(58)【調査した分野】(Int.Cl.,DB名)
前記TiAl系粉末体は、前記TiAl系金属間化合物の粉末であるTiAl系粉末と、前記添加金属を含有する添加金属粉末とを複数混合したものである、請求項1から請求項3のいずれか1項に記載のTiAl系金属間化合物焼結体の製造方法。
前記TiAl系金属間化合物と前記添加金属とを含有する複数のTiAl系焼結粉末が結合しており、前記添加金属の金属相である添加金属相は、隣接する前記TiAl系焼結粉末の間に存在する、請求項6又は請求項7に記載のTiAl系金属間化合物焼結体。
【発明を実施するための形態】
【0018】
以下に添付図面を参照して、本発明の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
【0019】
(第1実施形態)
図1は、第1実施形態に係る焼結体製造システムの構成を示すブロック図である。第1実施形態に係る焼結体製造システム1は、TiAl系金属間化合物の焼結体の製造方法を実行するためのシステムである。TiAl系金属間化合物焼結体とは、TiAl系金属間化合物(TiAl系合金)を主成分とする焼結体である。本実施形態におけるTiAl系金属間化合物とは、Ti(チタン)とAl(アルミニウム)とが結合した化合物(TiAl、Ti
3Al、Al
3Ti等)である。ただし、TiAl系金属間化合物は、TiとAlとが結合している相であるTiAl相に、後述する混合金属Mを固溶するものであってもよい。
【0020】
図1に示すように、焼結体製造システム1は、粉末製造装置10と、金属粉末射出成型装置20と、脱脂装置30と、焼結装置40とを有する。焼結体製造システム1は、粉末製造装置10によってTiAl系金属間化合物の粉末を製造し、金属粉末射出成型装置20によってその粉末をバインダと共に金属粉末射出成型し、焼結装置40によって金属粉末射出成型された成形体を焼結して、TiAl系金属間化合物の焼結体(TiAl系金属間化合物焼結体)を製造する。
【0021】
粉末製造装置10は、TiAl系インゴッドA
1から、TiAl系固溶粉末B
1を製造する。TiAl系インゴッドA
1は、上述のTiAl系金属間化合物のインゴッドである。本実施形態におけるTiAl系インゴッドA
1は、TiAl系金属間化合物のTiAl相に、添加金属が固溶したものである。第1実施形態における添加金属は、Ni(ニッケル)である。TiAl系インゴッドA
1は、TiAl系金属間化合物の含有量が、99重量%以上99.99重量%以下であり、添加金属としてのNiの含有量が、0.01重量%以上1重量%以下である。また、添加金属としてのNiの含有量は、0.2重量%以上0.6重量%以下であることがより好ましい。
【0022】
TiAl系インゴッドA
1内のTiAl系金属間化合物は、20〜80重量%のTiと、20〜80重量%のAlと、0〜30重量%の混合金属Mとを含有する。すなわち、TiAl系インゴッドA
1は、添加金属を含めた全成分から見た場合、Tiが19.8重量%以上79.992重量%以下であり、Alが19.8重量%以上79.992重量%であり、混合金属Mが0重量%以上29.997重量%以下である。TiAl系インゴッドA
1内のTiAl系金属間化合物は、混合金属Mを含有する場合は、混合金属MがTiAl相に固溶している形態となっている。混合金属Mは、Ti及びAl以外の金属であり、例えば、Nb(ニオブ)、Cr(クロム)、及びMn(マンガン)のうち少なくともいずれか一種を含有する。
【0023】
TiAl系インゴッドA
1は、以上説明したように、TiAl系金属間化合物のTiAl相に、添加金属としてのNi及び混合金属Mが固溶した合金の塊である。TiAl系インゴッドA
