軸方向Xは、第一炭素繊維21の延伸方向である。
好ましくは、高分子基材24は、第一炭素繊維21を包み、第一炭素繊維21と結合する。
好ましくは、炭素繊維高分子複合材料2は、高分子基材24及び複数の第一炭素繊維21を有する。
複数の第一炭素繊維21は順番に、第一炭素繊維長軸方向Xに平行に配列される。
高分子基材24は、熱固性樹脂、室温硬化樹脂或いは熱塑性プラスチックで、熱固性樹脂は、不飽和ポリエステル樹脂(Unsaturated Polyester Resin)、エポキシ樹脂Epoxy Resin)などである。
【0034】
本発明の炭素繊維回收装置1は、少なくとも1個の第一マイクロウェーブ供給ユニット11及び少なくとも1個のチャンバー12を有する。
第一マイクロウェーブ供給ユニット11は、第一マイクロウェーブ源111及び第一導波管112を有する。
第一導波管112の一端は、第一マイクロウェーブ源111と連結し、第一導波管112の他端は、チャンバー12と連結する。
第一マイクロウェーブ供給ユニット11は、第一マイクロウェーブM1を生成できる。
実施時には、第一マイクロウェーブ源111は、第一マイクロウェーブM1を生成でき、第一マイクロウェーブM1は、第一導波管112を経て、第一マイクロウェーブ源111からチャンバー12の内部へと伝達する。
第一マイクロウェーブM1は、第一電場E1及び第一磁場F1を有する。
第一マイクロウェーブM1は、第一マイクロウェーブ方向M11により進入し、チャンバー12の内部へと向かう。
第一電場E1は、チャンバー12の内部において、第一電場方向E11を有する。
第一磁場F1は、チャンバー12の内部において、第一磁場方向F11を有する。
フレミングの右手の法則(Fleming’s Right-hand rule)及び
図4に示す通り、第一マイクロウェーブ方向M11、第一電場方向E11及び第一磁場方向F11は、互いに直交する。
【0035】
チャンバー12の内部には、収容設置空間Sが設けられ、炭素繊維高分子複合材料2は、収容設置空間Sに置かれる。
しかも、チャンバー12には、第一側壁孔洞121を設置し、前述の第一導波管112の他端と連接し、第一マイクロウェーブM1を、収容設置空間Sに伝達する。
チャンバー12は、マイクロウェーブを反射可能な材質により製造され、例えばチャンバー12は、金属材質により製造される金属チャンバーで、しかも、チャンバー12は、密閉形態である。
金属反射により、第一マイクロウェーブM1は、第一マイクロウェーブM1を、収容設置空間Sにおいて振動させ、チャンバー12に均一に充満させる。
さらに、金属反射により、第一マイクロウェーブM1は、チャンバー12外部に位置する操作者及び他の設備を防護できる。
チャンバー12の形状には、制限はなく、例えばチャンバー12は、中空円柱体或いは中空多角柱体等のいずれかの形態である。
チャンバー12は、チャンバー長軸方向XAを有する。
チャンバー長軸方向XAは、チャンバー12の延伸方向で、
図4に示す通り、チャンバー長軸方向XAは、中空円柱体の延伸方向である。
【0036】
実施時には、炭素繊維高分子複合材料を、収容設置空間Sに置く。
続いて、第一マイクロウェーブ源111を起動し、第一マイクロウェーブM1を産生する。
第一マイクロウェーブM1は、第一導波管112及び第一側壁孔洞121を経由して、収容設置空間Sに伝えられる。
こうして、第一マイクロウェーブM1は、炭素繊維高分子複合材料2に放射され、炭素繊維高分子複合材料2中の第一炭素繊維21は、第一マイクロウェーブM1のエネルギーを吸収し、第一炭素繊維21の温度は上昇して発熱し、第一炭素繊維21と接触する高分子基材24の一部は、熱を受け、熱分解されて、複数の有機小分子になり、残りの部分の高分子基材24も、熱伝効果により、熱を受け、しかも、有機小分子に熱分解される。
【0037】
以下が特別に発見された。
炭素繊維高分子複合材料2を置く時に、第一炭素繊維21の第一炭素繊維長軸方向Xと第一マイクロウェーブ方向M11が互いに平行なら、第一炭素繊維21の、第一マイクロウェーブM1のエネルギーの吸收効果は良くなく、第一炭素繊維21の温度は上昇せず、高分子基材24は有機小分子に熱分解されない。
第一炭素繊維21の第一炭素繊維長軸方向Xと第一マイクロウェーブ方向M11が互いに直交するなら、第一炭素繊維21の、第一マイクロウェーブM1のエネルギーに対する吸收効果は良好で、第一炭素繊維21の温度は明確に上昇し、高分子基材24は、有機小分子に熱分解される。
