【実施例】
【0025】
以下、実施例により本発明をより具体的に説明する。ただし、本発明はこれらの実施例に記載された態様に限定されるわけではない。
【0026】
<製造例1>
以下の要領でコイル部品を製造した。
製品サイズ:2.5×2.0×1.2mm
磁性体の最小肉厚:0.25mm
金属磁性粒子:FeSiCr(Feが92.5wt%、Siが4wt%、Crが3.5wt%とし、大気中での水アトマイズ法により平均粒径15μmの粉末を作製し、500℃の還元雰囲気中で1時間の熱処理を行った。この金属磁性粒子を結晶質合金粒子cとした。)
樹脂:エポキシ樹脂3wt%
空芯コイル:ポリイミド被膜付き平角線(0.3×0.1mm)、α巻きにて周回数9.5t
成形:金型内部に空芯コイルを配置し、モールド成形にて複合磁性材料を150℃の金型に注入、仮硬化して磁性体を形成。
硬化:仮硬化の磁性体を金型から取り出し、200℃にて硬化
端子電極:空芯コイルの端部を研磨で磁性体から露出させ、Agをスパッタリングし、Ag入り導電性ペーストを付け、Ni、Snのめっき処理
【0027】
上記の手順は、以下の通り行ったものである。
コイルを作製し、金型の中央と空芯コイルの中心が一致するように配置する。ここに、事前に金属磁性粒子と樹脂を混合しておいた複合磁性材料を150℃に加熱し、この複合磁性材料を150℃に加熱した金型に注入し、磁性体の元が得られる。この後、更に200℃で樹脂を硬化し、磁性体となる。この磁性体に必要な処理(カット、研磨、防錆処理)を行い、最後に端子電極を形成し、コイル部品を得る。また、ここでの成形時の圧力は15MPaであり、従来の圧力に対し非常に低いものであった。
【0028】
<比較例1>
金属磁性粒子として上記還元雰囲気中での熱処理を行わないFeSiCrを用いたこと以外は、
製造例1と同様にしてコイル部品を得た。この金属磁性粒子を結晶質合金粒子aとした。
【0029】
<比較例2>
金属磁性粒子以外は、
製造例1と同様にしてコイル部品を得た。金属磁性粒子は、FeSiAlCrで、Feが90wt%、Siが5wt%、Alが4wt%、Crが1wt%とし、大気中での水アトマイズ法により平均粒径15μmの粉末を作製し、500℃の還元雰囲気中で1時間の熱処理を行った。この金属磁性粒子を結晶質合金粒子bとした。
【0030】
<比較例3>
金属磁性粒子以外は、
製造例1と同様にしてコイル部品を得た。金属磁性粒子は、FeSiCrBCで、Feが70wt%、Siが8wt%、Crが5wt%、Bが15wt%、Cが2wt%とし、大気中での水アトマイズ法により平均粒径15μmの粉末を作製した。この金属磁性粒子を非晶質合金粒子dとした。
【0031】
<実施例2>
金属磁性粒子以外は、
製造例1と同様にしてコイル部品を得た。金属磁性粒子は、FeSiCrBCで、Feが77wt%、Siが6wt%、Crが4wt%、Bが13wt%、Cが2wt%とし、大気中での水アトマイズ法により平均粒径15μmの粉末を作製した。この金属磁性粒子を非晶質合金粒子eとした。
【0032】
<実施例3>
金属磁性粒子以外は、
製造例1と同様にしてコイル部品を得た。金属磁性粒子は、FeSiBCで、Feが79.5wt%、Siが5wt%、Bが13.5wt%、Cが2wt%とし、大気中での水アトマイズ法により平均粒径15μmの粉末を作製した。この金属磁性粒子を非晶質合金粒子fとした。
【0033】
<実施例4>
金属磁性粒子以外は、
製造例1と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、実施例2で用いた非晶質合金粒子eと粒径の異なる平均粒径10μmを用い、それぞれを6:4の割合となるように混合し、複合磁性材料とした。
【0034】
<実施例5>