1は、各成分の純金属(Ti、Al、Ni、混合金属M)を溶融、混合させた後に冷却することで製造される。
【0024】
図2は、第1実施形態に係る粉末製造装置の構成を模式的に説明する説明図である。
図2に示すように、粉末製造装置10は、加熱体12と、ガス噴射体14と、を有する。加熱体12は、TiAl系インゴッドA
1の周囲にコイル状に巻回される電熱線である。加熱体12は、電流が流されることで発熱し、TiAl系インゴッドA
1を溶融する。溶融したTiAl系インゴッドA
1は、液状のTiAl系溶融体A
2として、TiAl系インゴッドA
1の鉛直方向下方に滴下される。
【0025】
ガス噴射体14は、内部に不活性ガスG(本実施形態ではアルゴン)を導通させ、開口部から不活性ガスGを噴射させる噴射管である。ガス噴射体14の開口部は、TiAl系インゴッドA
1の鉛直方向の下方に位置しており、TiAl系インゴッドA
1の鉛直方向下方に滴下されたTiAl系溶融体A
2に対し、不活性ガスGを噴射する。不活性ガスGが噴射されたTiAl系溶融体A
2は、複数に分裂しつつ冷却固化され、複数のTiAl系固溶粉末B
1となる。なお、本実施形態においては、ガス噴射体14は複数であるが、単数であってもよく、その数は任意である。
【0026】
TiAl系固溶粉末B
1は、TiAl系インゴッドA
1を溶融後、固化させて製造されるため、含有する金属成分が、TiAl系インゴッドA
1と同じである。すなわち、TiAl系固溶粉末B
1は、TiAl系金属間化合物のTiAl相に添加金属としてのNi及び混合金属Mが固溶した合金の粉末(粒子)である。そして、TiAl系固溶粉末B
1は、各金属成分の含有比が、TiAl系インゴッドA
1と同じである。TiAl系固溶粉末B
1の粒径は、1μm以上50μm以下、より好ましくは1μm以上20μm以下である。本実施形態の説明では、1つの粉末(粒子1つ)を粉末と記載し、複数の粉末の集合体を、粉末体と記載する。TiAl系固溶粉末B
1は1つの粉末(粒子)であり、複数のTiAl系固溶粉末B
1の集合体を、TiAl系粉末体B
2と記載する。
【0027】
図1に示す金属粉末射出成型装置20は、金属粉末射出成型(MIM:Metal Injection Molding)を行う装置である。金属粉末射出成型装置20は、混合体Cから、成形体Dを製造する。混合体Cは、粉末製造装置10によって製造されたTiAl系粉末体B
2とバインダとを混合したものである。バインダは、TiAl系粉末体B
2中のTiAl系固溶粉末B
1同士を繋ぎ合わせるものであり、流動性を有する樹脂である。混合体Cは、バインダ添加により、流動性及び成形性が付与される。
【0028】
金属粉末射出成型装置20は、成形型内に混合体Cを射出する。成形型内に射出された混合体Cは、成形体Dを形成する。成形体Dは、バインダ添加により流動性が付与されているため、成形型から取り出されても、成形型によって規定される形状に維持される。
【0029】
脱脂装置30は、成形体Dを脱脂する装置である。具体的には、脱脂装置30は、成形型から取り出された成形体Dを内部に収納し、内部を脱脂温度に加温することにより、成形体Dからバインダを除去(脱脂)して、脱脂体Eを生成する。脱脂温度は、バインダが熱分解する温度以上の温度である。
【0030】
焼結装置40は、脱脂体Eを内部に収納し、内部を焼結温度に加温することにより、脱脂体Eを焼結(脱脂体E中のTiAl系固溶粉末B
1同士を焼結)して、TiAl系金属間化合物焼結体Fを生成する。焼結温度は、TiAl系固溶粉末B