【0038】
さらに以下が発見された。
第一炭素繊維長軸方向Xと第一マイクロウェーブ方向M11が互いに直交し、もしさらに第一炭素繊維21の第一炭素繊維長軸方向Xと第一電場方向E11が互いに直交するなら、第一炭素繊維21の、第一電場E1のエネルギーに対する吸收効果は良くなく、第一炭素繊維21の温度は、明確な上昇はなく、高分子基材24は、有機小分子に熱分解されない。
第一炭素繊維21の第一炭素繊維長軸方向Xと第一電場方向E11が互いに平行なら、第一炭素繊維21の、第一電場E1のエネルギーに対する吸收効果は顕著で、第一炭素繊維21の温度は顕著に上昇し、高分子基材24は急速かつ大量に、有機小分子に熱分解される。
【0039】
前述中で、チャンバー長軸方向XA、第一電場方向E11及び第一炭素繊維長軸方向Xは平行形態を呈し、しかも、チャンバー長軸方向XAと第一マイクロウェーブ方向M11は互いに直交し、第一炭素繊維長軸方向Xと第一マイクロウェーブ方向M11は互いに直交する。
【0040】
前述の有機小分子は、抽気方式により、チャンバー12の収容設置空間Sから、凝結装置3へと伝送される。
有機小分子は、凝結装置3により凝結補足され、これにより有機小分子は空気中に直接排出され、汚染を回避できる。
【0041】
チャンバー12を別に加熱しない実施形態下では、有機小分子は、チャンバー12の壁面に凝集し易い。
これは壁面の汚染を招き、洗浄が容易でない。
よって、チャンバー12は、中空管体122を、収容設置空間Sにさらに設置する。
中空管体122の内部中空部分には、管体収容設置空間S1が設けられ、炭素繊維高分子複合材料2は、管体収容設置空間S1に置かれる。
中空管体122は、マイクロウェーブが貫通可能な材質により製造される。
中空管体122は、石英管、水晶管或いはガラス管である。
これにより、有機小分子は、石英管の管壁などの中空管体122の管壁に凝集し、石英管の管壁の洗浄は、チャンバー12の管壁の洗浄に比べ容易で、しかも迅速である。
さらには、一回操作後の中空管体122は、別のきれいな中空管体122と直接交換でき、製造プロセスを加速できる。
【0042】
上述の第一実施形態は、経方向に配列される複数の第一炭素繊維21と高分子基材24により構成される炭素繊維高分子複合材料2、例えば経方向に相互に平行に配列される複数の第一炭素繊維21と高分子基材24により構成されるリボン状を呈する炭素繊維高分子複合材料2などに、特に適用される。
経方向とは、第一炭素繊維長軸方向Xである。
【0043】
図5と
図6に示す通り、本発明による第二実施形態では、炭素繊維回收装置1は、前述の第一実施形態の基礎の上に、第二マイクロウェーブ供給ユニット13をさらに有する。
第二マイクロウェーブ供給ユニット13は、第二マイクロウェーブ源131と第二導波管132により組成される。
第一マイクロウェーブ供給ユニット11と類似し、第二導波管132の一端は、第二マイクロウェーブ源131と連結し、第二導波管132の他端は、チャンバー12の第二側壁孔洞122と連結する。
第二マイクロウェーブ源131は、第二マイクロウェーブM2を生成でき、第二マイクロウェーブM2は、第二導波管132を経由して、第二マイクロウェーブ源131からチャンバー12の第二側壁孔洞122及び収容設置空間Sへと伝えられる。
第二マイクロウェーブM2は、第二電場E2及び第二磁場F2を有する。
第二マイクロウェーブM2は、第二マイクロウェーブ方向M21から進入し、チャンバー12の内部(収容設置空間S)へ向かい、第二電場E2は、チャンバー12の収容設置空間Sにおいて、第二電場方向E21を有し、第二磁場F2は、チャンバー12の収容設置空間Sにおいて、第二磁場方向F21を有する。
図6に示す通り、第二マイクロウェーブ方向M21、第二電場方向E21及び第二磁場方向F21は、互いに直交する。
【0044】
前述の第一実施形態の基礎に基づき、本第二実施形態中では、炭素繊維高分子複合材料2は、第二炭素繊維22をさらに有する。
第二炭素繊維22は、第二炭素繊維長軸方向Yを有し、第二炭素繊維長軸方向Yは、第二炭素繊維22の延伸方向である。
好ましくは、高分子基材24は、第二炭素繊維22を覆い、第二炭素繊維22と結合する。
好ましくは、炭素繊維高分子複合材料2は、高分子基材24及び複数の第二炭素繊維22を有し、複数の第二炭素繊維22は順番に、第二炭素繊維長軸方向Yと平行に配列される。