ここでは、製品高さを1.0mm、磁性体の最小肉厚を0.2mmに変更し、実施例4と同様の複合磁性材料により、コイル部品を得た。
【0035】
<実施例6>
金属磁性粒子以外は、実施例5と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、実施例2で用いた非晶質合金粒子eと粒径の異なる平均粒径10μmを用い、それぞれを8:2の割合となるように混合し、複合磁性材料とした。
【0036】
<実施例7>
金属磁性粒子以外は、実施例5と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、実施例2で用いた非晶質合金粒子eと粒径の異なる平均粒径10μmを用い、それぞれを9:1の体積割合となるように混合し、複合磁性材料とした。
【0037】
<実施例8>
金属磁性粒子以外は、実施例5と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、実施例2で用いた非晶質合金粒子eと粒径の異なる平均粒径2μmを用い、それぞれを8:2の体積割合となるように混合し、複合磁性材料とした。
【0038】
<実施例9>
金属磁性粒子以外は、実施例5と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、実施例2で用いた非晶質合金粒子eと粒径の異なる平均粒径1.5μmを用い、それぞれを8:2の体積割合となるように混合し、複合磁性材料とした。
【0039】
<実施例10>
金属磁性粒子以外は、実施例5と同様にしてコイル部品を得た。金属磁性粒子は、実施例3で用いた非晶質合金粒子fと、Fe粒子(Feが99.6wt%、Fe以外は不純物)の平均粒径1.5μmを用い、それぞれを8:2の体積割合となるように混合し、複合磁性材料とした。
【0040】
複合磁性材料に含まれる金属磁性粒子のSIMS測定結果は以下のとおりである。
金属磁性粒子 表面の酸素比率
結晶質合金粒子a 53%
結晶質合金粒子b 52%
結晶質合金粒子c 48%
非晶質合金粒子d 51%
非晶質合金粒子e 40%
非晶質合金粒子f 30%
Fe粒子 31%
【0041】
上記において、「表面の酸素比率」は、上述したSIMS測定における酸素比率の最大値(ただし、エッチング時間0〜10分までの1分ごとの測定における最大値)である。
上記SIMSの測定は、それぞれの複合磁性材料ごとに20個の粒子について行った。上記はそれらの結果の平均値である。
【0042】
複合磁性材料の樹脂量、及びコイル部品のインダクタンスは以下のとおりである。
充填率 インダクタンス
製造例1 74.0vol% 1.02μH
比較例1 70.3vol% 0.8μH
比較例2 71.2vol% 0.85μH
比較例3 71.3vol% 0.86μH
実施例2 75.2vol% 1.1μH
実施例3 75.4vol% 1.12μH
実施例4 75.8vol% 1.15μH
実施例5 75.5vol% 1.04μH
実施例6 76.4vol% 1.1μH
実施例7 76.1vol% 1.07μH
実施例8 77.3vol% 1.1μH
実施例9 75.5vol% 1.02μH
実施例10 75.5vol% 1.02μH
【0043】
上記において、「樹脂量」は複合磁性材料の製造の際に添加した樹脂量であり、「充填率」は、磁性体断面の金属磁性粒子の占める割合を顕微鏡観察像から求めたものである。「インダクタンス」は、LCRメータを用いて求めた1MHzでのコイル部品のインダクタンス値を示している。
【0044】