1同士が焼結可能な温度であり、例えば1400℃から1500℃の間である。焼結装置40は、内部を焼結温度に所定時間(例えば1時間)保持することで、焼結を促進させる。なお、焼結装置40は、脱脂装置30と別の装置であってもよいし、脱脂装置30と同じ装置であってもよい。焼結装置40は、脱脂装置30と同じ装置である場合は、脱脂温度から温度を下げずに、連続的に焼結温度まで温度を上昇させる。
【0031】
TiAl系金属間化合物焼結体Fは、脱脂体E中のTiAl系固溶粉末B
1同士を焼結したものであるため、TiAl系固溶粉末B
1と同じ成分を、同じ比率だけ含有する。すなわち、TiAl系金属間化合物焼結体Fは、TiAl系金属間化合物の含有量が、99重量%以上99.99重量%以下であり、添加金属としてのNiの含有量が、0.01重量%以上1重量%以下である。また、添加金属としてのNiの含有量は、0.2重量%以上0.6重量%以下であることがより好ましい。また、TiAl系金属間化合物焼結体F内のTiAl系金属間化合物は、20〜80重量%のTiと、20〜80重量%のAlと、0〜30重量%の混合金属Mとを含有する。すなわち、TiAl系金属間化合物焼結体Fは、添加金属を含めた全成分から見た場合、Tiが19.8重量%以上79.992重量%以下であり、Alが19.8重量%以上79.992重量%以下であり、混合金属Mが0重量%以上29.997重量%%以下である。
【0032】
ここで、焼結によって結合されたTiAl系固溶粉末B
1を、TiAl系焼結粉末F1とする。TiAl系金属間化合物焼結体Fは、複数のTiAl系焼結粉末F1が、ネックを形成して結合(溶着)したものである。TiAl系固溶粉末B
1は、TiAl系金属間化合物内(TiAl相内)に、添加金属としてのNiが固溶している。一方、TiAl系焼結粉末F1は、TiAl系金属間化合物内(TiAl相内)に、添加金属としてのNiが固溶しておらず、TiAl相と、添加金属相(Ni相)とに相が分離している。言い換えれば、TiAl系金属間化合物焼結体FにおけるTiAl系金属間化合物(TiAl相)は、TiとAlと混合金属Mとを含有しており、Niを含有していない。
【0033】
図3は、第1実施形態に係るTiAl系金属間化合物焼結体の相を説明する模式図である。以下、TiAl系焼結粉末F1内のTiAl相をTiAl相F2とし、添加金属相(Ni相)を添加金属相F3とする。
図3に示すように、Ni相(添加金属相F3)は、隣接するTiAl系焼結粉末F1の間(粒界)、すなわち、1つのTiAl系焼結粉末F1のTiAl相F2と、それに隣接するTiAl系焼結粉末F1のTiAl相F2との間に存在する。さらに言えば、Ni相(添加金属相F3)は、複数のTiAl系金属間化合物(TiAl相F2)のそれぞれの周囲に存在する。
【0034】
TiAl系金属間化合物焼結体Fは、添加金属相F3が、隣接するTiAl相F2間の粒界に存在しているため、焼結密度が向上する。
【0035】
以下、焼結体製造システム1によるTiAl系金属間化合物焼結体Fの製造フローを説明する。
図4は、第1実施形態に係る焼結体製造システムによるTiAl系金属間化合物焼結体の製造フローを説明するフローチャートである。
図4に示すように、焼結体製造システム1は、最初に、粉末製造装置10により、TiAl系インゴッドA
1から複数のTiAl系固溶粉末B
1(TiAl系粉末体B
2)を生成する(ステップS10)。TiAl系固溶粉末B
1を生成した後、焼結体製造システム1は、TiAl系粉末体B
2とバインダとを混合して混合体Cを生成し(ステップS12)、金属粉末射出成型装置20により、混合体Cを射出成型して、成形体Dを成形する(ステップS14)。成形体Dを成形した後、焼結体製造システム1は、脱脂装置30により、成形体Dを脱脂して脱脂体Eを生成し(ステップS16)、焼結装置40により脱脂体Eを焼結して、TiAl系金属間化合物焼結体Fを生成する(ステップS18)。ステップS18により、TiAl系金属間化合物焼結体の製造処理は終了する。