【0045】
第一実施形態と類似している点は、本第二実施形態中では再記述しない。
第二炭素繊維22の第二炭素繊維長軸方向Yと第二マイクロウェーブ方向M21は互いに直交し、第二炭素繊維22の第二炭素繊維長軸方向Yと第二電場方向E21は、互いに平行である。
【0046】
チャンバー長軸方向XAと第二電場方向E21は互いに直交し、及びチャンバー長軸方向XAと第二炭素繊維長軸方向Yは互いに直交し、しかも、チャンバー長軸方向XAと第二マイクロウェーブ方向M21は互いに直交する。
【0047】
第二電場方向E21は、第一電場方向E11と直交する。
【0048】
上述の第二実施形態は、緯方向に配列される複数の第二炭素繊維22と高分子基材24により構成される炭素繊維高分子複合材料2、例えば緯方向に相互に平行に配列される複数の第二炭素繊維22と高分子基材24により構成されるリボン状を呈する炭素繊維高分子複合材料2などに特に適用される。
緯方向とは、第二炭素繊維長軸方向Yである。
【0049】
図7と
図8に示す通り、本発明第三実施形態の、第一実施形態及び第二実施形態と類似する点は、本第三実施形態中では再記述しない。
炭素繊維回收装置1は、第一マイクロウェーブ供給ユニット11及び第二マイクロウェーブ供給ユニット13を同時に有する。
好ましくは、第一マイクロウェーブ供給ユニット11及び第二マイクロウェーブ供給ユニット13は、チャンバー長軸方向XAに沿って、順番に配列される。
上述の第三実施形態は、同時に、経方向及び緯方向編織を有する複数の第一炭素繊維21、複数の第二炭素繊維22と高分子基材24により構成される炭素繊維高分子複合材料2、例えば、経方向及び緯方向に沿って相互に交差して編織される複数の第一炭素繊維21、複数の第二炭素繊維22と高分子基材24により構成される織物状を呈する炭素繊維高分子複合材料2に、特に適用される。
【0050】
図9と
図10に示す通り、本発明の第四実施形態は、第一実施形態中の第一マイクロウェーブ供給ユニット11を調整し、これにより、第一電場方向E11とチャンバー長軸方向XA間は、傾斜角θ1を呈し、傾斜角θ1の角度は、0度より大きく、しかも90度より小さいか等しい。
第四実施形態は、炭素繊維高分子複合材料2を、チャンバー12の内部に置く時、第一炭素繊維21の第一炭素繊維長軸方向Xとチャンバー長軸方向XA間が傾斜角θ1を呈する実施形態に特に適用される。
言い換えれば、第一マイクロウェーブ供給ユニット11は、第一マイクロウェーブM1を調整でき、これにより第一電場方向E11とチャンバー長軸方向XAの角度は、必要に応じて改変される。
例えば、炭素繊維高分子複合材料2をチャンバー12の内部に置く時、先ず第一炭素繊維長軸方向Xとチャンバー長軸方向XAの傾斜角θ1の挟角を測定或いは探知し、続いて、第一マイクロウェーブ供給ユニット11の第一マイクロウェーブM1を調整し、これにより第一電場方向E11とチャンバー長軸方向XAの角度と傾斜角θ1の挟角は相同となり、こうして第一電場方向E11と第一炭素繊維長軸方向Xは、互いに平行である。
よって、炭素繊維高分子複合材料2を、チャンバー12の内部に置く時、予め、第一炭素繊維長軸方向Xを、チャンバー長軸方向XAに合わせる必要がなく、上述の方式に基づけば、第一マイクロウェーブ供給ユニット11を調整でき、これにより第一電場方向E11と第一炭素繊維長軸方向Xは互いに平行であり、炭素繊維高分子複合材料2を、チャンバー12の内部に置く時の利便性を増進できる。
【0051】
これに類似し、第二マイクロウェーブ供給ユニット13は、第二マイクロウェーブM2を調整でき、これにより第二電場方向E21とチャンバー長軸方向XAの挟角は、必要に応じて改変で
きる。
作動メカニズムと原理は、前述の第四実施形態と類似しているため、再記述しない。
【0052】
図11に示す通り、第五実施形態と第三実施形態との差異は、以下の通りである。
第五実施形態のチャンバー12は、中空多角柱体を呈する。
中空多角柱体の外周囲は、複数の外表面Hにより構成され、第一マイクロウェーブ供給ユニット11及び第二マイクロウェーブ供給ユニット13は、チャンバー長軸方向XAに沿って、中空多角柱体の内の1個の外表面Hに順番に配列される。
中空多角柱体は、中空三角柱体、中空四角柱体、中空五角柱体、中空六角柱体、中空七角柱体、中空八角柱体、中空九角柱体、中空十角柱体、中空十一角柱体、中空十二角柱体、中空十三角柱体、中空十四角柱体、中空十五角柱体、中空十六角柱体、中空十七角柱体、中空十八角柱体、或いは他の中空多角柱体である。