比較例は、いずれも充填率が低く、コイル周辺に充填不足に伴う欠陥(導線の露出)が存在している。この結果、電気的特性においても実施例と比較し、低い値を示す結果となっており、いずれもコイル部品としては十分なものであった。この結果のように、これまでは磁性体の厚みの薄い部分を形成することができなかった。これに対し、実施例においては、充填に伴う欠陥を生じること無く、厚み0.25mm、更には0.2mmの磁性体を得ることができる。これにより、高い圧力で形成していた圧粉ではできないような薄型化に対応でき、部品の小型化が可能となる。
【0045】
<実施例11>
この実施例は、ドラムコアに巻線を施し、巻線の外側に複合磁性材料を形成するもので行った。
製品サイズ:2.5×2.0×1.2mm
ドラムコア:FeSiCr(Feが90wt%、Siが6wt%、Crが4wt%とし、大気中で1時間の熱処理を行った。)
複合磁性材料:上述の非晶質合金粒子eを用いた。
コイル:ポリイミド被膜付き導線(平角線0.3×0.1mm)、α巻きにて周回数9.5t
成形:ゴム型内部に巻線をしたドラムコアを配置し、複合磁性材料をゴム型に注入、仮硬化して磁性体を形成。
硬化:仮硬化の磁性体を金型から取り出し、200℃にて硬化
端子電極:ドラムコアの鍔の外側面にTi、Agをスパッタリングし、Ag入り導電性ペーストを付け、Ni、Snのめっき処理
【0046】
上記の手順は、以下の通り行ったものである。
ドラムコアをFeSiCrの磁性材料を成形、熱処理を行い作成する。次に、ドラムコアの鍔の外側の面に端子電極を形成し、ドラムコアの軸の外側に巻線をした導線を端子電極に接続する。最後に、巻線したドラムコアをゴム型の配置し、コイルの外側に事前に金属磁性粒子と樹脂を混合しておいた複合磁性材料を50℃に加熱し、コイルの外側に複合磁性材料を形成、更にゴム型から得られたコイル部品を取り出し、更に200℃で樹脂を硬化し、コイル部品を得る。また、ここでの成形時の圧力は5MPaであり、従来の圧力に対し非常に低いものであった。
【0047】
上記と同様に、コイル部品の評価を行った結果、1.15μHのインダクタンスと74.5vol%の充填率が測定され、電流特性が良好であった。また、充填に伴うような欠陥を生じること無く、安定した部品を作ることができる。
このように、本発明の複合磁性材料を用いることで、これまでにないような、磁性体の薄型化や、小型で高性能な部品の製造が可能になる。
【0048】
また、電気的特性以外の評価を以下に示す。
複合磁性材料はそれぞれ断面より評価できる。金属磁性粒子の充填率は、走査型電子顕微鏡(SEM)を用い、SEM像(3000倍)を取得し、画像処理を行う。これにより得られた断面に存在する金属磁性粒子と、金属磁性粒子以外のそれぞれの面積から、金属磁性粒子の面積の割合を充填率としている。断面において金属磁性粒子の断別は酸素の有無により行え、断面に見える粒子の大きさ(最大の長さ)で1μm以上のものを金属磁性粒子と見なして行った。これは金属磁性粒子の粒径で1μmより小さいものは磁気的な特性への影響が小さいことから、この範囲としたものである。
【0049】
金属磁性粒子における鉄(Fe元素)の含有比率はSEM−EDXにより測定することもできる。複合磁性材料の断面のSEM像(3000倍)を取得し、マップングにより同じ組成の粒子を選択し、20個以上の金属磁性粒子に鉄(Fe元素)の含有比率より平均値を求める。また、マッピングにより、組成の異なるものが存在すれば、異なる組成の金属磁性粒子を混合したものと判断できる。更に、金属磁性粒子の粒径は複合磁性材料の断面のSEM像(約3000倍)を取得し、測定部分における平均的な大きさの粒子を300個以上選び出して、それらのSEM像における面積を測定し、粒子が球体であると仮定して粒径を算出する。また、得られた粒径の分布から、ピーク点が2つ存在すれば、異なる平均粒径の金属磁性粒子を混合と判断できる。それぞれの測定は、複合磁性材料で形成された磁性体の断面の中央部分を選択して行っている。また、いずれも、断面に見える粒子の大きさで1μm以上のものを対象に行っている。