【0036】
以上説明したように、本実施形態の焼結体製造システム1が実行するTiAl系金属間化合物焼結体Fの製造方法は、TiAl系粉末体B
2を焼結して、TiAl系金属間化合物焼結体Fを生成する。TiAl系粉末体B
2は、Ti及びAlが結合したTiAl系金属間化合物と添加金属とを含有する。添加金属は、第1実施形態ではNiである。このTiAl系金属間化合物焼結体Fの製造方法は、TiAl系金属間化合物と添加金属とを含有するTiAl系粉末体B
2を焼結するため、TiAl系金属間化合物焼結体Fを、隣接するTiAl相F2の粒界に添加金属相F3が存在する金属組織とすることができる。従って、このTiAl系金属間化合物焼結体Fの製造方法は、焼結密度を高くし、強度を高くすることができる。
【0037】
焼結体製造システム1が実行するTiAl系金属間化合物焼結体Fの製造方法は、混合ステップと、射出成型ステップと、脱脂ステップと、焼結ステップとを有する。混合ステップは、TiAl系粉末体B
2とバインダとを混合して混合体Cを得る。射出成型ステップは、混合体Cを金属粉末射出成型機(金属粉末射出成型装置20)によって成形体Dに成形する。脱脂ステップは、成形体Dを脱脂して脱脂体Eを生成する。焼結ステップは、脱脂体Eを焼結してTiAl系金属間化合物焼結体Fを生成する。このTiAl系金属間化合物焼結体Fの製造方法は、金属粉末射出成型法を用いてTiAl系金属間化合物焼結体Fを製造する。金属粉末射出成型法を用いる場合、成形形状を維持しつつ焼結を行う必要がある。特にTiAl系金属間化合物の焼結体を金属粉末射出成型法で製造する場合は、焼結温度の幅が狭いなど、成形形状を維持しつつ焼結を行うための焼結条件がシビアとなっている。そのため、TiAl系金属間化合物の焼結体を金属粉末射出成型法で製造する場合、焼結条件を適切に設定できず、成形形状を維持しつつ焼結密度を向上させることが困難となるおそれがある。しかし、本実施形態によれば、TiAl系金属間化合物焼結体Fを、隣接するTiAl相F2の粒界に添加金属相F3が存在する金属組織とすることができる。そのため、このTiAl系金属間化合物焼結体Fの製造方法は、焼結密度を高く保ちつつ、金属粉末射出成型法によって形状精度を向上させることが可能となる。
【0038】
TiAl系粉末体B
2は、Niの含有量が、0.01重量%以上1重量%以下である。これにより、焼結装置40は、隣接するTiAl相F2の粒界に添加金属相F3を適切に存在させることが可能となる。従って、このTiAl系金属間化合物焼結体Fの製造方法は、焼結密度をより適切に向上させることができる。
【0039】
また、TiAl系粉末体B
2は、TiAl系金属間化合物と添加金属とを含有するTiAl系固溶粉末B
1を複数混合したものである。このTiAl系金属間化合物焼結体Fの製造方法は、焼結に用いるTiAl系固溶粉末B
1をTiAl系金属間化合物と添加金属とを含有する粉末とすることで、焼結体のTiAl相F2の粒界に添加金属相F3を適切に存在させることが可能となる。従って、このTiAl系金属間化合物焼結体Fの製造方法は、焼結密度をより適切に向上させることができる。
【0040】
本実施形態に係るTiAl系金属間化合物焼結体Fは、Ti及びAlが結合したTiAl系金属間化合物とNiである添加金属とを含有し、Niの含有量が、全体の0.01重量%以上1重量%以下である。このTiAl系金属間化合物焼結体Fは、TiAl系金属間化合物に対し、Niをこの配合比で含有しているため、焼結体のTiAl相F2の粒界に添加金属相F3を存在させることが可能となる。従って、このTiAl系金属間化合物焼結体Fは、焼結密度をより適切に向上させることができる。