【0053】
図12に示す通り、第六実施形態と第五実施形態との差異は、以下の通りである。
第六実施形態の複数の外表面Hの内の2個の外表面Hは、それぞれ第一外表面H1及び第二外表面H2で、第一外表面H1及び第二外表面H2は、1個の第一マイクロウェーブ供給ユニット11及び1個の第二マイクロウェーブ供給ユニット13をそれぞれ有する。
しかも、第一マイクロウェーブ供給ユニット11及び第二マイクロウェーブ供給ユニット13は、チャンバー長軸方向XAに沿って、順番に配列される。
第一外表面H1の第一マイクロウェーブ供給ユニット11と第二外表面H2の第一マイクロウェーブ供給ユニット11は、同一高度になく、しかも第一外表面H1の第二マイクロウェーブ供給ユニット13と第二外表面H2の第二マイクロウェーブ供給ユニット13は、同一高度にない。
第一外表面H1の第一マイクロウェーブ供給ユニット11と第二外表面H2の第二マイクロウェーブ供給ユニット13は、同一高度にあり、しかも第一外表面H1の第二マイクロウェーブ供給ユニット13と第二外表面H2の第一マイクロウェーブ供給ユニット11は、同一高度にある。
好ましくは、第一外表面H1及び第二外表面H2は、相互に隣り合う。
【0054】
第一外表面H1及び第二外表面H2間は、挟角θ2を呈する。
或いは、中空多角柱体の内周囲は、複数の内表面により構成され、複数の内表面中には、第一外表面H1と相互に対応する第一内表面(図示なし)を有し、複数の内表面中には、第二外表面H2と相互に対応する第二内表面(図示なし)を有する。
第一内表面及び第二内表面間は、挟角θ2を呈する。
挟角θ2の角度は、60度〜160度の間である。
好ましくは、挟角θ2の角度は、90度〜150度の間で、さらに好ましくは、挟角θ2の角度は、120度〜144度の間で、最も好ましくは、挟角θ2の角度は、120度である。
本説明書内容及び請求項の範囲で言う数■範囲の限定は、常に端■を含むことを、ここで特に説明する。
【0055】
当然、本発明は、複数の外表面H中の各外表面Hは、1個の第一マイクロウェーブ供給ユニット11及び1個の第二マイクロウェーブ供給ユニット13をそれぞれ有する。
しかも、任意の2個の隣り合う外表面Hの内の1個の外表面Hの第一マイクロウェーブ供給ユニット11ともう1個の外表面Hの第一マイクロウェーブ供給ユニット11は、相互に同一高度になく、任意の2個の隣り合う外表面Hの内の1個の外表面Hの第一マイクロウェーブ供給ユニット11ともう1個の外表面Hの第二マイクロウェーブ供給ユニット13は、同一高度にある。
【0056】
上記を総合すると、本発明の炭素繊維回收装置は、上述する実施形態により、予期の使用効果を確実に達成でき、しかも本発明は申請前に未公開で、特許法の規定と要求に完全に符合している。
【0057】
上記に掲示する図示及び説明は、本発明の実施形態に過ぎず、本発明の保護範囲を限定するものではない。
該項技術の習熟者が、本発明の特徴に範疇に基づき行う等効変化或いは修飾はすべて、本発明の設計範疇に含まれるものとする。
【0058】
前述した本発明の実施形態は本発明を限定するものではなく、よって、本発明により保護される範囲は後述される特許請求の範囲を基準とする。
【符号の説明】
【0059】
1 炭素繊維回收装置、
11 第一マイクロウェーブ供給ユニット、
111 第一マイクロウェーブ源、
112 第一導波管、
12 チャンバー、
121 第一側壁孔洞、
122 第二側壁孔洞、
13 第二マイクロウェーブ供給ユニット、
131 第二マイクロウェーブ源、
132 第二導波管、
2 炭素繊維高分子複合材料、
21 第一炭素繊維、
22 第二炭素繊維、
24 高分子基材、
3 凝結装置、
E1 第一電場、
E11 第一電場方向、
E2 第二電場、
E21 第二電場方向、
F1 第一磁場、
F11 第一磁場方向、
F2 第二磁場、
F21 第二磁場方向、
H 外表面、
H1 第一外表面、
H2 第二外表面、
M1 第一マイクロウェーブ、
M11 第一マイクロウェーブ方向、
M2 第二マイクロウェーブ、
M21 第二マイクロウェーブ方向、
S 収容設置空間、
S1 管体収容設置空間、
X 第一炭素繊維長軸方向、
XA チャンバー長軸方向、
Y 第二炭素繊維長軸方向、
θ1 傾斜角、
θ2 挟角。