【0041】
TiAl系金属間化合物焼結体Fは、TiAl系金属間化合物が、20〜80重量%のTiと、20〜80重量%のAlと、0〜30重量%の混合金属Mとを含有し、混合金属Mは、Nb、Cr、及びMnのうち少なくともいずれか一種を含有する。このTiAl系金属間化合物焼結体Fは、TiAl系金属間化合物がこの配合比となっているため、強度が向上する。
【0042】
TiAl系金属間化合物焼結体Fは、TiAl系金属間化合物と添加金属とを含有する複数のTiAl系焼結粉末F1が結合しており、添加金属の金属相である添加金属相は、隣接するTiAl系焼結粉末F1の間に存在する。このTiAl系金属間化合物焼結体Fは、焼結体のTiAl相F2の粒界に添加金属相F3が存在しているため、焼結密度をより適切に向上させることができる。
【0043】
(第2実施形態)
次に、第2実施形態について説明する。第2実施形態においては、添加金属として、Ni及びFe(鉄)を用いる点で、第1実施形態とは異なる。第2実施形態において、第1実施形態と構成が共通する箇所は、説明を省略する。
【0044】
第2実施形態に係る添加金属は、Ni及びFeである。第2実施形態に係るTiAl系インゴッドA
1は、TiAl系金属間化合物の含有量が、98重量%以上99.99重量%以下であり、添加金属としてのNi及びFeの合計含有量が、0.01重量%以上2重量%以下である。また、Niは、NiとFeとの合計量に対し、0.01重量%以上2重量%未満含有されており、0.01重量%以上1重量%以下含有されていることがより好ましい。
【0045】
第2実施形態においては、添加金属としてNi及びFeを含有するこのTiAl系インゴッドA
1を用いて、第1実施形態と同様の方法で、TiAl系金属間化合物焼結体Fを生成する。第2実施形態に係るTiAl系金属間化合物焼結体Fは、TiAl系金属間化合物の含有量が、98重量%以上99.99重量%以下であり、Ni及びFeの合計含有量が、0.01重量%以上2重量%以下である。
【0046】
第2実施形態に係るTiAl系金属間化合物焼結体Fは、第1実施形態と同様の相を形成する。すなわち、第2実施形態に係るTiAl系金属間化合物焼結体Fにおいては、Ni及びFeの合金相(添加金属相F3)が、隣接するTiAl系焼結粉末F1の間(粒界)、すなわち、1つのTiAl系焼結粉末F1のTiAl相F2と、それに隣接するTiAl系焼結粉末F1のTiAl相F2との間に存在する。従って、第2実施形態に係るTiAl系金属間化合物焼結体Fも、添加金属相F3が、隣接するTiAl相F2間の粒界に存在しているため、焼結密度が向上する。
【0047】
第2実施形態に係るTiAl系粉末体B
2は、Ni及びFeの合計含有量が、0.01重量%以上2重量%以下である。これにより、焼結装置40は、隣接するTiAl相F2の粒界に添加金属相F3を適切に存在させることが可能となる。従って、第2実施形態に係るTiAl系金属間化合物焼結体Fの製造方法も、焼結密度をより適切に向上させることができる。
【0048】
第2実施形態に係るTiAl系金属間化合物焼結体Fは、Ti及びAlが結合したTiAl系金属間化合物と、Fe及びNiである添加金属とを含有し、Fe及びNiの合計含有量が、全体の0.01重量%以上2重量%以下である。このTiAl系金属間化合物焼結体Fは、TiAl系金属間化合物に対し、Fe及びNiをこの配合比で含有しているため、焼結体のTiAl相F2の粒界に添加金属相F3を存在させることが可能となる。従って、このTiAl系金属間化合物焼結体Fは、焼結密度をより適切に向上させることができる。
【0049】
第1実施形態及び第2実施形態で示したように、添加金属としてNi、又は、Ni及びFeを用いることで、TiAl系金属間化合物焼結体Fの焼結密度をより適切に向上させることができる。
【0050】
(第3実施形態)
次に、第3実施形態について説明する。第3実施形態においては、TiAl系粉末体として、TiAl系金属間化合物の粉末であるTiAl系粉末と、添加金属としてNiを含有する添加金属粉末とを複数混合したものを用いる点で、第1実施形態とは異なる。第3実施形態において、第1実施形態と構成が共通する箇所は、説明を省略する。
【0051】
第3実施形態に係る粉末製造装置10は、TiAl系インゴッドA
1aから、TiAl系粉末B
1aを製造する。TiAl系インゴッドA
1aは、添加金属としてのNiを含有せず、TiAl系金属間化合物のみを含有する。ここでのTiAl系金属間化合物は、第1実施形態と同様にTi、Al及び混合金属Mであり、配合比も第1実施形態と同じである。また、TiAl系粉末B
1aは、Ti、Al及び混合金属Mを含有する粉末であり、TiAl系インゴッドA
1aと同じ含有比である。また、TiAl系粉末B
1aの粒径は、第1実施形態のTiAl系固溶粉末B
1と同じである。
【0052】
第3実施形態においては、複数のTiAl系粉末B
1aと、複数の添加金属粉末B
3aとを混合してTiAl系粉末体B
2aを生成する。添加金属粉末B
3aは、Niの粉末である。すなわち、TiAl系粉末体B
2aは、TiAl系金属間化合物の粉末と、添加金属粉末であるNiの粉末との、2種類の異なる成分の粉末を有している。TiAl系粉末体B
2aは、TiAl系金属間化合物とNiとの含有比が、第1実施形態に係るTiAl系粉末体B
2と同様である。
【0053】
添加金属粉末B
3aの粒径は、TiAl系粉末B
1aと同様の範囲であるが、TiAl系粉末B
1aより小さいことがより好ましい。例えば、添加金属粉末B
3aの粒径は、TiAl系粉末B
1aの0.01倍以上0.2倍以下であることが好ましい。
【0054】
第3実施形態に係る焼結体製造システム1は、このTiAl系粉末体B
2aとバインダとを混合して混合体Cを生成する、第3実施形態に係る焼結体製造システム1の以後の処理は、第1実施形態と同様であり、第1実施形態と同じTiAl系金属間化合物焼結体Fを製造する。
【0055】
このように、第3実施形態に係るTiAl系粉末体B
2aは、TiAl系金属間化合物の粉末であるTiAl系粉末B
1aと、添加金属としてNiを含有する添加金属粉末B
3aとを複数混合したものである。このような場合においても、第1実施形態と同様のTiAl系金属間化合物焼結体Fを製造することが可能であるため、第3実施形態に係る焼結体製造システム1は、第1実施形態と同様に焼結密度を適切に向上させることができる。
【0056】
なお、第3実施形態に係る製造方法は、第2実施形態にも適用可能である。すなわち、添加金属粉末B
3aが、Ni及びFeの粉末であってもよい。この場合、添加金属粉末B
3aは、Niの粉末及びFeの粉末であってもよいし、NiとFeとの合金の粉末であってもよい。またこの場合、TiAl系粉末体B
2aは、TiAl系金属間化合物とNi及びFeとの含有比が、第2実施形態に係るTiAl系粉末体B
2と同様である。また、添加金属粉末体B
2aは、NiとFeとの含有比も、第1実施形態と同じである。
【0057】
また、以上の説明では、添加金属はNi、又はNi及びFeであったが、添加金属がFeのみであっても、Feの含有量が2重量%以上であれば、同様に焼結密度を高くすることができる。なお、この場合、焼結体の強度(クリープ強度)の低下の抑制、及び耐酸化性の低下の抑制のためには、Feの含有量は全体の5重量%以下であることが好ましい。
【0058】
(実施例)
次に、実施例について説明する。
図5は、実施例と比較例との焼結密度を示す表である。
図6及び
図7は、比較例のTiAl系金属間化合物焼結体の金属組織の図である。
図8及び
図9は、実施例のTiAl系金属間化合物焼結体の金属組織の図である。
図10は、Niの含有量と焼結密度との関係を示すグラフである。以下説明する各実施例では、金属粉末射出成型機で成形された成形体を脱脂後、焼結温度1450℃で2時間焼結して、TiAl系金属間化合物焼結体Fを製造した。以下説明する各比較例では、実施例と同様に金属粉末射出成型機で成形された成形体を脱脂後、焼結温度1450℃で2時間焼結して、TiAl系金属間化合物焼結体Fxを製造した。各実施例に係るTiAl系金属間化合物焼結体Fは、Alを30重量%、混合金属MとしてのNbを14重量%、混合金属MとしてのCrを0.7重量%含むものであり、各比較例に係るTiAl系金属間化合物焼結体Fxも同様である。
【0059】
比較例1に係るTiAl系金属間化合物焼結体Fxは、Fe及びNiの両方を含有しない。より具体的には、比較例1に係るTiAl系金属間化合物焼結体Fxは、Feの含有量が0.05重量%より少なく、Niの含有量が0.01重量%より少ない。また、
図5に示すように、比較例2に係るTiAl系金属間化合物焼結体Fxは、Feの含有量が0.05重量%より少なく、Niの含有量が1.05重量%である。
図5に示すように、実施例1に係るTiAl系金属間化合物焼結体Fは、添加金属としてNiだけを含有するものであり、Niの含有量は全体の0.2重量%であり、Feの含有量は全体の0.05重量%未満である。実施例2に係るTiAl系金属間化合物焼結体Fは、添加金属としてNiだけを含有するものであり、Niの含有量は、全体の0.6重量%であり、Feの含有量は全体の0.05重量%以下である。また、比較例1、及び実施例1、2では、第3実施形態の方法、すなわち、TiAl系粉末B
1aと添加金属粉末B
3aとを混合する製法を適用した。
【0060】
比較例1に係るTiAl系金属間化合物焼結体Fxは、
図5に示すように、焼結密度が91%であり、
図6に示すように、空孔Vが多くなっている。比較例2に係るTiAl系金属間化合物焼結体Fxは、
図5に示すように、焼結密度が97%であり、
図7に示すように、空孔Vが多く、粒界にγ相のコロニーが発生している。γ相のコロニーは、γ相単体の塊であり、ラメラ構造をとるTiAl系金属間化合物焼結体の性能を悪化させるものである。
【0061】
一方、実施例1に係るTiAl系金属間化合物焼結体Fは、
図5に示すように、焼結密度が98%であり、
図8に示すように、空孔Vが少なく、またγ相のコロニーも発生していない。実施例2に係るTiAl系金属間化合物焼結体Fは、
図5に示すように、焼結密度が97%であり、
図9に示すように、空孔Vが少なく、またγ相のコロニーも発生していない。
【0062】
図10の横軸はNiの含有量であり、縦軸は焼結密度である。
図10は、比較例1、2及び実施例1、2の結果をプロットしたものである。
図10に示すように、添加金属としてNiだけを含有するTiAl系金属間化合物焼結体Fは、Niが全体の0.1重量%以上1重量%以下含有する場合、焼結密度が高く、γ相のコロニーの発生を抑制することができる。
【0063】
図11は、実施例と比較例との焼結密度を示す表である。
図12は、比較例のTiAl系金属間化合物焼結体の金属組織の図である。
図13及び
図14は、実施例のTiAl系金属間化合物焼結体の金属組織の図である。
図15は、Ni及びFeの含有量と焼結密度との関係を示すグラフである。
【0064】
図11に示すように、比較例3に係るTiAl系金属間化合物焼結体Fxは、Niの含有量が0.34重量%であり、Feの含有量が1.79重量%である。すなわち、比較例3に係るTiAl系金属間化合物焼結体Fxは、Ni及びFeの合計含有量が、2.13重量%である。また、実施例3及び4に係るTiAl系金属間化合物焼結体Fは、Niの含有量が0.17重量%であり、Feの含有量が0.92重量%である。すなわち、実施例3及び4に係るTiAl系金属間化合物焼結体Fは、Ni及びFeの合計含有量が、1.09重量%である。また、比較例3に係るTiAl系金属間化合物焼結体Fxは、第3実施形態と同様の方法、また、実施例4では、第3実施形態の方法、すなわち、TiAl系粉末B
1aと添加金属粉末B
3aとを混合する製法を適用した。一方、実施例3では、第1実施形態の方法、すなわち、TiAl系金属間化合物と添加金属とを含有するTiAl系固溶粉末B
1を用いた製造方法を適用している。
【0065】
比較例3に係るTiAl系金属間化合物焼結体Fxは、
図11に示すように、焼結密度が97%であり、
図12に示すように、空孔Vが多く、粒界にγ相のコロニーが発生している。一方、実施例3に係るTiAl系金属間化合物焼結体Fは、
図11に示すように、焼結密度が99%であり、
図13に示すように、空孔Vが少なく、またγ相のコロニーも発生していない。実施例4に係るTiAl系金属間化合物焼結体Fは、
図11に示すように、焼結密度が97%であり、
図14に示すように、空孔Vが少なく、またγ相のコロニーも発生していない。
【0066】
図15の横軸はNi及びFeの合計含有量であり、縦軸は焼結密度である。
図15は、比較例1、3及び実施例3、4の結果をプロットしたものである。
図15に示すように、添加金属としてNi及びFeを含有するTiAl系金属間化合物焼結体Fは、Ni及びFeの合計量が全体の0.1重量%以上2重量%以下含有する場合、焼結密度が高く、γ相のコロニーの発生を抑制することができる。また、実施例3及び実施例4を参照すると、第3実施形態の方法、すなわち、TiAl系粉末B
1aと添加金属粉末B
3aとを混合する製法であっても、第1実施形態の方法、すなわち、TiAl系金属間化合物と添加金属とを含有するTiAl系固溶粉末B
1を用いた製造方法であっても、焼結密度を高くすることができることが分かる。
【0067】
図16は、実施例と比較例との焼結密度を示す表である。
図17は、比較例のTiAl系金属間化合物焼結体の金属組織の図である。
図18は、実施例のTiAl系金属間化合物焼結体の金属組織の図である。
図16に示すように、比較例4に係るTiAl系金属間化合物焼結体Fxは、Feの含有量が1.08重量%であり、Niの含有量が0.01重量%より少ない。実施例5に係るTiAl系金属間化合物焼結体Fは、Feの含有量が2.13重量%であり、Niの含有量が0.01重量%より少ない。比較例4及び実施例5では、焼結温度が1420℃である。その他については、比較例4と比較例1は同じ条件であり、実施例5は実施例1と同じ条件である。
【0068】
比較例4に係るTiAl系金属間化合物焼結体Fxは、
図16に示すように、焼結密度が93%であり、
図17に示すように、空孔Vが多い。一方、実施例5に係るTiAl系金属間化合物焼結体Fは、
図16に示すように、焼結密度が98%であり、
図18に示すように、空孔Vが少なく、またγ相のコロニーも発生していない。
【0069】
このように、TiAl系金属間化合物焼結体Fは、Feのみを添加金属とした場合、Feの含有量が2重量%以上である場合に、焼結密度を高くすることができる。
【0070】
以上、本発明の実施形態を説明したが、この実施形態の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。